1
|
Gangemi E, Piervincenzi C, Mallio CA, Spagnolo G, Petsas N, Gallo IF, Sisto A, Quintiliani L, Bruni V, Quattrocchi CC. Impact of Sleeve Gastrectomy on Brain Structural Integrity. Obes Surg 2024; 34:3203-3215. [PMID: 39073675 DOI: 10.1007/s11695-024-07416-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Potential brain structural differences in people with obesity (PwO) who achieve over or less than 50% excess weight loss (EWL) after sleeve gastrectomy (SG) are currently unknown. We compared measures of gray matter volume (GMV) and white matter (WM) microstructural integrity of PwO who achieved over or less than 50% EWL after SG with a group of controls with obesity (CwO) without a past history of metabolic bariatric surgery. METHODS Sixty-two PwO underwent 1.5 T MRI scanning: 24 who achieved more than 50% of EWL after SG ("group a"), 18 who achieved less than 50% EWL after SG ("group b"), and 20 CwO ("group c"). Voxel-based morphometry and tract-based spatial Statistics analyses were performed to investigate GMV and WM differences among groups. Multiple regression analyses were performed to investigate relationships between structural and psychological measures. RESULTS Group a demonstrated significantly lower GMV loss and higher WM microstructural integrity with respect to group b and c in some cortical regions and several WM tracts. Positive correlations were observed in group a between WM integrity and several psychological measures; the lower the WM integrity, the higher the mental distress, emotional dysregulation, and binge eating behavior. CONCLUSION The present results gain a new understanding of the neural mechanisms of outcome in patients who undergo SG. We found limited GMV changes and extensive WM microstructural differences between PwO who achieved over or less than 50% EWL after SG, which may be due to higher vulnerability of WM to the metabolic dysfunction present in PwO.
Collapse
Affiliation(s)
- Emma Gangemi
- Department of Human Neurosciences, Sapienza University of Rome, Viale Dell'Università 30, 00185, Rome, Italy
| | - Claudia Piervincenzi
- Department of Human Neurosciences, Sapienza University of Rome, Viale Dell'Università 30, 00185, Rome, Italy
| | - Carlo Augusto Mallio
- Unit of Diagnostic Imaging, Fondazione Policlinico Universitario Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 200, 00128, Rome, Italy.
| | - Giuseppe Spagnolo
- Unit of Bariatric Surgery, Fondazione Policlinico Universitario Campus Bio-Medico Di Roma, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Nikolaos Petsas
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Ida Francesca Gallo
- Unit of Bariatric Surgery, Fondazione Policlinico Universitario Campus Bio-Medico Di Roma, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Antonella Sisto
- Clinical Psychological Service, Fondazione Policlinico Universitario Campus Bio-Medico Di Roma, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Livia Quintiliani
- Clinical Psychological Service, Fondazione Policlinico Universitario Campus Bio-Medico Di Roma, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Vincenzo Bruni
- Unit of Bariatric Surgery, Fondazione Policlinico Universitario Campus Bio-Medico Di Roma, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Carlo Cosimo Quattrocchi
- Centre for Medical Sciences-CISMed, University of Trento, Via S. Maria Maddalena 1, 38122, Trento, Italy
| |
Collapse
|
2
|
Chen W, Feng J, Guo J, Dong S, Li R, Ngo JCK, Wang C, Ma Y, Dong Z. Obesity causally influencing brain cortical structure: a Mendelian randomization study. Cereb Cortex 2023; 33:9409-9416. [PMID: 37328935 DOI: 10.1093/cercor/bhad214] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/18/2023] Open
Abstract
Obesity may lead to cognitive impairment and psychiatric disorders, which are associated with alterations in the brain cortical structure. However, the exact causality remains inconclusive. We aimed to conduct two-sample Mendelian randomization (MR) analysis to identify the causal associations of obesity [body mass index (BMI), waist-hip ratio (WHR), and waist-hip ratio adjusted for BMI ((WHRadjBMI)) and brain cortical structure (cortical thickness and cortical surface area). Inverse-variance weighted (IVW) method was used as the main analysis, whereas a series of sensitivity analyses were employed to assess heterogeneity and pleiotropy. The main MR results showed that higher BMI significantly increased the cortical surface area of the transverse temporal (β = 5.13 mm2, 95% confidence interval [CI]: 2.55-7.71, P = 9.9 × 10-5); higher WHR significantly decreased cortical surface area of the inferior temporal (β = -38.60, 95% CI: -56.67- -20.54, P = 1.2 × 10-5), but significantly increased cortical surface area of the isthmus cingulate (β = 14.25, 95% CI: 6.97-21.54, P = 1.2 × 10-4). No significant evidence of pleiotropy was found in the MR analyses. This study supports that obesity has a causal effect on the brain cortical structure. Further studies are warranted to understand the clinical outcomes caused by these effects.
Collapse
Affiliation(s)
- Wenhui Chen
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Jia Feng
- Department of Cellular Biology, Jinan University, Institute of Biomedicine, Guangzhou 510632, China
| | - Jie Guo
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Shiliang Dong
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Rufeng Li
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Jacky C K Ngo
- School of Life Sciences, The Chinese University of Hong Kong., Shatin 518712, China
| | - Cunchuan Wang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Yi Ma
- Department of Cellular Biology, Jinan University, Institute of Biomedicine, Guangzhou 510632, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou 510632, China
- The National Demonstration Center for Experimental Education of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhiyong Dong
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Kilpatrick LA, An HM, Pawar S, Sood R, Gupta A. Neuroimaging Investigations of Obesity: a Review of the Treatment of Sex from 2010. Curr Obes Rep 2023; 12:163-174. [PMID: 36933153 PMCID: PMC10250271 DOI: 10.1007/s13679-023-00498-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 03/19/2023]
Abstract
PURPOSE OF REVIEW To summarize the results of adult obesity neuroimaging studies (structural, resting-state, task-based, diffusion tensor imaging) published from 2010, with a focus on the treatment of sex as an important biological variable in the analysis, and identify gaps in sex difference research. RECENT FINDINGS Neuroimaging studies have shown obesity-related changes in brain structure, function, and connectivity. However, relevant factors such as sex are often not considered. We conducted a systematic review and keyword co-occurrence analysis. Literature searches identified 6281 articles, of which 199 met inclusion criteria. Among these, only 26 (13%) considered sex as an important variable in the analysis, directly comparing the sexes (n = 10; 5%) or providing single-sex/disaggregated data (n = 16, 8%); the remaining studies controlled for sex (n = 120, 60%) or did not consider sex in the analysis (n = 53, 27%). Synthesizing sex-based results, obesity-related parameters (e.g., body mass index, waist circumference, obese status) may be generally associated with more robust morphological alterations in men and more robust structural connectivity alterations in women. Additionally, women with obesity generally expressed increased reactivity in affect-related regions, while men with obesity generally expressed increased reactivity in motor-related regions; this was especially true under a fed state. The keyword co-occurrence analysis indicated that sex difference research was especially lacking in intervention studies. Thus, although sex differences in the brain associated with obesity are known to exist, a large proportion of the literature informing the research and treatment strategies of today has not specifically examined sex effects, which is needed to optimize treatment.
Collapse
Affiliation(s)
- Lisa A Kilpatrick
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA
- David Geffen School of Medicine, Goodman-Luskin Microbiome Center, University of California, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
| | - Hyeon Min An
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA
- David Geffen School of Medicine, Goodman-Luskin Microbiome Center, University of California, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
| | - Shrey Pawar
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
| | - Riya Sood
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
| | - Arpana Gupta
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA.
- David Geffen School of Medicine, Goodman-Luskin Microbiome Center, University of California, Los Angeles, USA.
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA.
| |
Collapse
|
4
|
Li G, Hu Y, Zhang W, Wang J, Ji W, Manza P, Volkow ND, Zhang Y, Wang GJ. Brain functional and structural magnetic resonance imaging of obesity and weight loss interventions. Mol Psychiatry 2023; 28:1466-1479. [PMID: 36918706 PMCID: PMC10208984 DOI: 10.1038/s41380-023-02025-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Obesity has tripled over the past 40 years to become a major public health issue, as it is linked with increased mortality and elevated risk for various physical and neuropsychiatric illnesses. Accumulating evidence from neuroimaging studies suggests that obesity negatively affects brain function and structure, especially within fronto-mesolimbic circuitry. Obese individuals show abnormal neural responses to food cues, taste and smell, resting-state activity and functional connectivity, and cognitive tasks including decision-making, inhibitory-control, learning/memory, and attention. In addition, obesity is associated with altered cortical morphometry, a lowered gray/white matter volume, and impaired white matter integrity. Various interventions and treatments including bariatric surgery, the most effective treatment for obesity in clinical practice, as well as dietary, exercise, pharmacological, and neuromodulation interventions such as transcranial direct current stimulation, transcranial magnetic stimulation and neurofeedback have been employed and achieved promising outcomes. These interventions and treatments appear to normalize hyper- and hypoactivations of brain regions involved with reward processing, food-intake control, and cognitive function, and also promote recovery of brain structural abnormalities. This paper provides a comprehensive literature review of the recent neuroimaging advances on the underlying neural mechanisms of both obesity and interventions, in the hope of guiding development of novel and effective treatments.
Collapse
Affiliation(s)
- Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710071, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710071, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710071, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Jia Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710071, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Weibin Ji
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710071, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710071, China.
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China.
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Ge X, Zheng M, Hu M, Fang X, Geng D, Liu S, Wang L, Zhang J, Guan L, Zheng P, Xie Y, Pan W, Zhou M, Zhou L, Tang R, Zheng K, Yu Y, Huang XF. Butyrate ameliorates quinolinic acid-induced cognitive decline in obesity models. J Clin Invest 2023; 133:154612. [PMID: 36787221 PMCID: PMC9927952 DOI: 10.1172/jci154612] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/20/2022] [Indexed: 02/15/2023] Open
Abstract
Obesity is a risk factor for neurodegenerative disease associated with cognitive dysfunction, including Alzheimer's disease. Low-grade inflammation is common in obesity, but the mechanism between inflammation and cognitive impairment in obesity is unclear. Accumulative evidence shows that quinolinic acid (QA), a neuroinflammatory neurotoxin, is involved in the pathogenesis of neurodegenerative processes. We investigated the role of QA in obesity-induced cognitive impairment and the beneficial effect of butyrate in counteracting impairments of cognition, neural morphology, and signaling. We show that in human obesity, there was a negative relationship between serum QA levels and cognitive function and decreased cortical gray matter. Diet-induced obese mice had increased QA levels in the cortex associated with cognitive impairment. At single-cell resolution, we confirmed that QA impaired neurons, altered the dendritic spine's intracellular signal, and reduced brain-derived neurotrophic factor (BDNF) levels. Using Caenorhabditis elegans models, QA induced dopaminergic and glutamatergic neuron lesions. Importantly, the gut microbiota metabolite butyrate was able to counteract those alterations, including cognitive impairment, neuronal spine loss, and BDNF reduction in both in vivo and in vitro studies. Finally, we show that butyrate prevented QA-induced BDNF reductions by epigenetic enhancement of H3K18ac at BDNF promoters. These findings suggest that increased QA is associated with cognitive decline in obesity and that butyrate alleviates neurodegeneration.
Collapse
Affiliation(s)
- Xing Ge
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Minmin Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Xiaoli Fang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Deqin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Sha Liu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Li Wang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Jun Zhang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Li Guan
- The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Peng Zheng
- Illawarra Health and Medical Research Institute (IHMRI) and School of Medical, Indigenous, and Health, University of Wollongong, New South Wales, Australia
| | - Yuanyi Xie
- Illawarra Health and Medical Research Institute (IHMRI) and School of Medical, Indigenous, and Health, University of Wollongong, New South Wales, Australia
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Menglu Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Limian Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Xu-Feng Huang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China.,Illawarra Health and Medical Research Institute (IHMRI) and School of Medical, Indigenous, and Health, University of Wollongong, New South Wales, Australia
| |
Collapse
|
6
|
Kozarzewski L, Maurer L, Mähler A, Spranger J, Weygandt M. Computational approaches to predicting treatment response to obesity using neuroimaging. Rev Endocr Metab Disord 2022; 23:773-805. [PMID: 34951003 PMCID: PMC9307532 DOI: 10.1007/s11154-021-09701-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2021] [Indexed: 12/11/2022]
Abstract
Obesity is a worldwide disease associated with multiple severe adverse consequences and comorbid conditions. While an increased body weight is the defining feature in obesity, etiologies, clinical phenotypes and treatment responses vary between patients. These variations can be observed within individual treatment options which comprise lifestyle interventions, pharmacological treatment, and bariatric surgery. Bariatric surgery can be regarded as the most effective treatment method. However, long-term weight regain is comparably frequent even for this treatment and its application is not without risk. A prognostic tool that would help predict the effectivity of the individual treatment methods in the long term would be essential in a personalized medicine approach. In line with this objective, an increasing number of studies have combined neuroimaging and computational modeling to predict treatment outcome in obesity. In our review, we begin by outlining the central nervous mechanisms measured with neuroimaging in these studies. The mechanisms are primarily related to reward-processing and include "incentive salience" and psychobehavioral control. We then present the diverse neuroimaging methods and computational prediction techniques applied. The studies included in this review provide consistent support for the importance of incentive salience and psychobehavioral control for treatment outcome in obesity. Nevertheless, further studies comprising larger sample sizes and rigorous validation processes are necessary to answer the question of whether or not the approach is sufficiently accurate for clinical real-world application.
Collapse
Affiliation(s)
- Leonard Kozarzewski
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Clinic of Endocrinology, Diabetes and Metabolism, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Center for Cardiovascular Research, 10117, Berlin, Germany
| | - Lukas Maurer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Clinic of Endocrinology, Diabetes and Metabolism, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Center for Cardiovascular Research, 10117, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Anja Mähler
- Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center (ECRC), 13125, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Clinical Research Center, 10117, Berlin, Germany
| | - Joachim Spranger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Clinic of Endocrinology, Diabetes and Metabolism, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Center for Cardiovascular Research, 10117, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Martin Weygandt
- Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center (ECRC), 13125, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Clinical Research Center, 10117, Berlin, Germany.
| |
Collapse
|
7
|
Zeighami Y, Dadar M, Daoust J, Pelletier M, Biertho L, Bouvet-Bouchard L, Fulton S, Tchernof A, Dagher A, Richard D, Evans A, Michaud A. Impact of Weight Loss on Brain Age: Improved Brain Health Following Bariatric Surgery. Neuroimage 2022; 259:119415. [PMID: 35760293 DOI: 10.1016/j.neuroimage.2022.119415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022] Open
Abstract
Individuals living with obesity tend to have increased brain age, reflecting poorer brain health likely due to grey and white matter atrophy related to obesity. However, it is unclear if older brain age associated with obesity can be reversed following weight loss and cardiometabolic health improvement. The aim of this study was to assess the impact of weight loss and cardiometabolic improvement following bariatric surgery on brain health, as measured by change in brain age estimated based on voxel-based morphometry (VBM) measurements. We used three distinct datasets to perform this study: 1) CamCAN dataset to train the brain age prediction model, 2) Human Connectome Project (HCP) dataset to investigate whether individuals with obesity have greater brain age than individuals with normal weight, and 3) pre-surgery, as well as 4, 12, and 24 month post-surgery data from participants (n=87, age: 44.0±9.2 years, BMI: 43.9±4.2 kg/m2) who underwent a bariatric surgery to investigate whether weight loss and cardiometabolic improvement as a result of bariatric surgery lowers the brain age. As expected, our results from the HCP dataset showed a higher brain age for individuals with obesity compared to individuals with normal weight (T-value = 7.08, p-value < 0.0001). We also found significant improvement in brain health, indicated by a decrease of 2.9 and 5.6 years in adjusted delta age at 12 and 24 months following bariatric surgery compared to baseline (p-value < 0.0005 for both). While the overall effect seemed to be driven by a global change across all brain regions and not from a specific region, our exploratory analysis showed lower delta age in certain brain regions (mainly in somatomotor, visual, and ventral attention networks) at 24 months. This reduced age was also associated with post-surgery improvements in BMI, systolic/diastolic blood pressure, and HOMA-IR (T-valueBMI=4.29, T-valueSBP=4.67, T-valueDBP=4.12, T-valueHOMA-IR=3.16, all p-values < 0.05). In conclusion, these results suggest that obesity-related brain health abnormalities (as measured by delta age) might be reversed by bariatric surgery-induced weight loss and widespread improvements in cardiometabolic alterations.
Collapse
Affiliation(s)
- Yashar Zeighami
- Douglas Research Centre, Department of Psychiatry, McGill University, Montreal, Canada; Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada.
| | - Mahsa Dadar
- Douglas Research Centre, Department of Psychiatry, McGill University, Montreal, Canada
| | - Justine Daoust
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | - Mélissa Pelletier
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | - Laurent Biertho
- Département de chirurgie générale, Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | - Léonie Bouvet-Bouchard
- Département de chirurgie générale, Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | - Stephanie Fulton
- Centre de Recherche du CHUM, Department of Nutrition, Université de Montréal, Montreal Diabetes Research Center, Montreal, QC, Canada
| | - André Tchernof
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | - Alain Dagher
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Denis Richard
- Département de chirurgie générale, Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | - Alan Evans
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Andréanne Michaud
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada.
| |
Collapse
|
8
|
Tüngler A, Van der Auwera S, Wittfeld K, Frenzel S, Terock J, Röder N, Homuth G, Völzke H, Bülow R, Grabe HJ, Janowitz D. Body mass index but not genetic risk is longitudinally associated with altered structural brain parameters. Sci Rep 2021; 11:24246. [PMID: 34930940 PMCID: PMC8688483 DOI: 10.1038/s41598-021-03343-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
Evidence from previous studies suggests that elevated body mass index (BMI) and genetic risk for obesity is associated with reduced brain volume, particularly in areas of reward-related cognition, e.g. the medial prefrontal cortex (AC-MPFC), the orbitofrontal cortex (OFC), the striatum and the thalamus. However, only few studies examined the interplay between these factors in a joint approach. Moreover, previous findings are based on cross-sectional data. We investigated the longitudinal relationship between increased BMI, brain structural magnetic resonance imaging (MRI) parameters and genetic risk scores in a cohort of n = 502 community-dwelling participants from the Study of Health in Pomerania (SHIP) with a mean follow-up-time of 4.9 years. We found that (1) increased BMI values at baseline were associated with decreased brain parameters at follow-up. These effects were particularly pronounced for the OFC and AC-MPFC. (2) The genetic predisposition for BMI had no effect on brain parameters at baseline or follow-up. (3) The interaction between the genetic score for BMI and brain parameters had no effect on BMI at baseline. Finding a significant impact of overweight, but not genetic predisposition for obesity on altered brain structure suggests that metabolic mechanisms may underlie the relationship between obesity and altered brain structure.
Collapse
Affiliation(s)
- Anne Tüngler
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Ellernholzstraße 1-2, 17475, Greifswald, Germany
| | - Sandra Van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Ellernholzstraße 1-2, 17475, Greifswald, Germany.,German Center for Neurodegenerative Diseases DZNE, Site Rostock/Greifswald, Ellernholzstraße 1-2, 17475, Greifswald, Germany
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Ellernholzstraße 1-2, 17475, Greifswald, Germany.,German Center for Neurodegenerative Diseases DZNE, Site Rostock/Greifswald, Ellernholzstraße 1-2, 17475, Greifswald, Germany
| | - Stefan Frenzel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Ellernholzstraße 1-2, 17475, Greifswald, Germany
| | - Jan Terock
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Ellernholzstraße 1-2, 17475, Greifswald, Germany.,Department of Psychiatry and Psychotherapy, HELIOS Hanseklinikum Stralsund, Rostocker Chaussee 70, 18437, Stralsund, Germany
| | - Nele Röder
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Ellernholzstraße 1-2, 17475, Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Str. 8, 17475, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Walther-Rathenau-Str. 48, 17487, Greifswald, Germany
| | - Robin Bülow
- Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Hans Jörgen Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Ellernholzstraße 1-2, 17475, Greifswald, Germany.,German Center for Neurodegenerative Diseases DZNE, Site Rostock/Greifswald, Ellernholzstraße 1-2, 17475, Greifswald, Germany
| | - Deborah Janowitz
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Ellernholzstraße 1-2, 17475, Greifswald, Germany. .,Department of Psychiatry and Psychotherapy, HELIOS Hanseklinikum Stralsund, Rostocker Chaussee 70, 18437, Stralsund, Germany.
| |
Collapse
|
9
|
Rajan L, McKay CC, Malavé GS, Pearce AL, Cherry JBC, Mackey E, Nadler EP, Vaidya CJ. Effects of severe obesity and sleeve gastrectomy on cortical thickness in adolescents. Obesity (Silver Spring) 2021; 29:1516-1525. [PMID: 34318605 PMCID: PMC10871717 DOI: 10.1002/oby.23206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Neurocognitive differences in pediatric obesity may be underpinned by cortical structural alterations. Differences in cortical thickness associated with severe obesity were examined, and preliminary evidence was sought for changes following vertical sleeve gastrectomy (VSG). METHODS A total of 18 adolescents with severe obesity (OB) and 17 without obesity (nOB), aged 14 to 21, underwent T1-weighted structural magnetic resonance imaging. A subset was scanned twice 5 months apart to compare cortical thickness following VSG (n = 6) with two control groups: wait-listed (n = 9) and nOB (n = 12). RESULTS At baseline, OB had a thinner cortex than nOB in motor and superior parietal cortices. At follow-up, VSG adolescents lost weight, the wait-listed group gained weight, and nOB did not change. Group × Time interactions indicated that VSG had cortical thinning in orbitofrontal, primary sensorimotor, superior, and middle temporal cortices and thickening in lingual, fusiform, and lateral occipital cortices. Wait-listed and nOB groups largely did not change. CONCLUSIONS Severe obesity is associated with a thinner cortex in motor and attentional function-associated regions. VSG resulted in cortical thinning in reward valuation, sensory, and perceptual regions and thickening in visual regions. Surgery-related changes in regions distinct from those associated with obesity suggest compensation, rather than normalization. These results provide preliminary evidence supporting structural neural alterations following sleeve gastrectomy.
Collapse
Affiliation(s)
- Laya Rajan
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Cameron C. McKay
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | | | - Alaina L. Pearce
- Department of Nutritional Sciences, The Pennsylvania State University, State College, Pennsylvania, USA
| | | | - Eleanor Mackey
- Children’s Research Institute, Children’s National Hospital, Washington, DC, USA
| | - Evan P. Nadler
- Children’s Research Institute, Children’s National Hospital, Washington, DC, USA
- Division of Pediatric Surgery, Children’s National Hospital, Washington, DC, USA
| | - Chandan J. Vaidya
- Department of Psychology, Georgetown University, Washington, DC, USA
- Children’s Research Institute, Children’s National Hospital, Washington, DC, USA
| |
Collapse
|
10
|
Heinrichs HS, Beyer F, Medawar E, Prehn K, Ordemann J, Flöel A, Witte AV. Effects of bariatric surgery on functional connectivity of the reward and default mode network: A pre-registered analysis. Hum Brain Mapp 2021; 42:5357-5373. [PMID: 34432350 PMCID: PMC8519880 DOI: 10.1002/hbm.25624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/07/2021] [Accepted: 08/02/2021] [Indexed: 12/18/2022] Open
Abstract
Obesity imposes serious health risks and involves alterations in resting‐state functional connectivity of brain networks involved in eating behavior. Bariatric surgery is an effective treatment, but its effects on functional connectivity are still under debate. In this pre‐registered study, we aimed to determine the effects of bariatric surgery on major resting‐state brain networks (reward and default mode network) in a longitudinal controlled design. Thirty‐three bariatric surgery patients and 15 obese waiting‐list control patients underwent magnetic resonance imaging at baseline, after 6 and 12 months. We conducted a pre‐registered whole‐brain time‐by‐group interaction analysis, and a time‐by‐group interaction analysis on within‐network connectivity. In exploratory analyses, we investigated the effects of weight loss and head motion. Bariatric surgery compared to waiting did not significantly affect functional connectivity of the reward network and the default mode network (FWE‐corrected p > .05), neither whole‐brain nor within‐network. In exploratory analyses, surgery‐related BMI decrease (FWE‐corrected p = .041) and higher average head motion (FWE‐corrected p = .021) resulted in significantly stronger connectivity of the reward network with medial posterior frontal regions. This pre‐registered well‐controlled study did not support a strong effect of bariatric surgery, compared to waiting, on major resting‐state brain networks after 6 months. Exploratory analyses indicated that head motion might have confounded the effects. Data pooling and more rigorous control of within‐scanner head motion during data acquisition are needed to substantiate effects of bariatric surgery on brain organization.
Collapse
Affiliation(s)
- Hannah S Heinrichs
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Frauke Beyer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,CRC 1052 "Obesity Mechanisms", Subproject A1, University of Leipzig, Leipzig, Germany
| | - Evelyn Medawar
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Kristin Prehn
- Department of Neurology & NeuroCure Clinical Research Center, Charité University Medicine, Berlin, Germany.,Department of Psychology, Medical School Hamburg, Hamburg, Germany
| | - Jürgen Ordemann
- Center for Bariatric and Metabolic Surgery, Charité University Medicine, Berlin, Germany.,Center for Bariatric and Metabolic Surgery, Vivantes Clinic Spandau, Berlin, Germany
| | - Agnes Flöel
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany.,German Center for Neurodegenerative Diseases (DZNE), Greifswald, Germany
| | - A Veronica Witte
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,CRC 1052 "Obesity Mechanisms", Subproject A1, University of Leipzig, Leipzig, Germany.,Clinic for Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
11
|
Zeighami Y, Iceta S, Dadar M, Pelletier M, Nadeau M, Biertho L, Lafortune A, Tchernof A, Fulton S, Evans A, Richard D, Dagher A, Michaud A. Spontaneous neural activity changes after bariatric surgery: A resting-state fMRI study. Neuroimage 2021; 241:118419. [PMID: 34302967 DOI: 10.1016/j.neuroimage.2021.118419] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/24/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Metabolic disorders associated with obesity could lead to alterations in brain structure and function. Whether these changes can be reversed after weight loss is unclear. Bariatric surgery provides a unique opportunity to address these questions because it induces marked weight loss and metabolic improvements which in turn may impact the brain in a longitudinal fashion. Previous studies found widespread changes in grey matter (GM) and white matter (WM) after bariatric surgery. However, findings regarding changes in spontaneous neural activity following surgery, as assessed with the fractional amplitude of low frequency fluctuations (fALFF) and regional homogeneity of neural activity (ReHo), are scarce and heterogenous. In this study, we used a longitudinal design to examine the changes in spontaneous neural activity after bariatric surgery (comparing pre- to post-surgery), and to determine whether these changes are related to cardiometabolic variables. METHODS The study included 57 participants with severe obesity (mean BMI=43.1 ± 4.3 kg/m2) who underwent sleeve gastrectomy (SG), biliopancreatic diversion with duodenal switch (BPD), or Roux-en-Y gastric bypass (RYGB), scanned prior to bariatric surgery and at follow-up visits of 4 months (N = 36), 12 months (N = 29), and 24 months (N = 14) after surgery. We examined fALFF and ReHo measures across 1022 cortical and subcortical regions (based on combined Schaeffer-Xiao parcellations) using a linear mixed effect model. Voxel-based morphometry (VBM) based on T1-weighted images was also used to measure GM density in the same regions. We also used an independent sample from the Human Connectome Project (HCP) to assess regional differences between individuals who had normal-weight (N = 46) or severe obesity (N = 46). RESULTS We found a global increase in the fALFF signal with greater increase within dorsolateral prefrontal cortex, precuneus, inferior temporal gyrus, and visual cortex. This effect was more significant 4 months after surgery. The increase within dorsolateral prefrontal cortex, temporal gyrus, and visual cortex was more limited after 12 months and only present in the visual cortex after 24 months. These increases in neural activity measured by fALFF were also significantly associated with the increase in GM density following surgery. Furthermore, the increase in neural activity was significantly related to post-surgery weight loss and improvement in cardiometabolic variables, such as blood pressure. In the independent HCP sample, normal-weight participants had higher global and regional fALFF signals, mainly in dorsolateral/medial frontal cortex, precuneus and middle/inferior temporal gyrus compared to the obese participants. These BMI-related differences in fALFF were associated with the increase in fALFF 4 months post-surgery especially in regions involved in control, default mode and dorsal attention networks. CONCLUSIONS Bariatric surgery-induced weight loss and improvement in metabolic factors are associated with widespread global and regional increases in neural activity, as measured by fALFF signal. These findings alongside the higher fALFF signal in normal-weight participants compared to participants with severe obesity in an independent dataset suggest an early recovery in the neural activity signal level after the surgery.
Collapse
Affiliation(s)
- Yashar Zeighami
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Canada
| | - Sylvain Iceta
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | - Mahsa Dadar
- CERVO Brain Research Center, Centre intégré universitaire santé et services sociaux de la Capitale Nationale, Université Laval, Québec, Canada
| | - Mélissa Pelletier
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | - Mélanie Nadeau
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | - Laurent Biertho
- Département de chirurgie générale, Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | - Annie Lafortune
- Département de chirurgie générale, Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | - André Tchernof
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | - Stephanie Fulton
- Centre de Recherche du CHUM and Montreal Diabetes Research Center, Montreal, QC, Canada
| | - Alan Evans
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Canada
| | - Denis Richard
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | - Alain Dagher
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Andréanne Michaud
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada.
| |
Collapse
|
12
|
Daoust J, Schaffer J, Zeighami Y, Dagher A, García-García I, Michaud A. White matter integrity differences in obesity: A meta-analysis of diffusion tensor imaging studies. Neurosci Biobehav Rev 2021; 129:133-141. [PMID: 34284063 DOI: 10.1016/j.neubiorev.2021.07.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 06/07/2021] [Accepted: 07/15/2021] [Indexed: 01/17/2023]
Abstract
Some Diffusion Tensor Imaging studies have shown a loss of white matter (WM) integrity linked to impaired cognitive function in obese individuals. However, inconsistent WM integrity changes have been reported. We aimed to identify which WM tracts show consistent changes with obesity. We conducted a systematic search to find studies examining the association between obesity-related measures and Fractional Anisotropy (FA) or Mean Diffusivity. We performed a meta-analysis with FA datasets using Anisotropic Effect Size-Signed Differential Mapping software. The meta-analysis showed that increased obesity measurements were related to reduced FA in the genu of the corpus callosum. We validated our findings using an independent sample from the Human Connectome Project dataset, which supports lower FA in this region in individuals with obesity compared to those with normal weight (p = 0.028). Our findings provide evidence that obesity is associated with reduced WM integrity in the genu of the corpus callosum, a tract linking frontal areas involved in executive function. Future studies are needed on the mechanisms linking obesity with loss of WM integrity.
Collapse
Affiliation(s)
- Justine Daoust
- Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, 2725 chemin Sainte-Foy, Québec, Québec, G1V 4G5, Canada; School of Nutrition, Université Laval, 2325 rue de l'Université, Québec, Québec, G1V 0A6, Canada
| | - Joelle Schaffer
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, Québec, H3A 2B4, Canada
| | - Yashar Zeighami
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, Québec, H3A 2B4, Canada
| | - Alain Dagher
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, Québec, H3A 2B4, Canada
| | - Isabel García-García
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Gran Via de les Corts Catalanes, 585, 08007, Barcelona, Spain
| | - Andréanne Michaud
- Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, 2725 chemin Sainte-Foy, Québec, Québec, G1V 4G5, Canada; School of Nutrition, Université Laval, 2325 rue de l'Université, Québec, Québec, G1V 0A6, Canada.
| |
Collapse
|
13
|
Almby KE, Lundqvist MH, Abrahamsson N, Kvernby S, Fahlström M, Pereira MJ, Gingnell M, Karlsson FA, Fanni G, Sundbom M, Wiklund U, Haller S, Lubberink M, Wikström J, Eriksson JW. Effects of Gastric Bypass Surgery on the Brain: Simultaneous Assessment of Glucose Uptake, Blood Flow, Neural Activity, and Cognitive Function During Normo- and Hypoglycemia. Diabetes 2021; 70:1265-1277. [PMID: 33674408 PMCID: PMC8275889 DOI: 10.2337/db20-1172] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/25/2021] [Indexed: 12/15/2022]
Abstract
While Roux-en-Y gastric bypass (RYGB) surgery in obese individuals typically improves glycemic control and prevents diabetes, it also frequently causes asymptomatic hypoglycemia. Previous work showed attenuated counterregulatory responses following RYGB. The underlying mechanisms as well as the clinical consequences are unclear. In this study, 11 subjects without diabetes with severe obesity were investigated pre- and post-RYGB during hyperinsulinemic normo-hypoglycemic clamps. Assessments were made of hormones, cognitive function, cerebral blood flow by arterial spin labeling, brain glucose metabolism by 18F-fluorodeoxyglucose (FDG) positron emission tomography, and activation of brain networks by functional MRI. Post- versus presurgery, we found a general increase of cerebral blood flow but a decrease of total brain FDG uptake during normoglycemia. During hypoglycemia, there was a marked increase in total brain FDG uptake, and this was similar for post- and presurgery, whereas hypothalamic FDG uptake was reduced during hypoglycemia. During hypoglycemia, attenuated responses of counterregulatory hormones and improvements in cognitive function were seen postsurgery. In early hypoglycemia, there was increased activation post- versus presurgery of neural networks in brain regions implicated in glucose regulation, such as the thalamus and hypothalamus. The results suggest adaptive responses of the brain that contribute to lowering of glycemia following RYGB, and the underlying mechanisms should be further elucidated.
Collapse
Affiliation(s)
- Kristina E Almby
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Martin H Lundqvist
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Niclas Abrahamsson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Sofia Kvernby
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Markus Fahlström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Malin Gingnell
- Department of Neurosciences and Department of Psychology, Uppsala University, Uppsala, Sweden
| | - F Anders Karlsson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Giovanni Fanni
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Magnus Sundbom
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Urban Wiklund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Sven Haller
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mark Lubberink
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Johan Wikström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Gautron L. The Phantom Satiation Hypothesis of Bariatric Surgery. Front Neurosci 2021; 15:626085. [PMID: 33597843 PMCID: PMC7882491 DOI: 10.3389/fnins.2021.626085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/06/2021] [Indexed: 01/26/2023] Open
Abstract
The excitation of vagal mechanoreceptors located in the stomach wall directly contributes to satiation. Thus, a loss of gastric innervation would normally be expected to result in abrogated satiation, hyperphagia, and unwanted weight gain. While Roux-en-Y-gastric bypass (RYGB) inevitably results in gastric denervation, paradoxically, bypassed subjects continue to experience satiation. Inspired by the literature in neurology on phantom limbs, I propose a new hypothesis in which damage to the stomach innervation during RYGB, including its vagal supply, leads to large-scale maladaptive changes in viscerosensory nerves and connected brain circuits. As a result, satiation may continue to arise, sometimes at exaggerated levels, even in subjects with a denervated or truncated stomach. The same maladaptive changes may also contribute to dysautonomia, unexplained pain, and new emotional responses to eating. I further revisit the metabolic benefits of bariatric surgery, with an emphasis on RYGB, in the light of this phantom satiation hypothesis.
Collapse
Affiliation(s)
- Laurent Gautron
- Department of Internal Medicine, Center for Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
15
|
Tanaka H, Gourley DD, Dekhtyar M, Haley AP. Cognition, Brain Structure, and Brain Function in Individuals with Obesity and Related Disorders. Curr Obes Rep 2020; 9:544-549. [PMID: 33064270 DOI: 10.1007/s13679-020-00412-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/05/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Obesity is one of the most serious public health concerns. Excess adipose tissue, particularly with a centralized distribution, is associated with cognitive decline. Indeed, obesity has been associated with a number of adverse changes in brain function and structure that can be detected by neuroimaging techniques. These obesity-associated changes in the brain are associated with cognitive dysfunction. RECENT FINDINGS While the pathways by which excess adipose tissue affects brain function are not fully understood, available evidence points towards insulin resistance, inflammation, and vascular dysfunction, as possible mechanisms responsible for the observed relations between obesity and cognitive impairment. It appears that weight loss is related to better brain and cognitive outcomes and that cognitive impairment due to obesity may be reversible.
Collapse
Affiliation(s)
- Hirofumi Tanaka
- Department of Kinesiology and Health Education, The University of Texas at Austin, 2109 San Jacinto Blvd, D3700, Austin, TX, 78712, USA.
| | - Drew D Gourley
- Department of Kinesiology and Health Education, The University of Texas at Austin, 2109 San Jacinto Blvd, D3700, Austin, TX, 78712, USA
| | - Maria Dekhtyar
- Department of Psychology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Andreana P Haley
- Department of Psychology, The University of Texas at Austin, Austin, TX, 78712, USA
- Biomedical Imaging Center, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
16
|
Lizarbe B, Campillo B, Guadilla I, López-Larrubia P, Cerdán S. Magnetic resonance assessment of the cerebral alterations associated with obesity development. J Cereb Blood Flow Metab 2020; 40:2135-2151. [PMID: 32703110 PMCID: PMC7585928 DOI: 10.1177/0271678x20941263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/28/2020] [Accepted: 06/14/2020] [Indexed: 12/15/2022]
Abstract
Obesity is a current threat to health care systems, affecting approximately 13% of the world's adult population, and over 18% children and adolescents. The rise of obesity is fuelled by inadequate life style habits, as consumption of diets rich in fats and sugars which promote, additionally, the development of associated comorbidities. Obesity results from a neuroendocrine imbalance in the cerebral mechanisms controlling food intake and energy expenditure, including the hypothalamus and the reward and motivational centres. Specifically, high-fat diets are known to trigger an early inflammatory response in the hypothalamus that precedes weight gain, is time-dependent, and eventually extends to the remaining appetite regulating regions in the brain. Multiple magnetic resonance imaging (MRI) and spectroscopy (MRS) methods are currently available to characterize different features of cerebral obesity, including diffusion weighted, T2 and volumetric imaging and 1H and 13C spectroscopic evaluations. In particular, consistent evidences have revealed increased water diffusivity and T2 values, decreased grey matter volumes, and altered metabolic profiles and fluxes, in the brain of animal models and in obese humans. This review provides an integrative interpretation of the physio-pathological processes associated with obesity development in the brain, and the MRI and MRS methods implemented to characterize them.
Collapse
Affiliation(s)
- Blanca Lizarbe
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, Madrid, Spain
| | - Basilio Campillo
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, Madrid, Spain
| | - Irene Guadilla
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, Madrid, Spain
| | | | - Sebastián Cerdán
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, Madrid, Spain
| |
Collapse
|
17
|
Neuroanatomical changes in white and grey matter after sleeve gastrectomy. Neuroimage 2020; 213:116696. [DOI: 10.1016/j.neuroimage.2020.116696] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
|
18
|
Li P, Shan H, Nie B, Liu H, Dong G, Guo Y, Du J, Gao H, Ma L, Li D, Shan B. Sleeve Gastrectomy Rescuing the Altered Functional Connectivity of Lateral but Not Medial Hypothalamus in Subjects with Obesity. Obes Surg 2020; 29:2191-2199. [PMID: 30895508 DOI: 10.1007/s11695-019-03822-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Lateral and medial hypothalamus (LH and MH) play important roles in energy balance. Changed hypothalamic function has been found in subjects with obesity. However, the effect of bariatric surgery on the function of the two sub-regions has been poorly investigated. METHODS Thirty-eight subjects with obesity and 34 age- and sex-matched normal-weight controls were included. Seventeen of the 38 subjects underwent laparoscopic sleeve gastrectomy. Functional magnetic resonance imaging data and metabolic parameters were collected to investigate functional connectivity networks of the two hypothalamic sub-regions as well as the influence of sleeve gastrectomy on the two networks in subjects with obesity. RESULTS Compared to normal-weight controls, pre-surgical subjects had increased functional connectivity (FC) in the reward region (putamen) within the LH network, and increased FC in somatosensory cortical area (insula), as well as decreased FC in the cognitive control regions (prefrontal regions) within the MH network. After the surgery, post-surgical FC of the putamen within the LH network changed towards the patterns found in the control group. Furthermore, the changes in fasting glucose before and after the surgery were associated with the changes in FC of the putamen within the LH network. CONCLUSIONS The FC within the LH and MH networks were changed in subjects with obesity. Part of these altered FC was rescued after the surgery.
Collapse
Affiliation(s)
- Panlong Li
- Department of Physics, Zhengzhou University, Zhengzhou, 450001, Henan, China.,Division of Nuclear Technology and Applications, Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Shan
- Department of Radiology, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Binbin Nie
- Division of Nuclear Technology and Applications, Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua Liu
- Division of Nuclear Technology and Applications, Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanglong Dong
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yulin Guo
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jin Du
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Hongkai Gao
- Department of General Surgery, The General Hospital of Chinese People's Armed Police Forces, Beijing, 100039, China
| | - Lin Ma
- Department of Radiology, Chinese People's Liberation Army General Hospital, Beijing, 100853, China.
| | - Demin Li
- Department of Physics, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Baoci Shan
- Division of Nuclear Technology and Applications, Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China. .,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China.
| |
Collapse
|
19
|
Prehn K, Profitlich T, Rangus I, Heßler S, Witte AV, Grittner U, Ordemann J, Flöel A. Bariatric Surgery and Brain Health-A Longitudinal Observational Study Investigating the Effect of Surgery on Cognitive Function and Gray Matter Volume. Nutrients 2020; 12:nu12010127. [PMID: 31906475 PMCID: PMC7019777 DOI: 10.3390/nu12010127] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/13/2019] [Accepted: 12/28/2019] [Indexed: 01/16/2023] Open
Abstract
Dietary modifications leading to weight loss have been suggested as a means to improve brain health. In morbid obesity, bariatric surgery (BARS)-including different procedures, such as vertical sleeve gastrectomy (VSG), gastric banding (GB), or Roux-en-Y gastric bypass (RYGB) surgery-is performed to induce rapid weight loss. Combining reduced food intake and malabsorption of nutrients, RYGB might be most effective, but requires life-long follow-up treatment. Here, we tested 40 patients before and six months after surgery (BARS group) using a neuropsychological test battery and compared them with a waiting list control group. Subsamples of both groups underwent structural MRI and were examined for differences between surgical procedures. No substantial differences between BARS and control group emerged with regard to cognition. However, larger gray matter volume in fronto-temporal brain areas accompanied by smaller volume in the ventral striatum was seen in the BARS group compared to controls. RYGB patients compared to patients with restrictive treatment alone (VSG/GB) had higher weight loss, but did not benefit more in cognitive outcomes. In sum, the data of our study suggest that BARS might lead to brain structure reorganization at long-term follow-up, while the type of surgical procedure does not differentially modulate cognitive performance.
Collapse
Affiliation(s)
- Kristin Prehn
- Department of Neurology & NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Department of Psychology, Medical School Hamburg, 20457 Hamburg, Germany
- Correspondence: (K.P.); (A.F.); Tel.: +49-40-36122649384 (K.P.); +49-3834-866875 (A.F.)
| | - Thorge Profitlich
- Department of Neurology & NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Ida Rangus
- Department of Neurology & NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Sebastian Heßler
- Department of Neurology & NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - A. Veronica Witte
- Department of Neurology & NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Department of Neurology, Aging and Obesity Group, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Ulrike Grittner
- Institute of Biometry and Clinical Epidemiology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Jürgen Ordemann
- Center for Bariatric and Metabolic Surgery, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Center for Bariatric and Metabolic Surgery, Vivantes Klinikum Spandau, 13585 Berlin, Germany
| | - Agnes Flöel
- Department of Neurology, University of Greifswald, 17489 Greifswald, Germany
- German Center for Neurodegenerative Diseases, Standort Rostock/Greifswald, 17489 Greifswald, Germany
- Correspondence: (K.P.); (A.F.); Tel.: +49-40-36122649384 (K.P.); +49-3834-866875 (A.F.)
| |
Collapse
|
20
|
Wang Y, Ji G, Hu Y, Li G, Ding Y, Hu C, Liu L, Zhang W, von Deneen KM, Han Y, Cui G, Wang H, Manza P, Volkow ND, Nie Y, Wang GJ, Zhang Y. Laparoscopic sleeve gastrectomy induces sustained changes in gray and white matter brain volumes and resting functional connectivity in obese patients. Surg Obes Relat Dis 2020; 16:1-9. [PMID: 31679986 PMCID: PMC6994381 DOI: 10.1016/j.soard.2019.09.074] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/11/2019] [Accepted: 09/21/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Obesity is associated with decreased brain gray- (GM) and white-matter (WM) volumes in regions. Laparoscopic sleeve gastrectomy (LSG) is an effective bariatric surgery associated with neuroplastic changes in patients with obesity at 1 month postLSG. OBJECTIVE To investigate whether LSG can induce sustained neuroplastic recovery of brain structural abnormalities, and whether structural changes are accompanied by functional alterations. SETTING University hospital, longitudinal study. METHODS Structural magnetic resonance imaging and voxel-based morphometry analysis were employed to assess GM/WM volumes in 30 obese participants at preLSG and 1 and 3 months postLSG. One-way analysis of variance modeled time effects on GM/WM volumes, and then alterations in resting-state functional connectivity (RSFC) were assessed. RESULTS Significant time effects on GM volumes were in caudate (F = 11.20), insula (INS; F = 10.11), posterior cingulate cortex (PCC; F = 13.32), and inferior frontal gyrus (F = 12.18), and on WM volumes in anterior cingulate cortex (F = 15.70), PCC (F = 15.56), and parahippocampus (F = 17.96, PFDR < .05). Post hoc tests showed significantly increased GM volumes in caudate (mean change ± SEM .018 ± .005 and P = .001, .031 ± .007 and P < .001), INS (.027 ± .008 and P = .003, .043 ± .009 and P < .001), and PCC (.008 ± .004 and P = .042, .026 ± .006 and P < .001), and increased WM volumes in anterior cingulate cortex (.029 ± .006 and P < .001, .041 ± .008 and P < .001), PCC (.017 ± .004 and P < .001, .032 ± .006 and P < .001), and parahippocampus (.031 ± .008 and P =.001, .075 ± .013 and P < .001) at 1 and 3 months postLSG compared with preLSG. Significant increases in GM volumes were in caudate (.013 ± .006 and P = .036), PCC (.019 ± .006 and P = .006), and inferior frontal gyrus (.019 ± .005 and P = .001), and in WM volumes in anterior cingulate cortex (.012 ± .005 and P = .028), PCC (.014 ± .006 and P = .017), and parahippocampus (.044 ± .014 and P = .003) at 3 relative to 1 month postLSG. GM volumes in INS and PCC showed a positive correlation at 1 (r = .57, P = .001) and 3 months postLSG (r = .55, P = .001). GM volume in INS and PCC were positively correlated with RSFC of INS-PCC (r = .40 and P = .03, r = .55 and P = .001) and PCC-INS (r = .37 and P = .046, r = .57 and P < .001) at 1 month postLSG. GM volume in INS was also positively correlated with RSFC of INS-PCC (r = .44, P = .014) and PCC-INS (r = .38, P = .037) at 3 months postLSG. CONCLUSION LSG induces sustained structural brain changes, which might mediate long-term benefits of bariatric surgery in weight reduction. Associations between regional GM volume and RSFC suggest that LSG-induced structural changes contribute to RSFC changes.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Gang Ji
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China.
| | - Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Yueyan Ding
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Chunxin Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Lei Liu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Karen M von Deneen
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Yu Han
- Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Guangbin Cui
- Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, Xi'an, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland.
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China.
| |
Collapse
|
21
|
Brain structural differences in monozygotic twins discordant for body mass index. Neuroimage 2019; 201:116006. [DOI: 10.1016/j.neuroimage.2019.07.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 11/18/2022] Open
|
22
|
Neuroimaging correlates of cognitive changes after bariatric surgery. Surg Obes Relat Dis 2019; 16:119-127. [PMID: 31711948 DOI: 10.1016/j.soard.2019.09.076] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/23/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND Obesity has been associated with cognitive deficits and increased risk for developing dementia. Bariatric surgery may result in improved cognitive function; however, the underlying structural and functional brain correlates are unclear. OBJECTIVES This longitudinal study explores the hypothesis that specific brain regions and networks underlie cognitive changes after bariatric surgery. SETTING University Hospital, United States. METHODS Seventeen patients were recruited for this prospective cohort study, including 9 patients undergoing bariatric surgery, and 8 age-, sex-, and education level-matched healthy, nonobese control patients. Bariatric patients underwent longitudinal neuropsychologic tests and magnetic resonance imaging (MRI) scans both before and 6 months after surgery. One patient was lost to follow-up. The same neuropsychologic tests and MRI scans were performed for control patients. Differences in MRI and neuropsychologic testing between bariatric patients and control patients, and longitudinal changes within bariatric patients were assessed. RESULTS At baseline, bariatric patients demonstrated deficits in cognitive function relative to control patients, including pattern comparison (P = .009) and picture sequence memory (P = .004), which improved after significant weight loss. Baseline cognitive deficits in bariatric patients were accompanied by significantly lower left executive control network connectivity on resting-state functional MRI relative to control patients (P = .028), but differences resolved or diminished after bariatric surgery. Longitudinal improvements in pattern comparison performance correlated significantly with increases in left executive control network connectivity (r = .819; P = .013). No significant group or longitudinal differences were found in brain perfusion or brain white matter lesions. CONCLUSIONS Individuals with obesity undergoing bariatric surgery exhibit deficits in cognitive function and specific alterations of brain networks; however, cognitive performance can improve, and executive control network connectivity can increase after weight loss from bariatric surgery.
Collapse
|
23
|
Hankir MK, Rullmann M, Seyfried F, Preusser S, Poppitz S, Heba S, Gousias K, Hoyer J, Schütz T, Dietrich A, Müller K, Pleger B. Roux-en-Y gastric bypass surgery progressively alters radiologic measures of hypothalamic inflammation in obese patients. JCI Insight 2019; 4:131329. [PMID: 31465301 DOI: 10.1172/jci.insight.131329] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022] Open
Abstract
There is increased interest in whether bariatric surgeries such as Roux-en-Y gastric bypass (RYGB) achieve their profound weight-lowering effects in morbidly obese individuals through the brain. Hypothalamic inflammation is a well-recognized etiologic factor in obesity pathogenesis and so represents a potential target of RYGB, but clinical evidence in support of this is limited. We therefore assessed hypothalamic T2-weighted signal intensities (T2W SI) and fractional anisotropy (FA) values, 2 validated radiologic measures of brain inflammation, in relation to BMI and fat mass, as well as circulating inflammatory (C-reactive protein; CrP) and metabolic markers in a cohort of 27 RYGB patients at baseline and 6 and 12 months after surgery. We found that RYGB progressively increased hypothalamic T2W SI values, while it progressively decreased hypothalamic FA values. Regression analyses further revealed that this could be most strongly linked to plasma CrP levels, which independently predicted hypothalamic FA values when adjusting for age, sex, fat mass, and diabetes diagnosis. These findings suggest that RYGB has a major time-dependent impact on hypothalamic inflammation status, possibly by attenuating peripheral inflammation. They also suggest that hypothalamic FA values may provide a more specific radiologic measure of hypothalamic inflammation than more commonly used T2W SI values.
Collapse
Affiliation(s)
- Mohammed K Hankir
- Department of Experimental Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Michael Rullmann
- IFB AdiposityDiseases and.,Department of Nuclear Medicine, University Hospital Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Collaborative Research Centre 1052 in Obesity Mechanisms, University of Leipzig, Leipzig, Germany
| | - Florian Seyfried
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Sven Preusser
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Sindy Poppitz
- IFB AdiposityDiseases and.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Konstantinos Gousias
- Department of Neurosurgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Jana Hoyer
- Department of Behavioral Epidemiology, Department of Psychology, Technische Universität Dresden, Dresden, Germany
| | | | - Arne Dietrich
- IFB AdiposityDiseases and.,Department of Bariatric Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Karsten Müller
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Burkhard Pleger
- IFB AdiposityDiseases and.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Collaborative Research Centre 1052 in Obesity Mechanisms, University of Leipzig, Leipzig, Germany.,Department of Neurology and
| |
Collapse
|
24
|
Rullmann M, Preusser S, Poppitz S, Heba S, Gousias K, Hoyer J, Schütz T, Dietrich A, Müller K, Hankir MK, Pleger B. Adiposity Related Brain Plasticity Induced by Bariatric Surgery. Front Hum Neurosci 2019; 13:290. [PMID: 31507395 PMCID: PMC6718731 DOI: 10.3389/fnhum.2019.00290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/12/2019] [Indexed: 01/14/2023] Open
Abstract
Previous magnetic resonance imaging (MRI) studies revealed structural-functional brain reorganization 12 months after gastric-bypass surgery, encompassing cortical and subcortical regions of all brain lobes as well as the cerebellum. Changes in the mean of cluster-wise gray/white matter density (GMD/WMD) were correlated with the individual loss of body mass index (BMI), rendering the BMI a potential marker of widespread surgery-induced brain plasticity. Here, we investigated voxel-by-voxel associations between surgery-induced changes in adiposity, metabolism and inflammation and markers of functional and structural neural plasticity. We re-visited the data of patients who underwent functional and structural MRI, 6 months (n = 27) and 12 months after surgery (n = 22), and computed voxel-wise regression analyses. Only the surgery-induced weight loss was significantly associated with brain plasticity, and this only for GMD changes. After 6 months, weight loss overlapped with altered GMD in the hypothalamus, the brain’s homeostatic control site, the lateral orbitofrontal cortex, assumed to host reward and gustatory processes, as well as abdominal representations in somatosensory cortex. After 12 months, weight loss scaled with GMD changes in right cerebellar lobule VII, involved in language-related/cognitive processes, and, by trend, with the striatum, assumed to underpin (food) reward. These findings suggest time-dependent and weight-loss related gray matter plasticity in brain regions involved in the control of eating, sensory processing and cognitive functioning.
Collapse
Affiliation(s)
- Michael Rullmann
- IFB Adiposity Diseases, Leipzig University Medical Centre, Leipzig, Germany.,Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Collaborative Research Centre 1052 Obesity Mechanisms, University of Leipzig, Leipzig, Germany
| | - Sven Preusser
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Sindy Poppitz
- IFB Adiposity Diseases, Leipzig University Medical Centre, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Stefanie Heba
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Konstantinos Gousias
- Department of Neurosurgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Jana Hoyer
- Department of Behavioral Epidemiology, Technische Universität Dresden, Dresden, Germany.,Department of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Tatjana Schütz
- IFB Adiposity Diseases, Leipzig University Medical Centre, Leipzig, Germany
| | - Arne Dietrich
- IFB Adiposity Diseases, Leipzig University Medical Centre, Leipzig, Germany.,Department of Bariatric Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Karsten Müller
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Mohammed K Hankir
- Department of Experimental Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Burkhard Pleger
- IFB Adiposity Diseases, Leipzig University Medical Centre, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Collaborative Research Centre 1052 Obesity Mechanisms, University of Leipzig, Leipzig, Germany.,Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
25
|
Short-term improvements in cognitive function following vertical sleeve gastrectomy and Roux-en Y gastric bypass: a direct comparison study. Surg Endosc 2019; 34:2248-2257. [PMID: 31367985 DOI: 10.1007/s00464-019-07015-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cognitive deficits are observed in individuals with obesity. While bariatric surgery can reverse these deficits, it remains unclear whether surgery type differentially influences cognitive outcome. We compared the extent to which vertical sleeve gastrectomy (VSG) and Roux-en Y gastric bypass (RYGB) ameliorated cognitive impairments associated with obesity. METHODS Female participants approved for VSG (N = 18) or RYGB (N = 18) were administered cognitive measures spanning the domains of attention [Hopkins Verbal Learning Test (HVLT) Trial 1 and Letter Number Sequencing], processing speed [Stroop Color Trial, Symbol Digit Modalities Test, and Trail Making Part A], memory [HVLT Retained and HVLT Discrimination Index], and executive functioning (Stroop Color Word Trials and Trail Making Part B-A) prior to surgery and at 2 weeks and 3 months following surgery. Scores for each cognitive domain were calculated and compared between surgical cohorts using repeated measures analyses of variance. RESULTS Significant weight loss was observed 2 weeks and 3 months following RYGB and VSG and was accompanied by improvements in processing speed and executive functioning. Patients who received RYGB also experienced improved attention as early as 2 weeks, which persisted at 3 months. This was not observed in individuals who underwent VSG. No changes in memory were observed from baseline measures in either group. CONCLUSIONS This is the first report of cognitive improvements following VSG and the first direct comparison of cognitive improvements following RYGB and VSG. Short-term improvements in specific domains of cognitive function are observed at the beginning of the active weight loss phase following bariatric surgery that persisted to 3 months. The anatomical distinction between the two surgeries and resulting differential metabolic profiles may be responsible for the improvements in attention observed following RYGB but not following VSG.
Collapse
|
26
|
Gray matter reduction related to decreased serum creatinine and increased triglyceride, Hemoglobin A1C, and low-density lipoprotein in subjects with obesity. Neuroradiology 2019; 61:703-710. [PMID: 31011773 DOI: 10.1007/s00234-019-02202-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/21/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE Altered brain volume and metabolic variables have been found in subjects with obesity. However, the role of metabolic parameters in gray matter volume (GMV) has been poorly investigated. This study aimed to investigate the relationship between the metabolic parameters and brain volume in subjects with obesity. METHODS Thirty-seven subjects with obesity and 39 age and sex matched normal-weight controls were included in this study. Eighteen of the 37 participants who underwent sleeve gastrectomy were included in the longitudinal analysis. Blood samples and high-resolution 3T T1-weighted magnetic resonance images were collected. Metabolic parameters in plasma and GMV were measured. RESULTS Multiple linear regression analysis showed that gray matter reduction in several cognition-related cortices including right angular gyrus, superior occipital cortex, superior parietal cortex, and cerebellum was related to decreased creatinine, as well as increased triglyceride, HbA1c, and low-density lipoprotein in plasma in subjects with obesity. Weight loss after the surgery induced significant recovery of altered metabolic parameters and decreased gray matter volume. Furthermore, changes in the four metabolic parameters before and after the surgery were associated with changes in gray matter volume. CONCLUSION Our results suggest that the gray matter reduction is related to decreased creatinine as well as increased triglyceride, HbA1c, and low-density lipoprotein in plasma in subjects with obesity.
Collapse
|
27
|
Bongetta D, Zoia C, Luzzi S, Maestro MD, Peri A, Bichisao G, Sportiello D, Canavero I, Pietrabissa A, Galzio RJ. Neurosurgical issues of bariatric surgery: A systematic review of the literature and principles of diagnosis and treatment. Clin Neurol Neurosurg 2018; 176:34-40. [PMID: 30500756 DOI: 10.1016/j.clineuro.2018.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/09/2018] [Accepted: 11/11/2018] [Indexed: 02/06/2023]
Abstract
Bariatric surgery is gaining popularity as the treatment of choice of morbid obesity since this condition is constantly increasing over the last decades. Several complications have emerged as the number of surgeries and follow-up data increase. No systematic review of the neurosurgery-related potential complications has been performed to date. Objective of this work is to fill this gap. We reviewed the literature for bariatric surgery-related complications involving the neurosurgical practice. Moreover, we present explicative cases dealing with peri- and post-operative therapeutic precautions. Three pathological mechanisms emerged. The first is related to intracranial pressure alterations and may imply either intracranial hypertension or hypotension syndromes in the operative or post-operative periods. The second is the deficiency of macro- and micro-nutrients which are potential risk factors for neuro- or myelo-encephalopathies, fetal malformations and spine disorders. The third is a dysregulation of both autonomic and endocrine / pituitary control. Neurosurgeons must be aware of the several, multifactorial neurosurgery-related complications of bariatric surgery as their prevalence is likely to be higher in the next few years.
Collapse
Affiliation(s)
- Daniele Bongetta
- Neurosurgery Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Italy.
| | - Cesare Zoia
- Neurosurgery Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Sabino Luzzi
- Neurosurgery Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Italy
| | - Mattia Del Maestro
- Neurosurgery Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Life, Health and Environmental Sciences (MESVA), University of L'Aquila, Italy
| | - Andrea Peri
- General Surgery Unit II, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Germana Bichisao
- Anesthesia and Intensive Care Unit I, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Debora Sportiello
- Anesthesia and Intensive Care Unit I, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Andrea Pietrabissa
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Italy; General Surgery Unit II, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Renato J Galzio
- Neurosurgery Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Italy
| |
Collapse
|