1
|
Ngoupaye GT, Mokgokong M, Madlala T, Mabandla MV. Alteration of the α5 GABA receptor and 5HTT lead to cognitive deficits associated with major depressive-like behaviors in a 14-day combined stress rat model. Int J Neurosci 2023; 133:959-976. [PMID: 34937496 DOI: 10.1080/00207454.2021.2019033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 07/13/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Current models used to study the pathophysiology of major depressive disorder (MDD) are laborious and time consuming. This study examined the effect of a 14-day combined stress model (CS; corticosterone injection and restraint stress) in male Sprague-Dawley rats and also compare the effect of CS versus 28-day corticosterone treatment on depressive-like behaviour and cognitive deficits. MATERIEL AND METHODS Depressive-like behaviours and cognitive deficits were assessed in the forced swim test (FST), sucrose preference (SPT), Morris water maze (MWM) and novel object recognition (NORT) tests. Real-time PCR and ELISA were respectively used to detect expression of the serotonin transporter (5-HTT), serotonin 1 A receptor (5-HT1A), α5 GABAA receptor, and the concentrations of corticosterone (plasma), GABA and acetylcholinesterase (AChE) in the hippocampus and Prefrontal cortex (PFC).Results CS group showed increased immobility time in the FST, time to reach the MWM platform, higher corticosterone level, and increased expressions of hippocampal and PFC 5-HT1A and α5 GABAA receptors, and AChE compared to their control groups. In contrast, reductions in SPT ratio, discrimination index in NORT, time in target quadrant, and hippocampal 5-HTT expression was noted relative to their control group. Compared to the 28-day corticosterone only group, PFC 5-HT1A, Hippocampal 5-HTT were reduced, while PFC 5-HTT, Hippocampal α5 GABAA receptors, and AChE concentrations were higher in the CS group. CONCLUSION Our CS model induced depressive-like behaviour with early cognitive deficits in rats affecting both hippocampus and PFC. The CS model may be useful in investigating new and comprehensive treatment strategies for MDD.
Collapse
Affiliation(s)
- Gwladys Temkou Ngoupaye
- Discipline of Human Physiology, School of Laboratory Medicine & Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Animal Biology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Makwena Mokgokong
- Discipline of Human Physiology, School of Laboratory Medicine & Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thobeka Madlala
- Discipline of Human Physiology, School of Laboratory Medicine & Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Musa Vuyisile Mabandla
- Discipline of Human Physiology, School of Laboratory Medicine & Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
2
|
NRM 2021 Abstract Booklet. J Cereb Blood Flow Metab 2021; 41:11-309. [PMID: 34905986 PMCID: PMC8851538 DOI: 10.1177/0271678x211061050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
Veronese M, Rizzo G, Belzunce M, Schubert J, Searle G, Whittington A, Mansur A, Dunn J, Reader A, Gunn RN, and the Grand Challenge Participants #. Reproducibility of findings in modern PET neuroimaging: insight from the NRM2018 grand challenge. J Cereb Blood Flow Metab 2021; 41:2778-2796. [PMID: 33993794 PMCID: PMC8504414 DOI: 10.1177/0271678x211015101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/10/2021] [Accepted: 04/03/2021] [Indexed: 11/16/2022]
Abstract
The reproducibility of findings is a compelling methodological problem that the neuroimaging community is facing these days. The lack of standardized pipelines for image processing, quantification and statistics plays a major role in the variability and interpretation of results, even when the same data are analysed. This problem is well-known in MRI studies, where the indisputable value of the method has been complicated by a number of studies that produce discrepant results. However, any research domain with complex data and flexible analytical procedures can experience a similar lack of reproducibility. In this paper we investigate this issue for brain PET imaging. During the 2018 NeuroReceptor Mapping conference, the brain PET community was challenged with a computational contest involving a simulated neurotransmitter release experiment. Fourteen international teams analysed the same imaging dataset, for which the ground-truth was known. Despite a plurality of methods, the solutions were consistent across participants, although not identical. These results should create awareness that the increased sharing of PET data alone will only be one component of enhancing confidence in neuroimaging results and that it will be important to complement this with full details of the analysis pipelines and procedures that have been used to quantify data.
Collapse
Affiliation(s)
- Mattia Veronese
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | | | - Martin Belzunce
- School of Biomedical Engineering and Imaging Sciences, St Thomas’ Hospital, King’s College London, London, UK
| | - Julia Schubert
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | | | | | - Ayla Mansur
- Invicro LLC, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Joel Dunn
- School of Biomedical Engineering and Imaging Sciences, St Thomas’ Hospital, King’s College London, London, UK
- King's College London & Guy's and St. Thomas' PET Centre, London, UK
| | - Andrew Reader
- School of Biomedical Engineering and Imaging Sciences, St Thomas’ Hospital, King’s College London, London, UK
| | - Roger N Gunn
- Invicro LLC, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - and the Grand Challenge Participants#
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Invicro LLC, London, UK
- School of Biomedical Engineering and Imaging Sciences, St Thomas’ Hospital, King’s College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
- King's College London & Guy's and St. Thomas' PET Centre, London, UK
| |
Collapse
|
4
|
Basmisanil, a highly selective GABA A-α5 negative allosteric modulator: preclinical pharmacology and demonstration of functional target engagement in man. Sci Rep 2021; 11:7700. [PMID: 33833333 PMCID: PMC8032764 DOI: 10.1038/s41598-021-87307-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/26/2021] [Indexed: 12/21/2022] Open
Abstract
GABAA-α5 subunit-containing receptors have been shown to play a key modulatory role in cognition and represent a promising drug target for cognitive dysfunction, as well as other disorders. Here we report on the preclinical and early clinical profile of a novel GABAA-α5 selective negative allosteric modulator (NAM), basmisanil, which progressed into Phase II trials for intellectual disability in Down syndrome and cognitive impairment associated with schizophrenia. Preclinical pharmacology studies showed that basmisanil is the most selective GABAA-α5 receptor NAM described so far. Basmisanil bound to recombinant human GABAA-α5 receptors with 5 nM affinity and more than 90-fold selectivity versus α1, α2, and α3 subunit-containing receptors. Moreover, basmisanil inhibited GABA-induced currents at GABAA-α5 yet had little or no effect at the other receptor subtypes. An in vivo occupancy study in rats showed dose-dependent target engagement and was utilized to establish the plasma exposure to receptor occupancy relationship. At estimated receptor occupancies between 30 and 65% basmisanil attenuated diazepam-induced spatial learning impairment in rats (Morris water maze), improved executive function in non-human primates (object retrieval), without showing anxiogenic or proconvulsant effects in rats. During the Phase I open-label studies, basmisanil showed good safety and tolerability in healthy volunteers at maximum GABAA-α5 receptor occupancy as confirmed by PET analysis with the tracer [11C]-Ro 15-4513. An exploratory EEG study provided evidence for functional activity of basmisanil in human brain. Therefore, these preclinical and early clinical studies show that basmisanil has an ideal profile to investigate potential clinical benefits of GABAA-α5 receptor negative modulation.
Collapse
|
5
|
McGinnity CJ, Riaño Barros DA, Hinz R, Myers JF, Yaakub SN, Thyssen C, Heckemann RA, de Tisi J, Duncan JS, Sander JW, Lingford-Hughes A, Koepp MJ, Hammers A. Αlpha 5 subunit-containing GABA A receptors in temporal lobe epilepsy with normal MRI. Brain Commun 2021; 3:fcaa190. [PMID: 33501420 PMCID: PMC7811756 DOI: 10.1093/braincomms/fcaa190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 09/06/2020] [Accepted: 09/24/2020] [Indexed: 01/08/2023] Open
Abstract
GABAA receptors containing the α5 subunit mediate tonic inhibition and are widely expressed in the limbic system. In animals, activation of α5-containing receptors impairs hippocampus-dependent memory. Temporal lobe epilepsy is associated with memory impairments related to neuron loss and other changes. The less selective PET ligand [11C]flumazenil has revealed reductions in GABAA receptors. The hypothesis that α5 subunit receptor alterations are present in temporal lobe epilepsy and could contribute to impaired memory is untested. We compared α5 subunit availability between individuals with temporal lobe epilepsy and normal structural MRI ('MRI-negative') and healthy controls, and interrogated the relationship between α5 subunit availability and episodic memory performance, in a cross-sectional study. Twenty-three healthy male controls (median ± interquartile age 49 ± 13 years) and 11 individuals with MRI-negative temporal lobe epilepsy (seven males; 40 ± 8) had a 90-min PET scan after bolus injection of [11C]Ro15-4513, with arterial blood sampling and metabolite correction. All those with epilepsy and six controls completed the Adult Memory and Information Processing Battery on the scanning day. 'Bandpass' exponential spectral analyses were used to calculate volumes of distribution separately for the fast component [V F; dominated by signal from α1 (α2, α3)-containing receptors] and the slow component (V S; dominated by signal from α5-containing receptors). We made voxel-by-voxel comparisons between: the epilepsy and control groups; each individual case versus the controls. We obtained parametric maps of V F and V S measures from a single bolus injection of [11C]Ro15-4513. The epilepsy group had higher V S in anterior medial and lateral aspects of the temporal lobes, the anterior cingulate gyri, the presumed area tempestas (piriform cortex) and the insulae, in addition to increases of ∼24% and ∼26% in the ipsilateral and contralateral hippocampal areas (P < 0.004). This was associated with reduced V F:V S ratios within the same areas (P < 0.009). Comparisons of V S for each individual with epilepsy versus controls did not consistently lateralize the epileptogenic lobe. Memory scores were significantly lower in the epilepsy group than in controls (mean ± standard deviation -0.4 ± 1.0 versus 0.7 ± 0.3; P = 0.02). In individuals with epilepsy, hippocampal V S did not correlate with memory performance on the Adult Memory and Information Processing Battery. They had reduced V F in the hippocampal area, which was significant ipsilaterally (P = 0.03), as expected from [11C]flumazenil studies. We found increased tonic inhibitory neurotransmission in our cohort of MRI-negative temporal lobe epilepsy who also had co-morbid memory impairments. Our findings are consistent with a subunit shift from α1/2/3 to α5 in MRI-negative temporal lobe epilepsy.
Collapse
Affiliation(s)
- Colm J McGinnity
- Centre for Neuroscience, Department of Medicine, Imperial College London, London W12 0NN, UK
- MRC Clinical Sciences Centre, Hammersmith Hospital, London W12 0NN, UK
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Daniela A Riaño Barros
- Centre for Neuroscience, Department of Medicine, Imperial College London, London W12 0NN, UK
- MRC Clinical Sciences Centre, Hammersmith Hospital, London W12 0NN, UK
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester M20 3LJ, UK
| | - James F Myers
- Centre for Neuroscience, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Siti N Yaakub
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Charlotte Thyssen
- Medical Image and Signal Processing (MEDISIP), Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, 9000 Ghent, Belgium
| | - Rolf A Heckemann
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Jane de Tisi
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK, and Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
| | - John S Duncan
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK, and Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
| | - Josemir W Sander
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK, and Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede 2103SW, The Netherlands
| | - Anne Lingford-Hughes
- Neuropsychopharmacology Unit, Centre for Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Matthias J Koepp
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK, and Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
| | - Alexander Hammers
- Centre for Neuroscience, Department of Medicine, Imperial College London, London W12 0NN, UK
- MRC Clinical Sciences Centre, Hammersmith Hospital, London W12 0NN, UK
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EH, UK
- Neurodis Foundation, CERMEP, Imagerie du Vivant, 69003 Lyon, France
| |
Collapse
|
6
|
Marques TR, Ashok AH, Angelescu I, Borgan F, Myers J, Lingford-Hughes A, Nutt DJ, Veronese M, Turkheimer FE, Howes OD. GABA-A receptor differences in schizophrenia: a positron emission tomography study using [ 11C]Ro154513. Mol Psychiatry 2021; 26:2616-2625. [PMID: 32296127 PMCID: PMC8440185 DOI: 10.1038/s41380-020-0711-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/17/2020] [Accepted: 03/04/2020] [Indexed: 01/28/2023]
Abstract
A loss of GABA signaling is a prevailing hypothesis for the pathogenesis of schizophrenia. Preclinical studies indicate that blockade of the α5 subtype of the GABA receptor (α5-GABAARs) leads to behavioral phenotypes associated with schizophrenia, and postmortem evidence indicates lower hippocampal α5-GABAARs protein and mRNA levels in schizophrenia. However, it is unclear if α5-GABAARs are altered in vivo or related to symptoms. We investigated α5-GABAARs availability in antipsychotic-free schizophrenia patients and antipsychotic-medicated schizophrenia patients using [11C]Ro15-4513 PET imaging in a cross-sectional, case-control study design. Thirty-one schizophrenia patients (n = 10 antipsychotic free) and twenty-nine matched healthy controls underwent a [11C]Ro15-4513 PET scan and MRI. The α5 subtype GABA-A receptor availability was indexed using [11C]Ro15-4513 PET imaging. Dynamic PET data were analyzed using the two-tissue compartment model with an arterial plasma input function and total volume of distribution (VT) as the outcome measure. Symptom severity was assessed using the PANSS scale. There was significantly lower [11C]Ro15-4513 VT in the hippocampus of antipsychotic-free patients, but not in medicated patients (p = 0.64), relative to healthy controls (p < 0.05; effect size = 1.4). There was also a significant positive correlation between [11C]Ro15-4513 VT and total PANSS score in antipsychotic-free patients (r = 0.72; p = 0.044). The results suggest that antipsychotic-free patients with schizophrenia have lower α5-GABAARs levels in the hippocampus, consistent with the hypothesis that GABA hypofunction underlies the pathophysiology of the disorder.
Collapse
Affiliation(s)
- Tiago Reis Marques
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Imperial College London, London, UK. .,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Abhishekh H. Ashok
- grid.14105.310000000122478951Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Imperial College London, London, UK ,grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Ilinca Angelescu
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Faith Borgan
- grid.14105.310000000122478951Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Imperial College London, London, UK ,grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Jim Myers
- grid.7445.20000 0001 2113 8111Faculty of Medicine, Imperial College London, London, UK
| | - Anne Lingford-Hughes
- grid.7445.20000 0001 2113 8111Neuropsychopharmacology Unit, Centre for Psychiatry, Division of Brain Sciences, Imperial College London, London, UK
| | - David J. Nutt
- grid.7445.20000 0001 2113 8111Neuropsychopharmacology Unit, Centre for Psychiatry, Division of Brain Sciences, Imperial College London, London, UK
| | - Mattia Veronese
- grid.13097.3c0000 0001 2322 6764Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Federico E. Turkheimer
- grid.13097.3c0000 0001 2322 6764Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Oliver D. Howes
- grid.14105.310000000122478951Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Imperial College London, London, UK ,grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
7
|
Galantamine-Memantine combination in the treatment of Alzheimer's disease and beyond. Psychiatry Res 2020; 293:113409. [PMID: 32829072 DOI: 10.1016/j.psychres.2020.113409] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia in the elderly population worldwide. Despite the major unmet clinical need, no new medications for the treatment of AD have been approved since 2003. Galantamine is an acetylcholinesterase inhibitor that is also a positive allosteric modulator at the α4β2 and α7nACh receptors. Memantine is an N-methyl-d-aspartate receptor modulator/agonist. Both galantamine and memantine are FDA-approved medications for the treatment of AD. The objective of this review is to highlight the potential of the galantamine-memantine combination to conduct randomized controlled trials (RCTs) in AD. Several studies have shown the combination to be effective. Neurodegenerative diseases involve multiple pathologies; therefore, combination treatment appears to be a rational approach. Although underutilized, the galantamine-memantine combination is the standard of care in the treatment of AD. Positive RCTs with the combination with concurrent improvement in symptoms and biomarkers may lead to FDA approval, which may lead to greater utilization of this combination in clinical practice.
Collapse
|
8
|
Honda S, Matsumoto M, Tajinda K, Mihara T. Enhancing Clinical Trials Through Synergistic Gamma Power Analysis. Front Psychiatry 2020; 11:537. [PMID: 32587536 PMCID: PMC7299152 DOI: 10.3389/fpsyt.2020.00537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
While the etiology of many neuropsychiatric disorders remains unknown, increasing evidence suggests that aberrant sensory processing plays a central role. For this class of disorders, which are characterized by affective, cognitive, and behavioral symptoms, electroencephalography remains the dominant tool for providing insight into the physiological and molecular underpinnings of the disease state and predicting the effectiveness of investigational new drugs. Within the spectrum of electrical activity present in the CNS, high-frequency oscillations in the gamma band are frequently altered in these patient populations. Measurement of gamma oscillation can be further classified into baseline and evoked, each of which offers a specific commentary on disease state. Baseline gamma analysis provides a surrogate of pharmacodynamics and predicting the time course effects of clinical candidate drugs, while alterations in evoked (time-locked) gamma power may serve as a disease biomarker and have utility in assessing patient response to new drugs. Together, these techniques offer complimentary methods of analysis for discrete realms of clinical and translational medicine. In terms of drug development, comprehensive analysis containing aspects of both baseline and evoked gamma oscillations may prove more useful in establishing better workflow and more accurate criteria for the testing of investigational new drugs.
Collapse
Affiliation(s)
- Sokichi Honda
- Neuroscience, La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, United States
| | - Mitsuyuki Matsumoto
- Neuroscience, La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, United States
| | - Katsunori Tajinda
- Neuroscience, La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, United States
| | - Takuma Mihara
- Candidate Discovery Research Labs, DDR, Astellas Pharm Inc., Tsukuba, Japan
| |
Collapse
|
9
|
Flaus A, Riaño Barros DA, Hinz R, Myers JF, Lingford-Hughes A, Koepp MJ, Hammers A, McGinnity CJ. Decreased GABA-A Receptor Binding in Association With β-Lactam Antibiotic Use. Clin Nucl Med 2019; 44:981-982. [PMID: 31689281 DOI: 10.1097/rlu.0000000000002811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
β-Lactam antibiotics are proconvulsive. In laboratory animals, this effect seems to be predominantly mediated through inhibition of GABA-A receptors, but it has not been demonstrated in humans in vivo. We report images of a [C]Ro15-4513 PET from a 40-year-old man who had completed a 1-week course of flucloxacillin before it. Relative to healthy controls, the participant had significantly lower mean gray matter binding. These novel data suggest that, in humans, the proconvulsive effect of β-lactam antibiotics is mediated via either competition for the same benzodiazepine-binding site as [C]Ro15-4513 or downregulation of GABA-A receptor expression.
Collapse
Affiliation(s)
- Anthime Flaus
- From the Department of Nuclear Medicine, University Hospital, Saint-Etienne, France
- School of Biomedical Engineering & Imaging Sciences, King's College London, and Guy's and St Thomas' PET Centre, St Thomas' Hospital
| | - Daniela Alexandra Riaño Barros
- Centre for Neuroscience, Department of Medicine, Imperial College London
- MRC Clinical Sciences Centre Hammersmith Hospital, London
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester
| | - James F Myers
- Centre for Neuroscience, Department of Medicine, Imperial College London
| | | | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London
- Epilepsy Society, Chalfont St Peter, United Kingdom
| | - Alexander Hammers
- School of Biomedical Engineering & Imaging Sciences, King's College London, and Guy's and St Thomas' PET Centre, St Thomas' Hospital
- Centre for Neuroscience, Department of Medicine, Imperial College London
- MRC Clinical Sciences Centre Hammersmith Hospital, London
- Neurodis Foundation, CERMEP, Imagerie du Vivant, Lyon, France
| | - Colm Joseph McGinnity
- School of Biomedical Engineering & Imaging Sciences, King's College London, and Guy's and St Thomas' PET Centre, St Thomas' Hospital
- Centre for Neuroscience, Department of Medicine, Imperial College London
- MRC Clinical Sciences Centre Hammersmith Hospital, London
| |
Collapse
|
10
|
Dani M, Wood M, Mizoguchi R, Fan Z, Walker Z, Morgan R, Hinz R, Biju M, Kuruvilla T, Brooks DJ, Edison P. Microglial activation correlates in vivo with both tau and amyloid in Alzheimer's disease. Brain 2019; 141:2740-2754. [PMID: 30052812 DOI: 10.1093/brain/awy188] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 05/29/2018] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease is characterized by the histopathological presence of amyloid-β plaques and tau-containing neurofibrillary tangles. Microglial activation is also a recognized pathological component. The relationship between microglial activation and protein aggregation is still debated. We investigated the relationship between amyloid plaques, tau tangles and activated microglia using PET imaging. Fifty-one subjects (19 healthy controls, 16 mild cognitive impairment and 16 Alzheimer's disease subjects) participated in the study. All subjects had neuropsychometric testing, MRI, amyloid (18F-flutemetamol), and microglial (11C-PBR28) PET. All subjects with mild cognitive impairment and Alzheimer's disease and eight of the controls had tau (18F-AV1451) PET. 11C-PBR28 PET was analysed using Logan graphical analysis with an arterial plasma input function, while 18F-flutemetamol and 18F-AV1451 PET were analysed as target:cerebellar ratios to create parametric standardized uptake value ratio maps. Biological parametric mapping in the Statistical Parametric Mapping platform was used to examine correlations between uptake of tracers at a voxel-level. There were significant widespread clusters of positive correlation between levels of microglial activation and tau aggregation in both the mild cognitive impairment (amyloid-positive and amyloid-negative) and Alzheimer's disease subjects. The correlations were stronger in Alzheimer's disease than in mild cognitive impairment, suggesting that these pathologies increase together as disease progresses. Levels of microglial activation and amyloid deposition were also correlated, although in a different spatial distribution; correlations were stronger in mild cognitive impairment than Alzheimer's subjects, in line with a plateauing of amyloid load with disease progression. Clusters of positive correlations between microglial activation and protein aggregation often targeted similar areas of association cortex, indicating that all three processes are present in specific vulnerable brain areas. For the first time using PET imaging, we show that microglial activation can correlate with both tau aggregation and amyloid deposition. This confirms the complex relationship between these processes. These results suggest that preventative treatment for Alzheimer's disease should target all three processes.
Collapse
Affiliation(s)
- Melanie Dani
- Neurology Imaging Unit, Department of Medicine, Imperial College London, Hammersmith Hospital, UK
| | - Melanie Wood
- Neurology Imaging Unit, Department of Medicine, Imperial College London, Hammersmith Hospital, UK
| | - Ruth Mizoguchi
- Neurology Imaging Unit, Department of Medicine, Imperial College London, Hammersmith Hospital, UK
| | - Zhen Fan
- Neurology Imaging Unit, Department of Medicine, Imperial College London, Hammersmith Hospital, UK
| | - Zuzana Walker
- Division of Psychiatry, University College London, UK.,Essex Partnership University NHS Foundation Trust, UK
| | | | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, UK
| | - Maya Biju
- Gether NHS Foundation Trust, Gloucester, UK
| | | | - David J Brooks
- Neurology Imaging Unit, Department of Medicine, Imperial College London, Hammersmith Hospital, UK.,Department of Nuclear Medicine, Aarhus University, Denmark.,Institute of Neuroscience, University of Newcastle upon Tyne, UK
| | - Paul Edison
- Neurology Imaging Unit, Department of Medicine, Imperial College London, Hammersmith Hospital, UK
| |
Collapse
|
11
|
Frohlich J, Reiter LT, Saravanapandian V, DiStefano C, Huberty S, Hyde C, Chamberlain S, Bearden CE, Golshani P, Irimia A, Olsen RW, Hipp JF, Jeste SS. Mechanisms underlying the EEG biomarker in Dup15q syndrome. Mol Autism 2019; 10:29. [PMID: 31312421 PMCID: PMC6609401 DOI: 10.1186/s13229-019-0280-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022] Open
Abstract
Background Duplications of 15q11.2-q13.1 (Dup15q syndrome), including the paternally imprinted gene UBE3A and three nonimprinted gamma-aminobutyric acid type-A (GABAA) receptor genes, are highly penetrant for neurodevelopmental disorders such as autism spectrum disorder (ASD). To guide targeted treatments of Dup15q syndrome and other forms of ASD, biomarkers are needed that reflect molecular mechanisms of pathology. We recently described a beta EEG phenotype of Dup15q syndrome, but it remains unknown which specific genes drive this phenotype. Methods To test the hypothesis that UBE3A overexpression is not necessary for the beta EEG phenotype, we compared EEG from a reference cohort of children with Dup15q syndrome (n = 27) to (1) the pharmacological effects of the GABAA modulator midazolam (n = 12) on EEG from healthy adults, (2) EEG from typically developing (TD) children (n = 14), and (3) EEG from two children with duplications of paternal 15q (i.e., the UBE3A-silenced allele). Results Peak beta power was significantly increased in the reference cohort relative to TD controls. Midazolam administration recapitulated the beta EEG phenotype in healthy adults with a similar peak frequency in central channels (f = 23.0 Hz) as Dup15q syndrome (f = 23.1 Hz). Both paternal Dup15q syndrome cases displayed beta power comparable to the reference cohort. Conclusions Our results suggest a critical role for GABAergic transmission in the Dup15q syndrome beta EEG phenotype, which cannot be explained by UBE3A dysfunction alone. If this mechanism is confirmed, the phenotype may be used as a marker of GABAergic pathology in clinical trials for Dup15q syndrome.
Collapse
Affiliation(s)
- Joel Frohlich
- Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
- Center for Autism Research and Treatment, University of California Los Angeles, Semel Institute for Neuroscience, Los Angeles, CA 90024 USA
- Department of Psychology, University of California Los Angeles, 3423 Franz Hall, Los Angeles, CA 90095 USA
| | - Lawrence T. Reiter
- Departments of Neurology, Pediatrics and Anatomy & Neurobiology, The University of Tennessee Health Science Center, 855 Monroe Ave., Link, Memphis, TN 415 USA
| | - Vidya Saravanapandian
- Center for Autism Research and Treatment, University of California Los Angeles, Semel Institute for Neuroscience, Los Angeles, CA 90024 USA
| | - Charlotte DiStefano
- Center for Autism Research and Treatment, University of California Los Angeles, Semel Institute for Neuroscience, Los Angeles, CA 90024 USA
| | - Scott Huberty
- Center for Autism Research and Treatment, University of California Los Angeles, Semel Institute for Neuroscience, Los Angeles, CA 90024 USA
- McGill University, MUHC Research Institute, 5252, boul. de Maisonneuve Ouest, 3E.19, Montreal, QC H4A 3S5 Canada
| | - Carly Hyde
- Center for Autism Research and Treatment, University of California Los Angeles, Semel Institute for Neuroscience, Los Angeles, CA 90024 USA
| | - Stormy Chamberlain
- Genetics and Genome Sciences, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6403 USA
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences and Department of Psychology, University of California Los Angeles, Suite A7-460, 760 Westwood Plaza, Los Angeles, CA 90095 USA
| | - Peyman Golshani
- Department of Neurology and Psychiatry, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA 90095 USA
| | - Andrei Irimia
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave., Suite 228C, California, Los Angeles 90089 USA
| | - Richard W. Olsen
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, California, Los Angeles 90095 USA
| | - Joerg F. Hipp
- Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Shafali S. Jeste
- Center for Autism Research and Treatment, University of California Los Angeles, Semel Institute for Neuroscience, Los Angeles, CA 90024 USA
| |
Collapse
|
12
|
Huang HM, Liu CC, Lin C. Indirect methods for improving parameter estimation of PET kinetic models. Med Phys 2019; 46:1777-1784. [PMID: 30762875 DOI: 10.1002/mp.13448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Parametric images obtained from kinetic modeling of dynamic positron emission tomography (PET) data provide a new way of visualizing quantitative parameters of the tracer kinetics. However, due to the high noise level in pixel-wise image-driven time-activity curves, parametric images often suffer from poor quality and accuracy. In this study, we propose an indirect parameter estimation framework which aims to improve the quality and quantitative accuracy of parametric images. METHODS Three different approaches related to noise reduction and advanced curve fitting algorithm are used in the proposed framework. First, dynamic PET images are denoised using a kernel-based denoising method and the highly constrained backprojection technique. Second, gradient-free curve fitting algorithms are exploited to improve the accuracy and precision of parameter estimates. Third, a kernel-based post-filtering method is applied to parametric images to further improve the quality of parametric images. Computer simulations were performed to evaluate the performance of the proposed framework. RESULTS AND CONCLUSIONS The simulation results showed that when compared to the Gaussian filtering, the proposed denoising method could provide better PET image quality, and consequentially improve the quality and quantitative accuracy of parametric images. In addition, gradient-free optimization algorithms (i.e., pattern search) can result in better parametric images than the gradient-based curve fitting algorithm (i.e., trust-region-reflective). Finally, our results showed that the proposed kernel-based post-filtering method could further improve the precision of parameter estimates while maintaining the accuracy of parameter estimates.
Collapse
Affiliation(s)
- Hsuan-Ming Huang
- Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, No.1, Sec. 1, Jen Ai Rd., Taipei City, Zhongzheng Dist., 100, Taiwan
| | - Chih-Chieh Liu
- Department of Biomedical Engineering, University of California, Davis, CA, 95616, USA
| | - Chieh Lin
- Department of Nuclear Medicine, Chang Gung Memorial Hospital, No. 5 Fu-Shin Street, Kwei-Shan, Taoyuan County, Taiwan
| |
Collapse
|
13
|
The increased expression of GABA receptors within the arcuate nucleus is associated with high intraocular pressure. Mol Vis 2018; 24:574-586. [PMID: 30174387 PMCID: PMC6107798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 08/13/2018] [Indexed: 11/30/2022] Open
Abstract
PURPOSE To investigate the relationship between intraocular pressure (IOP) and GABA receptors within the arcuate nucleus (ARC). METHODS In the chronic high IOP rat model, ibotenic acid (IBO) was injected to induce impairment of the ARC, and IOP was measured at the 0, 1, 2, 3, and 4 week time points with a Tono-Pen. To assess the expression of GABA-A/B receptors within the ARC under persistent high IOP, we performed immunofluorescence (IF) and immunohistochemical (IHC) staining at 2 weeks and 4 weeks. Furthermore, we treated the ARC with GABA-A/B receptor antagonists separately, and IOP was evaluated, as well as retinal ganglion cell apoptosis in the chronic high IOP rat model. In the following induced high IOP animal model, the expression of GABA-A/B receptors within the ARC was evaluated in DBA/2J mice which developed progressive eye abnormalities spontaneously that closely mimic human hereditary glaucoma. RESULTS Compared with the control group, statistically significant downregulation of IOP was noted due to the IBO injection into the ARC at the 2, 3, and 4 week time points (p<0.05). Persistent high IOP elicited increased expression of the GABA-A/B receptors in the ARC compared with the control group (p<0.01). In addition, treatment with GABA-A/B receptor antagonists separately caused a decrease in the IOP, along with reduced retinal ganglion cell apoptosis (p<0.01). In the DBA/2J mice, the expression of the GABA receptors was statistically significantly increased (p<0.01). CONCLUSIONS GABA-A/B receptors in the ARC may be involved in regulation of IOP, and pathologically high IOP affects the expression of GABA-A/B receptors in the ARC.
Collapse
|
14
|
Andersson JD, Matuskey D, Finnema SJ. Positron emission tomography imaging of the γ-aminobutyric acid system. Neurosci Lett 2018; 691:35-43. [PMID: 30102960 DOI: 10.1016/j.neulet.2018.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 01/08/2023]
Abstract
In this review, we summarize the recent development of positron emission tomography (PET) radioligands for γ-aminobutyric acid A (GABAA) receptors and their potential to measure changes in endogenous GABA levels and highlight the clinical and translational applications of GABA-sensitive PET radioligands. We review the basic physiology of the GABA system with a focus on the importance of GABAA receptors in the brain and specifically the benzodiazepine binding site. Challenges for the development of central nervous system radioligands and particularly for radioligands with increased GABA sensitivity are outlined, as well as the status of established benzodiazepine site PET radioligands and agonist GABAA radioligands. We underline the challenge of using allosteric interactions to measure GABA concentrations and review the current state of PET imaging of changes in GABA levels. We conclude that PET tracers with increased GABA sensitivity are required to efficiently measure GABA release and that such a tool could be broadly applied to assess GABA transmission in vivo across several disorders.
Collapse
Affiliation(s)
- Jan D Andersson
- University of Alberta, Medical Isotope and Cyclotron Facility, Edmonton, Canada
| | - David Matuskey
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Sjoerd J Finnema
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Center for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
15
|
McGinnity CJ, Riaño Barros DA, Trigg W, Brooks DJ, Hinz R, Duncan JS, Koepp MJ, Hammers A. Simplifying [ 18F]GE-179 PET: are both arterial blood sampling and 90-min acquisitions essential? EJNMMI Res 2018; 8:46. [PMID: 29892810 PMCID: PMC5995767 DOI: 10.1186/s13550-018-0396-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/08/2018] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION The NMDA receptor radiotracer [18F]GE-179 has been used with 90-min scans and arterial plasma input functions. We explored whether (1) arterial blood sampling is avoidable and (2) shorter scans are feasible. METHODS For 20 existing [18F]GE-179 datasets, we generated (1) standardised uptake values (SUVs) over eight intervals; (2) volume of distribution (VT) images using population-based input functions (PBIFs), scaled using one parent plasma sample; and (3) VT images using three shortened datasets, using the original parent plasma input functions (ppIFs). RESULTS Correlations with the original ppIF-derived 90-min VTs increased for later interval SUVs (maximal ρ = 0.78; 80-90 min). They were strong for PBIF-derived VTs (ρ = 0.90), but between-subject coefficient of variation increased. Correlations were very strong for the 60/70/80-min original ppIF-derived VTs (ρ = 0.97-1.00), which suffered regionally variant negative bias. CONCLUSIONS Where arterial blood sampling is available, reduction of scan duration to 60 min is feasible, but with negative bias. The performance of SUVs was more consistent across participants than PBIF-derived VTs.
Collapse
Affiliation(s)
- Colm J. McGinnity
- Division of Brain Sciences, Imperial College London, London, UK
- MRC Clinical Sciences Centre, London, UK
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor Lambeth Wing, St Thomas’ Hospital, Westminster Bridge Road, London, SW1 7EH UK
- King’s College London and Guy’s and St Thomas’ PET Centre, St. Thomas’ Hospital, London, UK
| | - Daniela A. Riaño Barros
- Division of Brain Sciences, Imperial College London, London, UK
- MRC Clinical Sciences Centre, London, UK
| | | | - David J. Brooks
- Department of Nuclear Medicine, Aarhus University, Aarhus, Denmark
- Institute of Neuroscience, University of Newcastle, Newcastle upon Tyne, UK
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - John S. Duncan
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
- Epilepsy Society, Buckinghamshire, UK
| | - Matthias J. Koepp
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
- Epilepsy Society, Buckinghamshire, UK
| | - Alexander Hammers
- Division of Brain Sciences, Imperial College London, London, UK
- MRC Clinical Sciences Centre, London, UK
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor Lambeth Wing, St Thomas’ Hospital, Westminster Bridge Road, London, SW1 7EH UK
- The Neurodis Foundation, CERMEP—Imagerie du Vivant, Lyon, France
| |
Collapse
|
16
|
Li H, Xiao J, Li X, Chen H, Kang D, Shao Y, Shen B, Zhu Z, Yin X, Xie L, Wang G, Liang Y. Low Cerebral Exposure Cannot Hinder the Neuroprotective Effects of Panax Notoginsenosides. Drug Metab Dispos 2018; 46:53-65. [PMID: 29061584 DOI: 10.1124/dmd.117.078436] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/13/2017] [Indexed: 02/13/2025] Open
Abstract
A bidirectional route of communication between the gastrointestinal tract and the central nervous system, termed the "gut-brain axis," is becoming increasingly relevant to treatment of cerebral damage. Panax Notoginsenoside extract (PNE) is popular for prevention and treatment of cardio-cerebrovascular ischemic diseases although plasma and cerebral exposure levels are extremely low. To date, the mechanisms underlying the neuroprotective effects of PNE remain largely unknown. In the present study, the neuroprotective effects of PNE were systematically studied via investigation of the regulation by PNE of the gastrointestinal microbial community and γ aminobutyric acid (GABA) receptors. The results demonstrated that pretreatment with PNE exerted a remarkable neuroprotective effect on focal cerebral ischemia/reperfusion (I/R) injury in rats, and the efficiency was attenuated in germ-free rats. Pretreatment with PNE could significantly prevent downregulation of Bifidobacterium longum (B.L) caused by I/R surgery, and colonization by B.L could also exert neuroprotective effects. More importantly, both PNE and B.L could upregulate the expression of GABA receptors in the hippocampus of I/R rats, and coadministration of a GABA-B receptor antagonist could significantly attenuate the neuroprotective effects of PNE and B.L. The study above suggests that the neuroprotective effects of PNE may be largely attributable to its regulation of intestinal flora, and oral treatment with B.L was also useful in therapy of ischemia/reperfusion injury (I/R) by upregulating GABA-B receptors.
Collapse
Affiliation(s)
- Haofeng Li
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jingcheng Xiao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xinuo Li
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Huimin Chen
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Dian Kang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yuhao Shao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Boyu Shen
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Zhangpei Zhu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xiaoxi Yin
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Lin Xie
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yan Liang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|