1
|
Friedrichs-Maeder C, Lepeu G, Baud MO. Gauging and controlling excitability in cortical disorders. Curr Opin Neurol 2025; 38:140-150. [PMID: 39960270 DOI: 10.1097/wco.0000000000001345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
PURPOSE OF REVIEW Cortical excitability, defined as the cortex's responsiveness to incoming stimuli, is a fundamental concept in neuroscience and a targetable mechanism for controlling brain dysfunctions such as epilepsy, as well as other neurological and psychiatric disorders. In this review, we delineate the boundaries between physiological and pathological excitability, highlighting recent theoretical, experimental, and translational advances relevant to human brain disorders. Specifically, we describe the dynamic regulation of cortical excitability and propose practical means to monitor its known fluctuations as to guide therapeutic interventions. RECENT FINDINGS From a conceptual standpoint, the last decade of research on cortical excitability has benefited from dynamical systems theory, which studies the behavior of nonlinear systems (here, the cortex) and their resilience to perturbations in different conditions (here, variable excitability). We review how fundamental relationships between excitability and resilience were verified in the brain in a series of recent studies. We also review natural fluctuations in cortical excitability, and how these may open windows of vulnerability for the expression of cortical dysfunctions. We then turn to the practicalities of measuring and monitoring cortical excitability, a latent variable that must be actively probed. SUMMARY Practical means for gauging cortical excitability likely have broad applicability. To enable new developments in clinical practice, a principled design of pharmacological and neurostimulation therapies must leverage current understanding of cortical dynamics.
Collapse
Affiliation(s)
- Cecilia Friedrichs-Maeder
- Sleep-Wake-Epilepsy Center, Center for Experimental Neurology, Department of Neurology, Inselspital Bern, University Hospital, University of Bern, Bern
| | - Grégory Lepeu
- Department of Neurology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Maxime O Baud
- Sleep-Wake-Epilepsy Center, Center for Experimental Neurology, Department of Neurology, Inselspital Bern, University Hospital, University of Bern, Bern
| |
Collapse
|
2
|
Mayol-Troncoso R, Gaspar PA, Verdugo R, Mariman JJ, Maldonado PE. Fixational eye movements and their associated evoked potentials during natural vision are altered in schizophrenia. Schizophr Res Cogn 2024; 38:100324. [PMID: 39238484 PMCID: PMC11375315 DOI: 10.1016/j.scog.2024.100324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 07/17/2024] [Accepted: 08/11/2024] [Indexed: 09/07/2024]
Abstract
Background Visual exploration is abnormal in schizophrenia; however, few studies have investigated the physiological responses during selecting objectives in more ecological scenarios. This study aimed to demonstrate that people with schizophrenia have difficulties observing the prominent elements of an image due to a deficit mechanism of sensory modulation (active sensing) during natural vision. Methods An electroencephalogram recording with eye tracking data was collected on 18 healthy individuals and 18 people affected by schizophrenia while looking at natural images. These had a prominent color element and blinking produced by changes in image luminance. Results We found fewer fixations when all images were scanned, late focus on prominent image areas, decreased amplitude in the eye-fixation-related potential, and decreased intertrial coherence in the SCZ group. Conclusions The decrease in the visual attention response evoked by the prominence of visual stimuli in patients affected by schizophrenia is generated by a reduction in endogenous attention mechanisms to initiate and maintain visual exploration. Further work is required to explain the relationship of this decrease with clinical indicators.
Collapse
Affiliation(s)
- Rocío Mayol-Troncoso
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Chile
- Millennium Nucleus to Improve the Mental Health of Adolescents and Youths, Imhay, Chile
- Facultad de Psicología, Universidad Alberto Hurtado, Chile
- Clínica Psiquiátrica Universitaria, Hospital Clínico de la Universidad de Chile, Laboratorio Psiquiatría Traslacional
| | - Pablo A Gaspar
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Chile
- Millennium Nucleus to Improve the Mental Health of Adolescents and Youths, Imhay, Chile
- Clínica Alemana, Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile
- Clínica Psiquiátrica Universitaria, Hospital Clínico de la Universidad de Chile, Laboratorio Psiquiatría Traslacional
| | - Roberto Verdugo
- Biomedical Neuroscience Institute (BNI)
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile
- Instituto Psiquiátrico Dr. José Horwitz Barak, Chile
| | - Juan J Mariman
- Department of Physical Therapy, Faculty of Arts and Physical Education, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
- Department of Physical Therapy, Faculty of Medicine, Universidad de Chile
- Nucleus of wellbeing and human development, education research center (CIE-UMCE), Universidad Metropolitana de Ciencias de la educación
| | - Pedro E Maldonado
- Biomedical Neuroscience Institute (BNI)
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile
- Nacional Center for Artificial Intelligence (CENIA), Chile
| |
Collapse
|
3
|
Allen SJ, Morishita H. Local and long-range input balance: A framework for investigating frontal cognitive circuit maturation in health and disease. SCIENCE ADVANCES 2024; 10:eadh3920. [PMID: 39292771 PMCID: PMC11409946 DOI: 10.1126/sciadv.adh3920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
Frontal cortical circuits undergo prolonged maturation across childhood and adolescence; however, it remains unknown what specific changes are occurring at the circuit level to establish adult cognitive function. With the recent advent of circuit dissection techniques, it is now feasible to examine circuit-specific changes in connectivity, activity, and function in animal models. Here, we propose that the balance of local and long-range inputs onto frontal cognitive circuits is an understudied metric of circuit maturation. This review highlights research on a frontal-sensory attention circuit that undergoes refinement of local/long-range connectivity, regulated by circuit activity and neuromodulatory signaling, and evaluates how this process may occur generally in the frontal cortex to support adult cognitive behavior. Notably, this balance can be bidirectionally disrupted through various mechanisms relevant to psychiatric disorders. Pharmacological or environmental interventions to normalize or reset the local and long-range balance could hold great therapeutic promise to prevent or rescue cognitive deficits.
Collapse
Affiliation(s)
- Samuel J. Allen
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Hirofumi Morishita
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
4
|
Wang Y, Ouyang L, Fan L, Zheng W, Li Z, Tang J, Yuan L, Li C, Jin K, Liu W, Chen X, He Y, Ma X. Functional and structural abnormalities of thalamus in individuals at early stage of schizophrenia. Schizophr Res 2024; 271:292-299. [PMID: 39079406 DOI: 10.1016/j.schres.2024.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Thalamic abnormalities in schizophrenia are recognized, alongside cognitive deficits. However, the current findings about these abnormalities during the prodromal period remain relatively few and inconsistent. This study applied multimodal methods to explore the alterations in thalamic function and structure and their relationship with cognitive function in first-episode schizophrenia (FES) patients and ultra-high-risk (UHR) individuals, aiming to affirm the thalamus's role in schizophrenia development and cognitive deficits. METHODS 75 FES patients, 60 UHR individuals, and 60 healthy controls (HC) were recruited. Among the three groups, gray matter volume (GMV) and functional connectivity (FC) were evaluated to reflect the structural and functional abnormalities in the thalamus. Pearson correlation was used to calculate the association between these abnormalities and cognitive impairments. RESULTS No significant difference in GMV of the thalamus was found among the abovementioned three groups. Compared with HC individuals, FES patients had decreased thalamocortical FC mostly in the thalamocortical triple network, including the default mode network (DMN), salience network (SN), and executive control network (ECN). UHR individuals had similar but milder dysconnectivity as the FES group. Furthermore, FC between the left thalamus and right putamen was significantly correlated with execution speed and attention in the FES group. CONCLUSIONS Our findings revealed decreased thalamocortical FC associated with cognitive deficits in FES and UHR subjects. This improves our understanding of the functional alterations in thalamus in prodromal stage of schizophrenia and the related factors of the cognitive impairment of the disease. TRIAL REGISTRATION ClinicalTrials.govNCT03965598; https://clinicaltrials.gov/ct2/show/NCT03965598.
Collapse
Affiliation(s)
- Yujue Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lijun Ouyang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lejia Fan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Wenxiao Zheng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zongchang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jinsong Tang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Liu Yuan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chunwang Li
- Department of Radiology, Hunan Children's Hospital, Changsha, China
| | - Ke Jin
- Department of Radiology, Hunan Children's Hospital, Changsha, China
| | - Weiqing Liu
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China; Laboratory for Molecular Mechanisms of Brain Development, Center for Brain Science (CBS), RIKEN, Wako, Saitama, Japan
| | - Xiaogang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; China National Technology Institute on Mental Disorders, Changsha, Hunan, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China; Institute of Mental Health, Changsha, Hunan, China; Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Ying He
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; China National Technology Institute on Mental Disorders, Changsha, Hunan, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China; Institute of Mental Health, Changsha, Hunan, China; Hunan Medical Center for Mental Health, Changsha, Hunan, China.
| | - Xiaoqian Ma
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; China National Technology Institute on Mental Disorders, Changsha, Hunan, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China; Institute of Mental Health, Changsha, Hunan, China; Hunan Medical Center for Mental Health, Changsha, Hunan, China.
| |
Collapse
|
5
|
Li X, Kang Q, Gu H. A comprehensive review for machine learning on neuroimaging in obsessive-compulsive disorder. Front Hum Neurosci 2023; 17:1280512. [PMID: 38021236 PMCID: PMC10646310 DOI: 10.3389/fnhum.2023.1280512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is a common mental disease, which can exist as a separate disease or become one of the symptoms of other mental diseases. With the development of society, statistically, the incidence rate of obsessive-compulsive disorder has been increasing year by year. At present, in the diagnosis and treatment of OCD, The clinical performance of patients measured by scales is no longer the only quantitative indicator. Clinical workers and researchers are committed to using neuroimaging to explore the relationship between changes in patient neurological function and obsessive-compulsive disorder. Through machine learning and artificial learning, medical information in neuroimaging can be better displayed. In this article, we discuss recent advancements in artificial intelligence related to neuroimaging in the context of Obsessive-Compulsive Disorder.
Collapse
Affiliation(s)
- Xuanyi Li
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qiang Kang
- Department of Radiology, Xing’an League People’s Hospital of Inner Mongolia, Mongolia, China
| | - Hanxing Gu
- Department of Geriatric Psychiatry, Qingdao Mental Health Center, Qingdao, Shandong, China
| |
Collapse
|
6
|
Sibilska S, Mofleh R, Kocsis B. Development of network oscillations through adolescence in male and female rats. Front Cell Neurosci 2023; 17:1135154. [PMID: 37213214 PMCID: PMC10196069 DOI: 10.3389/fncel.2023.1135154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/19/2023] [Indexed: 05/23/2023] Open
Abstract
The primary aim of this research was to study the developmental trajectory of oscillatory synchronization in neural networks of normal healthy rats during adolescence, corresponding to the vulnerable age of schizophrenia prodrome in human. To monitor the development of oscillatory networks through adolescence we used a "pseudo-longitudinal" design. Recordings were performed in terminal experiments under urethane anesthesia, every day from PN32 to PN52 using rats-siblings from the same mother, to reduce individual innate differences between subjects. We found that hippocampal theta power decreased and delta power in prefrontal cortex increased through adolescence, indicating that the oscillations in the two different frequency bands follow distinct developmental trajectories to reach the characteristic oscillatory activity found in adults. Perhaps even more importantly, theta rhythm showed age-dependent stabilization toward late adolescence. Furthermore, sex differences was found in both networks, more prominent in the prefrontal cortex compared with hippocampus. Delta increase was stronger in females and theta stabilization was completed earlier in females, in postnatal days PN41-47, while in males it was only completed in late adolescence. Our finding of a protracted maturation of theta-generating networks in late adolescence is overall consistent with the findings of longitudinal studies in human adolescents, in which oscillatory networks demonstrated a similar pattern of maturation.
Collapse
|
7
|
Giersch A, Laprévote V. Perceptual Functioning. Curr Top Behav Neurosci 2023; 63:79-113. [PMID: 36306053 DOI: 10.1007/7854_2022_393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Perceptual disorders are not part of the diagnosis criteria for schizophrenia. Yet, a considerable amount of work has been conducted, especially on visual perception abnormalities, and there is little doubt that visual perception is altered in patients. There are several reasons why such perturbations are of interest in this pathology. They are observed during the prodromal phase of psychosis, they are related to the pathophysiology (clinical disorganization, disorders of the sense of self), and they are associated with neuronal connectivity disorders. Perturbations occur at different levels of processing and likely affect how patients interact and adapt to their surroundings. The literature has become very large, and here we try to summarize different models that have guided the exploration of perception in patients. We also illustrate several lines of research by showing how perception has been investigated and by discussing the interpretation of the results. In addition to discussing domains such as contrast sensitivity, masking, and visual grouping, we develop more recent fields like processing at the level of the retina, and the timing of perception.
Collapse
Affiliation(s)
- Anne Giersch
- University of Strasbourg, INSERM U1114, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France.
| | - Vincent Laprévote
- University of Strasbourg, INSERM U1114, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
- CLIP Centre de Liaison et d'Intervention Précoce, Centre Psychothérapique de Nancy, Laxou, France
- Faculté de Médecine, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
8
|
Günther A, Hanganu-Opatz IL. Neuronal oscillations: early biomarkers of psychiatric disease? Front Behav Neurosci 2022; 16:1038981. [PMID: 36600993 PMCID: PMC9806131 DOI: 10.3389/fnbeh.2022.1038981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
Our understanding of the environmental and genetic factors contributing to the wide spectrum of neuropsychiatric disorders has significantly increased in recent years. Impairment of neuronal network activity during early development has been suggested as a contributor to the emergence of neuropsychiatric pathologies later in life. Still, the neurobiological substrates underlying these disorders remain yet to be fully understood and the lack of biomarkers for early diagnosis has impeded research into curative treatment options. Here, we briefly review current knowledge on potential biomarkers for emerging neuropsychiatric disease. Moreover, we summarize recent findings on aberrant activity patterns in the context of psychiatric disease, with a particular focus on their potential as early biomarkers of neuropathologies, an essential step towards pre-symptomatic diagnosis and, thus, early intervention.
Collapse
|
9
|
Bridgwater M, Bachman P, Tervo-Clemmens B, Haas G, Hayes R, Luna B, Salisbury DF, Jalbrzikowski M. Developmental influences on symptom expression in antipsychotic-naïve first-episode psychosis. Psychol Med 2022; 52:1698-1709. [PMID: 33019960 PMCID: PMC8021611 DOI: 10.1017/s0033291720003463] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The neurodevelopmental model of psychosis was established over 30 years ago; however, the developmental influence on psychotic symptom expression - how age affects clinical presentation in first-episode psychosis - has not been thoroughly investigated. METHODS Using generalized additive modeling, which allows for linear and non-linear functional forms of age-related change, we leveraged symptom data from a large sample of antipsychotic-naïve individuals with first-episode psychosis (N = 340, 12-40 years, 1-12 visits), collected at the University of Pittsburgh from 1990 to 2017. We examined relationships between age and severity of perceptual and non-perceptual positive symptoms and negative symptoms. We tested for age-associated effects on change in positive or negative symptom severity following baseline assessment and explored the time-varying relationship between perceptual and non-perceptual positive symptoms across adolescent development. RESULTS Perceptual positive symptom severity significantly decreased with increasing age (F = 7.0, p = 0.0007; q = 0.003) while non-perceptual positive symptom severity increased with age (F = 4.1, p = 0.01, q = 0.02). Anhedonia severity increased with increasing age (F = 6.7, p = 0.00035; q = 0.0003), while flat affect decreased in severity with increased age (F = 9.8, p = 0.002; q = 0.006). Findings remained significant when parental SES, IQ, and illness duration were included as covariates. There were no developmental effects on change in positive or negative symptom severity (all p > 0.25). Beginning at age 18, there was a statistically significant association between severity of non-perceptual and perceptual symptoms. This relationship increased in strength throughout adulthood. CONCLUSIONS These findings suggest that as maturation proceeds, perceptual symptoms attenuate while non-perceptual symptoms are enhanced. Findings underscore how pathological brain-behavior relationships vary as a function of development.
Collapse
Affiliation(s)
- Miranda Bridgwater
- Department of Psychology, University of Maryland, Baltimore County, Maryland, USA
| | - Peter Bachman
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Gretchen Haas
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- VISN4 MIRECC at VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Rebecca Hayes
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dean F Salisbury
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Maria Jalbrzikowski
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Hubl D, Michel C, Schultze-Lutter F, Hauf M, Schimmelmann BG, Kaess M, Kindler J. Basic symptoms and gray matter volumes of patients at clinical high risk for psychosis. Psychol Med 2021; 51:2666-2674. [PMID: 32404212 DOI: 10.1017/s0033291720001282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Clinical high-risk (CHR) for psychosis is indicated by ultra-high risk (UHR) and basic symptom (BS) criteria; however, conversion rates are highest when both UHR and BS criteria are fulfilled (UHR&BS). While BSs are considered the most immediate expression of neurobiological aberrations underlying the development of psychosis, research on neurobiological correlates of BS is scarce. METHODS We investigated gray matter volumes (GMV) of 20 regions of interest (ROI) previously associated with UHR criteria in 90 patients from the Bern early detection service: clinical controls (CC), first-episode psychosis (FEP), UHR, BS and UHR&BS. We expected lowest GMV in FEP and UHR&BS, and highest volume in CC with UHR and BS in-between. RESULTS Significantly, lower GMV was detected in FEP and UHR&BS patients relative to CC with no other significant between-group differences. When ROIs were analyzed separately, seven showed a significant group effect (FDR corrected), with five (inferior parietal, medial orbitofrontal, lateral occipital, middle temporal, precuneus) showing significantly lower GM volume in the FEP and/or UHR&BS groups than in the CC group (Bonferroni corrected). In the CHR group, only COGDIS scores correlated negatively with cortical volumes. CONCLUSIONS This is the first study to demonstrate that patients who fulfill both UHR and BS criteria - a population that has been associated with higher conversion rates - exhibit more severe GMV reductions relative to those who satisfy BS or UHR criteria alone. This result was mediated by the BS in the UHR&BS group, as only the severity of BS was linked to GMV reductions.
Collapse
Affiliation(s)
- Daniela Hubl
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Chantal Michel
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Frauke Schultze-Lutter
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Martinus Hauf
- Support Center for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, University of Bern, Switzerland
| | - Benno G Schimmelmann
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Switzerland
- University Hospital of Child and Adolescent Psychiatry, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Michael Kaess
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Switzerland
- Section for Translational Psychobiology in Child and Adolescent Psychiatry, Department of Child and Adolescent Psychiatry, Center for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Jochen Kindler
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Switzerland
| |
Collapse
|
11
|
Cruz G, Grent-'t-Jong T, Krishnadas R, Palva JM, Palva S, Uhlhaas PJ. Long range temporal correlations (LRTCs) in MEG-data during emerging psychosis: Relationship to symptoms, medication-status and clinical trajectory. Neuroimage Clin 2021; 31:102722. [PMID: 34130193 PMCID: PMC8209846 DOI: 10.1016/j.nicl.2021.102722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/30/2021] [Accepted: 06/04/2021] [Indexed: 12/24/2022]
Abstract
Long-Range Temporal Correlations (LRTCs) index the capacity of the brain to optimally process information. Previous research has shown that patients with chronic schizophrenia present altered LRTCs at alpha and beta oscillations. However, it is currently unclear at which stage of schizophrenia aberrant LRTCs emerge. To address this question, we investigated LRTCs in resting-state magnetoencephalographic (MEG) recordings obtained from patients with affective disorders and substance abuse (clinically at low-risk of psychosis, CHR-N), patients at clinical high-risk of psychosis (CHR-P) (n = 115), as well as patients with a first episode (FEP) (n = 25). Matched healthy controls (n = 47) served as comparison group. LRTCs were obtained for frequencies from 4 to 40 Hz and correlated with clinical and neuropsychological data. In addition, we examined the relationship between LRTCs and transition to psychosis in CHR-P participants, and the relationship between LRTC and antipsychotic medication in FEP participants. Our results show that participants from the clinical groups have similar LRTCs to controls. In addition, LRTCs did not correlate with clinical and neurocognitive variables across participants nor did LRTCs predict transition to psychosis. Therefore, impaired LRTCs do not reflect a feature in the clinical trajectory of psychosis. Nevertheless, reduced LRTCs in the beta-band over posterior sensors of medicated FEP participants indicate that altered LRTCs may appear at the onset of the illness. Future studies are needed to elucidate the role of anti-psychotic medication in altered LRTCs.
Collapse
Affiliation(s)
- Gabriela Cruz
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom.
| | - Tineke Grent-'t-Jong
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom; Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - Rajeev Krishnadas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - J Matias Palva
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom; Neuroscience Centre, Helsinki Institute of Life Science, University of Helsinki, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University, Finland
| | - Satu Palva
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom; Neuroscience Centre, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom; Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
12
|
Aguilar DD, Radzik LK, Schiffino FL, Folorunso OO, Zielinski MR, Coyle JT, Balu DT, McNally JM. Altered neural oscillations and behavior in a genetic mouse model of NMDA receptor hypofunction. Sci Rep 2021; 11:9031. [PMID: 33907230 PMCID: PMC8079688 DOI: 10.1038/s41598-021-88428-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/09/2021] [Indexed: 12/18/2022] Open
Abstract
Abnormalities in electroencephalographic (EEG) biomarkers occur in patients with schizophrenia and those clinically at high risk for transition to psychosis and are associated with cognitive impairment. Converging evidence suggests N-methyl-D-aspartate receptor (NMDAR) hypofunction plays a central role in the pathophysiology of schizophrenia and likely contributes to biomarker impairments. Thus, characterizing these biomarkers is of significant interest for early diagnosis of schizophrenia and development of novel treatments. We utilized in vivo EEG recordings and behavioral analyses to perform a battery of electrophysiological biomarkers in an established model of chronic NMDAR hypofunction, serine racemase knockout (SRKO) mice, and their wild-type littermates. SRKO mice displayed impairments in investigation-elicited gamma power that corresponded with reduced short-term social recognition and enhanced background (pre-investigation) gamma activity. Additionally, SRKO mice exhibited sensory gating impairments in both evoked-gamma power and event-related potential amplitude. However, other biomarkers including the auditory steady-state response, sleep spindles, and state-specific power spectral density were generally neurotypical. In conclusion, SRKO mice demonstrate how chronic NMDAR hypofunction contributes to deficits in certain translationally-relevant EEG biomarkers altered in schizophrenia. Importantly, our gamma band findings suggest an aberrant signal-to-noise ratio impairing cognition that occurs with NMDAR hypofunction, potentially tied to impaired task-dependent alteration in functional connectivity.
Collapse
Affiliation(s)
- David D Aguilar
- VA Boston Healthcare System, West Roxbury, MA, USA. .,Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Leana K Radzik
- Department of Neuroscience, Stonehill College, Easton, MA, USA
| | - Felipe L Schiffino
- VA Boston Healthcare System, West Roxbury, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Oluwarotimi O Folorunso
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.,Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, USA
| | - Mark R Zielinski
- VA Boston Healthcare System, West Roxbury, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Joseph T Coyle
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.,Laboratory of Psychiatric and Molecular Neuroscience, McLean Hospital, Belmont, MA, USA
| | - Darrick T Balu
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.,Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, USA
| | - James M McNally
- VA Boston Healthcare System, West Roxbury, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Bitzenhofer SH, Pöpplau JA, Chini M, Marquardt A, Hanganu-Opatz IL. A transient developmental increase in prefrontal activity alters network maturation and causes cognitive dysfunction in adult mice. Neuron 2021; 109:1350-1364.e6. [PMID: 33675685 PMCID: PMC8063718 DOI: 10.1016/j.neuron.2021.02.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 01/06/2021] [Accepted: 02/08/2021] [Indexed: 12/26/2022]
Abstract
Disturbed neuronal activity in neuropsychiatric pathologies emerges during development and might cause multifold neuronal dysfunction by interfering with apoptosis, dendritic growth, and synapse formation. However, how altered electrical activity early in life affects neuronal function and behavior in adults is unknown. Here, we address this question by transiently increasing the coordinated activity of layer 2/3 pyramidal neurons in the medial prefrontal cortex of neonatal mice and monitoring long-term functional and behavioral consequences. We show that increased activity during early development causes premature maturation of pyramidal neurons and affects interneuronal density. Consequently, altered inhibitory feedback by fast-spiking interneurons and excitation/inhibition imbalance in prefrontal circuits of young adults result in weaker evoked synchronization of gamma frequency. These structural and functional changes ultimately lead to poorer mnemonic and social abilities. Thus, prefrontal activity during early development actively controls the cognitive performance of adults and might be critical for cognitive symptoms in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Sebastian H Bitzenhofer
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Jastyn A Pöpplau
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Mattia Chini
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Annette Marquardt
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| |
Collapse
|
14
|
Leibovich-Nassi I, Reshef A. The Enigma of Prodromes in Hereditary Angioedema (HAE). Clin Rev Allergy Immunol 2021; 61:15-28. [PMID: 33534063 DOI: 10.1007/s12016-021-08839-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 11/30/2022]
Abstract
A prodrome is a premonitory set of signs and symptoms indicating the onset of a disease. Prodromes are frequently reported by hereditary angioedema (HAE) patients, antedating attacks by a few hours or even longer. In some studies, high incidence of prodromes was reported by patients, with considerable number being able to predict oncoming attacks. Regrettably, prodromes have never received a consensual definition and have not been properly investigated in a systematic fashion. Therefore, their nature remains elusive and their contribution to the diagnosis and treatment of disorders is uncertain. The term "prodrome," as used in various pathologies, denotes different meanings, timing, and duration, so it may not be equally suitable for all clinical situations. Perception of a prodrome is unique for each individual patient depending on self-experience. As modern drugs delegate the administration decision to the patients, early detection of a developing attack may help mitigate its severity and allow deployment of appropriate therapy. New diagnostic instruments were recently developed that can assist in defining the attributes of prodromes and their association with attacks. We will review the prodrome phenomenon as exhibited in certain clinical situations, with an emphasis on prodromes of HAE.
Collapse
Affiliation(s)
- Iris Leibovich-Nassi
- Barzilai University Medical Center, Ashkelon, Israel
- Department of Nursing, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avner Reshef
- Barzilai University Medical Center, Ashkelon, Israel.
| |
Collapse
|
15
|
Andreou C, Borgwardt S. Structural and functional imaging markers for susceptibility to psychosis. Mol Psychiatry 2020; 25:2773-2785. [PMID: 32066828 PMCID: PMC7577836 DOI: 10.1038/s41380-020-0679-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/15/2020] [Accepted: 01/31/2020] [Indexed: 12/21/2022]
Abstract
The introduction of clinical criteria for the operationalization of psychosis high risk provided a basis for early detection and treatment of vulnerable individuals. However, about two-thirds of people meeting clinical high-risk (CHR) criteria will never develop a psychotic disorder. In the effort to increase prognostic precision, structural and functional neuroimaging have received growing attention as a potentially useful resource in the prediction of psychotic transition in CHR patients. The present review summarizes current research on neuroimaging biomarkers in the CHR state, with a particular focus on their prognostic utility and limitations. Large, multimodal/multicenter studies are warranted to address issues important for clinical applicability such as generalizability and replicability, standardization of clinical definitions and neuroimaging methods, and consideration of contextual factors (e.g., age, comorbidity).
Collapse
Affiliation(s)
- Christina Andreou
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany.
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland.
| |
Collapse
|
16
|
EEG microstates as biomarker for psychosis in ultra-high-risk patients. Transl Psychiatry 2020; 10:300. [PMID: 32839449 PMCID: PMC7445239 DOI: 10.1038/s41398-020-00963-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 02/01/2023] Open
Abstract
Resting-state EEG microstates are brief (50-100 ms) periods, in which the spatial configuration of scalp global field power remains quasi-stable before rapidly shifting to another configuration. Changes in microstate parameters have been described in patients with psychotic disorders. These changes have also been observed in individuals with a clinical or genetic high risk, suggesting potential usefulness of EEG microstates as a biomarker for psychotic disorders. The present study aimed to investigate the potential of EEG microstates as biomarkers for psychotic disorders and future transition to psychosis in patients at ultra-high-risk (UHR). We used 19-channel clinical EEG recordings and orthogonal contrasts to compare temporal parameters of four normative microstate classes (A-D) between patients with first-episode psychosis (FEP; n = 29), UHR patients with (UHR-T; n = 20) and without (UHR-NT; n = 34) later transition to psychosis, and healthy controls (HC; n = 25). Microstate A was increased in patients (FEP & UHR-T & UHR-NT) compared to HC, suggesting an unspecific state biomarker of general psychopathology. Microstate B displayed a decrease in FEP compared to both UHR patient groups, and thus may represent a state biomarker specific to psychotic illness progression. Microstate D was significantly decreased in UHR-T compared to UHR-NT, suggesting its potential as a selective biomarker of future transition in UHR patients.
Collapse
|
17
|
Freche D, Naim-Feil J, Hess S, Peled A, Grinshpoon A, Moses E, Levit-Binnun N. Phase-Amplitude Markers of Synchrony and Noise: A Resting-State and TMS-EEG Study of Schizophrenia. Cereb Cortex Commun 2020; 1:tgaa013. [PMID: 34296092 PMCID: PMC8152916 DOI: 10.1093/texcom/tgaa013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/30/2020] [Indexed: 01/01/2023] Open
Abstract
The electroencephalogram (EEG) of schizophrenia patients is known to exhibit a reduction of signal-to-noise ratio and of phase locking, as well as a facilitation of excitability, in response to a variety of external stimuli. Here, we demonstrate these effects in transcranial magnetic stimulation (TMS)-evoked potentials and in the resting-state EEG. To ensure veracity, we used 3 weekly sessions and analyzed both resting-state and TMS-EEG data. For the TMS responses, our analysis verifies known results. For the resting state, we introduce the methodology of mean-normalized variation to the EEG analysis (quartile-based coefficient of variation), which allows for a comparison of narrow-band EEG amplitude fluctuations to narrow-band Gaussian noise. This reveals that amplitude fluctuations in the delta, alpha, and beta bands of healthy controls are different from those in schizophrenia patients, on time scales of tens of seconds. We conclude that the EEG-measured cortical activity patterns of schizophrenia patients are more similar to noise, both in alpha- and beta-resting state and in TMS responses. Our results suggest that the ability of neuronal populations to form stable, locally, and temporally correlated activity is reduced in schizophrenia, a conclusion, that is, in accord with previous experiments on TMS-EEG and on resting-state EEG.
Collapse
Affiliation(s)
- Dominik Freche
- Sagol Center of Brain and Mind, Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzliya 4610101, Israel
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jodie Naim-Feil
- Sagol Center of Brain and Mind, Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzliya 4610101, Israel
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
- Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton 3800, Australia
| | - Shmuel Hess
- Geha Mental Health Center, Petah Tikvah 49100, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Avraham Peled
- Rappaport Faculty of Medicine, Technion, Haifa 3200003, Israel
- Institute for Psychiatric Studies, Shaar Menashe Mental Health Center, Menashe 38814, Pardes Hanna-Karkur, Israel
| | - Alexander Grinshpoon
- Rappaport Faculty of Medicine, Technion, Haifa 3200003, Israel
- Institute for Psychiatric Studies, Shaar Menashe Mental Health Center, Menashe 38814, Pardes Hanna-Karkur, Israel
| | - Elisha Moses
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nava Levit-Binnun
- Sagol Center of Brain and Mind, Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzliya 4610101, Israel
| |
Collapse
|
18
|
Wenneberg C, Glenthøj BY, Hjorthøj C, Buchardt Zingenberg FJ, Glenthøj LB, Rostrup E, Broberg BV, Nordentoft M. Cerebral glutamate and GABA levels in high-risk of psychosis states: A focused review and meta-analysis of 1H-MRS studies. Schizophr Res 2020; 215:38-48. [PMID: 31784336 DOI: 10.1016/j.schres.2019.10.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/24/2022]
Abstract
Disturbances in the brain glutamate and GABA (γ-aminobutyric acid) homeostasis may be markers of transition to psychosis in individuals at high-risk (HR). Knowledge of GABA and glutamate levels in HR stages could give an insight into changes in the neurochemistry underlying psychosis. Studies on glutamate in HR have provided conflicting data, and GABA studies have only recently been initialized. In this meta-analysis, we compared cerebral levels of glutamate and GABA in HR individuals with healthy controls (HC). We searched Medline and Embase for articles published on 1H-MRS studies on glutamate and GABA in HR states until April 9th, 2019. We identified a total of 28 eligible studies, of which eight reported GABA (243 HR, 356 HC) and 26 reported glutamate (299 HR, 279 HC) or Glx (glutamate + glutamine) (584 HR, 632 HC) levels. Sample sizes varied from 6 to 75 for HR and 10 to 184 for HC. Our meta-analysis of 1H-MRS studies on glutamate and GABA in HR states displayed significantly lower (P = 0.0003) levels of thalamic glutamate in HR individuals than in HC and significantly higher (P = 0.001) Glx in the frontal lobe of genetic HR individuals (1st-degree relatives) than in HC. No other significant differences in glutamate and GABA levels were found. Subject numbers in the studies on glutamate as well as GABA levels were generally small and the data conflicting. Our meta-analytical findings highlight the need for larger and more homogeneous studies of glutamate and GABA in high-risk states.
Collapse
Affiliation(s)
- Christina Wenneberg
- Copenhagen Research Center for Mental Health, CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Gentofte Hospitalsvej 15.4, 2900, Hellerup, Denmark; Center for Neuropsychiatric Schizophrenia Research, CNSR, Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Ndr. Ringvej 29-67, 2600, Glostrup, Denmark.
| | - Birte Yding Glenthøj
- Center for Neuropsychiatric Schizophrenia Research, CNSR, Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Ndr. Ringvej 29-67, 2600, Glostrup, Denmark.
| | - Carsten Hjorthøj
- Copenhagen Research Center for Mental Health, CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Gentofte Hospitalsvej 15.4, 2900, Hellerup, Denmark; University of Copenhagen, Department of Public Health, Section of Epidemiology, Øster Farimagsgade 5, Postboks 2099, 1014, Copenhagen K, Denmark.
| | - Frederik Johan Buchardt Zingenberg
- Copenhagen Research Center for Mental Health, CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Gentofte Hospitalsvej 15.4, 2900, Hellerup, Denmark.
| | - Louise Birkedal Glenthøj
- Copenhagen Research Center for Mental Health, CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Gentofte Hospitalsvej 15.4, 2900, Hellerup, Denmark; Center for Neuropsychiatric Schizophrenia Research, CNSR, Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Ndr. Ringvej 29-67, 2600, Glostrup, Denmark.
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research, CNSR, Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Ndr. Ringvej 29-67, 2600, Glostrup, Denmark.
| | - Brian Villumsen Broberg
- Center for Neuropsychiatric Schizophrenia Research, CNSR, Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Ndr. Ringvej 29-67, 2600, Glostrup, Denmark.
| | - Merete Nordentoft
- Copenhagen Research Center for Mental Health, CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Gentofte Hospitalsvej 15.4, 2900, Hellerup, Denmark.
| |
Collapse
|
19
|
Kindler J, Michel C, Schultze-Lutter F, Felber G, Hauf M, Schimmelmann BG, Kaess M, Hubl D, Walther S. Functional and structural correlates of abnormal involuntary movements in psychosis risk and first episode psychosis. Schizophr Res 2019; 212:196-203. [PMID: 31405623 DOI: 10.1016/j.schres.2019.07.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/18/2019] [Accepted: 07/21/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Abnormal involuntary movements (AIM) may occur throughout the course of psychosis. While AIM are thought to indicate striatal abnormalities, the functional and structural correlates of increased AIM remain elusive. Here, we examined the prevalence of AIM in patients with clinical high risk for psychosis (CHR), first episode psychosis (FEP) and clinical controls (CC). Furthermore, we tested the association of AIM with regional cerebral blood flow (rCBF), grey matter volume (GMV), and premorbid IQ. METHODS We conducted a video-based analysis of AIM in patients with CHR (n = 45), FEP (n = 10) and CC (n = 39), recruited in the Early Detection and Intervention Center, Bern. Premorbid intelligence was evaluated using the Peabody Picture Vocabulary test. Additionally, arterial spin labeling MRIs and structural MRIs were acquired in a subgroup of the sample to investigate the association of AIM with rCBF and GMV. RESULTS Higher total AIM scores were detected in CHR (p = 0.02) and FEP (p = 0.04) as compared to CC. When separated for different muscle groups, lips and perioral movements were significantly increased in CHR patients as compared to CC (p = 0.009). AIM scores correlated positively with rCBF in the premotor cortex, Brodmann area 6 (p < 0.05, FWE corrected). Negative correlations were found between AIM and GMV of the corresponding caudal middle frontal gyrus (p = 0.04, FWE corrected) and premorbid intelligence (p = 0.02). CONCLUSIONS AIM were more frequent in the psychosis spectrum than in clinical controls. Neuroimaging findings indicate an involvement of cortical motor areas in abnormal motor behavior, instead of pure basal ganglia pathology.
Collapse
Affiliation(s)
- Jochen Kindler
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Switzerland.
| | - Chantal Michel
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Frauke Schultze-Lutter
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Switzerland; Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Gwendolin Felber
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Martinus Hauf
- Support Center for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, University of Bern, Switzerland
| | - Benno G Schimmelmann
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Switzerland; University Hospital of Child and Adolescent Psychiatry, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Michael Kaess
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Switzerland; Section for Translational Psychobiology in Child and Adolescent Psychiatry, Clinic for Child and Adolescent Psychiatry, University Hospital Heidelberg, Germany
| | - Daniela Hubl
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
20
|
Dagher A, Lehéricy S, Rowe JB, Siebner HR. Disease-informed brain mapping teaches important lessons about the human brain. Neuroimage 2019; 190:1-3. [PMID: 30798013 DOI: 10.1016/j.neuroimage.2019.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Alain Dagher
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada.
| | - Stéphane Lehéricy
- Institut Du Cerveau et de La Moelle épinière, Centre for NeuroImaging Research, Team Movement Investigation and Therapeutics, Sorbonne Université, UPMC - Inserm U1127, CNRS UMR, 7225, Paris, France.
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, UK; Medical Research Council, Cognition and Brain Sciences Unit, Cambridge, UK; Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK.
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, University of Copenhagen, Denmark.
| |
Collapse
|
21
|
Cao B, Wang D, Brietzke E, McIntyre RS, Pan Z, Cha D, Rosenblat JD, Zuckerman H, Liu Y, Xie Q, Wang J. Characterizing amino-acid biosignatures amongst individuals with schizophrenia: a case-control study. Amino Acids 2018; 50:1013-1023. [PMID: 29796929 DOI: 10.1007/s00726-018-2579-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/27/2018] [Indexed: 01/25/2023]
Abstract
Amino acids and derivatives participate in the biosynthesis and downstream effects of numerous neurotransmitters. Variations in specific amino acids have been implicated in the pathophysiology of schizophrenia. Herein, we sought to compare levels of amino acids and derivatives between subjects with schizophrenia and healthy controls (HC). Two hundred and eight subjects with Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria (DSM-IV)-defined schizophrenia and 175 age- and sex-matched HC were enrolled. The levels of twenty-five amino acids and seven related derivatives were measured in plasma samples using hydrophilic interaction liquid chromatography (HILIC) liquid chromatography-tandem mass spectrometry (LC-MS). After controlling for age, sex and body mass index (BMI), four amino acids and derivatives (i.e., cysteine, GABA, glutamine and sarcosine) were observed to be higher in the schizophrenia group when compared with HC; seven amino acids and derivatives were lower in the schizophrenia group (i.e., arginine, L-ornithine, threonine, taurine, tryptophan, methylcysteine, and kynurenine). Statistically significant differences in plasma amino-acid profiles between subjects with first-episode vs. recurrent schizophrenia for aspartate and glutamine were also demonstrated using generalized linear models controlling for age, sex, and BMI. The differences in amino acids and derivatives among individuals with schizophrenia when compared to HC may represent underlying pathophysiology, including but not limited to dysfunctional proteinogenic processes, alterations in excitatory and inhibitory neurotransmission, changes in ammonia metabolism and the urea cycle. Taken together, amino-acid profiling may provide a novel stratification approach among individuals with schizophrenia.
Collapse
Affiliation(s)
- Bing Cao
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, 38 Xue-Yuan Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Dongfang Wang
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, 38 Xue-Yuan Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Elisa Brietzke
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Zihang Pan
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Danielle Cha
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Faculty of Medicine, School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Hannah Zuckerman
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Yaqiong Liu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, 38 Xue-Yuan Road, Haidian District, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, People's Republic of China.,Peking University Medical and Health Analysis Center, Peking University, Beijing, 100191, People's Republic of China
| | - Qing Xie
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, 38 Xue-Yuan Road, Haidian District, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, People's Republic of China.,Peking University Medical and Health Analysis Center, Peking University, Beijing, 100191, People's Republic of China
| | - Jingyu Wang
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, 38 Xue-Yuan Road, Haidian District, Beijing, 100191, People's Republic of China. .,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, People's Republic of China. .,Peking University Medical and Health Analysis Center, Peking University, Beijing, 100191, People's Republic of China.
| |
Collapse
|