1
|
Laing PAF, Dunsmoor JE. Event Segmentation Promotes the Reorganization of Emotional Memory. J Cogn Neurosci 2025; 37:110-134. [PMID: 39231276 DOI: 10.1162/jocn_a_02244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Event boundaries help structure the content of episodic memories by segmenting continuous experiences into discrete events. Event boundaries may also serve to preserve meaningful information within an event, thereby actively separating important memories from interfering representations imposed by past and future events. Here, we tested the hypothesis that event boundaries organize emotional memory based on changing dynamics as events unfold. We developed a novel threat-reversal learning task whereby participants encoded trial-unique exemplars from two semantic categories across three phases: preconditioning, fear acquisition, and reversal. Shock contingencies were established for one category during acquisition (CS+) and then switched to the other during reversal (CS-). Importantly, reversal was either separated by a perceptible event boundary (Experiment 1) or occurred immediately after acquisition, with no perceptible context shift (Experiment 2). In a surprise recognition memory test the next day, memory performance tracked the learning contingencies from encoding in Experiment 1, such that participants selectively recognized more threat-associated CS+ exemplars from before (retroactive) and during acquisition, but this pattern reversed toward CS- exemplars encoded during reversal. By contrast, participants with continuous encoding-without a boundary between conditioning and reversal-exhibited undifferentiated memory for exemplars from both categories encoded before acquisition and after reversal. Further analyses highlight nuanced effects of event boundaries on reversing conditioned fear, updating mnemonic generalization, and emotional biasing of temporal source memory. These findings suggest that event boundaries provide anchor points to organize memory for distinctly meaningful information, thereby adaptively structuring memory based on the content of our experiences.
Collapse
|
2
|
Tashjian SM, Cussen J, Deng W, Zhang B, Mobbs D. Subregions in the ventromedial prefrontal cortex integrate threat and protective information to meta-represent safety. PLoS Biol 2025; 23:e3002986. [PMID: 39804855 PMCID: PMC11730396 DOI: 10.1371/journal.pbio.3002986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Pivotal to self-preservation is the ability to identify when we are safe and when we are in danger. Previous studies have focused on safety estimations based on the features of external threats and do not consider how the brain integrates other key factors, including estimates about our ability to protect ourselves. Here, we examine the neural systems underlying the online dynamic encoding of safety. The current preregistered study used 2 novel tasks to test 4 facets of safety estimation: Safety Prediction, Meta-representation, Recognition, and Value Updating. We experimentally manipulated safety estimation changing both levels of external threats and self-protection. Data were collected in 2 independent samples (behavioral N = 100; MRI N = 30). We found consistent evidence of subjective changes in the sensitivity to safety conferred through protection. Neural responses in the ventromedial prefrontal cortex (vmPFC) tracked increases in safety during all safety estimation facets, with specific tuning to protection. Further, informational connectivity analyses revealed distinct hubs of safety coding in the posterior and anterior vmPFC for external threats and protection, respectively. These findings reveal a central role of the vmPFC for coding safety.
Collapse
Affiliation(s)
- Sarah M. Tashjian
- School of Psychological Sciences, University of Melbourne, Parkville, Australia
- Humanities and Social Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Joseph Cussen
- School of Psychological Sciences, University of Melbourne, Parkville, Australia
| | - Wenning Deng
- Humanities and Social Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Bo Zhang
- Humanities and Social Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Dean Mobbs
- Humanities and Social Sciences, California Institute of Technology, Pasadena, California, United States of America
- Computation and Neural Systems, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
3
|
Iqbal J, Huang GD, Shen D, Xue YX, Yang M, Jia XJ. Single prolonged stress induces behavior and transcriptomic changes in the medial prefrontal cortex to increase susceptibility to anxiety-like behavior in rats. Front Psychiatry 2024; 15:1472194. [PMID: 39628496 PMCID: PMC11611810 DOI: 10.3389/fpsyt.2024.1472194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024] Open
Abstract
Introduction Transcriptomic studies offer valuable insights into the pathophysiology of traumatic stress-induced neuropsychiatric disorders, including generalized anxiety disorder and post-traumatic stress disorder (PTSD). The medial prefrontal cortex (mPFC) has been implicated in emotion, cognitive function, and psychiatric disorders. Alterations in the function of mPFC have been observed in PTSD patients. However, the specific transcriptomic mechanisms governed by genes within the mPFC under traumatic stress remain elusive. Methods In this study, we conducted transcriptome-wide RNA-seq analysis in the prelimbic (PL) and infralimbic (IL) cortices. We employed the single prolonged stress (SPS) animal model to simulate anxiety-like behavior, which was assessed using the open field and elevated plus maze tests. Results We identified sixty-two differentially expressed genes (DEGs) (FDR adjusted p < 0.05) with significant expression changes in the PL and IL mPFC. In the PL cortex, DEGs in the susceptible group exhibited reduced enrichment for cellular, biological, and molecular functions such as postsynaptic density proteins, glutamatergic synapses, synapse formation, transmembrane transport proteins, and actin cytoskeleton reorganization. In contrast, the IL-susceptible group displayed diminished enrichment for synapse formation, neuronal activity, dendrite development, axon regeneration, learning processes, and glucocorticoid receptor binding compared to control and insusceptible groups. DEGs in the PL-susceptible group were enriched for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to Parkinson's disease, Huntington's disease, Alzheimer's disease, and neurodegeneration processes. In the IL cortex, the susceptible group demonstrated enrichment for KEGG pathways involved in regulating stress signaling pathways and addiction-like behaviors, compared to control and insusceptible groups. Conclusion Our findings suggest that SPS activates distinct transcriptional and molecular pathways in PL and IL cortices of mPFC, enabling differential coping mechanisms in response to the effects of traumatic stress. The enhanced enrichment of identified KEGG pathways in the PL and IL mPFC may underlie the anxiety-like behavior observed in susceptible rats.
Collapse
Affiliation(s)
- Javed Iqbal
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center, Clinical College of Mental Health, Shenzhen University Health Science Center, Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, China
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
| | - Geng-Di Huang
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center, Clinical College of Mental Health, Shenzhen University Health Science Center, Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, China
| | - Dan Shen
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Mei Yang
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center, Clinical College of Mental Health, Shenzhen University Health Science Center, Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, China
| | - Xiao-Jian Jia
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center, Clinical College of Mental Health, Shenzhen University Health Science Center, Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
4
|
Fleury J, Komnenich P, Coon DW, Pituch K. Feasibility of the Remembering Warmth and Safeness Intervention in older ADRD caregivers. Geriatr Nurs 2024; 59:40-47. [PMID: 38986428 DOI: 10.1016/j.gerinurse.2024.06.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND The number of older adults in the U.S. living with ADRD is projected to increase dramatically by 2060. As older adults increasingly assume informal caregiving responsibilities, community-based intervention to sustain caregiver well-being is a dementia research priority. OBJECTIVE To evaluate the feasibility of the RWSI among older ADRD caregivers. The RWSI is informed by the Neurovisceral Integration Model, in which memories that engage safety signals cultivate feelings of safety and well-being. METHODS A within-subjects pre/post-intervention design with older ADRD caregivers to evaluate feasibility (acceptability, demand, fidelity) and empirical promise (well-being). RESULTS The feasibility of the RWSI, implemented with fidelity, was strongly endorsed, as participants attended each intervention session, after which reported experiencing feelings of warmth and safeness, and provided the highest possible acceptability ratings. Participant narratives provided corroboration. DISCUSSION Findings support the feasibility of the RWSI in older ADRD caregivers, providing the basis for continued research.
Collapse
Affiliation(s)
- Julie Fleury
- Hanner Memorial Endowed Professor, Edson College of Nursing and Health Innovation, Center for Innovation in Healthy and Resilient Aging, Arizona State University, United States.
| | - Pauline Komnenich
- Professor, Edson College of Nursing and Health Innovation, Center for Innovation in Healthy and Resilient Aging, Arizona State University, United States
| | - David W Coon
- Professor, Edson College of Nursing and Health Innovation, Center for Innovation in Healthy and Resilient Aging, Arizona State University, United States
| | - Keenan Pituch
- Professor, Edson College of Nursing and Health Innovation, Center for Innovation in Healthy and Resilient Aging, Arizona State University, United States
| |
Collapse
|
5
|
Gilbert P. Threat, safety, safeness and social safeness 30 years on: Fundamental dimensions and distinctions for mental health and well-being. BRITISH JOURNAL OF CLINICAL PSYCHOLOGY 2024; 63:453-471. [PMID: 38698734 DOI: 10.1111/bjc.12466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/18/2024] [Indexed: 05/05/2024]
Abstract
In 1993, the British Journal of Clinical Psychology published my paper titled 'Defence and safety: Their function in social behaviour and psychopathology'. The paper highlights that to understand people's sensitivity to threat, we also need to understand their ability to identify what is safe. This paper offers an update on these concepts, highlighting distinctions that were implicit but not clearly defined at the time. Hence, the paper seeks to clarify distinctions between: (i) threat detection and response, (ii) safety and safety seeking, (iii) safeness and (iv) their social and non-social functions and forms. Threat detection and response are to prevent or minimize harm (e.g., run from a predator or fire). Safety checking relates to monitoring for the absence and avoidance of threat, while safety seeking links to the destination of the defensive behaviour (e.g., running home). Safety seeking also relates to maintaining vigilance to the appearance of potential harms and doing things believed to avoid harm. Threat-defending and safety checking and seeking are regulated primarily through evolved threat processing systems that monitor the nature, presence, controllability and/or absence of threat (e.g., amygdala and sympathetic nervous system). Safeness uses different monitoring systems via different psychophysiological systems (e.g., prefrontal cortex, parasympathetic system) for the presence of internal and external resources that support threat-coping, risk-taking, resource exploration. Creating brain states that recruit safeness processing can impact how standard evidence-based therapies (e.g., exposure, distress tolerance and reappraisal) are experienced and produce long-term change.
Collapse
Affiliation(s)
- Paul Gilbert
- Centre of Compassion Research and Training, College of Health and Social Care Research Centre, University of Derby, Derby, UK
| |
Collapse
|
6
|
de Sampaio Barros MF, Stefano Filho CA, de Menezes LT, Araújo-Moreira FM, Trevelin LC, Pimentel Maia R, Radel R, Castellano G. Psycho-physio-neurological correlates of qualitative attention, emotion and flow experiences in a close-to-real-life extreme sports situation: low- and high-altitude slackline walking. PeerJ 2024; 12:e17743. [PMID: 39076780 PMCID: PMC11285370 DOI: 10.7717/peerj.17743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/24/2024] [Indexed: 07/31/2024] Open
Abstract
It has been indicated that extreme sport activities result in a highly rewarding experience, despite also providing fear, stress and anxiety. Studies have related this experience to the concept of flow, a positive feeling that individuals undergo when they are completely immersed in an activity. However, little is known about the exact nature of these experiences, and, there are still no empirical results to characterize the brain dynamics during extreme sport practice. This work aimed at investigating changes in psychological responses while recording physiological (heart rate-HR, and breathing rate-BR) and neural (electroencephalographic-EEG) data of eight volunteers, during outdoors slackline walking in a mountainous environment at two different altitude conditions (1 m-low-walk- and 45 m-high-walk-from the ground). Low-walk showed a higher score on flow scale, while high-walk displayed a higher score in the negative affect aspects, which together point to some level of flow restriction during high-walk. The order of task performance was shown to be relevant for the physiological and neural variables. The brain behavior during flow, mainly considering attention networks, displayed the stimulus-driven ventral attention network-VAN, regionally prevailing (mainly at the frontal lobe), over the goal-directed dorsal attention network-DAN. Therefore, we suggest an interpretation of flow experiences as an opened attention to more changing details in the surroundings, i.e., configured as a 'task-constantly-opened-to-subtle-information experience', rather than a 'task-focused experience'.
Collapse
Affiliation(s)
- Marcelo Felipe de Sampaio Barros
- Programa de Pós-graduação em Biotecnologia, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil
- Laboratoire LAMHESS, Université de Nice Sophia Antipolis, Nice, Côte d’Azur, France
| | - Carlos Alberto Stefano Filho
- Neurophysics Group, Gleb Wataghin Institute of Physics, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Lucas Toffoli de Menezes
- Neurophysics Group, Gleb Wataghin Institute of Physics, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Fernando Manuel Araújo-Moreira
- Programa de Pós-graduação em Biotecnologia, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil
- Programa de pós-graduação em Engenharia Nuclear, Instituto Militar de Engenharia/IME, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis Carlos Trevelin
- Programa de Pós-graduação em Biotecnologia, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil
- Departamento de Computação, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Rafael Pimentel Maia
- Department of Statistics, Institute of Mathematics, Statistics and Scientific Computing, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Rémi Radel
- Laboratoire LAMHESS, Université de Nice Sophia Antipolis, Nice, Côte d’Azur, France
| | - Gabriela Castellano
- Neurophysics Group, Gleb Wataghin Institute of Physics, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| |
Collapse
|
7
|
Tashjian SM, Cussen J, Deng W, Zhang B, Mobbs D. Adaptive Safety Coding in the Prefrontal Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604228. [PMID: 39091862 PMCID: PMC11291074 DOI: 10.1101/2024.07.19.604228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Pivotal to self-preservation is the ability to identify when we are safe and when we are in danger. Previous studies have focused on safety estimations based on the features of external threats and do not consider how the brain integrates other key factors, including estimates about our ability to protect ourselves. Here we examine the neural systems underlying the online dynamic encoding of safety. The current preregistered study used two novel tasks to test four facets of safety estimation: Safety Prediction, Meta-representation, Recognition, and Value Updating. We experimentally manipulated safety estimation changing both levels of external threats and self-protection. Data were collected in two independent samples (behavioral N=100; fMRI N=30). We found consistent evidence of subjective changes in the sensitivity to safety conferred through protection. Neural responses in the ventromedial prefrontal cortex (vmPFC) tracked increases in safety during all safety estimation facets, with specific tuning to protection. Further, informational connectivity analyses revealed distinct hubs of safety coding in the posterior and anterior vmPFC for external threats and protection, respectively. These findings reveal a central role of the vmPFC for coding safety.
Collapse
Affiliation(s)
- Sarah M. Tashjian
- School of Psychological Sciences, University of Melbourne, Parkville, VIC 3052, Australia
- Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Joseph Cussen
- School of Psychological Sciences, University of Melbourne, Parkville, VIC 3052, Australia
| | - Wenning Deng
- Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Bo Zhang
- Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Dean Mobbs
- Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- Computation and Neural Systems, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
8
|
Battaglia S, Nazzi C, Fullana MA, di Pellegrino G, Borgomaneri S. 'Nip it in the bud': Low-frequency rTMS of the prefrontal cortex disrupts threat memory consolidation in humans. Behav Res Ther 2024; 178:104548. [PMID: 38704974 DOI: 10.1016/j.brat.2024.104548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/27/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
It is still unclear how the human brain consolidates aversive (e.g., traumatic) memories and whether this process can be disrupted. We hypothesized that the dorsolateral prefrontal cortex (dlPFC) is crucially involved in threat memory consolidation. To test this, we used low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) within the memory stabilization time window to disrupt the expression of threat memory. We combined a differential threat-conditioning paradigm with LF-rTMS targeting the dlPFC in the critical condition, and occipital cortex stimulation, delayed dlPFC stimulation, and sham stimulation as control conditions. In the critical condition, defensive reactions to threat were reduced immediately after brain stimulation, and 1 h and 24 h later. In stark contrast, no decrease was observed in the control conditions, thus showing both the anatomical and temporal specificity of our intervention. We provide causal evidence that selectively targeting the dlPFC within the early consolidation period prevents the persistence and return of conditioned responses. Furthermore, memory disruption lasted longer than the inhibitory window created by our TMS protocol, which suggests that we influenced dlPFC neural activity and hampered the underlying, time-dependent consolidation process. These results provide important insights for future clinical applications aimed at interfering with the consolidation of aversive, threat-related memories.
Collapse
Affiliation(s)
- Simone Battaglia
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Department of Psychology, University of Turin, 10124, Turin, Italy.
| | - Claudio Nazzi
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy
| | - Miquel A Fullana
- Adult Psychiatry and Psychology Department, Institute of Neurosciences, Hospital Clinic, 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, 08036, Barcelona, Spain
| | - Giuseppe di Pellegrino
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy
| | - Sara Borgomaneri
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy.
| |
Collapse
|
9
|
Mather M. The emotion paradox in the aging body and brain. Ann N Y Acad Sci 2024; 1536:13-41. [PMID: 38676452 DOI: 10.1111/nyas.15138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
With age, parasympathetic activity decreases, while sympathetic activity increases. Thus, the typical older adult has low heart rate variability (HRV) and high noradrenaline levels. Younger adults with this physiological profile tend to be unhappy and stressed. Yet, with age, emotional experience tends to improve. Why does older adults' emotional well-being not suffer as their HRV decreases? To address this apparent paradox, I present the autonomic compensation model. In this model, failing organs, the initial phases of Alzheimer's pathology, and other age-related diseases trigger noradrenergic hyperactivity. To compensate, older brains increase autonomic regulatory activity in the pregenual prefrontal cortex (PFC). Age-related declines in nerve conduction reduce the ability of the pregenual PFC to reduce hyperactive noradrenergic activity and increase peripheral HRV. But these pregenual PFC autonomic compensation efforts have a significant impact in the brain, where they bias processing in favor of stimuli that tend to increase parasympathetic activity (e.g., stimuli that increase feelings of safety) and against stimuli that tend to increase sympathetic activity (e.g., threatening stimuli). In summary, the autonomic compensation model posits that age-related chronic sympathetic/noradrenergic hyperactivity stimulates regulatory attempts that have the side effect of enhancing emotional well-being.
Collapse
Affiliation(s)
- Mara Mather
- Leonard Davis School of Gerontology, Department of Psychology, and Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
10
|
Min J, Koenig J, Nashiro K, Yoo HJ, Cho C, Thayer JF, Mather M. Resting heart rate variability is associated with neural adaptation when repeatedly exposed to emotional stimuli. Neuropsychologia 2024; 196:108819. [PMID: 38360391 PMCID: PMC11293881 DOI: 10.1016/j.neuropsychologia.2024.108819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
Higher heart rate variability (HRV) at rest is associated with better emotion regulation ability. While the neurovisceral integration model explains this by postulating that HRV can index how the brain adaptively modulates responses to emotional stimuli, neuroimaging studies directly supporting this idea are scarce. We examined the neural correlates of regulating negative and positive emotion in relation to resting HRV based on the neuroimaging and heart rate data of one hundred young adults. The results showed that those with higher HRV better recruit the medial prefrontal cortex while intensifying positive compared to negative emotion. We also examined how individual differences in resting HRV are associated with adjusting brain activity to repeated emotional stimuli. During repeated viewing of emotional images, subjects with higher resting HRV better reduced activity in the medial prefrontal cortex, posterior cingulate gyrus, and angular gyrus, most of which overlapped with the default mode network. This HRV-DMN association was observed during passively viewing emotional images rather than during actively regulating emotion. While the regulating trials can better detect task-induced changes, the viewing trials might approximate resting state, better revealing individual differences. These findings suggest two possibilities: people with higher resting HRV might have a tendency to spontaneously engage with emotion regulation or possess a trait helping emotional arousal fade away.
Collapse
Affiliation(s)
- Jungwon Min
- University of Southern California, Irvine, CA, United States.
| | - Julian Koenig
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Germany
| | - Kaoru Nashiro
- University of Southern California, Irvine, CA, United States
| | - Hyun Joo Yoo
- University of Southern California, Irvine, CA, United States
| | - Christine Cho
- University of Southern California, Irvine, CA, United States
| | | | - Mara Mather
- University of Southern California, Irvine, CA, United States
| |
Collapse
|
11
|
Johansson E, Xiong HY, Polli A, Coppieters I, Nijs J. Towards a Real-Life Understanding of the Altered Functional Behaviour of the Default Mode and Salience Network in Chronic Pain: Are People with Chronic Pain Overthinking the Meaning of Their Pain? J Clin Med 2024; 13:1645. [PMID: 38541870 PMCID: PMC10971341 DOI: 10.3390/jcm13061645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 11/12/2024] Open
Abstract
Chronic pain is a source of substantial physical and psychological suffering, yet a clear understanding of the pathogenesis of chronic pain is lacking. Repeated studies have reported an altered behaviour of the salience network (SN) and default mode network (DMN) in people with chronic pain, and a majority of these studies report an altered behaviour of the dorsal ventromedial prefrontal cortex (vmPFC) within the anterior DMN. In this topical review, we therefore focus specifically on the role of the dorsal vmPFC in chronic pain to provide an updated perspective on the cortical mechanisms of chronic pain. We suggest that increased activity in the dorsal vmPFC may reflect maladaptive overthinking about the meaning of pain for oneself and one's actions. We also suggest that such overthinking, if negative, may increase the personal "threat" of a given context, as possibly reflected by increased activity in, and functional connectivity to, the anterior insular cortex within the SN.
Collapse
Affiliation(s)
- Elin Johansson
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (E.J.); (H.-Y.X.); (A.P.); (I.C.)
- Laboratory for Brain-Gut Axis Studies (LaBGAS), Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (CHROMETA), Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- Flanders Research Foundation-FWO, 1000 Brussels, Belgium
| | - Huan-Yu Xiong
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (E.J.); (H.-Y.X.); (A.P.); (I.C.)
| | - Andrea Polli
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (E.J.); (H.-Y.X.); (A.P.); (I.C.)
- Flanders Research Foundation-FWO, 1000 Brussels, Belgium
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Iris Coppieters
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (E.J.); (H.-Y.X.); (A.P.); (I.C.)
- Laboratory for Brain-Gut Axis Studies (LaBGAS), Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (CHROMETA), Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- The Experimental Health Psychology Research Group, Faculty of Psychology and Neuroscience, Maastricht University, 6200 Maastricht, The Netherlands
| | - Jo Nijs
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (E.J.); (H.-Y.X.); (A.P.); (I.C.)
- Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1090 Brussel, Belgium
- Department of Health and Rehabilitation, Unit of Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
12
|
Fricke S, Seinsche RJ, Neudert MK, Schäfer A, Zehtner RI, Stark R, Hermann A. Neural correlates of context-dependent extinction recall in social anxiety disorder: relevance of intrusions in response to aversive social experiences. Psychol Med 2024; 54:548-557. [PMID: 37553977 DOI: 10.1017/s0033291723002179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
BACKGROUND There are phenomenological similarities between social anxiety disorder (SAD) and posttraumatic stress disorder, such as a provoking aversive event, posttraumatic stress symptoms (e.g. intrusions) in response to these events and deficient (context-dependent) fear conditioning processes. This study investigated the neural correlates of context-dependent extinction recall and fear renewal in SAD, specifically in patients with intrusions in response to an etiologically relevant aversive social event. METHODS During functional magnetic resonance imaging a two-day context-dependent fear conditioning paradigm was conducted in 54 patients with SAD and 54 healthy controls (HC). This included fear acquisition (context A) and extinction learning (context B) on one day, and extinction recall (context B) as well as fear renewal (contexts C and A) one day later. The main outcome measures were blood oxygen level-dependent responses in regions of interest and skin conductance responses. RESULTS Patients with SAD showed reduced differential conditioned amygdala activation during extinction recall in the safe extinction context and during fear renewal in the acquisition context compared to HC. Patients with clinically relevant intrusions moreover exhibited hypoactivation of the ventromedial prefrontal cortex (vmPFC) during extinction learning, extinction recall, and fear renewal in a novel context, while amygdala activation more strongly decreased during extinction learning and increased during fear renewal in the acquisition context compared with patients without intrusions. CONCLUSIONS Our study provides first evidence that intrusions in SAD are associated with similar deficits in context-dependent regulation of conditioned fear via the vmPFC as previously demonstrated in posttraumatic stress disorder.
Collapse
Affiliation(s)
- Susanne Fricke
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Giessen, Germany
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
| | - Rosa J Seinsche
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Giessen, Germany
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
| | - Marie K Neudert
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Giessen, Germany
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
| | - Axel Schäfer
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior, Phillips University Marburg and Justus Liebig University Giessen, Giessen, Germany
| | - Raphaela I Zehtner
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Giessen, Germany
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
| | - Rudolf Stark
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Giessen, Germany
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior, Phillips University Marburg and Justus Liebig University Giessen, Giessen, Germany
| | - Andrea Hermann
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Giessen, Germany
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior, Phillips University Marburg and Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
13
|
Hearne LJ, Breakspear M, Harrison BJ, Hall CV, Savage HS, Robinson C, Sonkusare S, Savage E, Nott Z, Marcus L, Naze S, Burgher B, Zalesky A, Cocchi L. Revisiting deficits in threat and safety appraisal in obsessive-compulsive disorder. Hum Brain Mapp 2023; 44:6418-6428. [PMID: 37853935 PMCID: PMC10681637 DOI: 10.1002/hbm.26518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/22/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023] Open
Abstract
Current behavioural treatment of obsessive-compulsive disorder (OCD) is informed by fear conditioning and involves iteratively re-evaluating previously threatening stimuli as safe. However, there is limited research investigating the neurobiological response to conditioning and reversal of threatening stimuli in individuals with OCD. A clinical sample of individuals with OCD (N = 45) and matched healthy controls (N = 45) underwent functional magnetic resonance imaging. While in the scanner, participants completed a well-validated fear reversal task and a resting-state scan. We found no evidence for group differences in task-evoked brain activation or functional connectivity in OCD. Multivariate analyses encompassing all participants in the clinical and control groups suggested that subjective appraisal of threatening and safe stimuli were associated with a larger difference in brain activity than the contribution of OCD symptoms. In particular, we observed a brain-behaviour continuum whereby heightened affective appraisal was related to increased bilateral insula activation during the task (r = 0.39, pFWE = .001). These findings suggest that changes in conditioned threat-related processes may not be a core neurobiological feature of OCD and encourage further research on the role of subjective experience in fear conditioning.
Collapse
Affiliation(s)
- Luke J. Hearne
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Michael Breakspear
- College of Engineering Science and Environment, College of Health and MedicineUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Ben J. Harrison
- Melbourne Neuropsychiatry Centre, Department of PsychiatryThe University of Melbourne & Melbourne HealthMelbourneVictoriaAustralia
| | - Caitlin V. Hall
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Hannah S. Savage
- College of Engineering Science and Environment, College of Health and MedicineUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Conor Robinson
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | | | - Emma Savage
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Zoie Nott
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Leo Marcus
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Sebastien Naze
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Bjorn Burgher
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of PsychiatryThe University of Melbourne & Melbourne HealthMelbourneVictoriaAustralia
| | - Luca Cocchi
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| |
Collapse
|
14
|
Iqbal J, Huang GD, Xue YX, Yang M, Jia XJ. The neural circuits and molecular mechanisms underlying fear dysregulation in posttraumatic stress disorder. Front Neurosci 2023; 17:1281401. [PMID: 38116070 PMCID: PMC10728304 DOI: 10.3389/fnins.2023.1281401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/13/2023] [Indexed: 12/21/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a stress-associated complex and debilitating psychiatric disorder due to an imbalance of neurotransmitters in response to traumatic events or fear. PTSD is characterized by re-experiencing, avoidance behavior, hyperarousal, negative emotions, insomnia, personality changes, and memory problems following exposure to severe trauma. However, the biological mechanisms and symptomatology underlying this disorder are still largely unknown or poorly understood. Considerable evidence shows that PTSD results from a dysfunction in highly conserved brain systems involved in regulating stress, anxiety, fear, and reward circuitry. This review provides a contemporary update about PTSD, including new data from the clinical and preclinical literature on stress, PTSD, and fear memory consolidation and extinction processes. First, we present an overview of well-established laboratory models of PTSD and discuss their clinical translational value for finding various treatments for PTSD. We then highlight the research progress on the neural circuits of fear and extinction-related behavior, including the prefrontal cortex, hippocampus, and amygdala. We further describe different molecular mechanisms, including GABAergic, glutamatergic, cholinergic, and neurotropic signaling, responsible for the structural and functional changes during fear acquisition and fear extinction processes in PTSD.
Collapse
Affiliation(s)
- Javed Iqbal
- Shenzhen Graduate School, Peking University Shenzhen, Guangdong, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Geng-Di Huang
- Shenzhen Graduate School, Peking University Shenzhen, Guangdong, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Mei Yang
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiao-Jian Jia
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
15
|
Battaglia MR, Di Fazio C, Battaglia S. Activated Tryptophan-Kynurenine metabolic system in the human brain is associated with learned fear. Front Mol Neurosci 2023; 16:1217090. [PMID: 37575966 PMCID: PMC10416643 DOI: 10.3389/fnmol.2023.1217090] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Affiliation(s)
- Maria Rita Battaglia
- Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola, Bologna, Italy
| | - Chiara Di Fazio
- Department of Psychology, Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Bologna, Italy
| | - Simone Battaglia
- Department of Psychology, Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Bologna, Italy
- Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
16
|
Rajkumar RP. Biomarkers of Neurodegeneration in Post-Traumatic Stress Disorder: An Integrative Review. Biomedicines 2023; 11:biomedicines11051465. [PMID: 37239136 DOI: 10.3390/biomedicines11051465] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Post-Traumatic Stress Disorder (PTSD) is a chronic psychiatric disorder that occurs following exposure to traumatic events. Recent evidence suggests that PTSD may be a risk factor for the development of subsequent neurodegenerative disorders, including Alzheimer's dementia and Parkinson's disease. Identification of biomarkers known to be associated with neurodegeneration in patients with PTSD would shed light on the pathophysiological mechanisms linking these disorders and would also help in the development of preventive strategies for neurodegenerative disorders in PTSD. With this background, the PubMed and Scopus databases were searched for studies designed to identify biomarkers that could be associated with an increased risk of neurodegenerative disorders in patients with PTSD. Out of a total of 342 citations retrieved, 29 studies were identified for inclusion in the review. The results of these studies suggest that biomarkers such as cerebral cortical thinning, disrupted white matter integrity, specific genetic polymorphisms, immune-inflammatory alterations, vitamin D deficiency, metabolic syndrome, and objectively documented parasomnias are significantly associated with PTSD and may predict an increased risk of subsequent neurodegenerative disorders. The biological mechanisms underlying these changes, and the interactions between them, are also explored. Though requiring replication, these findings highlight a number of biological pathways that plausibly link PTSD with neurodegenerative disorders and suggest potentially valuable avenues for prevention and early intervention.
Collapse
Affiliation(s)
- Ravi Philip Rajkumar
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry 605006, India
| |
Collapse
|
17
|
Perisse E, Miranda M, Trouche S. Modulation of aversive value coding in the vertebrate and invertebrate brain. Curr Opin Neurobiol 2023; 79:102696. [PMID: 36871400 DOI: 10.1016/j.conb.2023.102696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 03/06/2023]
Abstract
Avoiding potentially dangerous situations is key for the survival of any organism. Throughout life, animals learn to avoid environments, stimuli or actions that can lead to bodily harm. While the neural bases for appetitive learning, evaluation and value-based decision-making have received much attention, recent studies have revealed more complex computations for aversive signals during learning and decision-making than previously thought. Furthermore, previous experience, internal state and systems level appetitive-aversive interactions seem crucial for learning specific aversive value signals and making appropriate choices. The emergence of novel methodologies (computation analysis coupled with large-scale neuronal recordings, neuronal manipulations at unprecedented resolution offered by genetics, viral strategies and connectomics) has helped to provide novel circuit-based models for aversive (and appetitive) valuation. In this review, we focus on recent vertebrate and invertebrate studies yielding strong evidence that aversive value information can be computed by a multitude of interacting brain regions, and that past experience can modulate future aversive learning and therefore influence value-based decisions.
Collapse
Affiliation(s)
- Emmanuel Perisse
- Institute of Functional Genomics, University of Montpellier, CNRS, Inserm, 141 rue de la Cardonille, 34094 Montpellier Cedex 5, France.
| | - Magdalena Miranda
- Institute of Functional Genomics, University of Montpellier, CNRS, Inserm, 141 rue de la Cardonille, 34094 Montpellier Cedex 5, France
| | - Stéphanie Trouche
- Institute of Functional Genomics, University of Montpellier, CNRS, Inserm, 141 rue de la Cardonille, 34094 Montpellier Cedex 5, France.
| |
Collapse
|
18
|
Battaglia S, Di Fazio C, Vicario CM, Avenanti A. Neuropharmacological Modulation of N-methyl-D-aspartate, Noradrenaline and Endocannabinoid Receptors in Fear Extinction Learning: Synaptic Transmission and Plasticity. Int J Mol Sci 2023; 24:ijms24065926. [PMID: 36983000 PMCID: PMC10053024 DOI: 10.3390/ijms24065926] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Learning to recognize and respond to potential threats is crucial for survival. Pavlovian threat conditioning represents a key paradigm for investigating the neurobiological mechanisms of fear learning. In this review, we address the role of specific neuropharmacological adjuvants that act on neurochemical synaptic transmission, as well as on brain plasticity processes implicated in fear memory. We focus on novel neuropharmacological manipulations targeting glutamatergic, noradrenergic, and endocannabinoid systems, and address how the modulation of these neurobiological systems affects fear extinction learning in humans. We show that the administration of N-methyl-D-aspartate (NMDA) agonists and modulation of the endocannabinoid system by fatty acid amide hydrolase (FAAH) inhibition can boost extinction learning through the stabilization and regulation of the receptor concentration. On the other hand, elevated noradrenaline levels dynamically modulate fear learning, hindering long-term extinction processes. These pharmacological interventions could provide novel targeted treatments and prevention strategies for fear-based and anxiety-related disorders.
Collapse
Affiliation(s)
- Simone Battaglia
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Department of Psychology, University of Turin, 10124 Turin, Italy
| | - Chiara Di Fazio
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
| | - Carmelo M Vicario
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università Degli Studi di Messina, 98122 Messina, Italy
| | - Alessio Avenanti
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Neuropsicology and Cognitive Neuroscience Research Center (CINPSI Neurocog), Universidad Católica del Maule, Talca 3460000, Chile
| |
Collapse
|
19
|
Peng Y, Knotts JD, Young KS, Bookheimer SY, Nusslock R, Zinbarg RE, Kelley NJ, Echiverri-Cohen AM, Craske MG. Threat Neurocircuitry Predicts the Development of Anxiety and Depression Symptoms in a Longitudinal Study. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:102-110. [PMID: 35031524 DOI: 10.1016/j.bpsc.2021.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Owing to high heterogeneity and comorbidity, the shared and unique neural mechanisms underlying the development of anxiety and major depressive disorders remain unclear. Using a dimensional model describing shared versus unique symptoms associated with anxiety and depression, this study investigated how longitudinal changes in symptom dimensions relate to threat neurocircuitry. METHODS Participants were 18- to 19-year-olds (N = 279, 186 females) who completed self-report measures of anxiety and depression at baseline and at 10, 20, and 30 months. Linear slopes of symptom dimensions of general distress, fear, and anhedonia-apprehension were estimated through a trilevel factorial model. In addition, functional magnetic resonance imaging scans were obtained while participants performed Pavlovian fear conditioning tasks at baseline and 30 months, including three phases of fear acquisition, extinction, and extinction recall. Neural responses in regions of interest related to threat neural circuitry (e.g., amygdala, ventromedial prefrontal cortex, and subgenual anterior cingulate cortex) were extracted. RESULTS Linear mixed models used to estimate relationships between changes of symptom dimensions and neural responses revealed two major findings: 1) greater neural responses to threatening stimuli during fear acquisition at baseline were associated with a greater increase in fear symptoms during the 30-month prospective period; and 2) elevated neural responses to the extinguished stimulus during extinction recall at 30 months were negatively associated with changes in general distress, suggesting that greater increases in general distress are associated with larger deficits in extinction memory. CONCLUSIONS These findings improve our understanding of pathophysiological pathways underlying the development of anxiety and depression, while separating symptom dimensions that are shared versus unique between the two disorders.
Collapse
Affiliation(s)
- Yujia Peng
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China; Institute for Artificial Intelligence, Peking University, Beijing, China; Beijing Institute for General Artificial Intelligence, Beijing, China; Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Jeffrey D Knotts
- Department of Psychology, University of California, Los Angeles, Los Angeles, California; Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire
| | - Katherine S Young
- Department of Psychology, University of California, Los Angeles, Los Angeles, California; Social, Genetic and Development Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; NIHR Maudsley Biomedical Research Centre, King's College London, London, United Kingdom
| | - Susan Y Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Robin Nusslock
- Department of Psychology, Northwestern University, Evanston, Illinois
| | - Richard E Zinbarg
- Department of Psychology, Northwestern University, Evanston, Illinois; Family Institute at Northwestern University, Evanston, Illinois
| | - Nicholas J Kelley
- Department of Psychology, Northwestern University, Evanston, Illinois; Department of Psychology, University of Southampton, Southampton, United Kingdom
| | | | - Michelle G Craske
- Department of Psychology, University of California, Los Angeles, Los Angeles, California; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
20
|
Laing PAF, Felmingham KL, Davey CG, Harrison BJ. The neurobiology of Pavlovian safety learning: Towards an acquisition-expression framework. Neurosci Biobehav Rev 2022; 142:104882. [PMID: 36150453 DOI: 10.1016/j.neubiorev.2022.104882] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022]
Abstract
Safety learning creates associations between conditional stimuli and the absence of threat. Studies of human fear conditioning have accumulated evidence for the neural signatures of safety over various paradigms, aligning on several common brain systems. While these systems are often interpreted as underlying safety learning in a generic sense, they may instead reflect the expression of learned safety, pertaining to processes of fear inhibition, positive affect, and memory. Animal models strongly suggest these can be separable from neural circuits implicated in the conditioning process itself (or safety acquisition). While acquisition-expression distinctions are ubiquitous in behavioural science, this lens has not been applied to safety learning, which remains a novel area in the field. In this mini-review, we overview findings from prevalent safety paradigms in humans, and synthesise these with insights from animal models to propose that the neurobiology of safety learning be conceptualised along an acquisition-expression model, with the aim of stimulating richer brain-based characterisations of this important process.
Collapse
Affiliation(s)
- Patrick A F Laing
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia.
| | - Kim L Felmingham
- Melbourne School of Psychological Sciences, The University of Melbourne, Australia
| | - Christopher G Davey
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia.
| |
Collapse
|
21
|
Zhou K, Chi H, Wang J, Zheng Y, Pan J, Yu D, Xu J, Zhu H, Li J, Chen S, Zhao X, Wu X, Shen B, Tung TH, Luo C. Physical condition, psychological status, and posttraumatic stress disorder among recovered COVID-19 subjects: A mediation analysis. Front Psychiatry 2022; 13:918679. [PMID: 36147994 PMCID: PMC9485496 DOI: 10.3389/fpsyt.2022.918679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/05/2022] [Indexed: 11/22/2022] Open
Abstract
The physical condition of individuals who contracted COVID-19 had a profound influence on mitigating the physical and psychological impact of the disease and the symptoms of posttraumatic stress disorder (PTSD). Little attention has been focused on the influence of physical condition on PTSD among recovered COVID-19 subjects. This study explored the relationship between physical and psychological status and PTSD and the potential mechanisms. Questionnaires were completed by 73 (50.7%, 73/144) COVID-19 recovered subjects who were diagnosed in Taizhou, Zhejiang, China. We conducted a face-to-face survey from January 17 to March 10, 2020. The mediation analysis approach was applied in this research. Our data show that recovered COVID-19 subjects who were in better physical condition exhibited fewer psychological problems [B (95%CI), (-1.65 -3.04, -0.26)] and lower PTSD [B (95%CI), -6.13 (-9.43, -2.83)]. In addition, the worse the psychological status of recovered COVID-19 subjects was, the stronger the PTSD (B [95%CI], 0.58 [0.02, 1.14]). Moreover, psychological status could significantly mediate the impact of physical condition on PTSD (β1θ2 = -0.87). Together, COVID-19 recovered subjects who have better physical condition could decrease their PTSD, and the worse the physical condition of COVID-19 recovered subjects would increase their psychological problems. Our finding about psychological status could significantly mediate the impact of the physical condition on PTSD might be useful for medical institutions and the government seeking to help with the follow-up rehabilitation training of recovered COVID-19 subjects.
Collapse
Affiliation(s)
- Kai Zhou
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Hongbo Chi
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Jing Wang
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yufen Zheng
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Juan Pan
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province, Zhejiang University, Linhai, China
| | - Die Yu
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province, Zhejiang University, Linhai, China
| | - Jiaqin Xu
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Hongguo Zhu
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Jun Li
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shiyong Chen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xinzhuan Zhao
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xiaomai Wu
- Department of Respiratory Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Bo Shen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Tao-Hsin Tung
- Evidence-Based Medicine Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Chengwen Luo
- Evidence-Based Medicine Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
22
|
Ojala KE, Tzovara A, Poser BA, Lutti A, Bach DR. Asymmetric representation of aversive prediction errors in Pavlovian threat conditioning. Neuroimage 2022; 263:119579. [PMID: 35995374 DOI: 10.1016/j.neuroimage.2022.119579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Survival in biological environments requires learning associations between predictive sensory cues and threatening outcomes. Such aversive learning may be implemented through reinforcement learning algorithms that are driven by the signed difference between expected and encountered outcomes, termed prediction errors (PEs). While PE-based learning is well established for reward learning, the role of putative PE signals in aversive learning is less clear. Here, we used functional magnetic resonance imaging in humans (21 healthy men and women) to investigate the neural representation of PEs during maintenance of learned aversive associations. Four visual cues, each with a different probability (0, 33, 66, 100%) of being followed by an aversive outcome (electric shock), were repeatedly presented to participants. We found that neural activity at omission (US-) but not occurrence of the aversive outcome (US+) encoded PEs in the medial prefrontal cortex. More expected omission of aversive outcome was associated with lower neural activity. No neural signals fulfilled axiomatic criteria, which specify necessary and sufficient components of PE signals, for signed PE representation in a whole-brain search or in a-priori regions of interest. Our results might suggest that, different from reward learning, aversive learning does not involve signed PE signals that are represented within the same brain region for all conditions.
Collapse
Affiliation(s)
- Karita E Ojala
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, Zurich 8032, Switzerland; Neuroscience Centre Zurich, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland.
| | - Athina Tzovara
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, Zurich 8032, Switzerland; Neuroscience Centre Zurich, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland; Institute of Computer Science, University of Bern, Neubrückstrasse 10, Bern 3012, Switzerland
| | - Benedikt A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55 EV 6299, Maastricht, the Netherlands
| | - Antoine Lutti
- Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne, Chemin de Mont-Paisible 16, Lausanne 1011, Switzerland
| | - Dominik R Bach
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, Zurich 8032, Switzerland; Neuroscience Centre Zurich, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland; Wellcome Centre for Human Neuroimaging and Max-Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, 10-12 Russell Square, London WC1B 5EH, United Kingdom.
| |
Collapse
|
23
|
Behavioral and neural responses during fear conditioning and extinction in a large transdiagnostic sample. Neuroimage Clin 2022; 35:103060. [PMID: 35679785 PMCID: PMC9189200 DOI: 10.1016/j.nicl.2022.103060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/28/2022] [Accepted: 05/21/2022] [Indexed: 11/23/2022]
Abstract
Behavioral and neural responses during Pavlovian fear learning were examined in a large sample of healthy and individuals with anxiety and depression. Latent profile models to threat were derived from behavioral and neural data. Demographic, cognitive, and psychological variables did not robustly characterize latent profiles. Neuroimaging data did not evidence functional role of amygdala in fear learning. Human fear learning recruited a distributed network of regions involved in interoceptive, cognitive, motivational, and psychomotor processes.
Background Dysregulation of fear learning has been associated with psychiatric disorders that have altered positive and negative valence domain function. While amygdala-insula-prefrontal circuitry is considered important for fear learning, there have been inconsistencies in neural findings in healthy and clinical human samples. This study aimed to delineate the neural substrates and behavioral responses during fear learning in a large, transdiagnostic sample with predominantly depressive and/or anxious dysfunction. Methods Two-hundred and eighty-two individuals (52 healthy participants; 230 participants with depression and/or anxiety-related problems) from the Tulsa 1000 study, an ongoing, naturalistic longitudinal study based on a dimensional psychopathological framework, completed a Pavlovian fear learning task during functional magnetic resonance imaging. Linear mixed-effects analyses examined condition-by-time effects on brain activation (CS+, CS- across familiarization, conditioning, and extinction trials). A data-driven latent profile analysis (LPA) examined distinct patterns of behavioral and neural responses to threat across fear conditioning and extinction, while logistic regression analyses evaluated cognitive-affective predictors of latent profiles. Results Whole-brain analyses revealed a condition-by-time interaction in the anterior insula, postcentral gyrus, superior temporal gyrus, middle frontal gyrus, and cerebellum but not amygdala. The LPA identified distinct latent profiles across subjective and neural levels of measurement. Anterior insula profiles were characterized by marginal differences in age and state anxiety. Conclusions Our findings demonstrate that human fear learning recruits a distributed network of regions involved in interoceptive, cognitive, motivational, and psychomotor processes. Data-driven analyses identified distinct profiles of subjective and neural responses during fear learning that transcended clinical diagnoses, but no robust relationships to demographic or cognitive-affective variable were identified.
Collapse
|
24
|
Lin CC, Cheng PY, Hsiao M, Liu YP. Effects of RU486 in Treatment of Traumatic Stress-Induced Glucocorticoid Dysregulation and Fear-Related Abnormalities: Early versus Late Intervention. Int J Mol Sci 2022; 23:ijms23105494. [PMID: 35628305 PMCID: PMC9141845 DOI: 10.3390/ijms23105494] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/08/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023] Open
Abstract
Central glucocorticoid receptor (GR) activity is enhanced following traumatic events, playing a key role in the stress-related cognitive abnormalities of posttraumatic stress disorder (PTSD). GR antagonists are expected to have potential as pharmacological agents to treat PTSD-related symptoms such as anxiety and fear memory disruption. However, an incubation period is usually required and stress-induced abnormalities do not develop immediately following the trauma; thus, the optimal intervention timing should be considered. Single prolonged stress (SPS) was employed as a rodent PTSD model to examine the effects of early or late (1–7 versus 8–14 days after the SPS) sub-chronic RU486 (a GR antagonist) administration. Behaviorally, fear conditioning and anxiety behavior were assessed using the fear-conditioning test and elevated T-maze (ETM), respectively. Neurochemically, the expressions of GR, FK506-binding proteins 4 and 5 (FKBP4 and FKBP5), and early growth response-1 (Egr-1) were assessed in the hippocampus, medial prefrontal cortex (mPFC), amygdala, and hypothalamus, together with the level of plasma corticosterone. Early RU486 administration could inhibit SPS-induced behavioral abnormalities and glucocorticoid system dysregulation by reversing the SPS-induced fear extinction deficit, and preventing SPS-reduced plasma corticosterone levels and SPS-induced Egr-1 overexpression in the hippocampus. Early RU486 administration following SPS also increased the FKBP5 level in the hippocampus and hypothalamus. Finally, both early and late RU486 administration inhibited the elevated hippocampal FKBP4 level and hypothalamus GR level in the SPS rats. Early intervention with a GR antagonist aids in the correction of traumatic stress-induced fear and anxiety dysregulation.
Collapse
Affiliation(s)
- Chen-Cheng Lin
- Laboratory of Cognitive Neuroscience, Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei 11490, Taiwan;
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan;
| | - Pao-Yun Cheng
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan;
| | - Yia-Ping Liu
- Laboratory of Cognitive Neuroscience, Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei 11490, Taiwan;
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei 11490, Taiwan;
- Department of Psychiatry, Cheng Hsin General Hospital, Taipei 11220, Taiwan
- Department of Psychiatry, Tri-Service General Hospital, Taipei 11490, Taiwan
- Correspondence:
| |
Collapse
|
25
|
Teed AR, Feinstein JS, Puhl M, Lapidus RC, Upshaw V, Kuplicki RT, Bodurka J, Ajijola OA, Kaye WH, Thompson WK, Paulus MP, Khalsa SS. Association of Generalized Anxiety Disorder With Autonomic Hypersensitivity and Blunted Ventromedial Prefrontal Cortex Activity During Peripheral Adrenergic Stimulation: A Randomized Clinical Trial. JAMA Psychiatry 2022; 79:323-332. [PMID: 35107563 PMCID: PMC8811711 DOI: 10.1001/jamapsychiatry.2021.4225] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IMPORTANCE β-Adrenergic stimulation elicits heart palpitations and dyspnea, key features of acute anxiety and sympathetic arousal, yet no neuroimaging studies have examined how the pharmacologic modulation of interoceptive signals is associated with fear-related neurocircuitry in individuals with generalized anxiety disorder (GAD). OBJECTIVE To examine the neural circuitry underlying autonomic arousal induced via isoproterenol, a rapidly acting, peripheral β-adrenergic agonist akin to adrenaline. DESIGN, SETTING, AND PARTICIPANTS This crossover randomized clinical trial of 58 women with artifact-free data was conducted from January 1, 2017, to November 31, 2019, at the Laureate Institute for Brain Research in Tulsa, Oklahoma. EXPOSURES Functional magnetic resonance imaging was used to assess neural responses during randomized intravenous bolus infusions of isoproterenol (0.5 and 2.0 μg) and saline, each administered twice in a double-blind fashion. MAIN OUTCOMES AND MEASURES Blood oxygen level-dependent responses across the whole brain during isoproterenol administration in patients with GAD vs healthy comparators. Cardiac and respiratory responses, as well as interoceptive awareness and anxiety, were also measured during the infusion protocol. RESULTS Of the 58 female study participants, 29 had GAD (mean [SD] age, 26.9 [6.8] years) and 29 were matched healthy comparators (mean [SD] age, 24.4 [5.0] years). During the 0.5-μg dose of isoproterenol, the GAD group exhibited higher heart rate responses (b = 5.34; 95% CI, 2.06-8.61; P = .002), higher intensity ratings of cardiorespiratory sensations (b = 8.38; 95% CI, 2.05-14.71; P = .01), higher levels of self-reported anxiety (b = 1.04; 95% CI, 0.33-1.76; P = .005), and significant hypoactivation in the ventromedial prefrontal cortex (vmPFC) that was evident throughout peak response (Cohen d = 1.55; P < .001) and early recovery (Cohen d = 1.52; P < .001) periods. Correlational analysis of physiological and subjective indexes and percentage of signal change extracted during the 0.5-μg dose revealed that vmPFC hypoactivation was inversely correlated with heart rate (r56 = -0.51, adjusted P = .001) and retrospective intensity of both heartbeat (r56 = -0.50, adjusted P = .002) and breathing (r56 = -0.44, adjusted P = .01) sensations. Ventromedial prefrontal cortex hypoactivation correlated inversely with continuous dial ratings at a trend level (r56 = -0.38, adjusted P = .051), whereas anxiety (r56 = -0.28, adjusted P = .27) and chronotropic dose 25 (r56 = -0.14, adjusted P = .72) showed no such association. CONCLUSIONS AND RELEVANCE In this crossover randomized clinical trial, women with GAD exhibited autonomic hypersensitivity during low levels of adrenergic stimulation characterized by elevated heart rate, heightened interoceptive awareness, increased anxiety, and a blunted neural response localized to the vmPFC. These findings support the notion that autonomic hyperarousal may be associated with regulatory dysfunctions in the vmPFC, which could serve as a treatment target to help patients with GAD more appropriately appraise and regulate signals of sympathetic arousal. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02615119.
Collapse
Affiliation(s)
- Adam R. Teed
- Laureate Institute for Brain Research, Tulsa, Oklahoma
| | | | - Maria Puhl
- Laureate Institute for Brain Research, Tulsa, Oklahoma
| | | | | | | | - Jerzy Bodurka
- Laureate Institute for Brain Research, Tulsa, Oklahoma,Stephenson School for Biomedical Engineering, University of Oklahoma, Norman
| | - Olujimi A. Ajijola
- Cardiac Arrhythmia Center, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Walter H. Kaye
- Department of Psychiatry, University of California, San Diego
| | | | - Martin P. Paulus
- Laureate Institute for Brain Research, Tulsa, Oklahoma,Oxley College of Health Sciences, University of Tulsa, Tulsa, Oklahoma,Deputy Editor, JAMA Psychiatry
| | - Sahib S. Khalsa
- Laureate Institute for Brain Research, Tulsa, Oklahoma,Oxley College of Health Sciences, University of Tulsa, Tulsa, Oklahoma
| |
Collapse
|
26
|
Hall CV, Harrison BJ, Iyer KK, Savage HS, Zakrzewski M, Simms LA, Radford-Smith G, Moran RJ, Cocchi L. Microbiota links to neural dynamics supporting threat processing. Hum Brain Mapp 2022; 43:733-749. [PMID: 34811847 PMCID: PMC8720184 DOI: 10.1002/hbm.25682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/22/2021] [Accepted: 09/25/2021] [Indexed: 12/21/2022] Open
Abstract
There is growing recognition that the composition of the gut microbiota influences behaviour, including responses to threat. The cognitive‐interoceptive appraisal of threat‐related stimuli relies on dynamic neural computations between the anterior insular (AIC) and the dorsal anterior cingulate (dACC) cortices. If, to what extent, and how microbial consortia influence the activity of this cortical threat processing circuitry is unclear. We addressed this question by combining a threat processing task, neuroimaging, 16S rRNA profiling and computational modelling in healthy participants. Results showed interactions between high‐level ecological indices with threat‐related AIC‐dACC neural dynamics. At finer taxonomic resolutions, the abundance of Ruminococcus was differentially linked to connectivity between, and activity within the AIC and dACC during threat updating. Functional inference analysis provides a strong rationale to motivate future investigations of microbiota‐derived metabolites in the observed relationship with threat‐related brain processes.
Collapse
Affiliation(s)
- Caitlin V Hall
- Clinical Brain Networks Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Melbourne, Victoria, Australia
| | - Kartik K Iyer
- Clinical Brain Networks Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Hannah S Savage
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Melbourne, Victoria, Australia
| | - Martha Zakrzewski
- Gut Health LAB, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Lisa A Simms
- Gut Health LAB, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Graham Radford-Smith
- Gut Health LAB, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rosalyn J Moran
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
| | - Luca Cocchi
- Clinical Brain Networks Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
27
|
Leschak CJ, Hornstein EA, Byrne Haltom KE, Johnson KL, Breen EC, Irwin MR, Eisenberger NI. Ventromedial prefrontal cortex activity differentiates sick from healthy faces: Associations with inflammatory responses and disease avoidance motivation. Brain Behav Immun 2022; 100:48-54. [PMID: 34808294 DOI: 10.1016/j.bbi.2021.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/08/2021] [Accepted: 11/13/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Humans are able to discern the health status of others using olfactory and visual cues, and subsequently shift behavior to make infection less likely. However, little is known about how this process occurs. The present study examined the neural regions involved in differentiating healthy from sick individuals using visual cues. METHODS While undergoing a functional magnetic resonance imaging scan, participants (N = 42) viewed facial photos of 30 individuals (targets) who had been injected with an inflammatory challenge--low-dose endotoxin (i.e., sick) or placebo (i.e., healthy), and rated how much they liked each face. We examined regions implicated in processing either threat (amygdala, anterior insula) or cues that signal safety (ventromedial prefrontal cortex [VMPFC]), and how this activity related to their liking of targets and cytokine levels (interleukin-6, tumor necrosis factor-α) exhibited by the targets. RESULTS Photos of sick faces were rated as less likeable compared to healthy faces, and the least liked faces were those individuals with the greatest inflammatory response. While threat-related regions were not significantly active in response to viewing sick faces, the VMPFC was more active in response to viewing healthy (vs. sick) faces. Follow-up analyses revealed that participants tended to have lower VMPFC activity when viewing the least liked faces and the faces of those with the greatest inflammatory response. CONCLUSIONS This work builds on prior work implicating the VMPFC in signaling the presence of safe, non-threatening visual stimuli, and suggests the VMPFC may be sensitive to cues signaling relative safety in the context of pathogen threats.
Collapse
Affiliation(s)
- Carrianne J Leschak
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Los Angeles, CA 90095, United States
| | - Erica A Hornstein
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Los Angeles, CA 90095, United States
| | - Kate E Byrne Haltom
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Los Angeles, CA 90095, United States
| | - Kerri L Johnson
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Los Angeles, CA 90095, United States; Department of Communication, University of California, Los Angeles, 2330 Rolfe Hall, Los Angeles, CA 90095, United States
| | - Elizabeth C Breen
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, 300 UCLA Medical Plaza #3109, Los Angeles, CA 90095, United States; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, 760 Westwood Blvd., Los Angeles, CA 90095, United States
| | - Michael R Irwin
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Los Angeles, CA 90095, United States; Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, 300 UCLA Medical Plaza #3109, Los Angeles, CA 90095, United States; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, 760 Westwood Blvd., Los Angeles, CA 90095, United States
| | - Naomi I Eisenberger
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Los Angeles, CA 90095, United States.
| |
Collapse
|
28
|
Does the human ventromedial prefrontal cortex support fear learning, fear extinction or both? A commentary on subregional contributions. Mol Psychiatry 2022; 27:784-786. [PMID: 34667263 DOI: 10.1038/s41380-021-01326-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022]
|
29
|
Hennings AC, McClay M, Drew MR, Lewis-Peacock JA, Dunsmoor JE. Neural reinstatement reveals divided organization of fear and extinction memories in the human brain. Curr Biol 2022; 32:304-314.e5. [PMID: 34813732 PMCID: PMC8792329 DOI: 10.1016/j.cub.2021.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/28/2021] [Accepted: 11/02/2021] [Indexed: 01/26/2023]
Abstract
Neurobiological research in rodents has revealed that competing experiences of fear and extinction are stored as distinct memory traces in the brain. This divided organization is adaptive for mitigating overgeneralization of fear to related stimuli that are learned to be safe while also maintaining threat associations for unsafe stimuli. The mechanisms involved in organizing these competing memories in the human brain remain unclear. Here, we used a hybrid form of Pavlovian conditioning with an episodic memory component to identify overlapping multivariate patterns of fMRI activity associated with the formation and retrieval of fear versus extinction. In healthy adults, distinct regions of the medial prefrontal cortex (PFC) and hippocampus showed selective reactivation of fear versus extinction memories based on the temporal context in which these memories were encoded. This dissociation was absent in participants with posttraumatic stress disorder (PTSD) symptoms. The divided neural organization of fear and extinction may support flexible retrieval of context-appropriate emotional memories, while their disorganization may promote overgeneralization and increased fear relapse in affective disorders.
Collapse
Affiliation(s)
- Augustin C Hennings
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA; Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Mason McClay
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael R Drew
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA; Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Jarrod A Lewis-Peacock
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA; Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, TX, USA; Department of Psychology, University of Texas at Austin, Austin, TX, USA; Department of Psychiatry, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Joseph E Dunsmoor
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA; Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, TX, USA; Department of Psychiatry, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
30
|
Pietrek A, Kangas M, Kliegl R, Rapp MA, Heinzel S, van der Kaap-Deeder J, Heissel A. Basic psychological need satisfaction and frustration in major depressive disorder. Front Psychiatry 2022; 13:962501. [PMID: 36203824 PMCID: PMC9530199 DOI: 10.3389/fpsyt.2022.962501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022] Open
Abstract
Basic psychological needs theory postulates that a social environment that satisfies individuals' three basic psychological needs of autonomy, competence, and relatedness leads to optimal growth and well-being. On the other hand, the frustration of these needs is associated with ill-being and depressive symptoms foremost investigated in non-clinical samples; yet, there is a paucity of research on need frustration in clinical samples. Survey data were compared between adult individuals with major depressive disorder (MDD; n = 115; 48.69% female; 38.46 years, SD = 10.46) with those of a non-depressed comparison sample (n = 201; 53.23% female; 30.16 years, SD = 12.81). Need profiles were examined with a linear mixed model (LMM). Individuals with depression reported higher levels of frustration and lower levels of satisfaction in relation to the three basic psychological needs when compared to non-depressed adults. The difference between depressed and non-depressed groups was significantly larger for frustration than satisfaction regarding the needs for relatedness and competence. LMM correlation parameters confirmed the expected positive correlation between the three needs. This is the first study showing substantial differences in need-based experiences between depressed and non-depressed adults. The results confirm basic assumptions of the self-determination theory and have preliminary implications in tailoring therapy for depression.
Collapse
Affiliation(s)
- Anou Pietrek
- Social and Preventive Medicine, Department of Sports and Health Sciences, Faculty of Human Science, University of Potsdam, Potsdam, Germany
| | - Maria Kangas
- Centre for Emotional Health, School of Psychological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Reinhold Kliegl
- Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Potsdam, Germany
| | - Michael A Rapp
- Social and Preventive Medicine, Department of Sports and Health Science, Intra-Faculty Unit "Cognitive Sciences", Faculty of Human Science, and Faculty of Health Sciences Brandenburg, Research Area Services Research and e-Health, University of Potsdam, Potsdam, Germany
| | - Stephan Heinzel
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| | | | - Andreas Heissel
- Social and Preventive Medicine, Department of Sports and Health Science, Intra-Faculty Unit "Cognitive Sciences", Faculty of Human Science, and Faculty of Health Sciences Brandenburg, Research Area Services Research and e-Health, University of Potsdam, Potsdam, Germany
| |
Collapse
|
31
|
Savage HS, Davey CG, Wager TD, Garfinkel SN, Moffat BA, Glarin RK, Harrison BJ. Neural mediators of subjective and autonomic responding during threat learning and regulation. Neuroimage 2021; 245:118643. [PMID: 34699966 PMCID: PMC9533324 DOI: 10.1016/j.neuroimage.2021.118643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/05/2022] Open
Abstract
Threat learning elicits robust changes across multiple affective domains, including changes in autonomic indices and subjective reports of fear and anxiety. It has been argued that the underlying causes of such changes may be dissociable at a neural level, but there is currently limited evidence to support this notion. To address this, we examined the neural mediators of trial-by-trial skin conductance responses (SCR), and subjective reports of anxious arousal and valence in participants (n = 27; 17 females) performing a threat reversal task during ultra-high field functional magnetic resonance imaging. This allowed us to identify brain mediators during initial threat learning and subsequent threat reversal. Significant neural mediators of anxious arousal during threat learning included the dorsal anterior cingulate, anterior insula cortex (AIC), and ventromedial prefrontal cortex (vmPFC), subcortical regions including the amygdala, ventral striatum, caudate and putamen, and brain-stem regions including the pons and midbrain. By comparison, autonomic changes (SCR) were mediated by a subset of regions embedded within this broader circuitry that included the caudate, putamen and thalamus, and two distinct clusters within the vmPFC. The neural mediators of subjective negative valence showed prominent effects in posterior cortical regions and, with the exception of the AIC, did not overlap with threat learning task effects. During threat reversal, positive mediators of both subjective anxious arousal and valence mapped to the default mode network; this included the vmPFC, posterior cingulate, temporoparietal junction, and angular gyrus. Decreased SCR during threat reversal was positively mediated by regions including the mid cingulate, AIC, two sub-regions of vmPFC, the thalamus, and the hippocampus. Our findings add novel evidence to support distinct underlying neural processes facilitating autonomic and subjective responding during threat learning and threat reversal. The results suggest that the brain systems engaged in threat learning mostly capture the subjective (anxious arousal) nature of the learning process, and that appropriate responding during threat reversal is facilitated by participants engaging self- and valence-based processes. Autonomic changes (SCR) appear to involve distinct facilitatory and regulatory contributions of vmPFC sub-regions.
Collapse
Affiliation(s)
- Hannah S Savage
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, Victoria 3053 Australia.
| | - Christopher G Davey
- Department of Psychiatry, The University of Melbourne, Melbourne, Victoria 3053 Australia
| | - Tor D Wager
- Department of Brain and Psychological Sciences, Dartmouth College, Hanover, NH 03755 United States
| | - Sarah N Garfinkel
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ United Kingdom
| | - Bradford A Moffat
- Melbourne Biomedical Centre Imaging Unit, Department of Radiology, The University of Melbourne, Victoria 3010, Australia
| | - Rebecca K Glarin
- Melbourne Biomedical Centre Imaging Unit, Department of Radiology, The University of Melbourne, Victoria 3010, Australia
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, Victoria 3053 Australia.
| |
Collapse
|
32
|
Battaglia S, Serio G, Scarpazza C, D'Ausilio A, Borgomaneri S. Frozen in (e)motion: How reactive motor inhibition is influenced by the emotional content of stimuli in healthy and psychiatric populations. Behav Res Ther 2021; 146:103963. [PMID: 34530318 DOI: 10.1016/j.brat.2021.103963] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/06/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022]
Abstract
Efficient inhibitory control is vital. However, environmental cues can influence motor control especially in an emotional context. One common task to measure inhibitory control is the stop-signal task (SST), which asks participants to respond to go stimuli knowing that on some trials a stop signal will be presented, requiring them to inhibit their response. This paradigm estimates the ability to inhibit already-initiated responses by calculating participants' stop-signal reaction times (SSRT), an index of inhibitory control. Here, we aim to review the existing, often contradictory, evidence on the influence of emotional stimuli on the inhibitory process. We aim to discuss which factors may reveal an interference as well as an advantage of emotional stimuli on action inhibition performance. Finally, we review the existing evidence that has investigated the effect of such stimuli on action inhibition in the psychiatric population. Important factors are the relevance, the intensity and the valence of the emotional stimulus, as well as the affected component of the motor control. From all this evidence, it is clear that understand precisely how emotion is integrated into core executive functions, such as inhibitory control, is essential not only for cognitive neuroscience, but also for refining neurocognitive models of psychopathology.
Collapse
Affiliation(s)
- Simone Battaglia
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Università di Bologna, Campus di Cesena, 47521, Cesena, Italy.
| | - Gianluigi Serio
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Università di Bologna, Campus di Cesena, 47521, Cesena, Italy
| | - Cristina Scarpazza
- Department of General Psychology, University of Padova, 35131, Padova, Italy; Padova Neuroscience Centre (PNC), 35131, Padova, Italy
| | - Alessandro D'Ausilio
- Università di Ferrara, Dipartimento di Neuroscienze e Riabilitazione, Ferrara, Italy; Italian Institute of Technology, Center for Translational Neurophysiology, Ferrara, Italy
| | - Sara Borgomaneri
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Università di Bologna, Campus di Cesena, 47521, Cesena, Italy; IRCCS Fondazione Santa Lucia, 00179, Rome, Italy.
| |
Collapse
|
33
|
Esser R, Korn CW, Ganzer F, Haaker J. L-DOPA modulates activity in the vmPFC, nucleus accumbens, and VTA during threat extinction learning in humans. eLife 2021; 10:65280. [PMID: 34473055 PMCID: PMC8443250 DOI: 10.7554/elife.65280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 09/01/2021] [Indexed: 12/26/2022] Open
Abstract
Learning to be safe is central for adaptive behaviour when threats are no longer present. Detecting the absence of an expected threat is key for threat extinction learning and an essential process for the behavioural treatment of anxiety-related disorders. One possible mechanism underlying extinction learning is a dopaminergic mismatch signal that encodes the absence of an expected threat. Here we show that such a dopamine-related pathway underlies extinction learning in humans. Dopaminergic enhancement via administration of L-DOPA (vs. Placebo) was associated with reduced retention of differential psychophysiological threat responses at later test, which was mediated by activity in the ventromedial prefrontal cortex that was specific to extinction learning. L-DOPA administration enhanced signals at the time-point of an expected, but omitted threat in extinction learning within the nucleus accumbens, which were functionally coupled with the ventral tegmental area and the amygdala. Computational modelling of threat expectancies further revealed prediction error encoding in nucleus accumbens that was reduced when L-DOPA was administered. Our results thereby provide evidence that extinction learning is influenced by L-DOPA and provide a mechanistic perspective to augment extinction learning by dopaminergic enhancement in humans.
Collapse
Affiliation(s)
- Roland Esser
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph W Korn
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Section Social Neuroscience, Department of General Psychiatry, Heidelberg, Germany
| | - Florian Ganzer
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Addiction Research in Childhood and Adolescence, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Haaker
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
34
|
Castillo-Ocampo Y, Colón M, Hernández A, Lopez P, Gerena Y, Porter JT. Plasticity of GluN1 at Ventral Hippocampal Synapses in the Infralimbic Cortex. Front Synaptic Neurosci 2021; 13:695964. [PMID: 34335223 PMCID: PMC8320376 DOI: 10.3389/fnsyn.2021.695964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/25/2021] [Indexed: 11/25/2022] Open
Abstract
Although the infralimbic cortex (IL) is not thought to play a role in fear acquisition, recent experiments found evidence that synaptic plasticity is occurring at ventral hippocampal (vHPC) synapses in IL during auditory fear acquisition as measured by changes in the N-methyl-D-aspartate (NMDA) receptor-mediated currents in male rats. These electrophysiological data suggest that fear conditioning changes the expression of NMDA receptors on vHPC-to-IL synapses. To further evaluate the plasticity of NMDA receptors at this specific synapse, we injected AAV particles expressing channelrhodopsin-EYFP into the vHPC of male and female rats to label vHPC projections with EYFP. To test for NMDA receptor changes in vHPC-to-IL synapses after fear learning, we used fluorescence-activated cell sorting (FACS) to quantify synaptosomes isolated from IL tissue punches that were positive for EYFP and the obligatory GluN1 subunit. More EYFP+/GluN1+ synaptosomes with greater average expression of GluN1 were isolated from male rats exposed to auditory fear conditioning (AFC) than those exposed to context and tones only or to contextual fear conditioning (CFC), suggesting that AFC increased NMDA receptor expression in males. In a second experiment, we found that pairing the tones and shocks was required to induce the molecular changes and that fear extinction did not reverse the changes. In contrast, females showed similar levels of EYFP+/GluN1+ synaptosomes in all behavioral groups. These findings suggest that AFC induces synaptic plasticity of NMDA receptors in the vHPC-to-IL projection in males, while female rats rely on different synaptic mechanisms.
Collapse
Affiliation(s)
- Yesenia Castillo-Ocampo
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - María Colón
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Anixa Hernández
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Pablo Lopez
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Yamil Gerena
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - James T. Porter
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| |
Collapse
|
35
|
Li G, Chen Y, Le TM, Zhornitsky S, Wang W, Dhingra I, Zhang S, Tang X, Li CSR. Perceived friendship and binge drinking in young adults: A study of the Human Connectome Project data. Drug Alcohol Depend 2021; 224:108731. [PMID: 33915512 PMCID: PMC8641247 DOI: 10.1016/j.drugalcdep.2021.108731] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Peer influences figure prominently in young adult binge drinking. Women have trended to show a level of alcohol use on par with men during the last decades. It would be of interest to investigate the neural processes of social cognition that may underlie binge drinking and the potential sex differences. METHODS Here, we examined the data of the Human Connectome Project where we identified a total of 175 binge drinkers (125 men) and 285 non-binge drinkers (97 men) performing a social cognition task during brain imaging. We analyzed the imaging data with published routines and evaluated the results at a corrected threshold. RESULTS Both male and female binge relative to non-binge drinkers showed higher perceived friendship. Binge relative to non-binge drinkers demonstrated diminished activations in the anterior medial orbitofrontal cortex (amOFC) during perception of social vs. random interaction, with a more prominent effect size in women. Further, whole-brain regression identified activity of the right posterior insula (rPI) in negative correlation with perceived friendship score in non-binge drinking women. Post-hoc analyses showed significant correlation of rPI activity with perceived friendship, amOFC activity, and a summary measure of alcohol use severity identified by principal component analysis, across all subjects. Mediation and path analysis demonstrated a significant model: amOFC activity → rPI activity → perceived friendship → severity of alcohol use. CONCLUSIONS These findings support peer influences on binge drinking and suggest neural correlates that may relate altered social cognitive processing to alcohol misuse in young adults.
Collapse
Affiliation(s)
- Guangfei Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States; Department of Biomedical Engineering, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Thang M Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Wuyi Wang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Isha Dhingra
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Xiaoying Tang
- Department of Biomedical Engineering, School of Life Sciences, Beijing Institute of Technology, Beijing, China.
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
36
|
Laing PAF, Harrison BJ. Safety learning and the Pavlovian conditioned inhibition of fear in humans: Current state and future directions. Neurosci Biobehav Rev 2021; 127:659-674. [PMID: 34023357 DOI: 10.1016/j.neubiorev.2021.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 01/02/2023]
Abstract
Safety learning occurs when an otherwise neutral stimulus comes to signal the absence of threat, allowing organisms to use safety information to inhibit fear and anxiety in nonthreatening environments. Although it continues to emerge as a topic of relevance in biological and clinical psychology, safety learning remains inconsistently defined and under-researched. Here, we analyse the Pavlovian conditioned inhibition paradigm and its application to the study of safety learning in humans. We discuss existing studies; address outstanding theoretical considerations; and identify prospects for its further application. Though Pavlovian conditioned inhibition presents a theoretically sound model of safety learning, it has been investigated infrequently, with decade-long interims between some studies, and notable methodological variability. Consequently, we argue that the full potential of conditioned inhibition as a model for human safety learning remains untapped, and propose that it could be revisited as a framework for addressing timely questions in the behavioural and clinical sciences.
Collapse
Affiliation(s)
- Patrick A F Laing
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia.
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
37
|
Fleury J, Komnenich P, Coon DW, Volk-Craft B. Development of a Nostalgic Remembering Intervention: Feeling Safe in Dyads Receiving Palliative Care for Advanced Heart Failure. J Cardiovasc Nurs 2021; 36:221-228. [PMID: 33181536 PMCID: PMC8041566 DOI: 10.1097/jcn.0000000000000762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Dyads receiving palliative care for advanced heart failure are at risk for the loss of feeling safe, experienced as a fractured sense of coherence, discontinuity in sense of self and relationships, and strained social connections and altered roles. However, few theory-based interventions have addressed feeling safe in this vulnerable population. PURPOSE The purpose of this article is to describe the development of the Nostalgic Remembering Intervention to strengthen feeling safe and promote adaptive physiological and psychological regulation in dyads receiving palliative care for heart failure. CONCLUSIONS Systematic intervention development is essential to understand what, for whom, why, and how an intervention works in producing outcomes. Program theory provided a systematic approach to the development of the Nostalgic Remembering Intervention, including conceptualization of the problem targeted by the intervention, specification of critical inputs and conditions that operationalize the intervention, and understanding the mediating processes leading to expected outcomes. CLINICAL IMPLICATIONS Creating a foundation for cardiovascular nursing research and practice requires continued, systematic development of theory-based interventions to best meet the needs of dyads receiving palliative care for heart failure. The development of the Nostalgic Remembering Intervention to strengthen feeling safe in dyads provides a novel and relevant approach.
Collapse
|
38
|
Finlayson-Short L, Davey CG, Harrison BJ. Neural correlates of integrated self and social processing. Soc Cogn Affect Neurosci 2020; 15:941-949. [PMID: 32901818 PMCID: PMC7647375 DOI: 10.1093/scan/nsaa121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/24/2020] [Accepted: 09/04/2020] [Indexed: 11/13/2022] Open
Abstract
Self-referential and social processing are often engaged concurrently in naturalistic judgements and elicit activity in overlapping brain regions. We have termed this integrated processing ‘self-other referential processing’ and developed a task to measure its neural correlates. Ninety-eight healthy young people aged 16–25 (M = 21.5 years old, 67% female) completed our novel functional magnetic resonance imaging task. The task had two conditions, an active self-other referential processing condition in which participants rated how much they related to emotional faces and a control condition. Rating relatedness required thinking about oneself (self-referential processing) and drawing a comparison to an imagined other (social processing). Self-other referential processing elicited activity in the default mode network and social cognition system; most notably in the ‘core self’ regions of the medial prefrontal cortex and posterior cingulate cortex. Relatedness and emotional valence directly modulated activity in these core self areas, while emotional valence additionally modulated medial prefrontal cortex activity. This shows the key role of the medial prefrontal cortex in constructing the ‘social-affective self’. This may help to unify disparate models of medial prefrontal cortex function, demonstrating its role in coordinating multiple processes—self-referential, social and affective processing—to allow the self to exist in a complex social world.
Collapse
Affiliation(s)
- Laura Finlayson-Short
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Victoria 3052, Australia.,Orygen, Melbourne, Victoria 3052, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Christopher G Davey
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Victoria 3052, Australia
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Victoria 3052, Australia
| |
Collapse
|
39
|
Carbo-Valverde S, Lacomba-Arias JA, Lagos-García FM, Rodriguez-Fernandez F, Verdejo-Román J. Brain substrates explain differences in the adoption and degree of financial digitalization. Sci Rep 2020; 10:17512. [PMID: 33060709 PMCID: PMC7567102 DOI: 10.1038/s41598-020-74554-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 09/25/2020] [Indexed: 11/08/2022] Open
Abstract
This study analyzes neural responses connected to trust and risk to explain financial digitalization decisions. It shows that brain responses distinctively inform differences in the adoption of digital financial channels that are not shown by any other sociodemographic or behavioral indicators. From a methodological standpoint, the study explores if usage patterns of digital financial channels and instruments are associated with psychological and biological indicators; it uses functional magnetic resonance imaging (fMRI) to investigate whether financial digitalization decisions are linked to the evoked brain response to the safety associated with video images of financial transactions through digitalized and non-digitalized channels; it conducts trust and risk neuro-experiments to identify their impact on financial digitalization decisions and it analyzes whether brain structure is linked to financial digitalization behavior. The findings suggest that high and low frequency users exhibit differences in brain function and also in volume and fractional anisotropy values. A higher frequency of use of financial digital financial services is associated with higher brain activation linked to insecurity (lower safety neural evoked responses during the video task and an altered white matter microstructure of the cingulum). Additionally, high frequency users of digital financial channels exhibit enhanced activation of brain areas linked to emotional processing during the trust game. These findings have important implications for the design of public policies to enhance financial inclusion through technology and the segmentation and service distribution strategies of private financial institutions.
Collapse
Affiliation(s)
- Santiago Carbo-Valverde
- CUNEF, Bangor University, Bangor, UK
- Funcas, Madrid, Spain
- Department of Economics and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Juan A Lacomba-Arias
- Department of Economics and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Francisco M Lagos-García
- Department of Economics and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
- Zayed University, Dubai, UAE
| | - Francisco Rodriguez-Fernandez
- Funcas, Madrid, Spain.
- Department of Economics and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain.
| | - Juan Verdejo-Román
- Department of Economics and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
- Laboratory for Cognitive and Computational Neuroscience (UCM - UPM) and Experimental Psychology Department, School of Psychology, UCM, Madrid, Spain
| |
Collapse
|
40
|
Revaluing the Role of vmPFC in the Acquisition of Pavlovian Threat Conditioning in Humans. J Neurosci 2020; 40:8491-8500. [PMID: 33020217 DOI: 10.1523/jneurosci.0304-20.2020] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/22/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022] Open
Abstract
The role of the ventromedial prefrontal cortex (vmPFC) in human pavlovian threat conditioning has been relegated largely to the extinction or reversal of previously acquired stimulus-outcome associations. However, recent neuroimaging evidence questions this view by also showing activity in the vmPFC during threat acquisition. Here we investigate the casual role of vmPFC in the acquisition of pavlovian threat conditioning by assessing skin conductance response (SCR) and declarative memory of stimulus-outcome contingencies during a differential pavlovian threat-conditioning paradigm in eight patients with a bilateral vmPFC lesion, 10 with a lesion outside PFC and 10 healthy participants (each group included both females and males). Results showed that patients with vmPFC lesion failed to produce a conditioned SCR during threat acquisition, despite no evidence of compromised SCR to unconditioned stimulus or compromised declarative memory for stimulus-outcome contingencies. These results suggest that the vmPFC plays a causal role in the acquisition of new learning and not just in the extinction or reversal of previously acquired learning, as previously thought. Given the role of the vmPFC in schema-related processing and latent structure learning, the vmPFC may be required to construct a detailed representation of the task, which is needed to produce a sustained conditioned physiological response in anticipation of the unconditioned stimulus during threat acquisition.SIGNIFICANCE STATEMENT Pavlovian threat conditioning is an adaptive mechanism through which organisms learn to avoid potential threats, thus increasing their chances of survival. Understanding what brain regions contribute to such a process is crucial to understand the mechanisms underlying adaptive as well as maladaptive learning, and has the potential to inform the treatment of anxiety disorders. Importantly, the role of the ventromedial prefrontal cortex (vmPFC) in the acquisition of pavlovian threat conditioning has been relegated largely to the inhibition of previously acquired learning. Here, we show that the vmPFC actually plays a causal role in the acquisition of pavlovian threat conditioning.
Collapse
|
41
|
Steward T, Davey CG, Jamieson AJ, Stephanou K, Soriano-Mas C, Felmingham KL, Harrison BJ. Dynamic Neural Interactions Supporting the Cognitive Reappraisal of Emotion. Cereb Cortex 2020; 31:961-973. [DOI: 10.1093/cercor/bhaa268] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
Abstract
The cognitive reappraisal of emotion is hypothesized to involve frontal regions modulating the activity of subcortical regions such as the amygdala. However, the pathways by which structurally disparate frontal regions interact with the amygdala remains unclear. In this study, 104 healthy young people completed a cognitive reappraisal task. Dynamic causal modeling (DCM) was used to map functional interactions within a frontoamygdalar network engaged during emotion regulation. Five regions were identified to form the network: the amygdala, the presupplementary motor area (preSMA), the ventrolateral prefrontal cortex (vlPFC), dorsolateral prefrontal cortex (dlPFC), and ventromedial prefrontal cortex (vmPFC). Bayesian Model Selection was used to compare 256 candidate models, with our winning model featuring modulations of vmPFC-to-amygdala and amygdala-to-preSMA pathways during reappraisal. Moreover, the strength of amygdala-to-preSMA modulation was associated with the habitual use of cognitive reappraisal. Our findings support the vmPFC serving as the primary conduit through which prefrontal regions directly modulate amygdala activity, with amygdala-to-preSMA connectivity potentially acting to shape ongoing affective motor responses. We propose that these two frontoamygdalar pathways constitute a recursive feedback loop, which computes the effectiveness of emotion-regulatory actions and drives model-based behavior.
Collapse
Affiliation(s)
- Trevor Steward
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Victoria 3053, Australia
- Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christopher G Davey
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Victoria 3053, Australia
| | - Alec J Jamieson
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Victoria 3053, Australia
| | - Katerina Stephanou
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Victoria 3053, Australia
| | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge Biomedical Research Institute/IDIBELL and CIBERSAM, Barcelona 08907, Spain
- Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Kim L Felmingham
- Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Victoria 3053, Australia
| |
Collapse
|
42
|
Hennings AC, McClay M, Lewis-Peacock JA, Dunsmoor JE. Contextual reinstatement promotes extinction generalization in healthy adults but not PTSD. Neuropsychologia 2020; 147:107573. [PMID: 32735802 DOI: 10.1016/j.neuropsychologia.2020.107573] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 01/30/2023]
Abstract
For episodic memories, reinstating the mental context of a past experience improves retrieval of memories formed during that experience. Does context reinstatement serve a similar role for implicit, associative memories such as fear and extinction? Here, we used a fear extinction paradigm to investigate whether the retrieval of extinction (safety) memories is associated with reactivation of the mental context from extinction memory formation. In a two-day Pavlovian conditioning, extinction, and renewal protocol, we collected functional MRI data while healthy adults and adults with PTSD symptoms learned that conditioned stimuli (CSs) signaled threat through association with an electrical shock. Following acquisition, conceptually related exemplars from the CS category no longer signaled threat (i.e., extinction). Critically, during extinction only, task-irrelevant stimuli were presented between each CS trial to serve as "context tags" for subsequent identification of the possible reinstatement of this extinction context during a test of fear renewal the next day. We found that healthy adults exhibited extinction context reinstatement, as measured via multivariate pattern analysis of fMRI data, in the medial temporal lobe that related to behavioral performance, such that greater reinstatement predicted CSs being rated as safe instead of threatening. Moreover, context reinstatement positively correlated with univariate activity in the ventromedial prefrontal cortex and hippocampus, regions which are thought to be important for extinction learning. These relationships were not observed in the PTSD symptom group. These findings provide new evidence of a contextual reinstatement mechanism that helps resolve competition between the retrieval of opposing associative memories of threat and safety in the healthy adult brain that is dysregulated in PTSD.
Collapse
Affiliation(s)
- Augustin C Hennings
- Institute for Neuroscience, University of Texas at Austin, United States; Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, United States
| | - Mason McClay
- Department of Psychiatry, Dell Medical School, University of Texas at Austin, United States
| | - Jarrod A Lewis-Peacock
- Institute for Neuroscience, University of Texas at Austin, United States; Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, United States; Department of Psychology, University of Texas at Austin, United States
| | - Joseph E Dunsmoor
- Institute for Neuroscience, University of Texas at Austin, United States; Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, United States; Department of Psychiatry, Dell Medical School, University of Texas at Austin, United States.
| |
Collapse
|
43
|
Suarez-Jimenez B, Albajes-Eizagirre A, Lazarov A, Zhu X, Harrison BJ, Radua J, Neria Y, Fullana MA. Neural signatures of conditioning, extinction learning, and extinction recall in posttraumatic stress disorder: a meta-analysis of functional magnetic resonance imaging studies. Psychol Med 2020; 50:1442-1451. [PMID: 31258096 PMCID: PMC9624122 DOI: 10.1017/s0033291719001387] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Establishing neurobiological markers of posttraumatic stress disorder (PTSD) is essential to aid in diagnosis and treatment development. Fear processing deficits are central to PTSD, and their neural signatures may be used as such markers. METHODS Here, we conducted a meta-analysis of seven Pavlovian fear conditioning fMRI studies comparing 156 patients with PTSD and 148 trauma-exposed healthy controls (TEHC) using seed-based d-mapping, to contrast neural correlates of experimental phases, namely conditioning, extinction learning, and extinction recall. RESULTS Patients with PTSD, as compared to TEHCs, exhibited increased activation in the anterior hippocampus (extending to the amygdala) and medial prefrontal cortex during conditioning; in the anterior hippocampus-amygdala regions during extinction learning; and in the anterior hippocampus-amygdala and medial prefrontal areas during extinction recall. Yet, patients with PTSD have shown an overall decreased activation in the thalamus during all phases in this meta-analysis. CONCLUSION Findings from this metanalysis suggest that PTSD is characterized by increased activation in areas related to salience and threat, and lower activation in the thalamus, a key relay hub between subcortical areas. If replicated, these fear network alterations may serve as objective diagnostic markers for PTSD, and potential targets for novel treatment development, including pharmacological and brain stimulation interventions. Future longitudinal studies are needed to examine whether these observed network alteration in PTSD are the cause or the consequence of PTSD.
Collapse
Affiliation(s)
- Benjamin Suarez-Jimenez
- Department of Psychiatry, Columbia University Medical Center, New York, USA
- New York State Psychiatric Institute, New York, USA
| | | | - Amit Lazarov
- Department of Psychiatry, Columbia University Medical Center, New York, USA
- New York State Psychiatric Institute, New York, USA
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Xi Zhu
- Department of Psychiatry, Columbia University Medical Center, New York, USA
- New York State Psychiatric Institute, New York, USA
| | - Ben J. Harrison
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Victoria, Australia
| | - Joaquim Radua
- FIDMAG Germanes Hospitalàries, CIBERSAM, Sant Boi de Llobregat, Barcelona, Spain
- Institute of Psychiatry, King’s College London, De Crespigny Park, London, UK
- Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Barcelona, Spain
| | - Yuval Neria
- Department of Psychiatry, Columbia University Medical Center, New York, USA
- New York State Psychiatric Institute, New York, USA
| | - Miquel A. Fullana
- FIDMAG Germanes Hospitalàries, CIBERSAM, Sant Boi de Llobregat, Barcelona, Spain
- Department of Psychiatry, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
44
|
Kessler R, Schmitt S, Sauder T, Stein F, Yüksel D, Grotegerd D, Dannlowski U, Hahn T, Dempfle A, Sommer J, Steinsträter O, Nenadic I, Kircher T, Jansen A. Long-Term Neuroanatomical Consequences of Childhood Maltreatment: Reduced Amygdala Inhibition by Medial Prefrontal Cortex. Front Syst Neurosci 2020; 14:28. [PMID: 32581732 PMCID: PMC7283497 DOI: 10.3389/fnsys.2020.00028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/30/2020] [Indexed: 12/03/2022] Open
Abstract
Similar to patients with Major depressive disorder (MDD), healthy subjects at risk for depression show hyperactivation of the amygdala as a response to negative emotional expressions. The medial prefrontal cortex is responsible for amygdala control. Analyzing a large cohort of healthy subjects, we aimed to delineate malfunction in amygdala regulation by the medial prefrontal cortex in subjects at increased risk for depression, i.e., with a family history of affective disorders or a personal history of childhood maltreatment. We included a total of 342 healthy subjects from the FOR2107 cohort (www.for2107.de). An emotional face-matching task was used to identify the medial prefrontal cortex and right amygdala. Dynamic Causal Modeling (DCM) was conducted and neural coupling parameters were obtained for healthy controls with and without particular risk factors for depression. We assigned a genetic risk if subjects had a first-degree relative with an affective disorder and an environmental risk if subjects experienced childhood maltreatment. We then compared amygdala inhibition during emotion processing between groups. Amygdala inhibition by the medial prefrontal cortex was present in subjects without those two risk factors, as indicated by negative model parameter estimates. Having a genetic risk (i.e., a family history) did not result in changes in amygdala inhibition compared to no risk subjects. In contrast, childhood maltreatment as environmental risk has led to a significant reduction of amygdala inhibition by the medial prefrontal cortex. We propose a mechanistic explanation for the amygdala hyperactivity in subjects with particular risk for depression, in particular childhood maltreatment, caused by a malfunctioned amygdala downregulation via the medial prefrontal cortex. As childhood maltreatment is a major environmentalrisk factor for depression, we emphasize the importance of this potential early biomarker.
Collapse
Affiliation(s)
- Roman Kessler
- Department of Psychiatry and Psychotherapy, Department of Medicine, University of Marburg, Marburg, Germany.,Centre for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Simon Schmitt
- Department of Psychiatry and Psychotherapy, Department of Medicine, University of Marburg, Marburg, Germany.,Centre for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Torsten Sauder
- Department of Psychiatry and Psychotherapy, Department of Medicine, University of Marburg, Marburg, Germany.,Department of Neurology, Bayreuth Clinic, Klinikum Bayreuth GmbH, Bayreuth, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Department of Medicine, University of Marburg, Marburg, Germany.,Centre for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Dilara Yüksel
- Department of Psychiatry and Psychotherapy, Department of Medicine, University of Marburg, Marburg, Germany.,Centre for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Dominik Grotegerd
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Tim Hahn
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Astrid Dempfle
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Jens Sommer
- Centre for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany.,Core-Unit Brainimaging, Faculty of Medicine, University of Marburg, Marburg, Germany
| | - Olaf Steinsträter
- Centre for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany.,Core-Unit Brainimaging, Faculty of Medicine, University of Marburg, Marburg, Germany
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy, Department of Medicine, University of Marburg, Marburg, Germany.,Centre for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Department of Medicine, University of Marburg, Marburg, Germany.,Centre for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Department of Medicine, University of Marburg, Marburg, Germany.,Centre for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany.,Core-Unit Brainimaging, Faculty of Medicine, University of Marburg, Marburg, Germany
| |
Collapse
|
45
|
Neural responses during extinction learning predict exposure therapy outcome in phobia: results from a randomized-controlled trial. Neuropsychopharmacology 2020; 45:534-541. [PMID: 31352467 PMCID: PMC6969109 DOI: 10.1038/s41386-019-0467-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/13/2019] [Accepted: 07/19/2019] [Indexed: 01/31/2023]
Abstract
Extinction learning is assumed to represent a core mechanism underlying exposure therapy. Empirical evaluations of this assumption, however, are largely lacking. The current study investigated whether neural activations and self-report outcomes during extinction learning and extinction recall could specifically predict exposure therapy response in specific phobia. In this double-blind randomized controlled trial, individuals with spider phobia (N = 45; female/male = 41/4) were on group basis randomly allocated to exposure therapy (n = 25; female/male = 24/1) or progressive muscle relaxation (PMR; n = 20; female/male = 17/3). Intervention effects were measured with the Fears of Spiders questionnaire. Participants also underwent a three-day fear conditioning, extinction learning, and extinction recall paradigm during functional magnetic resonance imaging at baseline. Extinction outcomes were self-reported fear and threat expectancy, and neural responses during conditioned stimulus processing and during extinction-related prediction errors (US omissions) in regions of interest (ventromedial prefrontal cortex (vmPFC) and nucleus accumbens). Results showed that exposure therapy resulted in stronger symptom reductions than PMR (Cohen's d = 0.90). Exposure therapy response was specifically predicted by prediction-error related vmPFC activation during early extinction. There were also indications vmPFC activations during conditioned safety stimulus processing at early extinction predicted therapy outcome. Neural activations during extinction recall and self-report data did however not predict therapy outcome. These findings indicate that exposure therapy may rely on neural extinction learning processes. Prediction errors are thought to drive the extinction learning process, and prediction error-related vmPFC activation specifically predicted therapy outcome. The extent to which vmPFC processes safety signals may additionally be predictive of exposure therapy response, but the specificity is less clear.
Collapse
|
46
|
Savage HS, Davey CG, Fullana MA, Harrison BJ. Clarifying the neural substrates of threat and safety reversal learning in humans. Neuroimage 2020; 207:116427. [DOI: 10.1016/j.neuroimage.2019.116427] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/28/2019] [Accepted: 12/01/2019] [Indexed: 02/03/2023] Open
|
47
|
Quarmley M, Gur RC, Turetsky BI, Watters AJ, Bilker WB, Elliott MA, Calkins ME, Kohler CG, Ruparel K, Rupert P, Gur RE, Wolf DH. Reduced safety processing during aversive social conditioning in psychosis and clinical risk. Neuropsychopharmacology 2019; 44:2247-2253. [PMID: 31112989 PMCID: PMC6898578 DOI: 10.1038/s41386-019-0421-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/29/2019] [Accepted: 05/08/2019] [Indexed: 12/31/2022]
Abstract
Social impairment occurs across the psychosis spectrum, but its pathophysiology remains poorly understood. Here we tested the hypothesis that reduced differential responses (aversive vs. neutral) in neural circuitry underpinning aversive conditioning of social stimuli characterizes the psychosis spectrum. Participants age 10-30 included a healthy control group (HC, analyzed n = 36) and a psychosis spectrum group (PSY, n = 71), including 49 at clinical risk for psychosis and 22 with a frank psychotic disorder. 3T fMRI utilized a passive aversive conditioning paradigm, with neutral faces as conditioned stimuli (CS) and a scream as the unconditioned stimulus. fMRI conditioning was indexed as the activation difference between aversive and neutral trials. Analysis focused on amygdala, ventromedial prefrontal cortex, and anterior insula, regions previously implicated in aversive and social-emotional processing. Ventromedial prefrontal cortex activated more to neutral than aversive CS; this "safety effect" was driven by HC and reduced in PSY, and correlated with subjective emotional ratings following conditioning. Insula showed the expected aversive conditioning effect, and although no group differences were found, its activation in PSY correlated with anxiety severity. Unexpectedly, amygdala did not show aversive conditioning; its activation trended greater for neutral than aversive CS, and did not differ significantly based on group or symptom severity. We conclude that abnormalities in social aversive conditioning are present across the psychosis spectrum including clinical risk, linked to a failure of safety processing. Aversive and safety learning provide translational paradigms yielding insight into pathophysiology of psychosis risk, and providing potential targets for therapeutic and preventative interventions.
Collapse
Affiliation(s)
- Megan Quarmley
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Ruben C. Gur
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Bruce I. Turetsky
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Anna J. Watters
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Warren B. Bilker
- 0000 0004 1936 8972grid.25879.31Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Mark A. Elliott
- 0000 0004 1936 8972grid.25879.31Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Monica E. Calkins
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Christian G. Kohler
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Kosha Ruparel
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Petra Rupert
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Raquel E. Gur
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Daniel H. Wolf
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
48
|
Dong GH, Wang M, Zhang J, Du X, Potenza MN. Functional neural changes and altered cortical-subcortical connectivity associated with recovery from Internet gaming disorder. J Behav Addict 2019; 8:692-702. [PMID: 31891311 PMCID: PMC7044574 DOI: 10.1556/2006.8.2019.75] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND AIMS Although studies have suggested that individuals with Internet gaming disorder (IGD) may have impairments in cognitive functioning, the nature of the relationship is unclear given that the information is typically derived from cross-sectional studies. METHODS Individuals with active IGD (n = 154) and those individuals no longer meeting criteria (n = 29) after 1 year were examined longitudinally using functional magnetic resonance imaging during performance of cue-craving tasks. Subjective responses and neural correlates were contrasted at study onset and at 1 year. RESULTS Subjects' craving responses to gaming cues decreased significantly at 1 year relative to study onset. Decreased brain responses in the anterior cingulate cortex (ACC) and lentiform nucleus were observed at 1 year relative to onset. Significant positive correlations were observed between changes in brain activities in the lentiform nucleus and changes in self-reported cravings. Dynamic causal modeling analysis showed increased ACC-lentiform connectivity at 1 year relative to study onset. CONCLUSIONS After recovery from IGD, individuals appear less sensitive to gaming cues. This recovery may involve increased ACC-related control over lentiform-related motivations in the control over cravings. The extent to which cortical control over subcortical motivations may be targeted in treatments for IGD should be examined further.
Collapse
Affiliation(s)
- Guang-Heng Dong
- Center for Cognition and Brain Disorder, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China,Zhejiang Key Laboratory for Assessment of Cognitive Impairments, Hangzhou, China,Corresponding authors: Guang-Heng Dong, PhD; Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, Zhejiang Province 311121, China; Phone: +86 158 6794 9909; Fax: +86 571 2886 7717; E-mail: ; Marc N. Potenza, PhD, MD; Department of Psychiatry, Yale University School of Medicine, 1 Church Street, New Haven 06511, CT, USA; Phone: +1 203 737 3553; Fax: +1 203 737 3591; E-mail:
| | - Min Wang
- Center for Cognition and Brain Disorder, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jialin Zhang
- Department of Psychology, Zhejiang Normal University, Jinhua, China
| | - Xiaoxia Du
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Marc N. Potenza
- Department of Psychiatry, Department of Neurobiology, and Child Study Center, Yale University School of Medicine, New Haven, CT, USA,The Connecticut Council on Problem Gambling, Wethersfield, CT, USA,The Connecticut Mental Health Center, New Haven, CT, USA,Corresponding authors: Guang-Heng Dong, PhD; Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, Zhejiang Province 311121, China; Phone: +86 158 6794 9909; Fax: +86 571 2886 7717; E-mail: ; Marc N. Potenza, PhD, MD; Department of Psychiatry, Yale University School of Medicine, 1 Church Street, New Haven 06511, CT, USA; Phone: +1 203 737 3553; Fax: +1 203 737 3591; E-mail:
| |
Collapse
|
49
|
Robinson-Drummer PA, Opendak M, Blomkvist A, Chan S, Tan S, Delmer C, Wood K, Sloan A, Jacobs L, Fine E, Chopra D, Sandler C, Kamenetzky G, Sullivan RM. Infant Trauma Alters Social Buffering of Threat Learning: Emerging Role of Prefrontal Cortex in Preadolescence. Front Behav Neurosci 2019; 13:132. [PMID: 31293398 PMCID: PMC6598593 DOI: 10.3389/fnbeh.2019.00132] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/04/2019] [Indexed: 11/13/2022] Open
Abstract
Within the infant-caregiver attachment system, the primary caregiver holds potent reward value to the infant, exhibited by infants' strong preference for approach responses and proximity-seeking towards the mother. A less well-understood feature of the attachment figure is the caregiver's ability to reduce fear via social buffering, commonly associated with the notion of a "safe haven" in the developmental literature. Evidence suggests this infant system overlaps with the neural network supporting social buffering (attenuation) of fear in the adults of many species, a network known to involve the prefrontal cortex (PFC). Here, using odor-shock conditioning in young developing rats, we assessed when the infant system transitions to the adult-like PFC-dependent social buffering of threat system. Rat pups were odor-shock conditioned (0.55 mA-0.6 mA) at either postnatal day (PN18; dependent on mother) or 28 (newly independent, weaned at PN23). Within each age group, the mother was present or absent during conditioning, with PFC assessment following acquisition using 14C 2-DG autoradiography and cue testing the following day. Since the human literature suggests poor attachment attenuates the mother's ability to socially buffer the infants, half of the pups at each age were reared with an abusive mother from PN8-12. The results showed that for typical control rearing, the mother attenuated fear in both PN18 and PN28 pups, although the PFC [infralimbic (IL) and ventral prelimbic (vPL) cortices] was only engaged at PN28. Abuse rearing completely disrupted social buffering of pups by the mother at PN18. The results from PN28 pups showed that while the mother modulated learning in both control and abuse-reared pups, the behavioral and PFC effects were attenuated after maltreatment. Our data suggest that pups transition to the adult-like PFC social support circuit after independence from the mother (PN28), and this circuit remains functional after early-life trauma, although its effectiveness appears reduced. This is in sharp contrast to the effects of early life trauma during infancy, where social buffering of the infant is more robustly impacted. We suggest that the infant social buffering circuit is disengaged by early-life trauma, while the adolescent PFC-dependent social buffering circuit may use a safety signal with unreliable safety value.
Collapse
Affiliation(s)
- Patrese A. Robinson-Drummer
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
| | - Maya Opendak
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
| | - Anna Blomkvist
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Stephanie Chan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Department of Neural Science, New York University, New York, NY, United States
| | - Stephen Tan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Department of Neural Science, New York University, New York, NY, United States
| | - Cecilia Delmer
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Department of Neural Science, New York University, New York, NY, United States
| | - Kira Wood
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Aliza Sloan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Department of Psychology, Florida Atlantic University, Boca Raton, FL, United States
| | - Lily Jacobs
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Department of Biology, Yeshiva University, New York, NY, United States
| | - Eliana Fine
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Department of Biology, Yeshiva University, New York, NY, United States
| | - Divija Chopra
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Department of Neural Science, New York University, New York, NY, United States
| | - Chaim Sandler
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Department of Biology, Yeshiva University, New York, NY, United States
| | - Giselle Kamenetzky
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Instituto de Investigaciones Médicas A Lanari, IDIM-CONICET, Universidad de Buenos Aires, Combatientes de Malvinas 3150 (CP 1427), Buenos Aires, Argentina
| | - Regina M. Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
| |
Collapse
|
50
|
Lange I, Goossens L, Bakker J, Michielse S, van Winkel R, Lissek S, Leibold N, Marcelis M, Wichers M, van Os J, van Amelsvoort T, Schruers K. Neurobehavioural mechanisms of threat generalization moderate the link between childhood maltreatment and psychopathology in emerging adulthood. J Psychiatry Neurosci 2019; 44:185-194. [PMID: 30540154 PMCID: PMC6488482 DOI: 10.1503/jpn.180053] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Childhood maltreatment is a transdiagnostic risk factor for later psychopathology and has been associated with altered brain circuitry involved in the processing of threat and safety. Examining threat generalization mechanisms in young adults with childhood maltreatment and psychiatric symptoms may elucidate a pathway linking early-life adversities to the presence of subclinical psychopathology. METHODS We recruited youth aged 16–25 years with subclinical psychiatric symptomatology and healthy controls. They were dichotomized into 2 groups: 1 with a high level of childhood maltreatment (n = 58) and 1 with no or a low level of childhood maltreatment (n = 55). Participants underwent a functional MRI threat generalization paradigm, measuring self-reported fear, expectancy of an unconditioned stimulus (US) and neural responses. RESULTS We observed interactions between childhood maltreatment and threat generalization indices on subclinical symptom load. In individuals reporting high levels of childhood maltreatment, enhanced generalization in self-reported fear and US expectancy was related to higher levels of psychopathology. Imaging results revealed that in the group with high levels of childhood maltreatment, lower activation in the left hippocampus during threat generalization was associated with a higher symptom load. Associations between threat generalization and psychopathology were nonsignificant overall in the group with no or low levels of childhood maltreatment. LIMITATIONS The data were acquired in a cross-sectional manner, precluding definitive insight into the causality of childhood maltreatment, threat generalization and psychopathology. CONCLUSION Our results suggest that threat generalization mechanisms may moderate the link between childhood maltreatment and subclinical psychopathology during emerging adulthood. Threat generalization could represent a vulnerability factor for developing later psychopathology in individuals being exposed to childhood maltreatment.
Collapse
Affiliation(s)
- Iris Lange
- From the Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (Lange, Goossens, Bakker, Michielse, Leibold, Marcelis, van Os, van Amelsvoort, Schruers); Department of Neuroscience, Center for Contextual Psychiatry, Center for Clinical Psychiatry, KU Leuven, Leuven, Belgium (van Winkel); Department of Psychology, University of Minnesota, Minneapolis, MN, USA (Lissek); Institute for Mental Health Care Eindhoven (GGzE), Eindhoven, The Netherlands (Marcelis); Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, The Netherlands (Wichers); Department of Psychosis Studies, Institute of Psychiatry, King’s College London, King’s Health Partners, London, UK (van Os); Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands (van Os); Faculty of Psychology, Center for Experimental and Learning Psychology, KU Leuven, Leuven, Belgium Schruers)
| | - Liesbet Goossens
- From the Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (Lange, Goossens, Bakker, Michielse, Leibold, Marcelis, van Os, van Amelsvoort, Schruers); Department of Neuroscience, Center for Contextual Psychiatry, Center for Clinical Psychiatry, KU Leuven, Leuven, Belgium (van Winkel); Department of Psychology, University of Minnesota, Minneapolis, MN, USA (Lissek); Institute for Mental Health Care Eindhoven (GGzE), Eindhoven, The Netherlands (Marcelis); Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, The Netherlands (Wichers); Department of Psychosis Studies, Institute of Psychiatry, King’s College London, King’s Health Partners, London, UK (van Os); Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands (van Os); Faculty of Psychology, Center for Experimental and Learning Psychology, KU Leuven, Leuven, Belgium Schruers)
| | - Jindra Bakker
- From the Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (Lange, Goossens, Bakker, Michielse, Leibold, Marcelis, van Os, van Amelsvoort, Schruers); Department of Neuroscience, Center for Contextual Psychiatry, Center for Clinical Psychiatry, KU Leuven, Leuven, Belgium (van Winkel); Department of Psychology, University of Minnesota, Minneapolis, MN, USA (Lissek); Institute for Mental Health Care Eindhoven (GGzE), Eindhoven, The Netherlands (Marcelis); Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, The Netherlands (Wichers); Department of Psychosis Studies, Institute of Psychiatry, King’s College London, King’s Health Partners, London, UK (van Os); Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands (van Os); Faculty of Psychology, Center for Experimental and Learning Psychology, KU Leuven, Leuven, Belgium Schruers)
| | - Stijn Michielse
- From the Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (Lange, Goossens, Bakker, Michielse, Leibold, Marcelis, van Os, van Amelsvoort, Schruers); Department of Neuroscience, Center for Contextual Psychiatry, Center for Clinical Psychiatry, KU Leuven, Leuven, Belgium (van Winkel); Department of Psychology, University of Minnesota, Minneapolis, MN, USA (Lissek); Institute for Mental Health Care Eindhoven (GGzE), Eindhoven, The Netherlands (Marcelis); Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, The Netherlands (Wichers); Department of Psychosis Studies, Institute of Psychiatry, King’s College London, King’s Health Partners, London, UK (van Os); Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands (van Os); Faculty of Psychology, Center for Experimental and Learning Psychology, KU Leuven, Leuven, Belgium Schruers)
| | - Ruud van Winkel
- From the Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (Lange, Goossens, Bakker, Michielse, Leibold, Marcelis, van Os, van Amelsvoort, Schruers); Department of Neuroscience, Center for Contextual Psychiatry, Center for Clinical Psychiatry, KU Leuven, Leuven, Belgium (van Winkel); Department of Psychology, University of Minnesota, Minneapolis, MN, USA (Lissek); Institute for Mental Health Care Eindhoven (GGzE), Eindhoven, The Netherlands (Marcelis); Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, The Netherlands (Wichers); Department of Psychosis Studies, Institute of Psychiatry, King’s College London, King’s Health Partners, London, UK (van Os); Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands (van Os); Faculty of Psychology, Center for Experimental and Learning Psychology, KU Leuven, Leuven, Belgium Schruers)
| | - Shmuel Lissek
- From the Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (Lange, Goossens, Bakker, Michielse, Leibold, Marcelis, van Os, van Amelsvoort, Schruers); Department of Neuroscience, Center for Contextual Psychiatry, Center for Clinical Psychiatry, KU Leuven, Leuven, Belgium (van Winkel); Department of Psychology, University of Minnesota, Minneapolis, MN, USA (Lissek); Institute for Mental Health Care Eindhoven (GGzE), Eindhoven, The Netherlands (Marcelis); Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, The Netherlands (Wichers); Department of Psychosis Studies, Institute of Psychiatry, King’s College London, King’s Health Partners, London, UK (van Os); Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands (van Os); Faculty of Psychology, Center for Experimental and Learning Psychology, KU Leuven, Leuven, Belgium Schruers)
| | - Nicole Leibold
- From the Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (Lange, Goossens, Bakker, Michielse, Leibold, Marcelis, van Os, van Amelsvoort, Schruers); Department of Neuroscience, Center for Contextual Psychiatry, Center for Clinical Psychiatry, KU Leuven, Leuven, Belgium (van Winkel); Department of Psychology, University of Minnesota, Minneapolis, MN, USA (Lissek); Institute for Mental Health Care Eindhoven (GGzE), Eindhoven, The Netherlands (Marcelis); Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, The Netherlands (Wichers); Department of Psychosis Studies, Institute of Psychiatry, King’s College London, King’s Health Partners, London, UK (van Os); Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands (van Os); Faculty of Psychology, Center for Experimental and Learning Psychology, KU Leuven, Leuven, Belgium Schruers)
| | - Machteld Marcelis
- From the Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (Lange, Goossens, Bakker, Michielse, Leibold, Marcelis, van Os, van Amelsvoort, Schruers); Department of Neuroscience, Center for Contextual Psychiatry, Center for Clinical Psychiatry, KU Leuven, Leuven, Belgium (van Winkel); Department of Psychology, University of Minnesota, Minneapolis, MN, USA (Lissek); Institute for Mental Health Care Eindhoven (GGzE), Eindhoven, The Netherlands (Marcelis); Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, The Netherlands (Wichers); Department of Psychosis Studies, Institute of Psychiatry, King’s College London, King’s Health Partners, London, UK (van Os); Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands (van Os); Faculty of Psychology, Center for Experimental and Learning Psychology, KU Leuven, Leuven, Belgium Schruers)
| | - Marieke Wichers
- From the Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (Lange, Goossens, Bakker, Michielse, Leibold, Marcelis, van Os, van Amelsvoort, Schruers); Department of Neuroscience, Center for Contextual Psychiatry, Center for Clinical Psychiatry, KU Leuven, Leuven, Belgium (van Winkel); Department of Psychology, University of Minnesota, Minneapolis, MN, USA (Lissek); Institute for Mental Health Care Eindhoven (GGzE), Eindhoven, The Netherlands (Marcelis); Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, The Netherlands (Wichers); Department of Psychosis Studies, Institute of Psychiatry, King’s College London, King’s Health Partners, London, UK (van Os); Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands (van Os); Faculty of Psychology, Center for Experimental and Learning Psychology, KU Leuven, Leuven, Belgium Schruers)
| | - Jim van Os
- From the Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (Lange, Goossens, Bakker, Michielse, Leibold, Marcelis, van Os, van Amelsvoort, Schruers); Department of Neuroscience, Center for Contextual Psychiatry, Center for Clinical Psychiatry, KU Leuven, Leuven, Belgium (van Winkel); Department of Psychology, University of Minnesota, Minneapolis, MN, USA (Lissek); Institute for Mental Health Care Eindhoven (GGzE), Eindhoven, The Netherlands (Marcelis); Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, The Netherlands (Wichers); Department of Psychosis Studies, Institute of Psychiatry, King’s College London, King’s Health Partners, London, UK (van Os); Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands (van Os); Faculty of Psychology, Center for Experimental and Learning Psychology, KU Leuven, Leuven, Belgium Schruers)
| | - Therese van Amelsvoort
- From the Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (Lange, Goossens, Bakker, Michielse, Leibold, Marcelis, van Os, van Amelsvoort, Schruers); Department of Neuroscience, Center for Contextual Psychiatry, Center for Clinical Psychiatry, KU Leuven, Leuven, Belgium (van Winkel); Department of Psychology, University of Minnesota, Minneapolis, MN, USA (Lissek); Institute for Mental Health Care Eindhoven (GGzE), Eindhoven, The Netherlands (Marcelis); Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, The Netherlands (Wichers); Department of Psychosis Studies, Institute of Psychiatry, King’s College London, King’s Health Partners, London, UK (van Os); Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands (van Os); Faculty of Psychology, Center for Experimental and Learning Psychology, KU Leuven, Leuven, Belgium Schruers)
| | - Koen Schruers
- From the Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (Lange, Goossens, Bakker, Michielse, Leibold, Marcelis, van Os, van Amelsvoort, Schruers); Department of Neuroscience, Center for Contextual Psychiatry, Center for Clinical Psychiatry, KU Leuven, Leuven, Belgium (van Winkel); Department of Psychology, University of Minnesota, Minneapolis, MN, USA (Lissek); Institute for Mental Health Care Eindhoven (GGzE), Eindhoven, The Netherlands (Marcelis); Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, The Netherlands (Wichers); Department of Psychosis Studies, Institute of Psychiatry, King’s College London, King’s Health Partners, London, UK (van Os); Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands (van Os); Faculty of Psychology, Center for Experimental and Learning Psychology, KU Leuven, Leuven, Belgium Schruers)
| |
Collapse
|