1
|
Phillips JM, Afrasiabi M, Kambi NA, Redinbaugh MJ, Steely S, Johnson ER, Cheng X, Fayyad M, Mohanta S, Carís A, Mikell CB, Mofakham S, Saalmann YB. Primate thalamic nuclei select abstract rules and shape prefrontal dynamics. Neuron 2025:S0896-6273(25)00221-1. [PMID: 40233749 DOI: 10.1016/j.neuron.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/01/2024] [Accepted: 03/17/2025] [Indexed: 04/17/2025]
Abstract
Flexible behavior depends on abstract rules to generalize beyond specific instances and outcome monitoring to adjust actions. Cortical circuits are posited to read out rules from high-dimensional representations of task-relevant variables in prefrontal cortex (PFC). We instead hypothesized that converging inputs from PFC, directly or via basal ganglia (BGs), enable the thalamus to select rules. We measured activity across PFC and connected thalamic nuclei of monkeys applying rules. Abstract rule information first appeared in ventroanterior thalamus (VA)-the main thalamic hub between BG and PFC. Mediodorsal thalamus (MD) also represented rule information before PFC, persisting to help maintain activation of relevant PFC cell ensembles. MD, a major recipient of midbrain dopamine input, was the first to represent information about behavioral outcomes. A PFC-BG-thalamus model reproduced key findings, and thalamic-lesion modeling disrupted PFC rule representations. This suggests that the thalamus selects high-level cognitive information from PFC and monitors behavioral outcomes of these selections.
Collapse
Affiliation(s)
- Jessica M Phillips
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA; Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA.
| | - Mohsen Afrasiabi
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Niranjan A Kambi
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Summer Steely
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Emily R Johnson
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xi Cheng
- Department of Neurosurgery, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maath Fayyad
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sounak Mohanta
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Asia Carís
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Charles B Mikell
- Department of Neurosurgery, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Sima Mofakham
- Department of Neurosurgery, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yuri B Saalmann
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA; Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA.
| |
Collapse
|
2
|
Phillips JM, Afrasiabi M, Kambi NA, Redinbaugh MJ, Steely S, Johnson ER, Cheng X, Fayyad M, Mohanta S, Carís A, Mikell CB, Mofakham S, Saalmann YB. Primate thalamic nuclei select abstract rules and shape prefrontal dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.13.584871. [PMID: 38559142 PMCID: PMC10980052 DOI: 10.1101/2024.03.13.584871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Flexible behavior depends on abstract rules to generalize beyond specific instances, and outcome monitoring to adjust actions. Cortical circuits are posited to read out rules from high-dimensional representations of task-relevant variables in prefrontal cortex (PFC). We instead hypothesized that converging inputs from PFC, directly or via basal ganglia (BG), enable thalamus to select rules. We measured activity across PFC and connected thalamic nuclei of monkeys applying rules. Abstract rule information first appeared in ventroanterior thalamus (VA) - the main thalamic hub between BG and PFC. Mediodorsal thalamus (MD) also represented rule information before PFC, persisting to help maintain activation of relevant PFC cell ensembles. MD, a major recipient of midbrain dopamine input, was first to represent information about behavioral outcomes. A PFC-BG-thalamus model reproduced key findings, and thalamic-lesion modeling disrupted PFC rule representations. This suggests that thalamus selects high-level cognitive information from PFC and monitors behavioral outcomes of these selections.
Collapse
|
3
|
Lam NH, Mukherjee A, Wimmer RD, Nassar MR, Chen ZS, Halassa MM. Prefrontal transthalamic uncertainty processing drives flexible switching. Nature 2025; 637:127-136. [PMID: 39537928 PMCID: PMC11841214 DOI: 10.1038/s41586-024-08180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
Making adaptive decisions in complex environments requires appropriately identifying sources of error1,2. The frontal cortex is critical for adaptive decisions, but its neurons show mixed selectivity to task features3 and their uncertainty estimates4, raising the question of how errors are attributed to their most likely causes. Here, by recording neural responses from tree shrews (Tupaia belangeri) performing a hierarchical decision task with rule reversals, we find that the mediodorsal thalamus independently represents cueing and rule uncertainty. This enables the relevant thalamic population to drive prefrontal reconfiguration following a reversal by appropriately attributing errors to an environmental change. Mechanistic dissection of behavioural switching revealed a transthalamic pathway for cingulate cortical error monitoring5,6 to reconfigure prefrontal executive control7. Overall, our work highlights a potential role for the thalamus in demixing cortical signals while providing a low-dimensional pathway for cortico-cortical communication.
Collapse
Affiliation(s)
- Norman H Lam
- Department of Neuroscience, Tufts University, Boston, MA, USA
| | | | - Ralf D Wimmer
- Department of Neuroscience, Tufts University, Boston, MA, USA
| | - Matthew R Nassar
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Zhe Sage Chen
- Department of Neuroscience and Physiology, Grossman School of Medicine, New York University, New York, NY, USA
- Department of Psychiatry, Grossman School of Medicine, New York University, New York, NY, USA
| | - Michael M Halassa
- Department of Neuroscience, Tufts University, Boston, MA, USA.
- Department of Psychiatry, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
4
|
Sgourdou P, Schaffler M, Choi K, McCall NM, Burdge J, Williams J, Corder G, Fuccillo MV, Abdus-Saboor I, Epstein DJ. Impaired pain in mice lacking first-order posterior medial thalamic neurons. Pain 2025; 166:130-143. [PMID: 39190341 PMCID: PMC11649494 DOI: 10.1097/j.pain.0000000000003325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 06/04/2024] [Indexed: 08/28/2024]
Abstract
ABSTRACT The thalamus plays an important role in sensory and motor information processing by mediating communication between the periphery and the cerebral cortex. Alterations in thalamic development have profound consequences on sensory and motor function. In this study, we investigated a mouse model in which thalamic nuclei formation is disrupted because of the absence of Sonic hedgehog ( Shh ) expression from 2 key signaling centers that are required for embryonic forebrain development. The resulting defects observed in distinct thalamic sensory nuclei in Shh mutant embryos persisted into adulthood prompting us to examine their effect on behavioral responses to somatosensory stimulation. Our findings reveal a role for first-order posterior medial thalamic neurons and their projections to layer 4 of the secondary somatosensory cortex in the transmission of nociceptive information. Together, these results establish a connection between a neurodevelopmental lesion in the thalamus and a modality-specific disruption in pain perception.
Collapse
Affiliation(s)
- Paraskevi Sgourdou
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd, Philadelphia, PA 19104
| | - Melanie Schaffler
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104
| | - Kyuhyun Choi
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104
| | - Nora M. McCall
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104
| | - Justin Burdge
- Department of Biology, University of Pennsylvania, 433 S University Ave, Philadelphia, PA 19104
- Zuckerman Mind Brain Behavior Institute, Department of Biological Sciences, Columbia University, Jerome L. Greene Center, 3227 Broadway, Quad 6C, New York, NY 10027
| | - Joelle Williams
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd, Philadelphia, PA 19104
| | - Gregory Corder
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104
| | - Marc V. Fuccillo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104
| | - Ishmail Abdus-Saboor
- Department of Biology, University of Pennsylvania, 433 S University Ave, Philadelphia, PA 19104
- Zuckerman Mind Brain Behavior Institute, Department of Biological Sciences, Columbia University, Jerome L. Greene Center, 3227 Broadway, Quad 6C, New York, NY 10027
| | - Douglas J. Epstein
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd, Philadelphia, PA 19104
| |
Collapse
|
5
|
Yu H, Hu Z, Zhao Q, Liu J. Deep source transfer learning for the estimation of internal brain dynamics using scalp EEG. Cogn Neurodyn 2024; 18:3507-3520. [PMID: 39712104 PMCID: PMC11655783 DOI: 10.1007/s11571-024-10149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/15/2024] [Indexed: 12/24/2024] Open
Abstract
Electroencephalography (EEG) provides high temporal resolution neural data for brain-computer interfacing via noninvasive electrophysiological recording. Estimating the internal brain activity by means of source imaging techniques can further improve the spatial resolution of EEG and enhance the reliability of neural decoding and brain-computer interaction. In this work, we propose a novel EEG data-driven source imaging scheme for precise and efficient estimation of macroscale spatiotemporal brain dynamics across thalamus and cortical regions with deep learning methods. A deep source imaging framework with a convolutional-recurrent neural network is designed to estimate the internal brain dynamics from high-density EEG recordings. Moreover, a brain model including 210 cortical regions and 16 thalamic nuclei is established based on human brain connectome to provide synthetic training data, which manifests intrinsic characteristics of underlying brain dynamics in spontaneous, stimulation-evoked, and pathological states. Transfer learning algorithm is further applied to the trained network to reduce the dynamical differences between synthetic and realistic EEG. Extensive experiments exhibit that the proposed deep-learning method can accurately estimate the spatial and temporal activity of brain sources and achieves superior performance compared to the state-of-the-art approaches. Moreover, the EEG data-driven source imaging framework is effective in the location of seizure onset zone in epilepsy and reconstruction of dynamical thalamocortical interactions during sensory processing of acupuncture stimulation, implying its applicability in brain-computer interfacing for neuroscience research and clinical applications.
Collapse
Affiliation(s)
- Haitao Yu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072 China
| | - Zhiwen Hu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072 China
| | - Quanfa Zhao
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072 China
| | - Jing Liu
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, 063000 China
| |
Collapse
|
6
|
Ling Z, Cancan H, Xinyi L, Dandan F, Haisan Z, Hongxing Z, Chunming X. Thalamic Volumes and Functional Networks Linked With Self-Regulation Dysfunction in Major Depressive Disorder. CNS Neurosci Ther 2024; 30:e70116. [PMID: 39523461 PMCID: PMC11551040 DOI: 10.1111/cns.70116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/04/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
AIMS Self-regulation (SR) dysfunction is a crucial risk factor for major depressive disorder (MDD). However, neural substrates of SR linking MDD remain unclear. METHODS Sixty-eight healthy controls and 75 MDD patients were recruited to complete regulatory orientation assessments with the Regulatory Focus Questionnaire (RFQ) and Regulatory Mode Questionnaire (RMQ). Nodal intra and inter-network functional connectivity (FC) was defined as FC sum within networks of 46 thalamic subnuclei (TS) or 88 AAL brain regions, and between the two networks separately. Group-level volumetric and functional difference were compared by two sample t-tests. Pearson's correlation analysis and mediation analysis were utilized to investigate the relationship among imaging parameters and the two behaviors. Canonical correlation analysis (CCA) was conducted to explore the inter-network FC mode of TS related to behavioral subscales. Network-based Statistics with machine learning combining powerful brain imaging features was applied to predict individual behavioral subscales. RESULTS MDD patients showed no group-level volumetric difference in 46 TS but represented significant correlation of TS volume and nodal FC with behavioral subscales. Specially, inter-network FC of the orbital part of the right superior frontal gyrus and the left supplementary motor area mediated the correlation between RFQ/RMQ subscales and depressive severity. Furthermore, CCA identified how the two behaviors are linked via the inter-network FC mode of TS. More crucially, thalamic functional subnetworks could predict RFQ/RMQ subscales and psychomotor retardation for MDD individuals. CONCLUSION These findings provided neurological evidence for SR affecting depressive severity in the MDD patients and proposed potential biomarkers to identify the SR-based risk phenotype of MDD individuals.
Collapse
Affiliation(s)
- Zhang Ling
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Jiangsu Key Laboratory of Brain Science and MedicineSoutheast UniversityNanjingJiangsuChina
| | - He Cancan
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Jiangsu Key Laboratory of Brain Science and MedicineSoutheast UniversityNanjingJiangsuChina
| | - Liu Xinyi
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Jiangsu Key Laboratory of Brain Science and MedicineSoutheast UniversityNanjingJiangsuChina
| | - Fan Dandan
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Jiangsu Key Laboratory of Brain Science and MedicineSoutheast UniversityNanjingJiangsuChina
| | - Zhang Haisan
- Department of RadiologyThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangHenanChina
- Xinxiang Key Laboratory of Multimodal Brain ImagingThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangHenanChina
| | - Zhang Hongxing
- Department of PsychiatryThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangHenanChina
- Psychology School of Xinxiang Medical UniversityXinxiangHenanChina
| | - Xie Chunming
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Jiangsu Key Laboratory of Brain Science and MedicineSoutheast UniversityNanjingJiangsuChina
- Institute of Neuropsychiatry, Affiliated ZhongDa HospitalSoutheast UniversityNanjingJiangsuChina
- The Key Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingJiangsuChina
| |
Collapse
|
7
|
Scott DN, Mukherjee A, Nassar MR, Halassa MM. Thalamocortical architectures for flexible cognition and efficient learning. Trends Cogn Sci 2024; 28:739-756. [PMID: 38886139 PMCID: PMC11305962 DOI: 10.1016/j.tics.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024]
Abstract
The brain exhibits a remarkable ability to learn and execute context-appropriate behaviors. How it achieves such flexibility, without sacrificing learning efficiency, is an important open question. Neuroscience, psychology, and engineering suggest that reusing and repurposing computations are part of the answer. Here, we review evidence that thalamocortical architectures may have evolved to facilitate these objectives of flexibility and efficiency by coordinating distributed computations. Recent work suggests that distributed prefrontal cortical networks compute with flexible codes, and that the mediodorsal thalamus provides regularization to promote efficient reuse. Thalamocortical interactions resemble hierarchical Bayesian computations, and their network implementation can be related to existing gating, synchronization, and hub theories of thalamic function. By reviewing recent findings and providing a novel synthesis, we highlight key research horizons integrating computation, cognition, and systems neuroscience.
Collapse
Affiliation(s)
- Daniel N Scott
- Department of Neuroscience, Brown University, Providence, RI, USA; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| | - Arghya Mukherjee
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Matthew R Nassar
- Department of Neuroscience, Brown University, Providence, RI, USA; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Michael M Halassa
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA; Department of Psychiatry, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
8
|
Redinbaugh MJ, Saalmann YB. Contributions of Basal Ganglia Circuits to Perception, Attention, and Consciousness. J Cogn Neurosci 2024; 36:1620-1642. [PMID: 38695762 PMCID: PMC11223727 DOI: 10.1162/jocn_a_02177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Research into ascending sensory pathways and cortical networks has generated detailed models of perception. These same cortical regions are strongly connected to subcortical structures, such as the basal ganglia (BG), which have been conceptualized as playing key roles in reinforcement learning and action selection. However, because the BG amasses experiential evidence from higher and lower levels of cortical hierarchies, as well as higher-order thalamus, it is well positioned to dynamically influence perception. Here, we review anatomical, functional, and clinical evidence to demonstrate how the BG can influence perceptual processing and conscious states. This depends on the integrative relationship between cortex, BG, and thalamus, which allows contributions to sensory gating, predictive processing, selective attention, and representation of the temporal structure of events.
Collapse
Affiliation(s)
| | - Yuri B Saalmann
- University of Wisconsin-Madison
- Wisconsin National Primate Research Center
| |
Collapse
|
9
|
Whyte CJ, Redinbaugh MJ, Shine JM, Saalmann YB. Thalamic contributions to the state and contents of consciousness. Neuron 2024; 112:1611-1625. [PMID: 38754373 PMCID: PMC11537458 DOI: 10.1016/j.neuron.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024]
Abstract
Consciousness can be conceptualized as varying along at least two dimensions: the global state of consciousness and the content of conscious experience. Here, we highlight the cellular and systems-level contributions of the thalamus to conscious state and then argue for thalamic contributions to conscious content, including the integrated, segregated, and continuous nature of our experience. We underscore vital, yet distinct roles for core- and matrix-type thalamic neurons. Through reciprocal interactions with deep-layer cortical neurons, matrix neurons support wakefulness and determine perceptual thresholds, whereas the cortical interactions of core neurons maintain content and enable perceptual constancy. We further propose that conscious integration, segregation, and continuity depend on the convergent nature of corticothalamic projections enabling dimensionality reduction, a thalamic reticular nucleus-mediated divisive normalization-like process, and sustained coherent activity in thalamocortical loops, respectively. Overall, we conclude that the thalamus plays a central topological role in brain structures controlling conscious experience.
Collapse
Affiliation(s)
- Christopher J Whyte
- Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | | | - James M Shine
- Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Yuri B Saalmann
- Department of Psychology, University of Wisconsin - Madison, Madison, WI, USA; Wisconsin National Primate Research Center, Madison, WI, USA
| |
Collapse
|
10
|
Li J, Qin Y, Zhong Z, Meng L, Huang L, Li B. Pain experience reduces social avoidance to others in pain: a c-Fos-based functional connectivity network study in mice. Cereb Cortex 2024; 34:bhae207. [PMID: 38798004 DOI: 10.1093/cercor/bhae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Pain experience increases individuals' perception and contagion of others' pain, but whether pain experience affects individuals' affiliative or antagonistic responses to others' pain is largely unknown. Additionally, the neural mechanisms underlying how pain experience modulates individuals' responses to others' pain remain unclear. In this study, we explored the effects of pain experience on individuals' responses to others' pain and the underlying neural mechanisms. By comparing locomotion, social, exploration, stereotyped, and anxiety-like behaviors of mice without any pain experience (naïve observers) and mice with a similar pain experience (experienced observers) when they observed the pain-free demonstrator with intraperitoneal injection of normal saline and the painful demonstrator with intraperitoneal injection of acetic acid, we found that pain experience of the observers led to decreased social avoidance to the painful demonstrator. Through whole-brain c-Fos quantification, we discovered that pain experience altered neuronal activity and enhanced functional connectivity in the mouse brain. The analysis of complex network and graph theory exhibited that functional connectivity networks and activated hub regions were altered by pain experience. Together, these findings reveal that neuronal activity and functional connectivity networks are involved in the modulation of individuals' responses to others' pain by pain experience.
Collapse
Affiliation(s)
- Jiali Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, 74 Zhongshan Second Road, Yuexiu District, 510080 Guangzhou, China
| | - Yuxin Qin
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, 74 Zhongshan Second Road, Yuexiu District, 510080 Guangzhou, China
| | - Zifeng Zhong
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, 74 Zhongshan Second Road, Yuexiu District, 510080 Guangzhou, China
| | - Linjie Meng
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, 74 Zhongshan Second Road, Yuexiu District, 510080 Guangzhou, China
| | - Lianyan Huang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, 74 Zhongshan Second Road, Yuexiu District, 510080 Guangzhou, China
| | - Boxing Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, 74 Zhongshan Second Road, Yuexiu District, 510080 Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Second Road, Yuexiu District, 510080 Guangzhou, China
| |
Collapse
|
11
|
Wolff M, Halassa MM. The mediodorsal thalamus in executive control. Neuron 2024; 112:893-908. [PMID: 38295791 DOI: 10.1016/j.neuron.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/15/2023] [Accepted: 01/03/2024] [Indexed: 03/23/2024]
Abstract
Executive control, the ability to organize thoughts and action plans in real time, is a defining feature of higher cognition. Classical theories have emphasized cortical contributions to this process, but recent studies have reinvigorated interest in the role of the thalamus. Although it is well established that local thalamic damage diminishes cognitive capacity, such observations have been difficult to inform functional models. Recent progress in experimental techniques is beginning to enrich our understanding of the anatomical, physiological, and computational substrates underlying thalamic engagement in executive control. In this review, we discuss this progress and particularly focus on the mediodorsal thalamus, which regulates the activity within and across frontal cortical areas. We end with a synthesis that highlights frontal thalamocortical interactions in cognitive computations and discusses its functional implications in normal and pathological conditions.
Collapse
Affiliation(s)
- Mathieu Wolff
- University of Bordeaux, CNRS, INCIA, UMR 5287, 33000 Bordeaux, France.
| | - Michael M Halassa
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA; Department of Psychiatry, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
12
|
Jia W, Zhou Y, Zuo L, Liu T, Li Z. Effects of brain atrophy and altered functional connectivity on poststroke cognitive impairment. Brain Res 2024; 1822:148635. [PMID: 37852525 DOI: 10.1016/j.brainres.2023.148635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/12/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND AND PURPOSE Brain atrophy and disrupted functional connectivity are often present in patients with poststroke cognitive impairment (PSCI). This study aimed to explore the relationship between remote brain atrophy, connectional diaschisis and cognitive impairment in ischemic stroke patients to provide valuable information about the mechanisms underlying cognitive function recovery. METHODS Forty first-time stroke patients with basal ganglia infarcts and twenty-nine age-matched healthy people were enrolled. All participants underwent T1-weighted and functional MRI scans, comprehensive cognitive function assessments at baseline, and 3-month follow-up. Brain volumes were calculated, and the atrophic regions were regarded as regions of interest in seed-based functional connectivity analyses. Pearson correlation analysis was used to explore the relationships among cognitive performance, brain atrophy, and functional connectivity alterations. RESULTS Compared with healthy participants, stroke patients had worse cognitive performance at baseline and the 3-month follow-up. Worse cognitive performance was associated with smaller bilateral thalamus, left hippocampus, and left amygdala volumes, as well as lower functional connectivity between the left thalamus and the left medial superior frontal gyrus, between the right thalamus and the left median cingulate and paracingulate gyri, between the right hippocampus and the left medial superior frontal gyrus, and between the left amygdala and the right dorsolateral superior frontal gyrus. CONCLUSIONS In patients with basal ganglia infarction, connectional diaschisis between remote brain atrophy and the prefrontal lobe plays a significant role in PSCI. This finding provides new scientific evidence for understanding the mechanisms of PSCI and indicates that the prefrontal lobe may be a target to improve cognitive function after stroke.
Collapse
Affiliation(s)
- Weili Jia
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yijun Zhou
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Lijun Zuo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Zixiao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Chinese Institute for Brain Research, Beijing, China; Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
13
|
Funk AT, Hassan AAO, Brüggemann N, Sharma N, Breiter HC, Blood AJ, Waugh JL. In humans, striato-pallido-thalamic projections are largely segregated by their origin in either the striosome-like or matrix-like compartments. Front Neurosci 2023; 17:1178473. [PMID: 37954873 PMCID: PMC10634229 DOI: 10.3389/fnins.2023.1178473] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/04/2023] [Indexed: 11/14/2023] Open
Abstract
Cortico-striato-thalamo-cortical (CSTC) loops are fundamental organizing units in mammalian brains. CSTCs process limbic, associative, and sensorimotor information in largely separated but interacting networks. CTSC loops pass through paired striatal compartments, striosome (aka patch) and matrix, segregated pools of medium spiny projection neurons with distinct embryologic origins, cortical/subcortical structural connectivity, susceptibility to injury, and roles in behaviors and diseases. Similarly, striatal dopamine modulates activity in striosome and matrix in opposite directions. Routing CSTCs through one compartment may be an anatomical basis for regulating discrete functions. We used differential structural connectivity, identified through probabilistic diffusion tractography, to distinguish the striatal compartments (striosome-like and matrix-like voxels) in living humans. We then mapped compartment-specific projections and quantified structural connectivity between each striatal compartment, the globus pallidus interna (GPi), and 20 thalamic nuclei in 221 healthy adults. We found that striosome-originating and matrix-originating streamlines were segregated within the GPi: striosome-like connectivity was significantly more rostral, ventral, and medial. Striato-pallido-thalamic streamline bundles that were seeded from striosome-like and matrix-like voxels transited spatially distinct portions of the white matter. Matrix-like streamlines were 5.7-fold more likely to reach the GPi, replicating animal tract-tracing studies. Striosome-like connectivity dominated in six thalamic nuclei (anteroventral, central lateral, laterodorsal, lateral posterior, mediodorsal-medial, and medial geniculate). Matrix-like connectivity dominated in seven thalamic nuclei (centromedian, parafascicular, pulvinar-anterior, pulvinar-lateral, ventral lateral-anterior, ventral lateral-posterior, ventral posterolateral). Though we mapped all thalamic nuclei independently, functionally-related nuclei were matched for compartment-level bias. We validated these results with prior thalamostriate tract tracing studies in non-human primates and other species; where reliable data was available, all agreed with our measures of structural connectivity. Matrix-like connectivity was lateralized (left > right hemisphere) in 18 thalamic nuclei, independent of handedness, diffusion protocol, sex, or whether the nucleus was striosome-dominated or matrix-dominated. Compartment-specific biases in striato-pallido-thalamic structural connectivity suggest that routing CSTC loops through striosome-like or matrix-like voxels is a fundamental mechanism for organizing and regulating brain networks. Our MRI-based assessments of striato-thalamic connectivity in humans match and extend the results of prior tract tracing studies in animals. Compartment-level characterization may improve localization of human neuropathologies and improve neurosurgical targeting in the GPi and thalamus.
Collapse
Affiliation(s)
- Adrian T. Funk
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, United States
| | - Asim A. O. Hassan
- Department of Natural Sciences and Mathematics, University of Texas at Dallas, Richardson, TX, United States
| | - Norbert Brüggemann
- Department of Neurology and Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Harvard University, Boston, MA, United States
| | - Hans C. Breiter
- Laboratory of Neuroimaging and Genetics, Massachusetts General Hospital, Charlestown, MA, United States
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Anne J. Blood
- Laboratory of Neuroimaging and Genetics, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Psychiatry, Massachusetts General Hospital, Harvard University, Boston, MA, United States
- Mood and Motor Control Laboratory, Massachusetts General Hospital, Charlestown, MA, United States
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Jeff L. Waugh
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, United States
- Mood and Motor Control Laboratory, Massachusetts General Hospital, Charlestown, MA, United States
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| |
Collapse
|
14
|
Borra E, Rizzo M, Luppino G. Gradients of thalamic connectivity in the macaque lateral prefrontal cortex. Front Integr Neurosci 2023; 17:1239426. [PMID: 37908780 PMCID: PMC10613699 DOI: 10.3389/fnint.2023.1239426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/20/2023] [Indexed: 11/02/2023] Open
Abstract
In the primate brain, the lateral prefrontal cortex (LPF) is a large, heterogeneous region critically involved in the cognitive control of behavior, consisting of several connectionally and functionally distinct areas. Studies in macaques provided evidence for distinctive patterns of cortical connectivity between architectonic areas located at different dorsoventral levels and for rostrocaudal gradients of parietal and frontal connections in the three main architectonic LPF areas: 46d, 46v, and 12r. In the present study, based on tracer injections placed at different dorsoventral and rostrocaudal cortical levels, we have examined the thalamic projections to the LPF to examine to what extent fine-grained connectional gradients of cortical connectivity are reflected in the topography of thalamo-LPF projections. The results showed mapping onto the nucleus medialis dorsalis (MD), by far the major source of thalamic input to the LPF, of rostral-to-caudal LPF zones, in which MD zones projecting to more caudal LPF sectors are located more rostral than those projecting to intermediate LPF sectors. Furthermore, the MD zones projecting to the rostral LPF sectors tended to be much more extensive in the rostrocaudal direction. One rostrolateral MD sector appeared to be a common source of projections to caudal prefrontal areas involved in the oculomotor frontal domain, a more caudal and ventral MD sector to a large extent of the ventral LPF, and middle and dorsal MD sectors to most of the dorsal LPF. Additional topographically organized projections to LPF areas originated from the nucleus pulvinaris medialis and projections from the nucleus anterior medialis selectively targeted more rostral sectors of LPF. Thus, the present data suggest that the topography of the MD-LPF projections does not adhere to simple topological rules, but is mainly organized according to functional criteria.
Collapse
Affiliation(s)
| | | | - Giuseppe Luppino
- Neuroscience Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
15
|
Howell AM, Warrington S, Fonteneau C, Cho YT, Sotiropoulos SN, Murray JD, Anticevic A. The spatial extent of anatomical connections within the thalamus varies across the cortical hierarchy in humans and macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.22.550168. [PMID: 37546767 PMCID: PMC10401924 DOI: 10.1101/2023.07.22.550168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Each cortical area has a distinct pattern of anatomical connections within the thalamus, a central subcortical structure composed of functionally and structurally distinct nuclei. Previous studies have suggested that certain cortical areas may have more extensive anatomical connections that target multiple thalamic nuclei, which potentially allows them to modulate distributed information flow. However, there is a lack of quantitative investigations into anatomical connectivity patterns within the thalamus. Consequently, it remains unknown if cortical areas exhibit systematic differences in the extent of their anatomical connections within the thalamus. To address this knowledge gap, we used diffusion magnetic resonance imaging (dMRI) to perform brain-wide probabilistic tractography for 828 healthy adults from the Human Connectome Project. We then developed a framework to quantify the spatial extent of each cortical area's anatomical connections within the thalamus. Additionally, we leveraged resting-state functional MRI, cortical myelin, and human neural gene expression data to test if the extent of anatomical connections within the thalamus varied along the cortical hierarchy. Our results revealed two distinct corticothalamic tractography motifs: 1) a sensorimotor cortical motif characterized by focal thalamic connections targeting posterolateral thalamus, associated with fast, feed-forward information flow; and 2) an associative cortical motif characterized by diffuse thalamic connections targeting anteromedial thalamus, associated with slow, feed-back information flow. These findings were consistent across human subjects and were also observed in macaques, indicating cross-species generalizability. Overall, our study demonstrates that sensorimotor and association cortical areas exhibit differences in the spatial extent of their anatomical connections within the thalamus, which may support functionally-distinct cortico-thalamic information flow.
Collapse
Affiliation(s)
- Amber M Howell
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, 06511, USA
| | - Shaun Warrington
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Clara Fonteneau
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, 06511, USA
| | - Youngsun T Cho
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, 06511, USA
| | - Stamatios N Sotiropoulos
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Queens Medical Centre, Nottingham, UK
| | - John D Murray
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, 06511, USA
- Physics, Yale University, New Haven, Connecticut, 06511, USA
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, 06511, USA
- Department of Psychology, Yale University, New Haven, Connecticut, 06511, USA
| |
Collapse
|
16
|
Méndez JC, Perry BAL, Premereur E, Pelekanos V, Ramadan T, Mitchell AS. Variable cardiac responses in rhesus macaque monkeys after discrete mediodorsal thalamus manipulations. Sci Rep 2023; 13:16913. [PMID: 37805650 PMCID: PMC10560229 DOI: 10.1038/s41598-023-42752-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 09/14/2023] [Indexed: 10/09/2023] Open
Abstract
The control of some physiological parameters, such as the heart rate, is known to have a role in cognitive and emotional processes. Cardiac changes are also linked to mental health issues and neurodegeneration. Thus, it is not surprising that many of the brain structures typically associated with cognition and emotion also comprise a circuit-the central automatic network-responsible for the modulation of cardiovascular output. The mediodorsal thalamus (MD) is involved in higher cognitive processes and is also known to be connected to some of the key neural structures that regulate cardiovascular function. However, it is unclear whether the MD has any role in this circuitry. Here, we show that discrete manipulations (microstimulation during anaesthetized functional neuroimaging or localized cytotoxin infusions) to either the magnocellular or the parvocellular MD subdivisions led to observable and variable changes in the heart rate of female and male rhesus macaque monkeys. Considering the central positions that these two MD subdivisions have in frontal cortico-thalamocortical circuits, our findings suggest that MD contributions to autonomic regulation may interact with its identified role in higher cognitive processes, representing an important physiological link between cognition and emotion.
Collapse
Affiliation(s)
- Juan Carlos Méndez
- Department of Clinical and Biomedical Sciences, University of Exeter, College House, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK
| | - Brook A L Perry
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford, OX1 3TH, UK
| | - Elsie Premereur
- Laboratory for Neuro- and Psychophysiology, KU Leuven, Leuven, Belgium
| | | | - Tamara Ramadan
- Department of Biological Sciences, University of Oxford, Oxford, UK
| | - Anna S Mitchell
- Department of Psychology, Speech and Hearing, University of Canterbury, Christchurch, 8041, New Zealand.
| |
Collapse
|
17
|
Alonso-Martínez C, Rubio-Teves M, Porrero C, Clascá F. Cerebellar and basal ganglia inputs define three main nuclei in the mouse ventral motor thalamus. Front Neuroanat 2023; 17:1242839. [PMID: 37645018 PMCID: PMC10461449 DOI: 10.3389/fnana.2023.1242839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023] Open
Abstract
The thalamus is a central link between cortical and subcortical brain motor systems. Axons from the deep nuclei of the cerebellum (DCN), or the output nuclei of the basal ganglia system (substantia nigra reticulata, SNr; and internal pallidum GPi/ENT) monosynaptically innervate the thalamus, prominently some nuclei of the ventral nuclear group. In turn, axons from these ventral nuclei innervate the motor and premotor areas of the cortex, where their input is critical for planning, execution and learning of rapid and precise movements. Mice have in recent years become a widely used model in motor system research. However, information on the distribution of cerebellar and basal ganglia inputs in the rodent thalamus remains poorly defined. Here, we mapped the distribution of inputs from DCN, SNr, and GPi/ENT to the ventral nuclei of the mouse thalamus. Immunolabeling for glutamatergic and GABAergic neurotransmission markers delineated two distinct main territories, characterized each by the presence of large vesicular glutamate transporter type 2 (vGLUT2) puncta or vesicular GABA transporter (vGAT) puncta. Anterograde labeling of axons from DCN revealed that they reach virtually all parts of the ventral nuclei, albeit its axonal varicosities (putative boutons) in the vGAT-rich sector are consistently smaller than those in the vGLUT2-rich sector. In contrast, the SNr axons innervate the whole vGAT-rich sector, but not the vGLUT2-rich sector. The GPi/ENT axons were found to innervate only a small zone of the vGAT-rich sector which is also targeted by the other two input systems. Because inputs fundamentally define thalamic cell functioning, we propose a new delineation of the mouse ventral motor nuclei that is consistent with the distribution of DCN, SNr and GPi/ENT inputs and resembles the general layout of the ventral motor nuclei in primates.
Collapse
Affiliation(s)
| | | | - César Porrero
- Department of Anatomy and Neuroscience, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Clascá
- Department of Anatomy and Neuroscience, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
18
|
Skibbe H, Rachmadi MF, Nakae K, Gutierrez CE, Hata J, Tsukada H, Poon C, Schlachter M, Doya K, Majka P, Rosa MGP, Okano H, Yamamori T, Ishii S, Reisert M, Watakabe A. The Brain/MINDS Marmoset Connectivity Resource: An open-access platform for cellular-level tracing and tractography in the primate brain. PLoS Biol 2023; 21:e3002158. [PMID: 37384809 DOI: 10.1371/journal.pbio.3002158] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/11/2023] [Indexed: 07/01/2023] Open
Abstract
The primate brain has unique anatomical characteristics, which translate into advanced cognitive, sensory, and motor abilities. Thus, it is important that we gain insight on its structure to provide a solid basis for models that will clarify function. Here, we report on the implementation and features of the Brain/MINDS Marmoset Connectivity Resource (BMCR), a new open-access platform that provides access to high-resolution anterograde neuronal tracer data in the marmoset brain, integrated to retrograde tracer and tractography data. Unlike other existing image explorers, the BMCR allows visualization of data from different individuals and modalities in a common reference space. This feature, allied to an unprecedented high resolution, enables analyses of features such as reciprocity, directionality, and spatial segregation of connections. The present release of the BMCR focuses on the prefrontal cortex (PFC), a uniquely developed region of the primate brain that is linked to advanced cognition, including the results of 52 anterograde and 164 retrograde tracer injections in the cortex of the marmoset. Moreover, the inclusion of tractography data from diffusion MRI allows systematic analyses of this noninvasive modality against gold-standard cellular connectivity data, enabling detection of false positives and negatives, which provide a basis for future development of tractography. This paper introduces the BMCR image preprocessing pipeline and resources, which include new tools for exploring and reviewing the data.
Collapse
Affiliation(s)
- Henrik Skibbe
- Brain Image Analysis Unit, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | | | - Ken Nakae
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan
| | - Carlos Enrique Gutierrez
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Onna Village, Japan
| | - Junichi Hata
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako, Saitama, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hiromichi Tsukada
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Onna Village, Japan
- Center for Mathematical Science and Artificial Intelligence, Chubu University, Kasugai, Aichi, Japan
| | - Charissa Poon
- Brain Image Analysis Unit, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Matthias Schlachter
- Brain Image Analysis Unit, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Kenji Doya
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Onna Village, Japan
| | - Piotr Majka
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Australia
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Australia
| | - Marcello G P Rosa
- Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Australia
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Australia
| | - Hideyuki Okano
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako, Saitama, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Tetsuo Yamamori
- Laboratory of Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Wako, Saitama, Japan
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Shin Ishii
- Department of Systems Science, Kyoto University, Kyoto, Japan
| | - Marco Reisert
- Brain Image Analysis Unit, RIKEN Center for Brain Science, Wako, Saitama, Japan
- Department of Stereotactic and Functional Neurosurgery, Medical Center of the University of Freiburg, Freiburg Im Breisgau, Germany
- Medical Faculty of the University of Freiburg, Freiburg Im Breisgau, Germany
- Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center-University of Freiburg, Freiburg Im Breisgau, Germany
| | - Akiya Watakabe
- Laboratory of Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Wako, Saitama, Japan
| |
Collapse
|
19
|
Saalmann YB, Mofakham S, Mikell CB, Djuric PM. Microscale multicircuit brain stimulation: Achieving real-time brain state control for novel applications. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 4:100071. [PMID: 36619175 PMCID: PMC9816916 DOI: 10.1016/j.crneur.2022.100071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022] Open
Abstract
Neurological and psychiatric disorders typically result from dysfunction across multiple neural circuits. Most of these disorders lack a satisfactory neuromodulation treatment. However, deep brain stimulation (DBS) has been successful in a limited number of disorders; DBS typically targets one or two brain areas with single contacts on relatively large electrodes, allowing for only coarse modulation of circuit function. Because of the dysfunction in distributed neural circuits - each requiring fine, tailored modulation - that characterizes most neuropsychiatric disorders, this approach holds limited promise. To develop the next generation of neuromodulation therapies, we will have to achieve fine-grained, closed-loop control over multiple neural circuits. Recent work has demonstrated spatial and frequency selectivity using microstimulation with many small, closely-spaced contacts, mimicking endogenous neural dynamics. Using custom electrode design and stimulation parameters, it should be possible to achieve bidirectional control over behavioral outcomes, such as increasing or decreasing arousal during central thalamic stimulation. Here, we discuss one possible approach, which we term microscale multicircuit brain stimulation (MMBS). We discuss how machine learning leverages behavioral and neural data to find optimal stimulation parameters across multiple contacts, to drive the brain towards desired states associated with behavioral goals. We expound a mathematical framework for MMBS, where behavioral and neural responses adjust the model in real-time, allowing us to adjust stimulation in real-time. These technologies will be critical to the development of the next generation of neurostimulation therapies, which will allow us to treat problems like disorders of consciousness and cognition.
Collapse
Affiliation(s)
- Yuri B. Saalmann
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Sima Mofakham
- Department of Neurological Surgery, Stony Brook University Hospital, Stony Brook, NY, USA
- Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Charles B. Mikell
- Department of Neurological Surgery, Stony Brook University Hospital, Stony Brook, NY, USA
| | - Petar M. Djuric
- Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
20
|
The mediodorsal thalamus supports adaptive responding based on stimulus-outcome associations. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100057. [PMID: 36281274 PMCID: PMC9587292 DOI: 10.1016/j.crneur.2022.100057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/12/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
The ability to engage into flexible behaviors is crucial in dynamic environments. We recently showed that in addition to the well described role of the orbitofrontal cortex (OFC), its thalamic input from the submedius thalamic nucleus (Sub) also contributes to adaptive responding during Pavlovian degradation. In the present study, we examined the role of the mediodorsal thalamus (MD) which is the other main thalamic input to the OFC. To this end, we assessed the effect of both pre- and post-training MD lesions in rats performing a Pavlovian contingency degradation task. Pre-training lesions mildly impeded the establishment of stimulus-outcome associations during the initial training of Pavlovian conditioning without interfering with Pavlovian degradation training when the sensory feedback provided by the outcome rewards were available to animals. However, we found that both pre- and post-training MD lesions produced a selective impairment during a test conducted under extinction conditions, during which only current mental representation could guide behavior. Altogether, these data suggest a role for the MD in the successful encoding and representation of Pavlovian associations.
Collapse
|
21
|
White matter volume loss drives cortical reshaping after thalamic infarcts. Neuroimage Clin 2022; 33:102953. [PMID: 35139478 PMCID: PMC8844789 DOI: 10.1016/j.nicl.2022.102953] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/10/2022] [Accepted: 02/01/2022] [Indexed: 11/24/2022]
Abstract
White matter volume loss after unilateral thalamic infarcts shows the trajectories of sensory and ocular motor input from the brainstem to the thalamus and their thalamocortical connections. The extensive volume loss drives reshaping of the cortex more than grey matter atrophy. Associated ocular motor and vestibular symptoms are compensated over time due to their redundant and intermingled connectivity and an early integration with other sensory modalities. Associated ocular motor and vestibular symptoms are compensated over time due to their redundant and intermingled connectivity and an early integration with other sensory modalities.
Objective The integration of somatosensory, ocular motor and vestibular signals is necessary for self-location in space and goal-directed action. We aimed to detect remote changes in the cerebral cortex after thalamic infarcts to reveal the thalamo-cortical connections necessary for multisensory processing and ocular motor control. Methods Thirteen patients with unilateral ischemic thalamic infarcts presenting with vestibular, somatosensory, and ocular motor symptoms were examined longitudinally in the acute phase and after six months. Voxel- and surface-based morphometry were used to detect changes in vestibular and multisensory cortical areas and known hubs of central ocular motor processing. The results were compared with functional connectivity data in 50 healthy volunteers. Results Patients with paramedian infarcts showed impaired saccades and vestibular perception, i.e., tilts of the subjective visual vertical (SVV). The most common complaint in these patients was double vision or vertigo / dizziness. Posterolateral thalamic infarcts led to tilts of the SVV and somatosensory deficits without vertigo. Tilts of the SVV were higher in paramedian compared to posterolateral infarcts (median 11.2° vs 3.8°). Vestibular and ocular motor symptoms recovered within six months. Somatosensory deficits persisted. Structural longitudinal imaging showed significant volume reduction in subcortical structures connected to the infarcted thalamic nuclei (vestibular nuclei region, dentate nucleus region, trigeminal root entry zone, medial lemniscus, superior colliculi). Volume loss was evident in connections to the frontal, parietal and cingulate lobes. Changes were larger in the ipsilesional hemisphere but were also detected in homotopical regions contralesionally. The white matter volume reduction led to deformation of the cortical projection zones of the infarcted nuclei. Conclusions White matter volume loss after thalamic infarcts reflects sensory input from the brainstem as well the cortical projections of the main affected nuclei for sensory and ocular motor processing. Changes in the cortical geometry seem not to reflect gray matter atrophy but rather reshaping of the cortical surface due to the underlying white matter atrophy.
Collapse
|
22
|
The human mediodorsal thalamus: Organization, connectivity, and function. Neuroimage 2022; 249:118876. [PMID: 34998970 DOI: 10.1016/j.neuroimage.2022.118876] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/06/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023] Open
Abstract
The human mediodorsal thalamic nucleus (MD) is crucial for higher cognitive functions, while the fine anatomical organization of the MD and the function of each subregion remain elusive. In this study, using high-resolution data provided by the Human Connectome Project, an anatomical connectivity-based method was adopted to unveil the topographic organization of the MD. Four fine-grained subregions were identified in each hemisphere, including the medial (MDm), central (MDc), dorsal (MDd), and lateral (MDl), which recapitulated previous cytoarchitectonic boundaries from histological studies. The subsequent connectivity analysis of the subregions also demonstrated distinct anatomical and functional connectivity patterns, especially with the prefrontal cortex. To further evaluate the function of MD subregions, partial least squares analysis was performed to examine the relationship between different prefrontal-subregion connectivity and behavioral measures in 1012 subjects. The results showed subregion-specific involvement in a range of cognitive functions. Specifically, the MDm predominantly subserved emotional-cognition domains, while the MDl was involved in multiple cognitive functions especially cognitive flexibility and inhibition. The MDc and MDd were correlated with fluid intelligence, processing speed, and emotional cognition. In conclusion, our work provides new insights into the anatomical and functional organization of the MD and highlights the various roles of the prefrontal-thalamic circuitry in human cognition.
Collapse
|
23
|
A thalamo-centric neural signature for restructuring negative self-beliefs. Mol Psychiatry 2022; 27:1611-1617. [PMID: 34974523 PMCID: PMC9095461 DOI: 10.1038/s41380-021-01402-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/13/2021] [Accepted: 11/24/2021] [Indexed: 11/08/2022]
Abstract
Negative self-beliefs are a core feature of psychopathology. Despite this, we have a limited understanding of the brain mechanisms by which negative self-beliefs are cognitively restructured. Using a novel paradigm, we had participants use Socratic questioning techniques to restructure negative beliefs during ultra-high resolution 7-Tesla functional magnetic resonance imaging (UHF 7 T fMRI) scanning. Cognitive restructuring elicited prominent activation in a fronto-striato-thalamic circuit, including the mediodorsal thalamus (MD), a group of deep subcortical nuclei believed to synchronize and integrate prefrontal cortex activity, but which has seldom been directly examined with fMRI due to its small size. Increased activity was also identified in the medial prefrontal cortex (MPFC), a region consistently activated by internally focused mental processing, as well as in lateral prefrontal regions associated with regulating emotional reactivity. Using Dynamic Causal Modelling (DCM), evidence was found to support the MD as having a strong excitatory effect on the activity of regions within the broader network mediating cognitive restructuring. Moreover, the degree to which participants modulated MPFC-to-MD effective connectivity during cognitive restructuring predicted their individual tendency to engage in repetitive negative thinking. Our findings represent a major shift from a cortico-centric framework of cognition and provide important mechanistic insights into how the MD facilitates key processes in cognitive interventions for common psychiatric disorders. In addition to relaying integrative information across basal ganglia and the cortex, we propose a multifaceted role for the MD whose broad excitatory pathways act to increase synchrony between cortical regions to sustain complex mental representations, including the self.
Collapse
|
24
|
Cobia D, Rich C, Smith MJ, Engel Gonzalez P, Cronenwett W, Csernansky JG, Wang L. Thalamic Shape Abnormalities Differentially Relate to Cognitive Performance in Early-Onset and Adult-Onset Schizophrenia. Front Psychiatry 2022; 13:803234. [PMID: 35479490 PMCID: PMC9035552 DOI: 10.3389/fpsyt.2022.803234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Early-onset schizophrenia (EOS) shares many biological and clinical features with adult-onset schizophrenia (AOS), but may represent a unique subgroup with greater susceptibility for disease onset and worsened symptomatology and progression, which could potentially derive from exaggerated neurodevelopmental abnormalities. Neurobiological explanations of schizophrenia have emphasized the involvement of deep-brain structures, particularly alterations of the thalamus, which have been linked to core features of the disorder. The aim of this study was to compare thalamic shape abnormalities between EOS and AOS subjects and determine whether unique behavioral profiles related to these differences. It was hypothesized abnormal thalamic shape would be observed in anterior, mediodorsal and pulvinar regions in both schizophrenia groups relative to control subjects, but exacerbated in EOS. Magnetic resonance T1-weighted images were collected from adult individuals with EOS (n = 28), AOS (n = 33), and healthy control subjects (n = 60), as well as collection of clinical and cognitive measures. Large deformation high-dimensional brain mapping was used to obtain three-dimensional surfaces of the thalamus. General linear models were used to compare groups on surface shape features, and Pearson correlations were used to examine relationships between thalamic shape and behavioral measures. Results revealed both EOS and AOS groups demonstrated significant abnormal shape of anterior, lateral and pulvinar thalamic regions relative to CON (all p < 0.007). Relative to AOS, EOS exhibited exacerbated abnormalities in posterior lateral, mediodorsal and lateral geniculate thalamic regions (p = 0.003). Thalamic abnormalities related to worse episodic memory in EOS (p = 0.03) and worse working memory (p = 0.047) and executive functioning (p = 0003) in AOS. Overall, findings suggest thalamic abnormalities are a prominent feature in both early- and late-onset schizophrenia, but exaggerated in EOS and have different brain-behavior profiles for each. The persistence of these abnormalities in adult EOS patients suggests they may represent markers of disrupted neurodevelopment that uniquely relate to the clinical and cognitive aspects of the illness.
Collapse
Affiliation(s)
- Derin Cobia
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT, United States.,Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Chaz Rich
- Department of Psychology, University of Notre Dame, Notre Dame, IN, United States
| | - Matthew J Smith
- School of Social Work, University of Michigan, Ann Arbor, MI, United States
| | - Pedro Engel Gonzalez
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Will Cronenwett
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - John G Csernansky
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
25
|
Harrison BJ, Davey CG, Savage HS, Jamieson AJ, Leonards CA, Moffat BA, Glarin RK, Steward T. Dynamic Subcortical Modulators of Human Default Mode Network Function. Cereb Cortex 2021; 32:4345-4355. [PMID: 34974620 PMCID: PMC9528899 DOI: 10.1093/cercor/bhab487] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022] Open
Abstract
The brain’s “default mode network” (DMN) enables flexible switching between internally and externally focused cognition. Precisely how this modulation occurs is not well understood, although it may involve key subcortical mechanisms, including hypothesized influences from the basal forebrain (BF) and mediodorsal thalamus (MD). Here, we used ultra-high field (7 T) functional magnetic resonance imaging to examine the involvement of the BF and MD across states of task-induced DMN activity modulation. Specifically, we mapped DMN activity suppression (“deactivation”) when participants transitioned between rest and externally focused task performance, as well as DMN activity engagement (“activation”) when task performance was internally (i.e., self) focused. Consistent with recent rodent studies, the BF showed overall activity suppression with DMN cortical regions when comparing the rest to external task conditions. Further analyses, including dynamic causal modeling, confirmed that the BF drove changes in DMN cortical activity during these rest-to-task transitions. The MD, by comparison, was specifically engaged during internally focused cognition and demonstrated a broad excitatory influence on DMN cortical activation. These results provide the first direct evidence in humans of distinct BF and thalamic circuit influences on the control of DMN function and suggest novel mechanistic avenues for ongoing translational research.
Collapse
Affiliation(s)
- Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christopher G Davey
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hannah S Savage
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alec J Jamieson
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christine A Leonards
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bradford A Moffat
- Melbourne Brain Centre Imaging Unit, Department of Radiology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rebecca K Glarin
- Melbourne Brain Centre Imaging Unit, Department of Radiology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Trevor Steward
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria 3010, Australia.,Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
26
|
Blazquez Freches G, Haak KV, Beckmann CF, Mars RB. Connectivity gradients on tractography data: Pipeline and example applications. Hum Brain Mapp 2021; 42:5827-5845. [PMID: 34559432 PMCID: PMC8596970 DOI: 10.1002/hbm.25623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 07/03/2021] [Accepted: 07/30/2021] [Indexed: 11/08/2022] Open
Abstract
Gray matter connectivity can be described in terms of its topographical organization, but the differential role of white matter connections underlying that organization is often unknown. In this study, we propose a method for unveiling principles of organization of both gray and white matter based on white matter connectivity as assessed using diffusion magnetic ressonance imaging (MRI) tractography with spectral embedding gradient mapping. A key feature of the proposed approach is its capacity to project the individual connectivity gradients it reveals back onto its input data in the form of projection images, allowing one to assess the contributions of specific white matter tracts to the observed gradients. We demonstrate the ability of our proposed pipeline to identify connectivity gradients in prefrontal and occipital gray matter. Finally, leveraging the use of tractography, we demonstrate that it is possible to observe gradients within the white matter bundles themselves. Together, the proposed framework presents a generalized way to assess both the topographical organization of structural brain connectivity and the anatomical features driving it.
Collapse
Affiliation(s)
- Guilherme Blazquez Freches
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud UniversityNijmegenThe Netherlands
| | - Koen V. Haak
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenThe Netherlands
| | - Christian F. Beckmann
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenThe Netherlands
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nufeld Department of Clinical NeurosciencesJohn Radclife Hospital, University of OxfordOxfordUK
| | - Rogier B. Mars
- Donders Institute for Brain, Cognition and Behaviour, Radboud UniversityNijmegenThe Netherlands
| |
Collapse
|
27
|
Waugh JL, Hassan A, Kuster JK, Levenstein JM, Warfield SK, Makris N, Brüggemann N, Sharma N, Breiter HC, Blood AJ. An MRI method for parcellating the human striatum into matrix and striosome compartments in vivo. Neuroimage 2021; 246:118714. [PMID: 34800665 PMCID: PMC9142299 DOI: 10.1016/j.neuroimage.2021.118714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/19/2022] Open
Abstract
The mammalian striatum is comprised of intermingled tissue compartments, matrix and striosome. Though indistinguishable by routine histological techniques, matrix and striosome have distinct embryologic origins, afferent/efferent connections, surface protein expression, intra-striatal location, susceptibilities to injury, and functional roles in a range of animal behaviors. Distinguishing the compartments previously required post-mortem tissue and/or genetic manipulation; we aimed to identify matrix/striosome non-invasively in living humans. We used diffusion MRI (probabilistic tractography) to identify human striatal voxels with connectivity biased towards matrix-favoring or striosome-favoring regions (determined by prior animal tract-tracing studies). Segmented striatal compartments replicated the topological segregation and somatotopic organization identified in animal matrix/striosome studies. Of brain regions mapped in prior studies, our human brain data confirmed 93% of the compartment-selective structural connectivity demonstrated in animals. Test-retest assessment on repeat scans found a voxel classification error rate of 0.14%. Fractional anisotropy was significantly higher in matrix-like voxels, while mean diffusivity did not differ between the compartments. As mapped by the Talairach human brain atlas, 460 regions were significantly biased towards either matrix or striosome. Our method allows the study of striatal compartments in human health and disease, in vivo, for the first time.
Collapse
Affiliation(s)
- J L Waugh
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, United States; Division of Child Neurology, University of Texas Southwestern, Dallas, TX, United States; Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; Mood and Motor Control Laboratory, Boston, MA, United States; Martinos Center for Biomedical Imaging, United States; Massachusetts General Hospital, Charlestown, MA, United States.
| | - Aao Hassan
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, United States
| | - J K Kuster
- Mood and Motor Control Laboratory, Boston, MA, United States; Laboratory of Neuroimaging and Genetics, United States; Martinos Center for Biomedical Imaging, United States; Rheumatology, Allergy and Immunology Section, Massachusetts General Hospital, Boston, MA, United States.
| | - J M Levenstein
- Mood and Motor Control Laboratory, Boston, MA, United States; Martinos Center for Biomedical Imaging, United States; Yale School of Medicine, New Haven, CN, United States; Wellcome Centre for Integrative Neuroimaging, National Institutes of Health, Bethesda, MD, United States.
| | - S K Warfield
- Department of Radiology, United States; Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.
| | - N Makris
- Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; Center for Morphometric Analysis, United States; Martinos Center for Biomedical Imaging, United States; Departments of Neurology and Psychiatry, Charlestown, MA, United States.
| | - N Brüggemann
- Department of Neurology, University of Oxford, Oxford, United Kingdom; Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.
| | - N Sharma
- Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; Massachusetts General Hospital, Charlestown, MA, United States.
| | - H C Breiter
- Laboratory of Neuroimaging and Genetics, United States; Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| | - A J Blood
- Mood and Motor Control Laboratory, Boston, MA, United States; Laboratory of Neuroimaging and Genetics, United States; Martinos Center for Biomedical Imaging, United States; Departments of Neurology and Psychiatry, Charlestown, MA, United States.
| |
Collapse
|
28
|
Phillips JM, Kambi NA, Redinbaugh MJ, Mohanta S, Saalmann YB. Disentangling the influences of multiple thalamic nuclei on prefrontal cortex and cognitive control. Neurosci Biobehav Rev 2021; 128:487-510. [PMID: 34216654 DOI: 10.1016/j.neubiorev.2021.06.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 04/13/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
The prefrontal cortex (PFC) has a complex relationship with the thalamus, involving many nuclei which occupy predominantly medial zones along its anterior-to-posterior extent. Thalamocortical neurons in most of these nuclei are modulated by the affective and cognitive signals which funnel through the basal ganglia. We review how PFC-connected thalamic nuclei likely contribute to all aspects of cognitive control: from the processing of information on internal states and goals, facilitating its interactions with mnemonic information and learned values of stimuli and actions, to their influence on high-level cognitive processes, attentional allocation and goal-directed behavior. This includes contributions to transformations such as rule-to-choice (parvocellular mediodorsal nucleus), value-to-choice (magnocellular mediodorsal nucleus), mnemonic-to-choice (anteromedial nucleus) and sensory-to-choice (medial pulvinar). Common mechanisms appear to be thalamic modulation of cortical gain and cortico-cortical functional connectivity. The anatomy also implies a unique role for medial PFC in modulating processing in thalamocortical circuits involving other orbital and lateral PFC regions. We further discuss how cortico-basal ganglia circuits may provide a mechanism through which PFC controls cortico-cortical functional connectivity.
Collapse
Affiliation(s)
- Jessica M Phillips
- Department of Psychology, University of Wisconsin-Madison, 1202 W Johnson St., Madison, WI 53706, United States.
| | - Niranjan A Kambi
- Department of Psychology, University of Wisconsin-Madison, 1202 W Johnson St., Madison, WI 53706, United States
| | - Michelle J Redinbaugh
- Department of Psychology, University of Wisconsin-Madison, 1202 W Johnson St., Madison, WI 53706, United States
| | - Sounak Mohanta
- Department of Psychology, University of Wisconsin-Madison, 1202 W Johnson St., Madison, WI 53706, United States
| | - Yuri B Saalmann
- Department of Psychology, University of Wisconsin-Madison, 1202 W Johnson St., Madison, WI 53706, United States; Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1202 Capitol Ct., Madison, WI 53715, United States.
| |
Collapse
|
29
|
Perry BAL, Lomi E, Mitchell AS. Thalamocortical interactions in cognition and disease: the mediodorsal and anterior thalamic nuclei. Neurosci Biobehav Rev 2021; 130:162-177. [PMID: 34216651 DOI: 10.1016/j.neubiorev.2021.05.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/12/2021] [Accepted: 05/17/2021] [Indexed: 01/15/2023]
Abstract
The mediodorsal thalamus (MD) and anterior thalamic nuclei (ATN) are two adjacent brain nodes that support our ability to make decisions, learn, update information, form and retrieve memories, and find our way around. The MD and PFC work in partnerships to support cognitive processes linked to successful learning and decision-making, while the ATN and extended hippocampal system together coordinate the encoding and retrieval of memories and successful spatial navigation. Yet, while these distinctions may appear to be segregated, both the MD and ATN together support our higher cognitive functions as they regulate and are influenced by interconnected fronto-temporal neural networks and subcortical inputs. Our review focuses on recent studies in animal models and in humans. This evidence is re-shaping our understanding of the importance of MD and ATN cortico-thalamocortical pathways in influencing complex cognitive functions. Given the evidence from clinical settings and neuroscience research labs, the MD and ATN should be considered targets for effective treatments in neuropsychiatric diseases and disorders and neurodegeneration.
Collapse
Affiliation(s)
- Brook A L Perry
- Department of Experimental Psychology, Oxford University, The Tinsley Building, Mansfield Road, OX1 3SR, United Kingdom
| | - Eleonora Lomi
- Department of Experimental Psychology, Oxford University, The Tinsley Building, Mansfield Road, OX1 3SR, United Kingdom
| | - Anna S Mitchell
- Department of Experimental Psychology, Oxford University, The Tinsley Building, Mansfield Road, OX1 3SR, United Kingdom.
| |
Collapse
|
30
|
Exploring communication between the thalamus and cognitive control-related functional networks in the cerebral cortex. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 21:656-677. [PMID: 33864195 DOI: 10.3758/s13415-021-00892-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/15/2021] [Indexed: 11/08/2022]
Abstract
It has been suggested by multiple studies (postmortem studies, invasive animal studies, and diffusion tensor imaging in the human brain) that the thalamus is important for communication among cortical regions. Many functional magnetic resonance imaging (fMRI) studies, including noninvasive and whole-brain studies, have reported thalamic co-activation with several cognitive control-related cortical systems. This forms a complex network that may be important for advanced cognitive control-related processes, such as working memory and attention. Nevertheless, how the thalamus communicates with the cognitive control-related network in the intact human brain is an essential question and needs further investigation. To address this question, we conducted a study using dynamic functional connectivity analysis and effective connectivity analysis based on fMRI data from young, healthy adult participants. The results showed that the middle thalamus exhibited both high in- and out-degree regarding the complex network related to cognitive control during both rest and task conditions. Furthermore, intrinsic communication via the middle thalamic regions showed dynamically co-varying patterns, and the thalamic regions showed high flexibility in dynamic community analysis. These results indicated that the mid-thalamic region is an important station for communication between nodes in cognitive control-related networks.
Collapse
|
31
|
Cheng H, Liu J. Concurrent brain parcellation and connectivity estimation via co-clustering of resting state fMRI data: A novel approach. Hum Brain Mapp 2021; 42:2477-2489. [PMID: 33615651 PMCID: PMC8090776 DOI: 10.1002/hbm.25381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 12/19/2022] Open
Abstract
Connectional topography mapping has been gaining widespread attention in human brain imaging studies. However, existing methods might not effectively utilize the information from neuroimaging data, thus hindering the understanding of the underlying connectional organization in the brain and uncovering the optimal clustering number from the data. In this study, we propose a novel method for the automated construction of inherent functional connectivity topography in a data‐driven manner by leveraging the power of co‐clustering‐based on resting state fMRI (rs‐fMRI) data. We propose the co‐clustering‐based method not only for concurrently parcellating two interconnected brain regions of interest (ROIs) under consideration into functionally homogenous subregions, but also for estimating the connectivity between these subregions from the two brain ROIs. In particular, we first model the connectional topography mapping as a co‐clustering‐based bipartite graph partitioning problem for constructing the inherent functional connectivity topography between the two interconnected brain ROIs. We also adopt an objective criterion, that is, silhouette width index measuring clustering quality, for determining the optimal number of clusters. The proposed method has been validated for mapping thalamocortical connectional topography based on rs‐fMRI data of 57 subjects. Validation results have demonstrated that our method identified the optimal solution with five pairs of mutually connected subregions of the thalamocortical system from the rs‐fMRI data, and could yield more meaningful, interpretable, and homogenous connectional topography than existing methods. The proposed method was further validated by the high symmetry of the mapped connectional topography between two hemispheres.
Collapse
Affiliation(s)
- Hewei Cheng
- Research Center of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China.,Chongqing Engineering Laboratory of Digital Medical Equipment and Systems, Chongqing University of Posts and Telecommunications, Chongqing, China.,Chongqing Engineering Research Center of Medical Electronics & Information Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Jie Liu
- Research Institute of Education Development, Chongqing University of Posts and Telecommunications, Chongqing, China
| |
Collapse
|
32
|
Kastner S, Fiebelkorn IC, Eradath MK. Dynamic pulvino-cortical interactions in the primate attention network. Curr Opin Neurobiol 2020; 65:10-19. [PMID: 32942125 PMCID: PMC7770054 DOI: 10.1016/j.conb.2020.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022]
Abstract
While research in previous decades demonstrated a link between the pulvinar nucleus of the thalamus and visual selective attention, the pulvinar's specific functional role has remained elusive. However, methodological advances in electrophysiological recordings in non-human primates, including simultaneous recordings in multiple brain regions, have recently begun to reveal the pulvinar's functional contributions to selective attention. These new findings suggest that the pulvinar is critical for the efficient transmission of sensory information within and between cortical regions, both synchronizing cortical activity across brain regions and controlling cortical excitability. These new findings further suggest that the pulvinar's influence on cortical processing is embedded in a dynamic selection process that balances sensory and motor functions within the large-scale network that directs selective attention.
Collapse
Affiliation(s)
- Sabine Kastner
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, United States.
| | - Ian C Fiebelkorn
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, United States
| | - Manoj K Eradath
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, United States
| |
Collapse
|
33
|
Weber FD, Supp GG, Klinzing JG, Mölle M, Engel AK, Born J. Coupling of gamma band activity to sleep spindle oscillations - a combined EEG/MEG study. Neuroimage 2020; 224:117452. [PMID: 33059050 DOI: 10.1016/j.neuroimage.2020.117452] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 11/30/2022] Open
Abstract
Sleep spindles are crucial to memory consolidation. Cortical gamma oscillations (30-100 Hz) are considered to reflect processing of memory in local cortical networks. The temporal and regulatory relationship between spindles and gamma activity might therefore provide clues into how sleep strengthens cortical memory representations. Here, combining EEG with MEG recordings during sleep in healthy humans (n = 12), we investigated the temporal relationships of cortical gamma band activity, always measured by MEG, during fast (12-16 Hz) and slow (8-12 Hz) sleep spindles detected in the EEG or MEG. Time-frequency distributions did not show a consistent coupling of gamma to the spindle oscillation, although activity in the low gamma (30-40 Hz) and neighboring beta range (<30 Hz) was generally increased during spindles. However, more fine-grained analyses of cross-frequency interactions revealed that both low and high gamma power (30-100 Hz) was coupled to the phase of slow and fast EEG spindles, importantly, with this coupling at a fixed phase only for the oscillations within an individual spindle, but with variable phase across spindles. We did not observe any coupling of gamma activity for spindles detected solely in the MEG and not in parallel EEG recordings, raising the possibility that these are more local spindles of different quality. Similar to fast spindle activity, low gamma band power followed a ~0.025 Hz infraslow rhythm during sleep whose frequency, however, was significantly faster than that of spindle activity. Our findings suggest a general function of fast and slow spindles that by spanning larger cortical networks might serve to synchronize gamma band activity occurring in more local but distributed networks. Thereby, spindles might help linking local memory processing between distributed networks.
Collapse
Affiliation(s)
- Frederik D Weber
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Otfried-Müller-Str. 25, Germany.
| | - Gernot G Supp
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Martinistraße 52, Building N43, Germany
| | - Jens G Klinzing
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Otfried-Müller-Str. 25, Germany
| | - Matthias Mölle
- Department of Neuroendocrinology, University of Lübeck, 23538 Lübeck, Ratzeburger Allee 160, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Martinistraße 52, Building N43, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Otfried-Müller-Str. 25, Germany; Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Otfried-Müller-Str. 25, Germany.
| |
Collapse
|
34
|
Pelekanos V, Premereur E, Mitchell DJ, Chakraborty S, Mason S, Lee ACH, Mitchell AS. Corticocortical and Thalamocortical Changes in Functional Connectivity and White Matter Structural Integrity after Reward-Guided Learning of Visuospatial Discriminations in Rhesus Monkeys. J Neurosci 2020; 40:7887-7901. [PMID: 32900835 PMCID: PMC7548693 DOI: 10.1523/jneurosci.0364-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/30/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022] Open
Abstract
The frontal cortex and temporal lobes together regulate complex learning and memory capabilities. Here, we collected resting-state functional and diffusion-weighted MRI data before and after male rhesus macaque monkeys received extensive training to learn novel visuospatial discriminations (reward-guided learning). We found functional connectivity changes in orbitofrontal, ventromedial prefrontal, inferotemporal, entorhinal, retrosplenial, and anterior cingulate cortices, the subicular complex, and the dorsal, medial thalamus. These corticocortical and thalamocortical changes in functional connectivity were accompanied by related white matter structural alterations in the uncinate fasciculus, fornix, and ventral prefrontal tract: tracts that connect (sub)cortical networks and are implicated in learning and memory processes in monkeys and humans. After the well-trained monkeys received fornix transection, they were impaired in learning new visuospatial discriminations. In addition, the functional connectivity profile that was observed after the training was altered. These changes were accompanied by white matter changes in the ventral prefrontal tract, although the integrity of the uncinate fasciculus remained unchanged. Our experiments highlight the importance of different communication relayed among corticocortical and thalamocortical circuitry for the ability to learn new visuospatial associations (learning-to-learn) and to make reward-guided decisions.SIGNIFICANCE STATEMENT Frontal neural networks and the temporal lobes contribute to reward-guided learning in mammals. Here, we provide novel insight by showing that specific corticocortical and thalamocortical functional connectivity is altered after rhesus monkeys received extensive training to learn novel visuospatial discriminations. Contiguous white matter fiber pathways linking these gray matter structures, namely, the uncinate fasciculus, fornix, and ventral prefrontal tract, showed structural changes after completing training in the visuospatial task. Additionally, different patterns of functional and structural connectivity are reported after removal of subcortical connections within the extended hippocampal system, via fornix transection. These results highlight the importance of both corticocortical and thalamocortical interactions in reward-guided learning in the normal brain and identify brain structures important for memory capabilities after injury.
Collapse
Affiliation(s)
- Vassilis Pelekanos
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, United Kingdom
| | - Elsie Premereur
- Laboratory for Neuro- and Psychophysiology, KU Leuven, 3000 Leuven, Belgium
| | - Daniel J Mitchell
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
| | - Subhojit Chakraborty
- Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - Stuart Mason
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, United Kingdom
| | - Andy C H Lee
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario M1C 1A4, Canada
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario M6A 2E1, Canada
| | - Anna S Mitchell
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, United Kingdom
| |
Collapse
|
35
|
Prefrontal neural dynamics in consciousness. Neuropsychologia 2019; 131:25-41. [DOI: 10.1016/j.neuropsychologia.2019.05.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/11/2022]
|