1
|
Park S, Beckett A, Häkkinen S, Walker E, Ma SJ, Kim S, Kim H, Feinberg DA. Higher spatial resolution and sensitivity in whole brain functional MRI at 7T using 3D EPI accelerated with variable density CAIPI sampling and temporal random walk. Magn Reson Med 2025. [PMID: 40275620 DOI: 10.1002/mrm.30512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 04/26/2025]
Abstract
PURPOSE To develop an efficient 3D EPI encoding technique for high spatiotemporal resolution functional MRI. METHODS To exploit spatiotemporal fMRI data structure, we introduce a variable density 2D CAIPI sampling in the spatial domain combined with time-wise extra random encoding in the time domain, thus achieving pseudo-regular sampling with a regular blip while allowing incoherent sampling in a complementary manner across time. This enabled temporally regularized reconstruction of highly accelerated functional data acquisition. The encoding scheme was then validated against temporally invariant CAIPI encoding by applying to locally confined and whole-brain around the primary visual cortex, respectively, with increasing the spatial resolutions. RESULTS For partial brain imaging, our proposed method achieved higher reconstruction accuracy, resulting in a substantial increase of SSIM compared to an alternative method for 0.64 mm-isotropic resolution. When used for whole brain imaging at 0.56 mm-isotropic resolution, our method showed a decreased spatial extent of activation and produced high-quality images for a clear distinction between activated and non-activated regions around calcarine fissure with high spatial specificity. CONCLUSION The proposed 3D EPI encoding scheme, which exploits coherent and incoherent sampling properties, can significantly improve the image quality while providing a good balance between sensitivity and specificity in the activated regions.
Collapse
Affiliation(s)
- Suhyung Park
- Department of Intelligent Electronics and Computer Engineering, Chonnam National University, Gwangju, Republic of Korea
| | - Alexander Beckett
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
- Advanced MRI Technologies, Sebastopol, California, USA
| | - Suvi Häkkinen
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| | - Erica Walker
- Advanced MRI Technologies, Sebastopol, California, USA
| | - Samantha J Ma
- Siemens Medical Solutions, USA, Inc., Berkeley, California, USA
| | - Sugil Kim
- Siemens Healthineers Ltd., Seoul, Republic of Korea
| | - Hahnsung Kim
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - David A Feinberg
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
- Advanced MRI Technologies, Sebastopol, California, USA
| |
Collapse
|
2
|
Luo Q, Sun K, Dan G, Zhou XJ. Fast 3D fMRI acquisition with high spatial resolutions over a reduced FOV. Magn Reson Med 2024; 92:1952-1964. [PMID: 38888135 PMCID: PMC11341251 DOI: 10.1002/mrm.30191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/29/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024]
Abstract
PURPOSE To develop and demonstrate a fast 3D fMRI acquisition technique with high spatial resolution over a reduced FOV, named k-t 3D reduced FOV imaging (3D-rFOVI). METHODS Based on 3D gradient-echo EPI, k-t 3D-rFOVI used a 2D RF pulse to reduce the FOV in the in-plane phase-encoding direction, boosting spatial resolution without increasing echo train length. For image acceleration, full sampling was applied in the central k-space region along the through-slab direction (kz) for all time frames, while randomized undersampling was used in outer kz regions at different time frames. Images were acquired at 3T and reconstructed using a method based on partial separability. fMRI detection sensitivity of k-t 3D-rFOVI was quantitively analyzed with simulation data. Human visual fMRI experiments were performed to evaluate k-t 3D-rFOVI and compare it with a commercial multiband EPI sequence. RESULTS The simulation data showed that k-t 3D-rFOVI can detect 100% of fMRI activations with an acceleration factor (R) of 2 and ˜80% with R = 6. In the human fMRI data acquired with 1.5-mm spatial resolution and 800-ms volume TR (TRvol), k-t 3D-rFOVI with R = 4 detected 46% more activated voxels in the visual cortex than the multiband EPI. Additional fMRI experiments showed that k-t 3D-rFOVI can achieve TRvol of 480 ms with R = 6, while reliably detecting visual activation. CONCLUSIONS k-t 3D-rFOVI can simultaneously achieve a high spatial resolution (1.5-mm isotropically) and short TRvol (480-ms) at 3T. It offers a robust acquisition technique for fast fMRI studies over a focused brain volume.
Collapse
Affiliation(s)
- Qingfei Luo
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, IL, USA
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Kaibao Sun
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Guangyu Dan
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, IL, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiaohong Joe Zhou
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, IL, USA
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
3
|
Bailes SM, Gomez DEP, Setzer B, Lewis LD. Resting-state fMRI signals contain spectral signatures of local hemodynamic response timing. eLife 2023; 12:e86453. [PMID: 37565644 PMCID: PMC10506795 DOI: 10.7554/elife.86453] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/10/2023] [Indexed: 08/12/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) has proven to be a powerful tool for noninvasively measuring human brain activity; yet, thus far, fMRI has been relatively limited in its temporal resolution. A key challenge is understanding the relationship between neural activity and the blood-oxygenation-level-dependent (BOLD) signal obtained from fMRI, generally modeled by the hemodynamic response function (HRF). The timing of the HRF varies across the brain and individuals, confounding our ability to make inferences about the timing of the underlying neural processes. Here, we show that resting-state fMRI signals contain information about HRF temporal dynamics that can be leveraged to understand and characterize variations in HRF timing across both cortical and subcortical regions. We found that the frequency spectrum of resting-state fMRI signals significantly differs between voxels with fast versus slow HRFs in human visual cortex. These spectral differences extended to subcortex as well, revealing significantly faster hemodynamic timing in the lateral geniculate nucleus of the thalamus. Ultimately, our results demonstrate that the temporal properties of the HRF impact the spectral content of resting-state fMRI signals and enable voxel-wise characterization of relative hemodynamic response timing. Furthermore, our results show that caution should be used in studies of resting-state fMRI spectral properties, because differences in fMRI frequency content can arise from purely vascular origins. This finding provides new insight into the temporal properties of fMRI signals across voxels, which is crucial for accurate fMRI analyses, and enhances the ability of fast fMRI to identify and track fast neural dynamics.
Collapse
Affiliation(s)
- Sydney M Bailes
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
| | - Daniel EP Gomez
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General HospitalCharlestownUnited States
- Department of Radiology, Harvard Medical SchoolBostonUnited States
| | - Beverly Setzer
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
- Graduate Program for Neuroscience, Boston UniversityBostonUnited States
| | - Laura D Lewis
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General HospitalCharlestownUnited States
- Institute for Medical Engineering and Science, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
4
|
Meyer NK, Kang D, Black DF, Campeau NG, Welker KM, Gray EM, In MH, Shu Y, Huston III J, Bernstein MA, Trzasko JD. Enhanced clinical task-based fMRI metrics through locally low-rank denoising of complex-valued data. Neuroradiol J 2023; 36:273-288. [PMID: 36063799 PMCID: PMC10268095 DOI: 10.1177/19714009221122171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE This study investigates a locally low-rank (LLR) denoising algorithm applied to source images from a clinical task-based functional MRI (fMRI) exam before post-processing for improving statistical confidence of task-based activation maps. METHODS Task-based motor and language fMRI was obtained in eleven healthy volunteers under an IRB approved protocol. LLR denoising was then applied to raw complex-valued image data before fMRI processing. Activation maps generated from conventional non-denoised (control) data were compared with maps derived from LLR-denoised image data. Four board-certified neuroradiologists completed consensus assessment of activation maps; region-specific and aggregate motor and language consensus thresholds were then compared with nonparametric statistical tests. Additional evaluation included retrospective truncation of exam data without and with LLR denoising; a ROI-based analysis tracked t-statistics and temporal SNR (tSNR) as scan durations decreased. A test-retest assessment was performed; retest data were matched with initial test data and compared for one subject. RESULTS fMRI activation maps generated from LLR-denoised data predominantly exhibited statistically significant (p = 4.88×10-4 to p = 0.042; one p = 0.062) increases in consensus t-statistic thresholds for motor and language activation maps. Following data truncation, LLR data showed task-specific increases in t-statistics and tSNR respectively exceeding 20 and 50% compared to control. LLR denoising enabled truncation of exam durations while preserving cluster volumes at fixed thresholds. Test-retest showed variable activation with LLR data thresholded higher in matching initial test data. CONCLUSION LLR denoising affords robust increases in t-statistics on fMRI activation maps compared to routine processing, and offers potential for reduced scan duration while preserving map quality.
Collapse
Affiliation(s)
- Nolan K Meyer
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Daehun Kang
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - David F Black
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Kirk M Welker
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Erin M Gray
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Myung-Ho In
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Yunhong Shu
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
5
|
Bailes SM, Gomez DEP, Setzer B, Lewis LD. Resting-state fMRI signals contain spectral signatures of local hemodynamic response timing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525528. [PMID: 36747821 PMCID: PMC9900794 DOI: 10.1101/2023.01.25.525528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Functional magnetic resonance imaging (fMRI) has proven to be a powerful tool for noninvasively measuring human brain activity; yet, thus far, fMRI has been relatively limited in its temporal resolution. A key challenge is understanding the relationship between neural activity and the blood-oxygenation-level-dependent (BOLD) signal obtained from fMRI, generally modeled by the hemodynamic response function (HRF). The timing of the HRF varies across the brain and individuals, confounding our ability to make inferences about the timing of the underlying neural processes. Here we show that resting-state fMRI signals contain information about HRF temporal dynamics that can be leveraged to understand and characterize variations in HRF timing across both cortical and subcortical regions. We found that the frequency spectrum of resting-state fMRI signals significantly differs between voxels with fast versus slow HRFs in human visual cortex. These spectral differences extended to subcortex as well, revealing significantly faster hemodynamic timing in the lateral geniculate nucleus of the thalamus. Ultimately, our results demonstrate that the temporal properties of the HRF impact the spectral content of resting-state fMRI signals and enable voxel-wise characterization of relative hemodynamic response timing. Furthermore, our results show that caution should be used in studies of resting-state fMRI spectral properties, as differences can arise from purely vascular origins. This finding provides new insight into the temporal properties of fMRI signals across voxels, which is crucial for accurate fMRI analyses, and enhances the ability of fast fMRI to identify and track fast neural dynamics.
Collapse
Affiliation(s)
| | - Daniel E. P. Gomez
- Department of Biomedical Engineering, Boston, MA, 02215, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Beverly Setzer
- Department of Biomedical Engineering, Boston, MA, 02215, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Laura D. Lewis
- Department of Biomedical Engineering, Boston, MA, 02215, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| |
Collapse
|
6
|
McIlvain G, Cerjanic A, Christodoulou AG, McGarry MDJ, Johnson CL. OSCILLATE: A low-rank approach for accelerated magnetic resonance elastography. Magn Reson Med 2022; 88:1659-1672. [PMID: 35649188 PMCID: PMC9339522 DOI: 10.1002/mrm.29308] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/29/2022] [Accepted: 04/30/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE MR elastography (MRE) is a technique to characterize brain mechanical properties in vivo. Due to the need to capture tissue deformation in multiple directions over time, MRE is an inherently long acquisition, which limits achievable resolution and use in challenging populations. The purpose of this work is to develop a method for accelerating MRE acquisition by using low-rank image reconstruction to exploit inherent spatiotemporal correlations in MRE data. THEORY AND METHODS The proposed MRE sampling and reconstruction method, OSCILLATE (Observing Spatiotemporal Correlations for Imaging with Low-rank Leveraged Acceleration in Turbo Elastography), involves alternating which k-space points are sampled between each repetition by a reduction factor, ROSC. Using a predetermined temporal basis from a low-resolution navigator in a joint low-rank image reconstruction, all images can be accurately reconstructed from a reduced amount of k-space data. RESULTS Decomposition of MRE displacement data demonstrated that, on average, 96.1% of all energy from an MRE dataset is captured at rank L = 12 (reduced from a full rank of 24). Retrospectively undersampling data with ROSC = 2 and reconstructing at low-rank (L = 12) yields highly accurate stiffness maps with voxel-wise error of 5.8% ± 0.7%. Prospectively undersampled data at ROSC = 2 were successfully reconstructed without loss of material property map fidelity, with average global stiffness error of 1.0% ± 0.7% compared to fully sampled data. CONCLUSIONS OSCILLATE produces whole-brain MRE data at 2 mm isotropic resolution in 1 min 48 s.
Collapse
Affiliation(s)
- Grace McIlvain
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Alex Cerjanic
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
- University of Illinois College of Medicine, Urbana, IL, United States
| | - Anthony G Christodoulou
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Matthew DJ McGarry
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| |
Collapse
|
7
|
Deep learning for compressive sensing: a ubiquitous systems perspective. Artif Intell Rev 2022. [DOI: 10.1007/s10462-022-10259-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractCompressive sensing (CS) is a mathematically elegant tool for reducing the sensor sampling rate, potentially bringing context-awareness to a wider range of devices. Nevertheless, practical issues with the sampling and reconstruction algorithms prevent further proliferation of CS in real world domains, especially among heterogeneous ubiquitous devices. Deep learning (DL) naturally complements CS for adapting the sampling matrix, reconstructing the signal, and learning from the compressed samples. While the CS–DL integration has received substantial research interest recently, it has not yet been thoroughly surveyed, nor has any light been shed on practical issues towards bringing the CS–DL to real world implementations in the ubiquitous computing domain. In this paper we identify main possible ways in which CS and DL can interplay, extract key ideas for making CS–DL efficient, outline major trends in the CS–DL research space, and derive guidelines for the future evolution of CS–DL within the ubiquitous computing domain.
Collapse
|
8
|
Graedel NN, Miller KL, Chiew M. Ultrahigh Resolution fMRI at 7T Using Radial-Cartesian TURBINE Sampling. Magn Reson Med 2022; 88:2058-2073. [PMID: 35785429 PMCID: PMC9546489 DOI: 10.1002/mrm.29359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/21/2022] [Accepted: 05/23/2022] [Indexed: 12/05/2022]
Abstract
Purpose We investigate the use of TURBINE, a 3D radial‐Cartesian acquisition scheme in which EPI planes are rotated about the phase‐encoding axis to acquire a cylindrical k‐space for high‐fidelity ultrahigh isotropic resolution fMRI at 7 Tesla with minimal distortion and blurring. Methods An improved, completely self‐navigated version of the TURBINE sampling scheme was designed for fMRI at 7 Telsa. To demonstrate the image quality and spatial specificity of the acquisition, thin‐slab visual and motor BOLD fMRI at 0.67 mm isotropic resolution (16 mm slab, TRvol = 2.32 s), and 0.8 × 0.8 × 2.0 mm (whole‐brain, TRvol = 2.4 s) data were acquired. To prioritize the high spatial fidelity, we employed a temporally regularized reconstruction to improve sensitivity without any spatial bias. Results TURBINE images provide high structural fidelity with almost no distortion, dropout, or T2* blurring for the thin‐slab acquisitions compared to conventional 3D EPI owing to the radial sampling in‐plane and the short echo train used. This results in activation that can be localized to pre‐ and postcentral gyri in a motor task, for example, with excellent correspondence to brain structure measured by a T1‐MPRAGE. The benefits of TURBINE (low distortion, dropout, blurring) are reduced for the whole‐brain acquisition due to the longer EPI train. We demonstrate robust BOLD activation at 0.67 mm isotropic resolution (thin‐slab) and also anisotropic 0.8 × 0.8 × 2.0 mm (whole‐brain) acquisitions. Conclusion TURBINE is a promising acquisition approach for high‐resolution, minimally distorted fMRI at 7 Tesla and could be particularly useful for fMRI in areas of high B0 inhomogeneity. Click here for author‐reader discussions
Collapse
Affiliation(s)
- Nadine N Graedel
- Wellcome Centre for Integrative Neuroscience, FMRIB Centre, University of Oxford, Oxford, United Kingdom.,Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroscience, FMRIB Centre, University of Oxford, Oxford, United Kingdom
| | - Mark Chiew
- Wellcome Centre for Integrative Neuroscience, FMRIB Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Kulkarni PH, Merchant S, Awate SP. Mixed-Dictionary Models and Variational Inference in Task fMRI for Shorter Scans and Better Image Quality. Med Image Anal 2022; 78:102392. [DOI: 10.1016/j.media.2022.102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/31/2021] [Accepted: 02/10/2022] [Indexed: 11/28/2022]
|
10
|
Polimeni JR, Lewis LD. Imaging faster neural dynamics with fast fMRI: A need for updated models of the hemodynamic response. Prog Neurobiol 2021; 207:102174. [PMID: 34525404 PMCID: PMC8688322 DOI: 10.1016/j.pneurobio.2021.102174] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 07/30/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022]
Abstract
Fast fMRI enables the detection of neural dynamics over timescales of hundreds of milliseconds, suggesting it may provide a new avenue for studying subsecond neural processes in the human brain. The magnitudes of these fast fMRI dynamics are far greater than predicted by canonical models of the hemodynamic response. Several studies have established nonlinear properties of the hemodynamic response that have significant implications for fast fMRI. We first review nonlinear properties of the hemodynamic response function that may underlie fast fMRI signals. We then illustrate the breakdown of canonical hemodynamic response models in the context of fast neural dynamics. We will then argue that the canonical hemodynamic response function is not likely to reflect the BOLD response to neuronal activity driven by sparse or naturalistic stimuli or perhaps to spontaneous neuronal fluctuations in the resting state. These properties suggest that fast fMRI is capable of tracking surprisingly fast neuronal dynamics, and we discuss the neuroscientific questions that could be addressed using this approach.
Collapse
Affiliation(s)
- Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Laura D Lewis
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
11
|
Subspace-constrained approaches to low-rank fMRI acceleration. Neuroimage 2021; 238:118235. [PMID: 34091032 PMCID: PMC7611820 DOI: 10.1016/j.neuroimage.2021.118235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 12/02/2022] Open
Abstract
Acceleration methods in fMRI aim to reconstruct high fidelity images from under-sampled k-space, allowing fMRI datasets to achieve higher temporal resolution, reduced physiological noise aliasing, and increased statistical degrees of freedom. While low levels of acceleration are typically part of standard fMRI protocols through parallel imaging, there exists the potential for approaches that allow much greater acceleration. One such existing approach is k-t FASTER, which exploits the inherent low-rank nature of fMRI. In this paper, we present a reformulated version of k-t FASTER which includes additional L2 constraints within a low-rank framework. We evaluated the effect of three different constraints against existing low-rank approaches to fMRI reconstruction: Tikhonov constraints, low-resolution priors, and temporal subspace smoothness. The different approaches are separately tested for robustness to under-sampling and thermal noise levels, in both retrospectively and prospectively-undersampled finger-tapping task fMRI data. Reconstruction quality is evaluated by accurate reconstruction of low-rank subspaces and activation maps. The use of L2 constraints was found to achieve consistently improved results, producing high fidelity reconstructions of statistical parameter maps at higher acceleration factors and lower SNR values than existing methods, but at a cost of longer computation time. In particular, the Tikhonov constraint proved very robust across all tested datasets, and the temporal subspace smoothness constraint provided the best reconstruction scores in the prospectively-undersampled dataset. These results demonstrate that regularized low-rank reconstruction of fMRI data can recover functional information at high acceleration factors without the use of any model-based spatial constraints.
Collapse
|
12
|
Kulkarni PH, Merchant SN, Awate SP. R-fMRI reconstruction from k-t undersampled data using a subject-invariant dictionary model and VB-EM with nested minorization. Med Image Anal 2020; 65:101752. [PMID: 32623273 DOI: 10.1016/j.media.2020.101752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 11/30/2022]
Abstract
Higher spatial resolution in resting-state functional magnetic resonance imaging (R-fMRI) can give reliable information about the functional networks in the cerebral cortex. Typical methods can achieve higher spatial or temporal resolution by speeding up scans using either (i) complex pulse-sequence designs or (ii) k-space undersampling coupled with priors on the signal. We propose to undersample the R-fMRI acquisition in k-space and time to speedup scans in order to improve spatial resolution. We propose a novel model-based R-fMRI reconstruction framework using a robust, subject-invariant, spatially regularized dictionary prior on the signal. Furthermore, we propose a novel inference framework based on variational Bayesian expectation maximization with nested minorization (VB-EM-NM). Our inference framework allows us to provide an estimate of uncertainty of the reconstruction, unlike typical reconstruction methods. Empirical evaluation of (i) simulated R-fMRI reconstruction and (ii) functional-network estimates from brain R-fMRI reconstructions demonstrate that our framework improves over the state of the art, and, additionally, enables significantly higher spatial resolution.
Collapse
Affiliation(s)
- Prachi H Kulkarni
- Electrical Engineering (EE) Department, Indian Institute of Technology (IIT) Bombay, Mumbai, India.
| | - S N Merchant
- Electrical Engineering (EE) Department, Indian Institute of Technology (IIT) Bombay, Mumbai, India
| | - Suyash P Awate
- Computer Science and Engineering (CSE) Department, Indian Institute of Technology (IIT) Bombay, Mumbai, India
| |
Collapse
|