1
|
Curtin D, Taylor EM, Bellgrove MA, Chong TTJ, Coxon JP. Dopamine D2 Receptor Modulates Exercise Related Effect on Cortical Excitation/Inhibition and Motor Skill Acquisition. J Neurosci 2024; 44:e2028232024. [PMID: 38553046 PMCID: PMC11079968 DOI: 10.1523/jneurosci.2028-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 05/12/2024] Open
Abstract
Exercise is known to benefit motor skill learning in health and neurological disease. Evidence from brain stimulation, genotyping, and Parkinson's disease studies converge to suggest that the dopamine D2 receptor, and shifts in the cortical excitation and inhibition (E:I) balance, are prime candidates for the drivers of exercise-enhanced motor learning. However, causal evidence using experimental pharmacological challenge is lacking. We hypothesized that the modulatory effect of the dopamine D2 receptor on exercise-induced changes in the E:I balance would determine the magnitude of motor skill acquisition. To test this, we measured exercise-induced changes in excitation and inhibition using paired-pulse transcranial magnetic stimulation (TMS) in 22 healthy female and male humans, and then had participants learn a novel motor skill-the sequential visual isometric pinch task (SVIPT). We examined the effect of D2 receptor blockade (800 mg sulpiride) on these measures within a randomized, double-blind, placebo-controlled design. Our key result was that motor skill acquisition was driven by an interaction between the D2 receptor and E:I balance. Specifically, poorer skill learning was related to an attenuated shift in the E:I balance in the sulpiride condition, whereas this interaction was not evident in placebo. Our results demonstrate that exercise-primed motor skill acquisition is causally influenced by D2 receptor activity on motor cortical circuits.
Collapse
Affiliation(s)
- Dylan Curtin
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria 3800, Australia
| | - Eleanor M Taylor
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria 3800, Australia
| | - Mark A Bellgrove
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria 3800, Australia
| | - Trevor T-J Chong
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria 3800, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria 3004, Australia
- Department of Clinical Neurosciences, St Vincent's Hospital, Melbourne, Victoria 3065, Australia
| | - James P Coxon
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
2
|
Rocha GS, Freire MAM, Paiva KM, Oliveira RF, Morais PLAG, Santos JR, Cavalcanti JRLP. The neurobiological effects of senescence on dopaminergic system: A comprehensive review. J Chem Neuroanat 2024; 137:102415. [PMID: 38521203 DOI: 10.1016/j.jchemneu.2024.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/26/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
Over time, the body undergoes a natural, multifactorial, and ongoing process named senescence, which induces changes at the molecular, cellular, and micro-anatomical levels in many body systems. The brain, being a highly complex organ, is particularly affected by this process, potentially impairing its numerous functions. The brain relies on chemical messengers known as neurotransmitters to function properly, with dopamine being one of the most crucial. This catecholamine is responsible for a broad range of critical roles in the central nervous system, including movement, learning, cognition, motivation, emotion, reward, hormonal release, memory consolidation, visual performance, sexual drive, modulation of circadian rhythms, and brain development. In the present review, we thoroughly examine the impact of senescence on the dopaminergic system, with a primary focus on the classic delimitations of the dopaminergic nuclei from A8 to A17. We provide in-depth information about their anatomy and function, particularly addressing how senescence affects each of these nuclei.
Collapse
Affiliation(s)
- Gabriel S Rocha
- Behavioral and Evolutionary Neurobiology Laboratory, Federal University of Sergipe (UFS), Itabaiana, Brazil
| | - Marco Aurelio M Freire
- Behavioral and Evolutionary Neurobiology Laboratory, Federal University of Sergipe (UFS), Itabaiana, Brazil
| | - Karina M Paiva
- Laboratory of Experimental Neurology, State University of Rio Grande do Norte (UERN), Mossoró, Brazil
| | - Rodrigo F Oliveira
- Laboratory of Experimental Neurology, State University of Rio Grande do Norte (UERN), Mossoró, Brazil
| | - Paulo Leonardo A G Morais
- Laboratory of Experimental Neurology, State University of Rio Grande do Norte (UERN), Mossoró, Brazil
| | - José Ronaldo Santos
- Behavioral and Evolutionary Neurobiology Laboratory, Federal University of Sergipe (UFS), Itabaiana, Brazil
| | | |
Collapse
|
3
|
Ando S, Fujimoto T, Sudo M, Watanuki S, Hiraoka K, Takeda K, Takagi Y, Kitajima D, Mochizuki K, Matsuura K, Katagiri Y, Nasir FM, Lin Y, Fujibayashi M, Costello JT, McMorris T, Ishikawa Y, Funaki Y, Furumoto S, Watabe H, Tashiro M. The neuromodulatory role of dopamine in improved reaction time by acute cardiovascular exercise. J Physiol 2024; 602:461-484. [PMID: 38165254 DOI: 10.1113/jp285173] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Acute cardiovascular physical exercise improves cognitive performance, as evidenced by a reduction in reaction time (RT). However, the mechanistic understanding of how this occurs is elusive and has not been rigorously investigated in humans. Here, using positron emission tomography (PET) with [11 C]raclopride, in a multi-experiment study we investigated whether acute exercise releases endogenous dopamine (DA) in the brain. We hypothesized that acute exercise augments the brain DA system, and that RT improvement is correlated with this endogenous DA release. The PET study (Experiment 1: n = 16) demonstrated that acute physical exercise released endogenous DA, and that endogenous DA release was correlated with improvements in RT of the Go/No-Go task. Thereafter, using two electrical muscle stimulation (EMS) studies (Experiments 2 and 3: n = 18 and 22 respectively), we investigated what triggers RT improvement. The EMS studies indicated that EMS with moderate arm cranking improved RT, but RT was not improved following EMS alone or EMS combined with no load arm cranking. The novel mechanistic findings from these experiments are: (1) endogenous DA appears to be an important neuromodulator for RT improvement and (2) RT is only altered when exercise is associated with central signals from higher brain centres. Our findings explain how humans rapidly alter their behaviour using neuromodulatory systems and have significant implications for promotion of cognitive health. KEY POINTS: Acute cardiovascular exercise improves cognitive performance, as evidenced by a reduction in reaction time (RT). However, the mechanistic understanding of how this occurs is elusive and has not been rigorously investigated in humans. Using the neurochemical specificity of [11 C]raclopride positron emission tomography, we demonstrated that acute supine cycling released endogenous dopamine (DA), and that this release was correlated with improved RT. Additional electrical muscle stimulation studies demonstrated that peripherally driven muscle contractions (i.e. exercise) were insufficient to improve RT. The current study suggests that endogenous DA is an important neuromodulator for RT improvement, and that RT is only altered when exercise is associated with central signals from higher brain centres.
Collapse
Affiliation(s)
- Soichi Ando
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
- Cyclotron and Radioisotope Centre, Tohoku University, Miyagi, Japan
| | - Toshihiko Fujimoto
- Institute of Excellence in Higher Education, Tohoku University, Miyagi, Japan
| | - Mizuki Sudo
- Meiji Yasuda Life Foundation of Health and Welfare, Tokyo, Japan
| | - Shoichi Watanuki
- Cyclotron and Radioisotope Centre, Tohoku University, Miyagi, Japan
| | - Kotaro Hiraoka
- Cyclotron and Radioisotope Centre, Tohoku University, Miyagi, Japan
| | - Kazuko Takeda
- Cyclotron and Radioisotope Centre, Tohoku University, Miyagi, Japan
| | - Yoko Takagi
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Daisuke Kitajima
- Faculty of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Kodai Mochizuki
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Koki Matsuura
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Yuki Katagiri
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Fairuz Mohd Nasir
- Cyclotron and Radioisotope Centre, Tohoku University, Miyagi, Japan
- Faculty of Health Sciences, University Sultan Zainal Abidin, Malaysia
| | - Yuchen Lin
- Cyclotron and Radioisotope Centre, Tohoku University, Miyagi, Japan
- Department of Occupational Therapy, Da-Yeh University, Changhua, Taiwan
| | | | - Joseph T Costello
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Terry McMorris
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, UK
- Institue of Sport, Nursing and Allied Health, University of Chichester, Chichester, UK
| | - Yoichi Ishikawa
- Cyclotron and Radioisotope Centre, Tohoku University, Miyagi, Japan
| | - Yoshihito Funaki
- Cyclotron and Radioisotope Centre, Tohoku University, Miyagi, Japan
| | - Shozo Furumoto
- Cyclotron and Radioisotope Centre, Tohoku University, Miyagi, Japan
| | - Hiroshi Watabe
- Cyclotron and Radioisotope Centre, Tohoku University, Miyagi, Japan
| | - Manabu Tashiro
- Cyclotron and Radioisotope Centre, Tohoku University, Miyagi, Japan
| |
Collapse
|
4
|
Stark AJ, Song AK, Petersen KJ, Hay KR, Lin YC, Trujillo P, Kang H, Collazzo JM, Donahue MJ, Zald DH, Claassen DO. Accentuated Paralimbic and Reduced Mesolimbic D 2/3-Impulsivity Associations in Parkinson's Disease. J Neurosci 2023; 43:8733-8743. [PMID: 37852792 PMCID: PMC10727183 DOI: 10.1523/jneurosci.1037-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/31/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023] Open
Abstract
Impulsivity is a behavioral trait that is elevated in many neuropsychiatric disorders. Parkinson's disease (PD) patients can exhibit a specific pattern of reward-seeking impulsive-compulsive behaviors (ICBs), as well as more subtle changes to generalized trait impulsivity. Prior studies in healthy controls (HCs) suggest that trait impulsivity is regulated by D2/3 autoreceptors in mesocorticolimbic circuits. While altered D2/3 binding is noted in ICB+ PD patients, there is limited prior assessment of the trait impulsivity-D2/3 relationship in PD, and no prior direct comparison with patterns in HCs. We examined 54 PD (36 M; 18 F) and 31 sex- and age-matched HC (21 M; 10 F) subjects using [18F]fallypride, a high-affinity D2/3 receptor ligand, to measure striatal and extrastriatal D2/3 nondisplaceable binding potential (BPND). Subcortical and cortical assessment exclusively used ROI or exploratory-voxelwise methods, respectively. All completed the Barratt Impulsiveness Scale, a measure of trait impulsivity. Subcortical ROI analyses indicated a negative relationship between trait impulsivity and D2/3 BPND in the ventral striatum and amygdala of HCs but not in PD. By contrast, voxelwise methods demonstrated a positive trait impulsivity-D2/3 BPND correlation in ventral frontal olfactocentric-paralimbic cortex of subjects with PD but not HCs. Subscale analysis also highlighted different aspects of impulsivity, with significant interactions between group and motor impulsivity in the ventral striatum, and attentional impulsivity in the amygdala and frontal paralimbic cortex. These results suggest that dopamine functioning in distinct regions of the mesocorticolimbic circuit influence aspects of impulsivity, with the relative importance of regional dopamine functions shifting in the neuropharmacological context of PD.SIGNIFICANCE STATEMENT The biological determinants of impulsivity have broad clinical relevance, from addiction to neurodegenerative disorders. Here, we address biomolecular distinctions in Parkinson's disease. This is the first study to evaluate a large cohort of Parkinson's disease patients and age-matched healthy controls with a measure of trait impulsivity and concurrent [18F]fallypride PET, a method that allows quantification of D2/3 receptors throughout the mesocorticolimbic network. We demonstrate widespread differences in the trait impulsivity-dopamine relationship, including (1) loss of subcortical relationships present in the healthy brain and (2) emergence of a new relationship in a limbic cortical area. This illustrates the loss of mechanisms of behavioral regulation present in the healthy brain while suggesting a potential compensatory response and target for future investigation.
Collapse
Affiliation(s)
- Adam J Stark
- School of Medicine, Vanderbilt University, Nashville, Tennessee 37232
| | - Alexander K Song
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Kalen J Petersen
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63310
| | - Kaitlyn R Hay
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Ya-Chen Lin
- Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Hakmook Kang
- Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Jenna M Collazzo
- School of Medicine, Temple University, Philadelphia, Pennsylvania 19140
| | - Manus J Donahue
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - David H Zald
- Department of Psychiatry, Rutgers University, Piscataway, New Jersey 08901
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| |
Collapse
|
5
|
Blum K, Ashford JW, Kateb B, Sipple D, Braverman E, Dennen CA, Baron D, Badgaiyan R, Elman I, Cadet JL, Thanos PK, Hanna C, Bowirrat A, Modestino EJ, Yamamoto V, Gupta A, McLaughlin T, Makale M, Gold MS. Dopaminergic dysfunction: Role for genetic & epigenetic testing in the new psychiatry. J Neurol Sci 2023; 453:120809. [PMID: 37774561 DOI: 10.1016/j.jns.2023.120809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/02/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023]
Abstract
Reward Deficiency Syndrome (RDS), particularly linked to addictive disorders, costs billions of dollars globally and has resulted in over one million deaths in the United States (US). Illicit substance use has been steadily rising and in 2021 approximately 21.9% (61.2 million) of individuals living in the US aged 12 or older had used illicit drugs in the past year. However, only 1.5% (4.1 million) of these individuals had received any substance use treatment. This increase in use and failure to adequately treat or provide treatment to these individuals resulted in 106,699 overdose deaths in 2021 and increased in 2022. This article presents an alternative non-pharmaceutical treatment approach tied to gene-guided therapy, the subject of many decades of research. The cornerstone of this paradigm shift is the brain reward circuitry, brain stem physiology, and neurotransmitter deficits due to the effects of genetic and epigenetic insults on the interrelated cascade of neurotransmission and the net release of dopamine at the Ventral Tegmental Area -Nucleus Accumbens (VTA-NAc) reward site. The Genetic Addiction Risk Severity (GARS) test and pro-dopamine regulator nutraceutical KB220 were combined to induce "dopamine homeostasis" across the brain reward circuitry. This article aims to encourage four future actionable items: 1) the neurophysiologically accurate designation of, for example, "Hyperdopameism /Hyperdopameism" to replace the blaming nomenclature like alcoholism; 2) encouraging continued research into the nature of dysfunctional brainstem neurotransmitters across the brain reward circuitry; 3) early identification of people at risk for all RDS behaviors as a brain check (cognitive testing); 4) induction of dopamine homeostasis using "precision behavioral management" along with the coupling of GARS and precision Kb220 variants; 5) utilization of promising potential treatments include neuromodulating modalities such as Transmagnetic stimulation (TMS) and Deep Brain Stimulation(DBS), which target different areas of the neural circuitry involved in addiction and even neuroimmune agents like N-acetyl-cysteine.
Collapse
Affiliation(s)
- Kenneth Blum
- Division of Addiction Research & Education, Center for Exercise, Sports and Mental Health, Western University Health Sciences, Pomona, CA, USA; The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX, USA; Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel.
| | - J Wesson Ashford
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA; War Related Illness & Injury Study Center, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Babak Kateb
- Brain Mapping Foundation, Los Angeles, CA, USA; National Center for Nanobioelectronic, Los Angeles, CA, USA; Brain Technology and Innovation Park, Los Angeles, CA, USA
| | | | - Eric Braverman
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX, USA
| | - Catherine A Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA, USA
| | - David Baron
- Division of Addiction Research & Education, Center for Exercise, Sports and Mental Health, Western University Health Sciences, Pomona, CA, USA
| | - Rajendra Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, San Antonio, TX, USA; Long School of Medicine, University of Texas Medical Center, San Antonio, TX, USA
| | - Igor Elman
- Center for Pain and the Brain (PAIN Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Waltham, MA, USA; Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH National Institute on Drug Abuse, Bethesda, MD, USA
| | - Panayotis K Thanos
- Department of Psychology & Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Colin Hanna
- Department of Psychology & Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | | | - Vicky Yamamoto
- Brain Mapping Foundation, Los Angeles, CA, USA; National Center for Nanobioelectronic, Los Angeles, CA, USA; Brain Technology and Innovation Park, Los Angeles, CA, USA; Society for Brain Mapping and Therapeutics, Los Angeles, CA, USA; USC-Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | | | - Thomas McLaughlin
- Division of Reward Deficiency Research, Reward Deficiency Syndrome Clinics of America, Austin, TX, USA
| | - Mlan Makale
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Mark S Gold
- Department of Psychiatry, Washington College of Medicine, St. Louis, MO, USA
| |
Collapse
|
6
|
Zikereya T, Shi K, Chen W. Goal-directed and habitual control: from circuits and functions to exercise-induced neuroplasticity targets for the treatment of Parkinson's disease. Front Neurol 2023; 14:1254447. [PMID: 37881310 PMCID: PMC10597699 DOI: 10.3389/fneur.2023.1254447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by motor and cognitive impairments. The progressive depletion of dopamine (DA) is the pathological basis of dysfunctional goal-directed and habitual control circuits in the basal ganglia. Exercise-induced neuroplasticity could delay disease progression by improving motor and cognitive performance in patients with PD. This paper reviews the research progress on the motor-cognitive basal ganglia circuit and summarizes the current hypotheses for explaining exercise intervention on rehabilitation in PD. Studies on exercise mediated mechanisms will contribute to the understanding of networks that regulate goal-directed and habitual behaviors and deficits in PD, facilitating the development of strategies for treatment of PD.
Collapse
Affiliation(s)
- Talifu Zikereya
- Department of Physical Education, China University of Geosciences, Beijing, China
| | - Kaixuan Shi
- Department of Physical Education, China University of Geosciences, Beijing, China
| | - Wei Chen
- Physical Education College, Hebei Normal University, Shijiazhuang, Hebei, China
| |
Collapse
|
7
|
Zou L, Herold F, Ludyga S, Kamijo K, Müller NG, Pontifex MB, Heath M, Kuwamizu R, Soya H, Hillman CH, Ando S, Alderman BL, Cheval B, Kramer AF. Look into my eyes: What can eye-based measures tell us about the relationship between physical activity and cognitive performance? JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:568-591. [PMID: 37148971 PMCID: PMC10466196 DOI: 10.1016/j.jshs.2023.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND There is a growing interest to understand the neurobiological mechanisms that drive the positive associations of physical activity and fitness with measures of cognitive performance. To better understand those mechanisms, several studies have employed eye-based measures (e.g., eye movement measures such as saccades, pupillary measures such as pupil dilation, and vascular measures such as retinal vessel diameter) deemed to be proxies for specific neurobiological mechanisms. However, there is currently no systematic review providing a comprehensive overview of these studies in the field of exercise-cognition science. Thus, this review aimed to address that gap in the literature. METHODS To identify eligible studies, we searched 5 electronic databases on October 23, 2022. Two researchers independently extracted data and assessed the risk of bias using a modified version of the Tool for the assEssment of Study qualiTy and reporting in EXercise (TESTEX scale, for interventional studies) and the critical appraisal tool from the Joanna Briggs Institute (for cross-sectional studies). RESULTS Our systematic review (n = 35 studies) offers the following main findings: (a) there is insufficient evidence available to draw solid conclusions concerning gaze-fixation-based measures; (b) the evidence that pupillometric measures, which are a proxy for the noradrenergic system, can explain the positive effect of acute exercise and cardiorespiratory fitness on cognitive performance is mixed; (c) physical training- or fitness-related changes of the cerebrovascular system (operationalized via changes in retinal vasculature) are, in general, positively associated with cognitive performance improvements; (d) acute and chronic physical exercises show a positive effect based on an oculomotor-based measure of executive function (operationalized via antisaccade tasks); and (e) the positive association between cardiorespiratory fitness and cognitive performance is partly mediated by the dopaminergic system (operationalized via spontaneous eye-blink rate). CONCLUSION This systematic review offers confirmation that eye-based measures can provide valuable insight into the neurobiological mechanisms that may drive positive associations between physical activity and fitness and measures of cognitive performance. However, due to the limited number of studies utilizing specific methods for obtaining eye-based measures (e.g., pupillometry, retinal vessel analysis, spontaneous eye blink rate) or investigating a possible dose-response relationship, further research is necessary before more nuanced conclusions can be drawn. Given that eye-based measures are economical and non-invasive, we hope this review will foster the future application of eye-based measures in the field of exercise-cognition science.
Collapse
Affiliation(s)
- Liye Zou
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen 518060, China; Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam 14476, Germany.
| | - Fabian Herold
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen 518060, China; Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam 14476, Germany
| | - Sebastian Ludyga
- Department of Sport, Exercise, and Health, University of Basel, Basel 4052, Switzerland
| | - Keita Kamijo
- Faculty of Liberal Arts and Sciences, Chukyo University, Nagoya 466-8666, Japan
| | - Notger G Müller
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen 518060, China; Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam 14476, Germany
| | - Matthew B Pontifex
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
| | - Matthew Heath
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London ON N6A 3K7, Canada; Canadian Centre for Activity and Aging, University of Western Ontario, London ON, N6A 3K7, Canada; Graduate Program in Neuroscience, University of Western Ontario, London ON, N6A 3K7, Canada
| | - Ryuta Kuwamizu
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-0006, Japan
| | - Hideaki Soya
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-0006, Japan; Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-0006, Japan
| | - Charles H Hillman
- Center for Cognitive and Brain Health, Department of Psychology, Department of Physical Therapy, Movement, and Rehabilitation Sciences, Northeastern University, Boston, MA 02115, USA
| | - Soichi Ando
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Brandon L Alderman
- Department of Kinesiology and Health, Rutgers University-New Brunswick, New Brunswick, NJ 08854, USA
| | - Boris Cheval
- Swiss Center for Affective Sciences, University of Geneva, Geneva 1205, Switzerland; Laboratory for the Study of Emotion Elicitation and Expression (E3Lab), Department of Psychology, University of Geneva, Geneva 1205, Switzerland
| | - Arthur F Kramer
- Department of Psychology, Center for Cognitive and Brain Health, Northeastern University, Boston, MA 02115, USA; Beckman Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| |
Collapse
|
8
|
Konar-Nié M, Guzman-Castillo A, Armijo-Weingart L, Aguayo LG. Aging in nucleus accumbens and its impact on alcohol use disorders. Alcohol 2023; 107:73-90. [PMID: 36087859 DOI: 10.1016/j.alcohol.2022.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 02/06/2023]
Abstract
Ethanol is one of the most widely consumed drugs in the world and prolonged excessive ethanol intake might lead to alcohol use disorders (AUDs), which are characterized by neuroadaptations in different brain regions, such as in the reward circuitry. In addition, the global population is aging, and it appears that they are increasing their ethanol consumption. Although research involving the effects of alcohol in aging subjects is limited, differential effects have been described. For example, studies in human subjects show that older adults perform worse in tests assessing working memory, attention, and cognition as compared to younger adults. Interestingly, in the field of the neurobiological basis of ethanol actions, there is a significant dichotomy between what we know about the effects of ethanol on neurochemical targets in young animals and how it might affect them in the aging brain. To be able to understand the distinct effects of ethanol in the aging brain, the following questions need to be answered: (1) How does physiological aging impact the function of an ethanol-relevant region (e.g., the nucleus accumbens)? and (2) How does ethanol affect these neurobiological systems in the aged brain? This review discusses the available data to try to understand how aging affects the nucleus accumbens (nAc) and its neurochemical response to alcohol. The data show that there is little information on the effects of ethanol in aged mice and rats, and that many studies had considered 2-3-month-old mice as adults, which needs to be reconsidered since more recent literature defines 6 months as young adults and >18 months as an older mouse. Considering the actual relevance of an aged worldwide population and that this segment is drinking more frequently, it appears at least reasonable to explore how ethanol affects the brain in adult and aged models.
Collapse
Affiliation(s)
- Macarena Konar-Nié
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepcion, Concepcion, Chile.
| | - Alejandra Guzman-Castillo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepcion, Concepcion, Chile; Programa en Neurociencia, Psiquiatría y Salud Mental, Universidad de Concepción, Concepcion, Chile.
| | - Lorena Armijo-Weingart
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepcion, Concepcion, Chile; Programa en Neurociencia, Psiquiatría y Salud Mental, Universidad de Concepción, Concepcion, Chile.
| | - Luis Gerardo Aguayo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepcion, Concepcion, Chile; Programa en Neurociencia, Psiquiatría y Salud Mental, Universidad de Concepción, Concepcion, Chile.
| |
Collapse
|
9
|
Simonsson E, Stiernman LJ, Lundquist A, Rosendahl E, Hedlund M, Lindelöf N, Boraxbekk CJ. Dopamine D2/3-receptor availability and its association with autonomous motivation to exercise in older adults: An exploratory [ 11C]-raclopride study. Front Hum Neurosci 2022; 16:997131. [PMID: 36438629 PMCID: PMC9691986 DOI: 10.3389/fnhum.2022.997131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/17/2022] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND Autonomous motivation to exercise occurs when the activity is voluntary and with a perceived inherent satisfaction from the activity itself. It has been suggested that autonomous motivation is related to striatal dopamine D2/3-receptor (D2/3R) availability within the brain. In this study, we hypothesized that D2/3R availability in three striatal regions (nucleus accumbens, caudate nucleus, and putamen) would be positively associated with self-reported autonomous motivation to exercise. We also examined this relationship with additional exploratory analyses across a set of a priori extrastriatal regions of interest (ROI). METHODS Our sample comprised 49 older adults (28 females) between 64 and 78 years of age. The D2/3R availability was quantified from positron emission tomography using the non-displaceable binding potential of [11C]-raclopride ligand. The exercise-related autonomous motivation was assessed with the Swedish version of the Behavioral Regulations in Exercise Questionnaire-2. RESULTS No significant associations were observed between self-reported autonomous motivation to exercise and D2/3R availability within the striatum (nucleus accumbens, caudate nucleus, and putamen) using semi-partial correlations controlling for ROI volume on D2/3R availability. For exploratory analyses, positive associations were observed for the superior (r = 0.289, p = 0.023) and middle frontal gyrus (r = 0.330, p = 0.011), but not for the inferior frontal gyrus, orbitofrontal cortex, anterior cingulate cortex, or anterior insular cortex. CONCLUSION This study could not confirm the suggested link between striatal D2/3R availability and subjective autonomous motivation to exercise among older adults. The exploratory findings, however, propose that frontal brain regions may be involved in the intrinsic regulation of exercise-related behaviors, though this has to be confirmed by future studies using a more suitable ligand and objective measures of physical activity levels.
Collapse
Affiliation(s)
- Emma Simonsson
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Lars Jonasson Stiernman
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Anders Lundquist
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Statistics, Umeå School of Business, Economics and Statistics, Umeå University, Umeå, Sweden
| | - Erik Rosendahl
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, Umeå, Sweden
| | - Mattias Hedlund
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, Umeå, Sweden
| | - Nina Lindelöf
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, Umeå, Sweden
| | - Carl-Johan Boraxbekk
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
- Department of Neurology, Institute of Sports Medicine Copenhagen (ISMC), Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
- Faculty of Medical and Health Sciences, Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Wang Y, Jin YK, Guo TC, Li ZR, Feng BY, Han JH, Vreugdenhil M, Lu CB. Activation of Dopamine 4 Receptor Subtype Enhances Gamma Oscillations in Hippocampal Slices of Aged Mice. Front Aging Neurosci 2022; 14:838803. [PMID: 35370600 PMCID: PMC8966726 DOI: 10.3389/fnagi.2022.838803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/17/2022] [Indexed: 11/26/2022] Open
Abstract
Aim Neural network oscillation at gamma frequency band (γ oscillation, 30–80 Hz) is synchronized synaptic potentials important for higher brain processes and altered in normal aging. Recent studies indicate that activation of dopamine 4 receptor (DR4) enhanced hippocampal γ oscillation of young mice and fully recovered the impaired hippocampal synaptic plasticity of aged mice, we determined whether this receptor is involved in aging-related modulation of hippocampal γ oscillation. Methods We recorded γ oscillations in the hippocampal CA3 region from young and aged C57bl6 mice and investigated the effects of dopamine and the selective dopamine receptor (DR) agonists on γ oscillation. Results We first found that γ oscillation power (γ power) was reduced in aged mice compared to young mice, which was restored by exogenous application of dopamine (DA). Second, the selective agonists for different D1- and D2-type dopamine receptors increased γ power in young mice but had little or small effect in aged mice. Third, the D4 receptor (D4R) agonist PD168077 caused a large increase of γ power in aged mice but a small increase in young mice, and its effect is blocked by the highly specific D4R antagonist L-745,870 or largely reduced by a NMDAR antagonist. Fourth, D3R agonist had no effect on γ power of either young or aged mice. Conclusion This study reveals DR subtype-mediated hippocampal γ oscillations is aging-related and DR4 activation restores the impaired γ oscillations in aged brain, and suggests that D4R is the potential target for the improvement of cognitive deficits related to the aging and aging-related diseases.
Collapse
Affiliation(s)
- Yuan Wang
- Henan International Key Laboratory for Non-invasive Neuromodulation, Department of Physiology and Pathology, Xinxiang Medical University, Xinxiang, China
| | - Yi-Kai Jin
- Henan International Key Laboratory for Non-invasive Neuromodulation, Department of Physiology and Pathology, Xinxiang Medical University, Xinxiang, China
| | - Tie-Cheng Guo
- Department of Rehabilitation Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen-Rong Li
- Henan International Key Laboratory for Non-invasive Neuromodulation, Department of Physiology and Pathology, Xinxiang Medical University, Xinxiang, China
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Bing-Yan Feng
- Henan International Key Laboratory for Non-invasive Neuromodulation, Department of Physiology and Pathology, Xinxiang Medical University, Xinxiang, China
| | - Jin-Hong Han
- Henan International Key Laboratory for Non-invasive Neuromodulation, Department of Physiology and Pathology, Xinxiang Medical University, Xinxiang, China
| | - Martin Vreugdenhil
- Department of Health Sciences, Birmingham City University, Birmingham, United Kingdom
- *Correspondence: Martin Vreugdenhil,
| | - Cheng-Biao Lu
- Henan International Key Laboratory for Non-invasive Neuromodulation, Department of Physiology and Pathology, Xinxiang Medical University, Xinxiang, China
- Cheng-Biao Lu,
| |
Collapse
|
11
|
Wu Z, Zhang H, Miao X, Li H, Pan H, Zhou D, Liu Y, Li Z, Wang J, Liu X, Zheng D, Li X, Wang W, Guo X, Tao L. High-intensity physical activity is not associated with better cognition in the elder: evidence from the China Health and Retirement Longitudinal Study. ALZHEIMERS RESEARCH & THERAPY 2021; 13:182. [PMID: 34732248 PMCID: PMC8567563 DOI: 10.1186/s13195-021-00923-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/20/2021] [Indexed: 11/27/2022]
Abstract
Background To evaluate the association of physical activity (PA) intensity with cognitive performance at baseline and during follow-up. Methods A total of 4039 participants aged 45 years or above from the China Health and Retirement Longitudinal Study were enrolled in visit 1 (2011–2012) and followed for cognitive function in visit 2 (2013–2014), visit 3 (2015–2016), and visit 4 (2017–2018). We analyzed the association of PA intensity with global cognition, episodic memory, and mental intactness at baseline using adjusted regression methods and evaluated the long-term effect of PA intensity using multiple measures of cognition scores by mixed effect model. Results In cross-sectional analysis, mild and moderate PA, rather than vigorous PA, was associated with better cognitive performance. The results remained consistent in multiple sensitivity analyses. During the follow-up, participant with mild PA had a 0.56 (95% CI 0.12–0.99) higher global cognition, 0.23 (95% CI 0.01–0.46) higher episodic memory, and 0.33 (95% CI 0.01–0.64) higher mental intactness, while those with moderate PA had a 0.74 (95% CI 0.32–1.17) higher global score, 0.32 (95% CI 0.09–0.54) higher episodic memory, and 0.43 (95% CI 0.12–0.74) higher mental intactness, compared with individuals without PA. Vigorous PA was not beneficial to the long-term cognitive performance. Conclusions Our study indicates that mild and moderate PA could improve cognitive performance, rather than the vigorous activity. The targeted intensity of PA might be more effective to achieve the greatest cognition improvement considering age and depressive status. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00923-3.
Collapse
Affiliation(s)
- Zhiyuan Wu
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China.,Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Haiping Zhang
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China
| | - Xinlei Miao
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China
| | - Haibin Li
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Huiying Pan
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China
| | - Di Zhou
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China
| | - Yue Liu
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China
| | - Zhiwei Li
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China
| | - Jinqi Wang
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China
| | - Xiangtong Liu
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China
| | - Deqiang Zheng
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China
| | - Xia Li
- Department of Mathematics and Statistics, La Trobe University, Melbourne, Australia
| | - Wei Wang
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Xiuhua Guo
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China. .,Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia.
| | - Lixin Tao
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China.
| |
Collapse
|
12
|
Ciampa CJ, Parent JH, Lapoint MR, Swinnerton KN, Taylor MM, Tennant VR, Whitman AJ, Jagust WJ, Berry AS. Elevated Dopamine Synthesis as a Mechanism of Cognitive Resilience in Aging. Cereb Cortex 2021; 32:2762-2772. [PMID: 34718454 DOI: 10.1093/cercor/bhab379] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022] Open
Abstract
Aging is associated with declines in multiple components of the dopamine system including loss of dopamine-producing neurons, atrophy of the dopamine system's cortical targets, and reductions in the density of dopamine receptors. Countering these patterns, dopamine synthesis appears to be stable or elevated in older age. We tested the hypothesis that elevation in dopamine synthesis in aging reflects a compensatory response to neuronal loss rather than a nonspecific monotonic shift in older age. We measured individual differences in striatal dopamine synthesis capacity in cognitively normal older adults using [18F]Fluoro-l-m-tyrosine positron emission tomography cross-sectionally and tested relationships with longitudinal reductions in cortical thickness and working memory decline beginning up to 13 years earlier. Consistent with a compensation account, older adults with the highest dopamine synthesis capacity were those with greatest atrophy in posterior parietal cortex. Elevated dopamine synthesis capacity was not associated with successful maintenance of working memory performance overall, but had a moderating effect such that higher levels of dopamine synthesis capacity reduced the impact of atrophy on cognitive decline. Together, these findings support a model by which upregulation of dopamine synthesis represents a mechanism of cognitive resilience in aging.
Collapse
Affiliation(s)
- Claire J Ciampa
- Department of Psychology, Brandeis University, Waltham, MA 02453, USA
| | - Jourdan H Parent
- Department of Psychology, Brandeis University, Waltham, MA 02453, USA
| | - Molly R Lapoint
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kaitlin N Swinnerton
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Morgan M Taylor
- Department of Psychology, Brandeis University, Waltham, MA 02453, USA
| | - Victoria R Tennant
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - A J Whitman
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anne S Berry
- Department of Psychology, Brandeis University, Waltham, MA 02453, USA
| |
Collapse
|
13
|
Zhang R, Manza P, Tomasi D, Kim SW, Shokri-Kojori E, Demiral SB, Kroll DS, Feldman DE, McPherson KL, Biesecker CL, Wang GJ, Volkow ND. Dopamine D1 and D2 receptors are distinctly associated with rest-activity rhythms and drug reward. J Clin Invest 2021; 131:e149722. [PMID: 34264865 DOI: 10.1172/jci149722] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Certain components of rest-activity rhythms such as greater eveningness (delayed phase), physical inactivity (blunted amplitude) and shift work (irregularity) are associated with increased risk for drug use. Dopaminergic (DA) signaling has been hypothesized to mediate the associations, though clinical evidence is lacking. METHODS We examined associations between rhythm components and striatal D1 (D1R) and D2/3 receptor (D2/3R) availability in 32 healthy adults (12 female, age: 42.40±12.22) and its relationship to drug reward. Rest-activity rhythms were assessed by one-week actigraphy combined with self-reports. [11C]NNC112 and [11C]raclopride Positron Emission Tomography (PET) scans were conducted to measure D1R and D2/3R availability, respectively. Additionally, self-reported drug-rewarding effects of 60 mg oral methylphenidate were assessed. RESULTS We found that delayed rhythm was associated with higher D1R availability in caudate, which was not attributable to sleep loss or 'social jet lag', whereas physical inactivity was associated with higher D2/3R availability in nucleus accumbens (NAc). Delayed rest-activity rhythm, higher caudate D1R and NAc D2/3R availability were associated with greater sensitivity to the rewarding effects of methylphenidate. CONCLUSION These findings reveal specific components of rest-activity rhythms associated with striatal D1R, D2/3R availability and drug-rewarding effects. Personalized interventions that target rest-activity rhythms may help prevent and treat substance use disorders. TRIAL REGISTRATION ClinicalTrials.gov: NCT03190954FUNDING. This work was accomplished with support from the National Institute on Alcohol Abuse and Alcoholism (ZIAAA000550).
Collapse
Affiliation(s)
- Rui Zhang
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Sung Won Kim
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Ehsan Shokri-Kojori
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Sukru B Demiral
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Danielle S Kroll
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Dana E Feldman
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Katherine L McPherson
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Catherine L Biesecker
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Nora D Volkow
- National Institute on Drug Abuse, NIH, Bethesda, United States of America
| |
Collapse
|
14
|
Tabibnia G. An affective neuroscience model of boosting resilience in adults. Neurosci Biobehav Rev 2020; 115:321-350. [DOI: 10.1016/j.neubiorev.2020.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 12/11/2022]
|
15
|
Effects of exercise on proactive interference in memory: potential neuroplasticity and neurochemical mechanisms. Psychopharmacology (Berl) 2020; 237:1917-1929. [PMID: 32488351 DOI: 10.1007/s00213-020-05554-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
Proactive interference occurs when consolidated memory traces inhibit new learning. This kind of interference decreases the efficiency of new learning and also causes memory errors. Exercise has been shown to facilitate some types of cognitive function; however, whether exercise reduces proactive interference to enhance learning efficiency is not well understood. Thus, this review discusses the effects of exercise on proactive memory interference and explores potential mechanisms, such as neurogenesis and neurochemical changes, mediating any effect.
Collapse
|
16
|
Age-related variability in decision-making: Insights from neurochemistry. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 19:415-434. [PMID: 30536205 DOI: 10.3758/s13415-018-00678-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite dopamine's significant role in models of value-based decision-making and findings demonstrating loss of dopamine function in aging, evidence of systematic changes in decision-making over the life span remains elusive. Previous studies attempting to resolve the neural basis of age-related alteration in decision-making have typically focused on physical age, which can be a poor proxy for age-related effects on neural systems. There is growing appreciation that aging has heterogeneous effects on distinct components of the dopamine system within subject in addition to substantial variability between subjects. We propose that some of the conflicting findings in age-related effects on decision-making may be reconciled if we can observe the underlying dopamine components within individuals. This can be achieved by incorporating in vivo imaging techniques including positron emission tomography (PET) and neuromelanin-sensitive MR. Further, we discuss how affective factors may contribute to individual differences in decision-making performance among older adults. Specifically, we propose that age-related shifts in affective attention ("positivity effect") can, in some cases, counteract the impact of altered dopamine function on specific decision-making processes, contributing to variability in findings. In an effort to provide clarity to the field and advance productive hypothesis testing, we propose ways in which in vivo dopamine imaging can be leveraged to disambiguate dopaminergic influences on decision-making, and suggest strategies for assessing individual differences in the contribution of affective attentional focus.
Collapse
|
17
|
Booher WC, Reyes Martínez GJ, Ehringer MA. Behavioral and neuronal interactions between exercise and alcohol: Sex and genetic differences. GENES BRAIN AND BEHAVIOR 2020; 19:e12632. [DOI: 10.1111/gbb.12632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Winona C. Booher
- Institute for Behavioral GeneticsUniversity of Colorado Boulder Colorado
- Department of Integrative PhysiologyUniversity of Colorado Boulder Colorado
| | - Guillermo J. Reyes Martínez
- Institute for Behavioral GeneticsUniversity of Colorado Boulder Colorado
- Department of Integrative PhysiologyUniversity of Colorado Boulder Colorado
| | - Marissa A. Ehringer
- Institute for Behavioral GeneticsUniversity of Colorado Boulder Colorado
- Department of Integrative PhysiologyUniversity of Colorado Boulder Colorado
| |
Collapse
|
18
|
Jonasson LS, Nyberg L, Axelsson J, Kramer AF, Riklund K, Boraxbekk CJ. Higher striatal D2-receptor availability in aerobically fit older adults but non-selective intervention effects after aerobic versus resistance training. Neuroimage 2019; 202:116044. [PMID: 31352122 DOI: 10.1016/j.neuroimage.2019.116044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/15/2019] [Accepted: 07/21/2019] [Indexed: 12/16/2022] Open
Abstract
There is much evidence that dopamine is vital for cognitive functioning in aging. Here we tested the hypothesis that aerobic exercise and fitness influence dopaminergic neurotransmission in the striatum, and in turn performance on offline working-memory updating tasks. Dopaminergic neurotransmission was measured by positron emission tomography (PET) and the non-displacable binding potential (BPND) of [11C]raclopride, i.e. dopamine (DA) D2-receptor (D2R) availability. Fifty-four sedentary older adults underwent a six-months exercise intervention, performing either aerobic exercise or stretching, toning, and resistance active control training. At baseline, higher aerobic fitness levels (VO2peak) were associated with higher BPND in the striatum, providing evidence of a link between an objective measure of aerobic fitness and D2R in older adults. BPND decreased substantially over the intervention in both groups but the intervention effects were non-selective with respect to exercise group. The decrease was several times larger than any previously estimated annual decline in D2R, potentially due to increased endogenous DA. Working-memory was unrelated to D2R both at baseline and following the intervention. To conclude, we provide partial evidence for a link between physical exercise and DA. Utilizing a PET protocol able to disentangle both D2R and DA levels could shed further light on whether, and how, aerobic exercise impacts the dopaminergic system in older adults.
Collapse
Affiliation(s)
- Lars S Jonasson
- Department of Integrative Medical Biology, Physiology, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden.
| | - Lars Nyberg
- Department of Integrative Medical Biology, Physiology, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden; Department of Radiation Sciences, Umeå University, Umeå, Sweden.
| | - Jan Axelsson
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden; Department of Radiation Sciences, Umeå University, Umeå, Sweden.
| | - Arthur F Kramer
- Departments of Psychology and Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA; Beckman Institute, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA.
| | - Katrine Riklund
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden; Department of Radiation Sciences, Umeå University, Umeå, Sweden.
| | - Carl-Johan Boraxbekk
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden; Center for Demographic and Aging Research, Umeå University, Umeå, Sweden; Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital, Hvidovre, Denmark.
| |
Collapse
|
19
|
Juarez EJ, Samanez-Larkin GR. Exercise, Dopamine, and Cognition in Older Age. Trends Cogn Sci 2019; 23:986-988. [PMID: 31703928 DOI: 10.1016/j.tics.2019.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/20/2019] [Indexed: 02/07/2023]
Abstract
Jonasson et al. investigated whether individual differences in human dopamine receptors (D2R) were related to cognitive performance before and after a 6-month aerobic exercise intervention (compared with active control). While D2R decreased (perhaps counterintuitively) with exercise, there was no relationship between D2R and working memory at baseline or following exercise.
Collapse
Affiliation(s)
- Eric J Juarez
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA; Center for Cognitive Neuroscience, Duke University, Durham, NC, USA.
| | - Gregory R Samanez-Larkin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA; Center for Cognitive Neuroscience, Duke University, Durham, NC, USA
| |
Collapse
|
20
|
Bermudez Noguera C, Bao S, Petersen KJ, Lopez AM, Reid J, Plassard AJ, Zald DH, Claassen DO, Dawant BM, Landman BA. Using deep learning for a diffusion-based segmentation of the dentate nucleus and its benefits over atlas-based methods. J Med Imaging (Bellingham) 2019; 6:044007. [PMID: 31824980 PMCID: PMC6895566 DOI: 10.1117/1.jmi.6.4.044007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/18/2019] [Indexed: 01/17/2023] Open
Abstract
The dentate nucleus (DN) is a gray matter structure deep in the cerebellum involved in motor coordination, sensory input integration, executive planning, language, and visuospatial function. The DN is an emerging biomarker of disease, informing studies that advance pathophysiologic understanding of neurodegenerative and related disorders. The main challenge in defining the DN radiologically is that, like many deep gray matter structures, it has poor contrast in T1-weighted magnetic resonance (MR) images and therefore requires specialized MR acquisitions for visualization. Manual tracing of the DN across multiple acquisitions is resource-intensive and does not scale well to large datasets. We describe a technique that automatically segments the DN using deep learning (DL) on common imaging sequences, such as T1-weighted, T2-weighted, and diffusion MR imaging. We trained a DL algorithm that can automatically delineate the DN and provide an estimate of its volume. The automatic segmentation achieved higher agreement to the manual labels compared to template registration, which is the current common practice in DN segmentation or multiatlas segmentation of manual labels. Across all sequences, the FA maps achieved the highest mean Dice similarity coefficient (DSC) of 0.83 compared to T1 imaging ( DSC = 0.76 ), T2 imaging ( DSC = 0.79 ), or a multisequence approach ( DSC = 0.80 ). A single atlas registration approach using the spatially unbiased atlas template of the cerebellum and brainstem template achieved a DSC of 0.23, and multi-atlas segmentation achieved a DSC of 0.33. Overall, we propose a method of delineating the DN on clinical imaging that can reproduce manual labels with higher accuracy than current atlas-based tools.
Collapse
Affiliation(s)
- Camilo Bermudez Noguera
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
| | - Shunxing Bao
- Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, Tennessee, United States
| | - Kalen J. Petersen
- Vanderbilt University, Department of Neurology, Nashville, Tennessee, United States
| | - Alexander M. Lopez
- Vanderbilt University, Department of Neurology, Nashville, Tennessee, United States
| | - Jacqueline Reid
- Vanderbilt University, Department of Neurology, Nashville, Tennessee, United States
| | - Andrew J. Plassard
- Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, Tennessee, United States
| | - David H. Zald
- Vanderbilt University, Department of Psychology and Psychiatry, Nashville, Tennessee, United States
| | - Daniel O. Claassen
- Vanderbilt University, Department of Neurology, Nashville, Tennessee, United States
| | - Benoit M. Dawant
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
- Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, Tennessee, United States
| | - Bennett A. Landman
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
- Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, Tennessee, United States
- Vanderbilt University, Department of Psychology and Psychiatry, Nashville, Tennessee, United States
| |
Collapse
|
21
|
Smith CT, Crawford JL, Dang LC, Seaman KL, San Juan MD, Vijay A, Katz DT, Matuskey D, Cowan RL, Morris ED, Zald DH, Samanez-Larkin GR. Partial-volume correction increases estimated dopamine D2-like receptor binding potential and reduces adult age differences. J Cereb Blood Flow Metab 2019; 39:822-833. [PMID: 29090626 PMCID: PMC6498753 DOI: 10.1177/0271678x17737693] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/17/2017] [Accepted: 09/19/2017] [Indexed: 12/17/2022]
Abstract
The relatively modest spatial resolution of positron emission tomography (PET) increases the likelihood of partial volume effects such that binding potential (BPND) may be underestimated. Given structural grey matter losses across adulthood, partial volume effects may be even more problematic in older age leading to overestimation of adult age differences. Here we examined the effects of partial volume correction (PVC) in two studies from different sites using different high-affinity D2-like radioligands (18 F-Fallypride, 11C-FLB457) and different PET camera resolutions (∼5 mm, 2.5 mm). Results across both data sets revealed that PVC increased estimated BPND and reduced, though did not eliminate, age effects on BPND. As expected, the effects of PVC were smaller in higher compared to lower resolution data. Analyses using uncorrected data that controlled for grey matter volume in each region of interest approximated PVC corrected data for some but not all regions. Overall, the findings suggest that PVC increases estimated BPND in general and reduces adult age differences especially when using lower resolution cameras. The findings suggest that the past 30 years of research on dopamine receptor availability, for which very few studies use PVC, may overestimate effects of aging on dopamine receptor availability.
Collapse
Affiliation(s)
| | - Jennifer L Crawford
- Department of Psychology,
Yale
University, New Haven, CT, USA
- Center for Cognitive Neuroscience, Duke
University, Durham, NC, USA
| | - Linh C Dang
- Department of Psychology,
Vanderbilt
University, Nashville, TN, USA
| | - Kendra L Seaman
- Department of Psychology,
Yale
University, New Haven, CT, USA
- Center for Cognitive Neuroscience, Duke
University, Durham, NC, USA
| | | | - Aishwarya Vijay
- Department of Radiology and Biomedical
Imaging,
Yale
University, New Haven, CT, USA
| | - Daniel T Katz
- Department of Psychology,
Vanderbilt
University, Nashville, TN, USA
| | - David Matuskey
- Department of Radiology and Biomedical
Imaging,
Yale
University, New Haven, CT, USA
- Department of Psychiatry,
Yale
University, New Haven, CT, USA
| | - Ronald L Cowan
- Department of Psychology,
Vanderbilt
University, Nashville, TN, USA
- Department of Psychiatry and Behavioral
Sciences,
Vanderbilt
University School of Medicine, Nashville,
TN, USA
- Department of Radiology and Radiological
Sciences,
Vanderbilt
University Medical Center, Nashville, TN,
USA
| | - Evan D Morris
- Department of Radiology and Biomedical
Imaging,
Yale
University, New Haven, CT, USA
- Department of Psychiatry,
Yale
University, New Haven, CT, USA
- Department of Biomedical Engineering,
Yale
University, New Haven, CT USA
| | - David H Zald
- Department of Psychology,
Vanderbilt
University, Nashville, TN, USA
- Department of Psychiatry and Behavioral
Sciences,
Vanderbilt
University School of Medicine, Nashville,
TN, USA
| | - Gregory R Samanez-Larkin
- Department of Psychology,
Yale
University, New Haven, CT, USA
- Center for Cognitive Neuroscience, Duke
University, Durham, NC, USA
- Department of Psychology and
Neuroscience, Duke University, Durham, NC, USA
| |
Collapse
|
22
|
de Oliveira PG, Ramos MLS, Amaro AJ, Dias RA, Vieira SI. G i/o-Protein Coupled Receptors in the Aging Brain. Front Aging Neurosci 2019; 11:89. [PMID: 31105551 PMCID: PMC6492497 DOI: 10.3389/fnagi.2019.00089] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/03/2019] [Indexed: 12/18/2022] Open
Abstract
Cells translate extracellular signals to regulate processes such as differentiation, metabolism and proliferation, via transmembranar receptors. G protein-coupled receptors (GPCRs) belong to the largest family of transmembrane receptors, with over 800 members in the human species. Given the variety of key physiological functions regulated by GPCRs, these are main targets of existing drugs. During normal aging, alterations in the expression and activity of GPCRs have been observed. The central nervous system (CNS) is particularly affected by these alterations, which results in decreased brain functions, impaired neuroregeneration, and increased vulnerability to neuropathologies, such as Alzheimer's and Parkinson diseases. GPCRs signal via heterotrimeric G proteins, such as Go, the most abundant heterotrimeric G protein in CNS. We here review age-induced effects of GPCR signaling via the Gi/o subfamily at the CNS. During the aging process, a reduction in protein density is observed for almost half of the Gi/o-coupled GPCRs, particularly in age-vulnerable regions such as the frontal cortex, hippocampus, substantia nigra and striatum. Gi/o levels also tend to decrease with aging, particularly in regions such as the frontal cortex. Alterations in the expression and activity of GPCRs and coupled G proteins result from altered proteostasis, peroxidation of membranar lipids and age-associated neuronal degeneration and death, and have impact on aging hallmarks and age-related neuropathologies. Further, due to oligomerization of GPCRs at the membrane and their cooperative signaling, down-regulation of a specific Gi/o-coupled GPCR may affect signaling and drug targeting of other types/subtypes of GPCRs with which it dimerizes. Gi/o-coupled GPCRs receptorsomes are thus the focus of more effective therapeutic drugs aiming to prevent or revert the decline in brain functions and increased risk of neuropathologies at advanced ages.
Collapse
Affiliation(s)
- Patrícia G de Oliveira
- Department of Medical Sciences, Institute of Biomedicine (iBiMED) and The Discovery CTR, Universidade de Aveiro, Aveiro, Portugal
| | - Marta L S Ramos
- Department of Medical Sciences, Institute of Biomedicine (iBiMED) and The Discovery CTR, Universidade de Aveiro, Aveiro, Portugal
| | - António J Amaro
- School of Health Sciences (ESSUA), Universidade de Aveiro, Aveiro, Portugal
| | - Roberto A Dias
- Department of Medical Sciences, Institute of Biomedicine (iBiMED) and The Discovery CTR, Universidade de Aveiro, Aveiro, Portugal
| | - Sandra I Vieira
- Department of Medical Sciences, Institute of Biomedicine (iBiMED) and The Discovery CTR, Universidade de Aveiro, Aveiro, Portugal
| |
Collapse
|
23
|
Seaman KL, Smith CT, Juarez EJ, Dang LC, Castrellon JJ, Burgess LL, San Juan MD, Kundzicz PM, Cowan RL, Zald DH, Samanez-Larkin GR. Differential regional decline in dopamine receptor availability across adulthood: Linear and nonlinear effects of age. Hum Brain Mapp 2019; 40:3125-3138. [PMID: 30932295 DOI: 10.1002/hbm.24585] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/06/2019] [Accepted: 03/19/2019] [Indexed: 01/25/2023] Open
Abstract
Theories of adult brain development, based on neuropsychological test results and structural neuroimaging, suggest differential rates of age-related change in function across cortical and subcortical sub-regions. However, it remains unclear if these trends also extend to the aging dopamine system. Here we examined cross-sectional adult age differences in estimates of D2-like receptor binding potential across several cortical and subcortical brain regions using PET imaging and the radiotracer [18 F]Fallypride in two samples of healthy human adults (combined N = 132). After accounting for regional differences in overall radioligand binding, estimated percent difference in receptor binding potential by decade (linear effects) were highest in most temporal and frontal cortical regions (~6-16% per decade), moderate in parahippocampal gyrus, pregenual frontal cortex, fusiform gyrus, caudate, putamen, thalamus, and amygdala (~3-5%), and weakest in subcallosal frontal cortex, ventral striatum, pallidum, and hippocampus (~0-2%). Some regions showed linear effects of age while many showed curvilinear effects such that binding potential declined from young adulthood to middle age and then was relatively stable until old age. Overall, these data indicate that the rate and pattern of decline in D2 receptor availability is regionally heterogeneous. However, the differences across regions were challenging to organize within existing theories of brain development and did not show the same pattern of regional change that has been observed in gray matter volume, white matter integrity, or cognitive performance. This variation suggests that existing theories of adult brain development may need to be modified to better account for the spatial dynamics of dopaminergic system aging.
Collapse
Affiliation(s)
- Kendra L Seaman
- Center for the Study of Aging and Human Development, Duke University, Durham, North Carolina.,Center for Cognitive Neuroscience, Duke University, Durham, North Carolina
| | | | - Eric J Juarez
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina
| | - Linh C Dang
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Jaime J Castrellon
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina
| | - Leah L Burgess
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - M Danica San Juan
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Paul M Kundzicz
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Ronald L Cowan
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - David H Zald
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Gregory R Samanez-Larkin
- Center for Cognitive Neuroscience, Duke University, Durham, North Carolina.,Department of Psychology and Neuroscience, Duke University, Durham, North Carolina
| |
Collapse
|
24
|
Dopaminergic Mechanisms Underlying Normal Variation in Trait Anxiety. J Neurosci 2019; 39:2735-2744. [PMID: 30737306 DOI: 10.1523/jneurosci.2382-18.2019] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/03/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023] Open
Abstract
Trait anxiety has been associated with altered activity within corticolimbic pathways connecting the amygdala and rostral anterior cingulate cortex (rACC), which receive rich dopaminergic input. Though the popular culture uses the term "chemical imbalance" to describe the pathophysiology of psychiatric conditions such as anxiety disorders, we know little about how individual differences in human dopamine neurochemistry are related to variation in anxiety and activity within corticolimbic circuits. We addressed this issue by examining interindividual variability in dopamine release at rest using [11C]raclopride positron emission tomography (PET), functional connectivity between amygdala and rACC using resting-state functional magnetic resonance imaging (fMRI), and trait anxiety measures in healthy adult male and female humans. To measure endogenous dopamine release, we collected two [11C]raclopride PET scans per participant. We contrasted baseline [11C]raclopride D2/3 receptor binding and D2/3 receptor binding following oral methylphenidate administration. Methylphenidate blocks the dopamine transporter, which increases extracellular dopamine and leads to reduced [11C]raclopride D2/3 receptor binding via competitive displacement. We found that individuals with higher dopamine release in the amygdala and rACC self-reported lower trait anxiety. Lower trait anxiety was also associated with reduced rACC-amygdala functional connectivity at baseline. Further, functional connectivity showed a modest negative relationship with dopamine release such that reduced rACC-amygdala functional connectivity was accompanied by higher levels of dopamine release in these regions. Together, these findings contribute to hypodopaminergic models of anxiety and support the utility of combining fMRI and PET measures of neurochemical function to advance our understanding of basic affective processes in humans.SIGNIFICANCE STATEMENT It is common wisdom that individuals vary in their baseline levels of anxiety. We all have a friend or colleague we know to be more "tightly wound" than others, or, perhaps, we are the ones marveling at others' ability to "just go with the flow." Although such observations about individual differences within nonclinical populations are commonplace, the neural mechanisms underlying normal variation in trait anxiety have not been established. Using multimodal brain imaging in humans, this study takes initial steps in linking intrinsic measures of neuromodulator release and functional connectivity within regions implicated in anxiety disorders. Our findings suggest that in healthy adults, higher levels of trait anxiety may arise, at least in part, from reduced dopamine neurotransmission.
Collapse
|
25
|
Brem AK, Sensi SL. Towards Combinatorial Approaches for Preserving Cognitive Fitness in Aging. Trends Neurosci 2018; 41:885-897. [DOI: 10.1016/j.tins.2018.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/11/2022]
|
26
|
Dopamine Synthesis Capacity is Associated with D2/3 Receptor Binding but Not Dopamine Release. Neuropsychopharmacology 2018; 43:1201-1211. [PMID: 28816243 PMCID: PMC5916345 DOI: 10.1038/npp.2017.180] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/07/2017] [Accepted: 08/10/2017] [Indexed: 01/08/2023]
Abstract
Positron Emission Tomography (PET) imaging allows the estimation of multiple aspects of dopamine function including dopamine synthesis capacity, dopamine release, and D2/3 receptor binding. Though dopaminergic dysregulation characterizes a number of neuropsychiatric disorders including schizophrenia and addiction, there has been relatively little investigation into the nature of relationships across dopamine markers within healthy individuals. Here we used PET imaging in 40 healthy adults to compare, within individuals, the estimates of dopamine synthesis capacity (Ki) using 6-[18F]fluoro-l-m-tyrosine ([18F]FMT; a substrate for aromatic amino acid decarboxylase), baseline D2/3 receptor-binding potential using [11C]raclopride (a weak competitive D2/3 receptor antagonist), and dopamine release using [11C]raclopride paired with oral methylphenidate administration. Methylphenidate increases synaptic dopamine by blocking the dopamine transporter. We estimated dopamine release by contrasting baseline D2/3 receptor binding and D2/3 receptor binding following methylphenidate. Analysis of relationships among the three measurements within striatal regions of interest revealed a positive correlation between [18F]FMT Ki and the baseline (placebo) [11C]raclopride measure, such that participants with greater synthesis capacity showed higher D2/3 receptor-binding potential. In contrast, there was no relationship between [18F]FMT and methylphenidate-induced [11C]raclopride displacement. These findings shed light on the nature of regulation between pre- and postsynaptic dopamine function in healthy adults, which may serve as a template from which to identify and describe alteration with disease.
Collapse
|
27
|
Beeler JA, Mourra D. To Do or Not to Do: Dopamine, Affordability and the Economics of Opportunity. Front Integr Neurosci 2018; 12:6. [PMID: 29487508 PMCID: PMC5816947 DOI: 10.3389/fnint.2018.00006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/26/2018] [Indexed: 12/21/2022] Open
Abstract
Five years ago, we introduced the thrift hypothesis of dopamine (DA), suggesting that the primary role of DA in adaptive behavior is regulating behavioral energy expenditure to match the prevailing economic conditions of the environment. Here we elaborate that hypothesis with several new ideas. First, we introduce the concept of affordability, suggesting that costs must necessarily be evaluated with respect to the availability of resources to the organism, which computes a value not only for the potential reward opportunity, but also the value of resources expended. Placing both costs and benefits within the context of the larger economy in which the animal is functioning requires consideration of the different timescales against which to compute resource availability, or average reward rate. Appropriate windows of computation for tracking resources requires corresponding neural substrates that operate on these different timescales. In discussing temporal patterns of DA signaling, we focus on a neglected form of DA plasticity and adaptation, changes in the physical substrate of the DA system itself, such as up- and down-regulation of receptors or release probability. We argue that changes in the DA substrate itself fundamentally alter its computational function, which we propose mediates adaptations to longer temporal horizons and economic conditions. In developing our hypothesis, we focus on DA D2 receptors (D2R), arguing that D2R implements a form of “cost control” in response to the environmental economy, serving as the “brain’s comptroller”. We propose that the balance between the direct and indirect pathway, regulated by relative expression of D1 and D2 DA receptors, implements affordability. Finally, as we review data, we discuss limitations in current approaches that impede fully investigating the proposed hypothesis and highlight alternative, more semi-naturalistic strategies more conducive to neuroeconomic investigations on the role of DA in adaptive behavior.
Collapse
Affiliation(s)
- Jeff A Beeler
- Department of Psychology, Queens College, City University of New York, New York, NY, United States.,CUNY Neuroscience Consortium, The Graduate Center, City University of New York, New York, NY, United States
| | - Devry Mourra
- Department of Psychology, Queens College, City University of New York, New York, NY, United States.,CUNY Neuroscience Consortium, The Graduate Center, City University of New York, New York, NY, United States
| |
Collapse
|
28
|
Stark AJ, Smith CT, Petersen KJ, Trujillo P, van Wouwe NC, Donahue MJ, Kessler RM, Deutch AY, Zald DH, Claassen DO. [ 18F]fallypride characterization of striatal and extrastriatal D 2/3 receptors in Parkinson's disease. Neuroimage Clin 2018; 18:433-442. [PMID: 29541577 PMCID: PMC5849871 DOI: 10.1016/j.nicl.2018.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/15/2018] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is characterized by widespread degeneration of monoaminergic (especially dopaminergic) networks, manifesting with a number of both motor and non-motor symptoms. Regional alterations to dopamine D2/3 receptors in PD patients are documented in striatal and some extrastriatal areas, and medications that target D2/3 receptors can improve motor and non-motor symptoms. However, data regarding the combined pattern of D2/3 receptor binding in both striatal and extrastriatal regions in PD are limited. We studied 35 PD patients off-medication and 31 age- and sex-matched healthy controls (HCs) using PET imaging with [18F]fallypride, a high affinity D2/3 receptor ligand, to measure striatal and extrastriatal D2/3 nondisplaceable binding potential (BPND). PD patients completed PET imaging in the off medication state, and motor severity was concurrently assessed. Voxel-wise evaluation between groups revealed significant BPND reductions in PD patients in striatal and several extrastriatal regions, including the locus coeruleus and mesotemporal cortex. A region-of-interest (ROI) based approach quantified differences in dopamine D2/3 receptors, where reduced BPND was noted in the globus pallidus, caudate, amygdala, hippocampus, ventral midbrain, and thalamus of PD patients relative to HC subjects. Motor severity positively correlated with D2/3 receptor density in the putamen and globus pallidus. These findings support the hypothesis that abnormal D2/3 expression occurs in regions related to both the motor and non-motor symptoms of PD, including areas richly invested with noradrenergic neurons.
Collapse
Affiliation(s)
- Adam J Stark
- Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | | | - Kalen J Petersen
- Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Paula Trujillo
- Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Nelleke C van Wouwe
- Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Manus J Donahue
- Neurology, Vanderbilt University Medical Center, Nashville, TN, United States; Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Robert M Kessler
- Radiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ariel Y Deutch
- Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - David H Zald
- Psychology, Vanderbilt University, Nashville, TN, United States; Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Daniel O Claassen
- Neurology, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
29
|
Dang LC, Samanez-Larkin GR, Castrellon JJ, Perkins SF, Cowan RL, Newhouse PA, Zald DH. Spontaneous Eye Blink Rate (EBR) Is Uncorrelated with Dopamine D2 Receptor Availability and Unmodulated by Dopamine Agonism in Healthy Adults. eNeuro 2017; 4:ENEURO.0211-17.2017. [PMID: 28929131 PMCID: PMC5602106 DOI: 10.1523/eneuro.0211-17.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 01/15/2023] Open
Abstract
Spontaneous eye blink rate (EBR) has been proposed as a noninvasive, inexpensive marker of dopamine functioning. Support for a relation between EBR and dopamine function comes from observations that EBR is altered in populations with dopamine dysfunction and EBR changes under a dopaminergic manipulation. However, the evidence across the literature is inconsistent and incomplete. A direct correlation between EBR and dopamine function has so far been observed only in nonhuman animals. Given significant interest in using EBR as a proxy for dopamine function, this study aimed to verify a direct association in healthy, human adults. Here we measured EBR in healthy human subjects whose dopamine D2 receptor (DRD2) availability was assessed with positron emission tomography (PET)-[18F]fallypride to examine the predictive power of EBR for DRD2 availability. Effects of the dopamine agonist bromocriptine on EBR also were examined to determine the responsiveness of EBR to dopaminergic stimulation and, in light of the hypothesized inverted-U profile of dopamine effects, the role of DRD2 availability in EBR responsivity to bromocriptine. Results from 20 subjects (age 33.6 ± 7.6 years, 9F) showed no relation between EBR and DRD2 availability. EBR also was not responsive to dopaminergic stimulation by bromocriptine, and individual differences in DRD2 availability did not modulate EBR responsivity to bromocriptine. Given that EBR is hypothesized to be particularly sensitive to DRD2 function, these findings suggest caution in using EBR as a proxy for dopamine function in healthy humans.
Collapse
Affiliation(s)
- Linh C. Dang
- Department of Psychology, Vanderbilt University, Nashville, TN 37203
| | | | | | - Scott F. Perkins
- Department of Psychology, Vanderbilt University, Nashville, TN 37203
| | - Ronald L. Cowan
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37212
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Paul A. Newhouse
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37212
- Geriatric Research Education and Clinical Centers, Veterans Administration-Tennessee Valley Healthcare System, Nashville, TN 37212
| | - David H. Zald
- Department of Psychology, Vanderbilt University, Nashville, TN 37203
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37212
| |
Collapse
|