1
|
Zvolanek KM, Moia S, Dean JN, Stickland RC, Caballero-Gaudes C, Bright MG. Comparing end-tidal CO 2, respiration volume per time (RVT), and average gray matter signal for mapping cerebrovascular reactivity amplitude and delay with breath-hold task BOLD fMRI. Neuroimage 2023; 272:120038. [PMID: 36958618 DOI: 10.1016/j.neuroimage.2023.120038] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/27/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023] Open
Abstract
Cerebrovascular reactivity (CVR), defined as the cerebral blood flow response to a vasoactive stimulus, is an imaging biomarker with demonstrated utility in a range of diseases and in typical development and aging processes. A robust and widely implemented method to map CVR involves using a breath-hold task during a BOLD fMRI scan. Recording end-tidal CO2 (PETCO2) changes during the breath-hold task is recommended to be used as a reference signal for modeling CVR amplitude in standard units (%BOLD/mmHg) and CVR delay in seconds. However, obtaining reliable PETCO2 recordings requires equipment and task compliance that may not be achievable in all settings. To address this challenge, we investigated two alternative reference signals to map CVR amplitude and delay in a lagged general linear model (lagged-GLM) framework: respiration volume per time (RVT) and average gray matter BOLD response (GM-BOLD). In 8 healthy adults with multiple scan sessions, we compare spatial agreement of CVR maps from RVT and GM-BOLD to those generated with PETCO2. We define a threshold to determine whether a PETCO2 recording has "sufficient" quality for CVR mapping and perform these comparisons in 16 datasets with sufficient PETCO2 and 6 datasets with insufficient PETCO2. When PETCO2 quality is sufficient, both RVT and GM-BOLD produce CVR amplitude maps that are nearly identical to those from PETCO2 (after accounting for differences in scale), with the caveat they are not in standard units to facilitate between-group comparisons. CVR delays are comparable to PETCO2 with an RVT regressor but may be underestimated with the average GM-BOLD regressor. Importantly, when PETCO2 quality is insufficient, RVT and GM-BOLD CVR recover reasonable CVR amplitude and delay maps, provided the participant attempted the breath-hold task. Therefore, our framework offers a solution for achieving high quality CVR maps in both retrospective and prospective studies where sufficient PETCO2 recordings are not available and especially in populations where obtaining reliable measurements is a known challenge (e.g., children). Our results have the potential to improve the accessibility of CVR mapping and to increase the prevalence of this promising metric of vascular health.
Collapse
Affiliation(s)
- Kristina M Zvolanek
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, USA.
| | - Stefano Moia
- Basque Center on Cognition, Brain and Language, Donostia, Gipuzkoa, Spain; Medical Imaging Processing Lab (MIP:Lab), Neuro-X institute, EPFL, Geneva, Switzerland
| | - Joshua N Dean
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, USA
| | - Rachael C Stickland
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Molly G Bright
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
2
|
Li Y, Zhou Z, Li Q, Li T, Julian IN, Guo H, Chen J. Depression Classification Using Frequent Subgraph Mining Based on Pattern Growth of Frequent Edge in Functional Magnetic Resonance Imaging Uncertain Network. Front Neurosci 2022; 16:889105. [PMID: 35578623 PMCID: PMC9106560 DOI: 10.3389/fnins.2022.889105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
The brain network structure is highly uncertain due to the noise in imaging signals and evaluation methods. Recent works have shown that uncertain brain networks could capture uncertain information with regards to functional connections. Most of the existing research studies covering uncertain brain networks used graph mining methods for analysis; for example, the mining uncertain subgraph patterns (MUSE) method was used to mine frequent subgraphs and the discriminative feature selection for uncertain graph classification (DUG) method was used to select discriminant subgraphs. However, these methods led to a lack of effective discriminative information; this reduced the classification accuracy for brain diseases. Therefore, considering these problems, we propose an approximate frequent subgraph mining algorithm based on pattern growth of frequent edge (unFEPG) for uncertain brain networks and a novel discriminative feature selection method based on statistical index (dfsSI) to perform graph mining and selection. Results showed that compared with the conventional methods, the unFEPG and dfsSI methods achieved a higher classification accuracy. Furthermore, to demonstrate the efficacy of the proposed method, we used consistent discriminative subgraph patterns based on thresholding and weighting approaches to compare the classification performance of uncertain networks and certain networks in a bidirectional manner. Results showed that classification performance of the uncertain network was superior to that of the certain network within a defined sparsity range. This indicated that if a better classification performance is to be achieved, it is necessary to select a certain brain network with a higher threshold or an uncertain brain network model. Moreover, if the uncertain brain network model was selected, it is necessary to make full use of the uncertain information of its functional connection.
Collapse
Affiliation(s)
- Yao Li
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Zihao Zhou
- College of Mathematics, Taiyuan University of Technology, Taiyuan, China
| | - Qifan Li
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Tao Li
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Ibegbu Nnamdi Julian
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Hao Guo
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Junjie Chen
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
3
|
Raimondo L, Oliveira ĹAF, Heij J, Priovoulos N, Kundu P, Leoni RF, van der Zwaag W. Advances in resting state fMRI acquisitions for functional connectomics. Neuroimage 2021; 243:118503. [PMID: 34479041 DOI: 10.1016/j.neuroimage.2021.118503] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 01/21/2023] Open
Abstract
Resting state functional magnetic resonance imaging (rs-fMRI) is based on spontaneous fluctuations in the blood oxygen level dependent (BOLD) signal, which occur simultaneously in different brain regions, without the subject performing an explicit task. The low-frequency oscillations of the rs-fMRI signal demonstrate an intrinsic spatiotemporal organization in the brain (brain networks) that may relate to the underlying neural activity. In this review article, we briefly describe the current acquisition techniques for rs-fMRI data, from the most common approaches for resting state acquisition strategies, to more recent investigations with dedicated hardware and ultra-high fields. Specific sequences that allow very fast acquisitions, or multiple echoes, are discussed next. We then consider how acquisition methods weighted towards specific parts of the BOLD signal, like the Cerebral Blood Flow (CBF) or Volume (CBV), can provide more spatially specific network information. These approaches are being developed alongside the commonly used BOLD-weighted acquisitions. Finally, specific applications of rs-fMRI to challenging regions such as the laminae in the neocortex, and the networks within the large areas of subcortical white matter regions are discussed. We finish the review with recommendations for acquisition strategies for a range of typical applications of resting state fMRI.
Collapse
Affiliation(s)
- Luisa Raimondo
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Experimental and Applied Psychology, VU University, Amsterdam, the Netherlands
| | - Ĺcaro A F Oliveira
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Experimental and Applied Psychology, VU University, Amsterdam, the Netherlands
| | - Jurjen Heij
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Experimental and Applied Psychology, VU University, Amsterdam, the Netherlands
| | | | - Prantik Kundu
- Hyperfine Research Inc, Guilford, CT, United States; Icahn School of Medicine at Mt. Sinai, New York, United States
| | - Renata Ferranti Leoni
- InBrain, Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
4
|
Xifra-Porxas A, Kassinopoulos M, Mitsis GD. Physiological and motion signatures in static and time-varying functional connectivity and their subject identifiability. eLife 2021; 10:e62324. [PMID: 34342582 PMCID: PMC8378847 DOI: 10.7554/elife.62324] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 08/02/2021] [Indexed: 02/06/2023] Open
Abstract
Human brain connectivity yields significant potential as a noninvasive biomarker. Several studies have used fMRI-based connectivity fingerprinting to characterize individual patterns of brain activity. However, it is not clear whether these patterns mainly reflect neural activity or the effect of physiological and motion processes. To answer this question, we capitalize on a large data sample from the Human Connectome Project and rigorously investigate the contribution of the aforementioned processes on functional connectivity (FC) and time-varying FC, as well as their contribution to subject identifiability. We find that head motion, as well as heart rate and breathing fluctuations, induce artifactual connectivity within distinct resting-state networks and that they correlate with recurrent patterns in time-varying FC. Even though the spatiotemporal signatures of these processes yield above-chance levels in subject identifiability, removing their effects at the preprocessing stage improves identifiability, suggesting a neural component underpinning the inter-individual differences in connectivity.
Collapse
Affiliation(s)
- Alba Xifra-Porxas
- Graduate Program in Biological and Biomedical Engineering, McGill University, Montréal, Canada
| | - Michalis Kassinopoulos
- Graduate Program in Biological and Biomedical Engineering, McGill University, Montréal, Canada
| | | |
Collapse
|
5
|
Pinto J, Bright MG, Bulte DP, Figueiredo P. Cerebrovascular Reactivity Mapping Without Gas Challenges: A Methodological Guide. Front Physiol 2021; 11:608475. [PMID: 33536935 PMCID: PMC7848198 DOI: 10.3389/fphys.2020.608475] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/02/2020] [Indexed: 01/08/2023] Open
Abstract
Cerebrovascular reactivity (CVR) is defined as the ability of vessels to alter their caliber in response to vasoactive factors, by means of dilating or constricting, in order to increase or decrease regional cerebral blood flow (CBF). Importantly, CVR may provide a sensitive biomarker for pathologies where vasculature is compromised. Furthermore, the spatiotemporal dynamics of CVR observed in healthy subjects, reflecting regional differences in cerebral vascular tone and response, may also be important in functional MRI studies based on neurovascular coupling mechanisms. Assessment of CVR is usually based on the use of a vasoactive stimulus combined with a CBF measurement technique. Although transcranial Doppler ultrasound has been frequently used to obtain global flow velocity measurements, MRI techniques are being increasingly employed for obtaining CBF maps. For the vasoactive stimulus, vasodilatory hypercapnia is usually induced through the manipulation of respiratory gases, including the inhalation of increased concentrations of carbon dioxide. However, most of these methods require an additional apparatus and complex setups, which not only may not be well-tolerated by some populations but are also not widely available. For these reasons, strategies based on voluntary breathing fluctuations without the need for external gas challenges have been proposed. These include the task-based methodologies of breath holding and paced deep breathing, as well as a new generation of methods based on spontaneous breathing fluctuations during resting-state. Despite the multitude of alternatives to gas challenges, existing literature lacks definitive conclusions regarding the best practices for the vasoactive modulation and associated analysis protocols. In this work, we perform an extensive review of CVR mapping techniques based on MRI and CO2 variations without gas challenges, focusing on the methodological aspects of the breathing protocols and corresponding data analysis. Finally, we outline a set of practical guidelines based on generally accepted practices and available data, extending previous reports and encouraging the wider application of CVR mapping methodologies in both clinical and academic MRI settings.
Collapse
Affiliation(s)
- Joana Pinto
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Molly G. Bright
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | - Daniel P. Bulte
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Patrícia Figueiredo
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
6
|
Li YT, Chang CY, Hsu YC, Fuh JL, Kuo WJ, Yeh JNT, Lin FH. Impact of physiological noise in characterizing the functional MRI default-mode network in Alzheimer's disease. J Cereb Blood Flow Metab 2021; 41:166-181. [PMID: 32070180 PMCID: PMC7747160 DOI: 10.1177/0271678x19897442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The functional connectivity of the default-mode network (DMN) monitored by functional magnetic resonance imaging (fMRI) in Alzheimer's disease (AD) patients has been found weaker than that in healthy participants. Since breathing and heart beating can cause fluctuations in the fMRI signal, these physiological activities may affect the fMRI data differently between AD patients and healthy participants. We collected resting-state fMRI data from AD patients and age-matched healthy participants. With concurrent cardiac and respiratory recordings, we estimated both physiological responses phase-locked and non-phase-locked to heart beating and breathing. We found that the cardiac and respiratory physiological responses in AD patients were 3.00 ± 0.51 s and 3.96 ± 0.52 s later (both p < 0.0001) than those in healthy participants, respectively. After correcting the physiological noise in the resting-state fMRI data by population-specific physiological response functions, the DMN estimated by seed-correlation was more localized to the seed region. The DMN difference between AD patients and healthy controls became insignificant after suppressing physiological noise. Our results indicate the importance of controlling physiological noise in the resting-state fMRI analysis to obtain clinically related characterizations in AD.
Collapse
Affiliation(s)
- Yi-Tien Li
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.,Department of Medical Imaging, Taipei Medical University - Shuang-Ho Hospital, New Taipei, Taiwan
| | - Chun-Yuan Chang
- Department of Neurology, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Yi-Cheng Hsu
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jong-Ling Fuh
- Division of General Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University Schools of Medicine, Taipei, Taiwan
| | - Wen-Jui Kuo
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Jhy-Neng Tasso Yeh
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Fa-Hsuan Lin
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| |
Collapse
|
7
|
Brihmat N, Boulanouar K, Darmana R, Biganzoli A, Gasq D, Castel-Lacanal E, Marque P, Loubinoux I. Controlling for lesions, kinematics and physiological noise: impact on fMRI results of spastic post-stroke patients. MethodsX 2020; 7:101056. [PMID: 32995309 PMCID: PMC7509233 DOI: 10.1016/j.mex.2020.101056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/01/2020] [Indexed: 11/15/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is a widely used technique for assessing brain function in both healthy and pathological populations. Some factors, such as motion, physiological noise and lesion presence, can contribute to signal change and confound the fMRI data, but fMRI data processing techniques have been developed to correct for these confounding effects. Fifteen spastic subacute stroke patients underwent fMRI while performing a highly controlled task (i.e. passive extension of their affected and unaffected wrists). We investigated the impact on activation maps of lesion masking during preprocessing and first- and second-level analyses, and of adding wrist extension amplitudes and physiological data as regressors using the Statistical Parametric Mapping toolbox (SPM12). We observed a significant decrease in sensorimotor region activation after the addition of lesion masks and movement/physiological regressors during the processing of stroke patients’ fMRI data. Our results demonstrate that:The unified segmentation routine results in good normalization accuracy when dealing with stroke lesions regardless of their size; Adding a group lesion mask during the second-level analysis seems to be a suitable option when none of the patients have lesions in target regions. Otherwise, no masking is acceptable; Movement amplitude is a significant contributor to the sensorimotor activation observed during passive wrist extension in spastic stroke patients; Movement features and physiological noise are relevant factors when interpreting for sensorimotor activation in studies of the motor system in patients with brain lesions. They can be added as nuisance covariates during large patient groups’ analyses.
Collapse
Affiliation(s)
- Nabila Brihmat
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Kader Boulanouar
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Robert Darmana
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Arnauld Biganzoli
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - David Gasq
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,University Hospital of Toulouse, Department of Functional & Physiological Explorations, Toulouse, France
| | - Evelyne Castel-Lacanal
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,University Hospital of Toulouse, Department of Rehabilitation and Physical Medicine, Toulouse, France
| | - Philippe Marque
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,University Hospital of Toulouse, Department of Rehabilitation and Physical Medicine, Toulouse, France
| | - Isabelle Loubinoux
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| |
Collapse
|
8
|
Chen JE, Lewis LD, Chang C, Tian Q, Fultz NE, Ohringer NA, Rosen BR, Polimeni JR. Resting-state "physiological networks". Neuroimage 2020; 213:116707. [PMID: 32145437 PMCID: PMC7165049 DOI: 10.1016/j.neuroimage.2020.116707] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022] Open
Abstract
Slow changes in systemic brain physiology can elicit large fluctuations in fMRI time series, which manifest as structured spatial patterns of temporal correlations between distant brain regions. Here, we investigated whether such "physiological networks"-sets of segregated brain regions that exhibit similar responses following slow changes in systemic physiology-resemble patterns associated with large-scale networks typically attributed to remotely synchronized neuronal activity. By analyzing a large group of subjects from the 3T Human Connectome Project (HCP) database, we demonstrate brain-wide and noticeably heterogenous dynamics tightly coupled to either respiratory variation or heart rate changes. We show, using synthesized data generated from physiological recordings across subjects, that these physiologically-coupled fluctuations alone can produce networks that strongly resemble previously reported resting-state networks, suggesting that, in some cases, the "physiological networks" seem to mimic the neuronal networks. Further, we show that such physiologically-relevant connectivity estimates appear to dominate the overall connectivity observations in multiple HCP subjects, and that this apparent "physiological connectivity" cannot be removed by the use of a single nuisance regressor for the entire brain (such as global signal regression) due to the clear regional heterogeneity of the physiologically-coupled responses. Our results challenge previous notions that physiological confounds are either localized to large veins or globally coherent across the cortex, therefore emphasizing the necessity to consider potential physiological contributions in fMRI-based functional connectivity studies. The rich spatiotemporal patterns carried by such "physiological" dynamics also suggest great potential for clinical biomarkers that are complementary to large-scale neuronal networks.
Collapse
Affiliation(s)
- Jingyuan E Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA.
| | - Laura D Lewis
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Catie Chang
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Nina E Fultz
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Ned A Ohringer
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Bruce R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA, USA
| |
Collapse
|
9
|
Abreu R, Leal A, Figueiredo P. EEG-Informed fMRI: A Review of Data Analysis Methods. Front Hum Neurosci 2018; 12:29. [PMID: 29467634 PMCID: PMC5808233 DOI: 10.3389/fnhum.2018.00029] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/18/2018] [Indexed: 01/17/2023] Open
Abstract
The simultaneous acquisition of electroencephalography (EEG) with functional magnetic resonance imaging (fMRI) is a very promising non-invasive technique for the study of human brain function. Despite continuous improvements, it remains a challenging technique, and a standard methodology for data analysis is yet to be established. Here we review the methodologies that are currently available to address the challenges at each step of the data analysis pipeline. We start by surveying methods for pre-processing both EEG and fMRI data. On the EEG side, we focus on the correction for several MR-induced artifacts, particularly the gradient and pulse artifacts, as well as other sources of EEG artifacts. On the fMRI side, we consider image artifacts induced by the presence of EEG hardware inside the MR scanner, and the contamination of the fMRI signal by physiological noise of non-neuronal origin, including a review of several approaches to model and remove it. We then provide an overview of the approaches specifically employed for the integration of EEG and fMRI when using EEG to predict the blood oxygenation level dependent (BOLD) fMRI signal, the so-called EEG-informed fMRI integration strategy, the most commonly used strategy in EEG-fMRI research. Finally, we systematically review methods used for the extraction of EEG features reflecting neuronal phenomena of interest.
Collapse
Affiliation(s)
- Rodolfo Abreu
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Lisbon, Portugal
| | - Alberto Leal
- Department of Neurophysiology, Centro Hospitalar Psiquiátrico de Lisboa, Lisbon, Portugal
| | - Patrícia Figueiredo
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
10
|
Impact of the heart rate on the shape of the cardiac response function. Neuroimage 2017; 162:214-225. [DOI: 10.1016/j.neuroimage.2017.08.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/27/2017] [Accepted: 08/24/2017] [Indexed: 11/22/2022] Open
|