1
|
Scarciglia A, Bonanno C, Valenza G. Physiological noise: a comprehensive review on informative randomness in neural systems. Phys Life Rev 2025; 53:281-293. [PMID: 40245660 DOI: 10.1016/j.plrev.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
Noise is often regarded as mere interference in the analysis of biomedical signals. Nonetheless, stochasticity plays a critical and informative role in the dynamics of complex systems, particularly in neurocardiovascular and neural systems. This review provides a comprehensive exploration on informative randomness in physiological contexts, tracing the evolution of noise research from its foundations on Brownian motion to its applications in neural systems, including the neuroautonomic regulation of cardiovascular dynamics. Key distinctions are made between output (measurement) noise and dynamic (intrinsic) noise, which directly influence the system behaviors at various levels. Several physiological noise identification techniques, such as stochastic differential equations, Bayesian methods, and Kalman filters, are evaluated in real-world scenarios. Special emphasis is placed on the role of physiological noise in multiscale neural systems, such as brain dynamics, neuronal communication, and heart-brain interactions, highlighting how it shapes complex functions. Furthermore, physiological noise is presented as a potential clinical biomarker, offering insights into the underlying structure and health of neural systems. Future research is encouraged to investigate multivariate noise estimation methods and their implications for understanding causality and systemic interactions in neurocardiovascular networks.
Collapse
Affiliation(s)
- Andrea Scarciglia
- Department of Information Engineering, School of Engineering, University of Pisa, Italy; Bioengineering and Robotics Research Center E. Piaggio, School of Engineering, University of Pisa, Italy.
| | | | - Gaetano Valenza
- Department of Information Engineering, School of Engineering, University of Pisa, Italy; Bioengineering and Robotics Research Center E. Piaggio, School of Engineering, University of Pisa, Italy.
| |
Collapse
|
2
|
Tomeh A, Yusof Khan AHK, Abu Zaid Z, Ling KH, Inche Mat LN, Basri H, Wan Sulaiman WA. Height-dependent variation in corticospinal excitability modulation after active but not sham intermittent theta burst stimulation. IBRO Neurosci Rep 2025; 18:498-511. [PMID: 40177703 PMCID: PMC11964569 DOI: 10.1016/j.ibneur.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/28/2025] [Accepted: 03/11/2025] [Indexed: 04/05/2025] Open
Abstract
Poor reproducibility and high inter-individual variability in responses to intermittent theta burst stimulation (iTBS) of the human motor cortex (M1) are matters of concern. Here we recruited 17 healthy young adults in a randomized, sham-controlled, crossover study. Transcranial magnetic stimulation (TMS)-elicited motor evoked potentials (MEPs) were measured pre-iTBS (T0) and post-iTBS at 4-7 (T1), 9-12 (T2), 17-20 (T3), and 27-30 minutes (T4) from the right first dorsal interosseous muscle. MEP grand average (MEPGA) was defined as the mean of the normalized-to-baseline MEPs at all timepoints post-iTBS. As secondary objectives, we measured blood pressure, heart rate, and capillary blood glucose pre-iTBS, and at 0 and 30 minutes post-iTBS. The TMSens_Q structured questionnaire was filled out at the end of each session. Two-way repeated ANOVA did not show a significant TIME×INTERVENTION interaction effect on MEP amplitude, MEP latency, blood pressure, heart rate, and blood glucose (p > 0.05). Sleepiness was the most reported TMSens_Q sensation (82.3 %) in both groups. Surprisingly, the subjects' height negatively correlated with the normalized MEP amplitudes at T3 (r = -0.65, p = 0.005), T4 (r = -0.66, p = 0.004), and MEPGA (r = -0.68, p = 0.003), with a trend correlation at T1 (r = -0.46, p = 0.062) and T2 (r = -0.46, p = 0.065) in the active but not sham group. In view of this, we urge future studies to delve deeper into the influence of height on neuroplasticity induction of the M1 representation of peripheral muscles. In the end, we highlight unique methodological considerations in our study protocol and future recommendations for M1-iTBS studies.
Collapse
Affiliation(s)
- Abdulhameed Tomeh
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Abdul Hanif Khan Yusof Khan
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Malaysian Research Institute on Ageing (MyAgeingTM), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Zalina Abu Zaid
- Department of Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Dietetics, Hospital Sultan Abdul Aziz Shah, Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Liyana Najwa Inche Mat
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hamidon Basri
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wan Aliaa Wan Sulaiman
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Malaysian Research Institute on Ageing (MyAgeingTM), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
3
|
Forte G, Casagrande M. Explaining cognitive decline related to hypertension: The role of heart rate variability in the stairway to cognitive impairment. Physiol Behav 2025; 292:114825. [PMID: 39880272 DOI: 10.1016/j.physbeh.2025.114825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Until now, it has been challenging to examine what are the causes of the cognitive decline associated with hypertension and to understand the predictive variables that indicate the development of cognitive impairment in people with hypertension. This work is aimed to understand the interplay between heart rate variability and blood pressure and whether their combination can predict cognitive performance. This cross-sectional observational study involved patients with fifty-two adults with essential hypertension and a control group of 41 healthy adults without hypertension. Except for the diagnosis of hypertension the same inclusion criteria were adopted to balance the groups. The overall sample was divided based on HRV metrics. A complete neuropsychological battery was administered and resting heart rate variability in individuals with and without hypertension was measured. Hypertensive patients with altered HRV had worse cognitive performance, particularly in the executive domain. Low HRV and hypertension have interdependent and combined association with cognitive impairment. Our results indicate that the association between hypertension and cognitive performance is affected by HRV. For neuroscientists, it's time to look beyond the brain. And clinicians who treat the body can't assume that the brain is above involvement.
Collapse
Affiliation(s)
- Giuseppe Forte
- Dipartimento di Psicologia Dinamica, Clinica e Salute, Sapienza Università di Roma, Italy.
| | - Maria Casagrande
- Dipartimento di Psicologia Dinamica, Clinica e Salute, Sapienza Università di Roma, Italy
| |
Collapse
|
4
|
Valenza G, Matić Z, Catrambone V. The brain-heart axis: integrative cooperation of neural, mechanical and biochemical pathways. Nat Rev Cardiol 2025:10.1038/s41569-025-01140-3. [PMID: 40033035 DOI: 10.1038/s41569-025-01140-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/10/2025] [Indexed: 03/05/2025]
Abstract
The neural and cardiovascular systems are pivotal in regulating human physiological, cognitive and emotional states, constantly interacting through anatomical and functional connections referred to as the brain-heart axis. When this axis is dysfunctional, neurological conditions can lead to cardiovascular disorders and, conversely, cardiovascular dysfunction can substantially affect brain health. However, the mechanisms and fundamental physiological components of the brain-heart axis remain largely unknown. In this Review, we elucidate these components and identify three primary pathways: neural, mechanical and biochemical. The neural pathway involves the interaction between the autonomic nervous system and the central autonomic network in the brain. The mechanical pathway involves mechanoreceptors, particularly those expressing mechanosensitive Piezo protein channels, which relay crucial information about blood pressure through peripheral and cerebrovascular connections. The biochemical pathway comprises many endogenous compounds that are important mediators of neural and cardiovascular function. This multisystem perspective calls for the development of integrative approaches, leading to new clinical specialties in neurocardiology.
Collapse
Affiliation(s)
- Gaetano Valenza
- Neurocardiovascular Intelligence Lab, Department of Information Engineering & Research Center "E. Piaggio", University of Pisa, Pisa, Italy.
| | - Zoran Matić
- Neurocardiovascular Intelligence Lab, Department of Information Engineering & Research Center "E. Piaggio", University of Pisa, Pisa, Italy
| | - Vincenzo Catrambone
- Neurocardiovascular Intelligence Lab, Department of Information Engineering & Research Center "E. Piaggio", University of Pisa, Pisa, Italy
| |
Collapse
|
5
|
Herbert C. Exercising4Cognition: Can Short Bouts of Aerobic Exercise Improve Cognitive Performance in Healthy Adults for Primary Health Prevention? Previous Findings and Suggestions for the Future. Healthcare (Basel) 2025; 13:368. [PMID: 39997243 PMCID: PMC11855900 DOI: 10.3390/healthcare13040368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/26/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Background: Regular physical activity (PA) and regular exercise (RE) are essential for an active and healthy lifestyle. Additionally, the short-term effects have been investigated to understand how an acute bout of exercise impacts cognitive processing, an important aspect of mental health and well-being. Previous studies have confirmed positive effects. However, several exercise factors and human factors can influence this relationship. Aim/Methods/Results: This perspective paper has three main objectives: firstly, discussing the exercise and human factors that influence exercise-cognition effects significantly across studies according to previous reviews and meta-analytic studies and how this influence could be explained theoretically; secondly, highlighting important knowledge gaps and research questions for future research; and thirdly, discussing what conclusion can be drawn for cognitive health promotion. A particular focus is given to the effects of acute bouts of aerobic exercise and healthy adults as an important target group for primary health prevention. Conclusions: The summary of previous findings shows that the effects of an acute bout of aerobic exercise on cognitive performance in healthy adults depend on (a) exercise factors such as the duration and intensity of the acute bout of exercise, (b) cognitive factors such as the type of cognitive task and domain of cognitive functions, and (c) individual factors such as the physical activity of the individuals. Still, open questions concern the ideal duration, intensity and timing of the acute bout of exercise. In particular, more research is needed to determine whether and how aerobic exercises of short duration and an intensity above and especially below moderate intensity improve cognitive functions in healthy adults. Methodologically, these factors should be addressed by multimethod designs that consider intra- and interindividual comparisons and different response levels (self-report, behavioral, psychophysiological). In conclusion, answering these questions could pave the way for recommendations on how healthcare professionals should prescribe brief aerobic exercise as a cognitive health booster in healthy young adults. To this end, concepts of extended arousal and neurovisceral integration are useful framework models to include individual factors, like self-regulatory abilities of the individual and how these influence exercise-cognition interactions and exercise motivation during, pre-to-post and across testing sessions.
Collapse
Affiliation(s)
- Cornelia Herbert
- Applied Emotion and Motivation Psychology, Institute of Psychology and Education, Faculty of Engineering, Computer Science and Psychology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
6
|
Zhang J, Chen D, Deming P, Srirangarajan T, Theriault J, Kragel PA, Hartley L, Lee KM, McVeigh K, Wager TD, Wald LL, Satpute AB, Quigley KS, Whitfield-Gabrieli S, Barrett LF, Bianciardi M. Cortical and subcortical mapping of the allostatic-interoceptive system in the human brain using 7 Tesla fMRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.07.20.548178. [PMID: 37546889 PMCID: PMC10401932 DOI: 10.1101/2023.07.20.548178] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The brain continuously anticipates the energetic needs of the body and prepares to meet those needs before they arise, called allostasis. In support of allostasis, the brain continually models the sensory state of the body, called interoception. We replicated and extended a large-scale system supporting allostasis and interoception in the human brain using ultra-high precision 7 Tesla functional magnetic resonance imaging (fMRI) (N = 90), improving the precision of subgenual and pregenual anterior cingulate topography combined with extensive brainstem nuclei mapping. We observed over 90% of the anatomical connections published in tract-tracing studies in non-human animals. The system also included regions of dense intrinsic connectivity broadly throughout the system, some of which were identified previously as part of the backbone of neural communication across the brain. These results strengthen previous evidence for a whole-brain system supporting the modeling and regulation of the internal milieu of the body.
Collapse
Affiliation(s)
- Jiahe Zhang
- Department of Psychology, Northeastern University, Boston, MA 02115
| | - Danlei Chen
- Department of Psychology, Northeastern University, Boston, MA 02115
| | - Philip Deming
- Department of Psychology, Northeastern University, Boston, MA 02115
| | | | - Jordan Theriault
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02139
| | | | - Ludger Hartley
- Department of Psychology, Northeastern University, Boston, MA 02115
| | - Kent M. Lee
- Department of Psychology, Northeastern University, Boston, MA 02115
| | - Kieran McVeigh
- Department of Psychology, Northeastern University, Boston, MA 02115
| | - Tor D. Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755
| | - Lawrence L. Wald
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02139
| | - Ajay B. Satpute
- Department of Psychology, Northeastern University, Boston, MA 02115
| | - Karen S. Quigley
- Department of Psychology, Northeastern University, Boston, MA 02115
| | | | - Lisa Feldman Barrett
- Department of Psychology, Northeastern University, Boston, MA 02115
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02139
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02139
| | - Marta Bianciardi
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02139
- Division of Sleep Medicine, Harvard University, Boston, MA
| |
Collapse
|
7
|
Stange JP, Xu EP, Zapetis SL, Li J, Jenkins L, Jimmy J, Ye Z, Sellery P, Phanord CS, Forbes E, Trull TJ, Mermelstein RJ, Ajilore O. Neurophysiological Markers of Regulation Success in Everyday Life in Depression. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025:S2451-9022(25)00026-6. [PMID: 39814264 DOI: 10.1016/j.bpsc.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/19/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Self-regulation is often disrupted in depression and is characterized by negative affect and inflexible parasympathetic responses. However, our understanding of brain mechanisms of self-regulatory processes has largely been limited to laboratory contexts. Measuring individual differences in self-regulatory processes in everyday life-and their neural correlates-could inform our understanding of depression phenotypes and reveal novel intervention targets that impact everyday functioning. METHODS In individuals with remitted major depressive disorder and healthy comparison participants (N = 74), we measured 2 dimensions of regulation success in everyday life-perceived success with regulating affect and physiological success (parasympathetic augmentation following regulation attempts)-and their neural correlates using a functional magnetic resonance imaging emotion regulation task. RESULTS Perceptions of success were weakly associated with physiological success and had partially distinct neural correlates. Perceived success and physiological success in everyday life predicted reduced activity in brain regions involved in emotional salience while reacting to aversive stimuli in the scanner. During reappraisal in the scanner, greater perceived success in everyday life was dimensionally associated with more reappraisal-related activity in regions involved in cognitive control (including the dorsolateral and dorsomedial prefrontal cortices); in contrast, physiological success predicted enhanced downregulation of salience network activity (amygdala, insula). CONCLUSIONS Results suggest that linking psychophysiology with behavior in everyday life can provide a window into dissociable dimensions of self-regulatory functioning. Integrating ambulatory and brain-based metrics may elucidate self-regulatory phenotypes with distinct neurophysiological mechanisms and targets for intervention to impact functioning in daily life.
Collapse
Affiliation(s)
- Jonathan P Stange
- Department of Psychology, University of Southern California, Los Angeles, California; Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, California.
| | - Ellie P Xu
- Department of Psychology, University of Southern California, Los Angeles, California
| | - Sarah L Zapetis
- Department of Psychology, University of Southern California, Los Angeles, California
| | - Jiani Li
- Department of Psychology, University of Southern California, Los Angeles, California
| | - Lisanne Jenkins
- Department of Psychiatry, Monash University, Melbourne, Victoria, Australia
| | - Jagan Jimmy
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, Ohio
| | - Zihua Ye
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Pia Sellery
- Department of Psychology, University of Colorado at Boulder, Boulder, Colorado
| | - Coralie S Phanord
- Department of Psychology, University of Colorado at Boulder, Boulder, Colorado
| | - Erika Forbes
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Timothy J Trull
- Department of Psychology, University of Missouri, Columbia, Missouri
| | - Robin J Mermelstein
- Department of Psychology, University of Illinois at Chicago, Chicago, Illinois
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
8
|
Olchanyi MD, Augustinack J, Haynes RL, Lewis LD, Cicero N, Li J, Destrieux C, Folkerth RD, Kinney HC, Fischl B, Brown EN, Iglesias JE, Edlow BL. Histology-guided MRI segmentation of brainstem nuclei critical to consciousness. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.26.24314117. [PMID: 39399006 PMCID: PMC11469455 DOI: 10.1101/2024.09.26.24314117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
While substantial progress has been made in mapping the connectivity of cortical networks responsible for conscious awareness, neuroimaging analysis of subcortical arousal networks that modulate arousal (i.e., wakefulness) has been limited by a lack of a robust segmentation procedures for brainstem arousal nuclei. Automated segmentation of brainstem arousal nuclei is an essential step toward elucidating the physiology of arousal in human consciousness and the pathophysiology of disorders of consciousness. We created a probabilistic atlas of brainstem arousal nuclei built on diffusion MRI scans of five ex vivo human brain specimens scanned at 750 μm isotropic resolution. Labels of arousal nuclei used to generate the probabilistic atlas were manually annotated with reference to nucleus-specific immunostaining in two of the five brain specimens. We then developed a Bayesian segmentation algorithm that utilizes the probabilistic atlas as a generative model and automatically identifies brainstem arousal nuclei in a resolution- and contrast-agnostic manner. The segmentation method displayed high accuracy in both healthy and lesioned in vivo T1 MRI scans and high test-retest reliability across both T1 and T2 MRI contrasts. Finally, we show that the segmentation algorithm can detect volumetric changes and differences in magnetic susceptibility within brainstem arousal nuclei in Alzheimer's disease and traumatic coma, respectively. We release the probabilistic atlas and Bayesian segmentation tool in FreeSurfer to advance the study of human consciousness and its disorders.
Collapse
|
9
|
Palmer JA, Kaufman CS, Whitaker-Hilbig AA, Billinger SA. APOE4 carriers display loss of anticipatory cerebral vascular regulation over AD progression. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.11.24315344. [PMID: 39417136 PMCID: PMC11482999 DOI: 10.1101/2024.10.11.24315344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
INTRODUCTION Maintenance of cerebral blood flow during orthostasis is impaired with aging and associated with cognitive decline, but the effect of Apolipoprotein 4-allele (APOE4) is unknown. METHODS Older adults (n=108) (APOE4 carriers, n=47; noncarriers, n=61) diagnosed as cognitively-normal (NC), MCI, or AD participated. Middle cerebral artery blood velocity (MCAv), assessed using Transcranial Doppler ultrasound, and beat-to-beat mean arterial blood pressure (MAP) were continuously recorded during a sit-to-stand transition. Anticipatory and orthostatic-induced MCAv and MAP responses were compared between genotypes and across disease progression. RESULTS Cognitively-normal APOE4 carriers showed greater anticipatory MCAv increase, greater MCAv decrease with orthostasis, and shorter latency of peripheral MAP responses to orthostasis compared to noncarriers. MCAv and MAP responses were delayed and attenuated across the APOE4 disease progression, with no differences between genotypes in MCI and AD. DISCUSSION APOE4 carriers and noncarriers present with distinct phenotypes of cerebral vascular dysfunction during hemodynamic orthostatic challenge. Unique cerebral and peripheral vascular compensation observed in APOE4 carriers may be lost as AD progresses.
Collapse
Affiliation(s)
- Jacqueline A. Palmer
- Division of Physical Therapy and Rehabilitation Science, University of Minnesota Medical School, , Minneapolis, MN, United States of America
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States of America
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States of America
| | - Carolyn S. Kaufman
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States of America
- Department of Internal Medicine, Stanford Health Care, Stanford University, Palo Alto, CA, United States of America
| | - Alicen A. Whitaker-Hilbig
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, 123 Milwaukee Way, Milwaukee, WI, United States of America
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Sandra A. Billinger
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States of America
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States of America
| |
Collapse
|
10
|
Candia-Rivera D, Chavez M, De Vico Fallani F. Measures of the coupling between fluctuating brain network organization and heartbeat dynamics. Netw Neurosci 2024; 8:557-575. [PMID: 38952808 PMCID: PMC11168717 DOI: 10.1162/netn_a_00369] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/19/2024] [Indexed: 07/03/2024] Open
Abstract
In recent years, there has been an increasing interest in studying brain-heart interactions. Methodological advancements have been proposed to investigate how the brain and the heart communicate, leading to new insights into some neural functions. However, most frameworks look at the interaction of only one brain region with heartbeat dynamics, overlooking that the brain has functional networks that change dynamically in response to internal and external demands. We propose a new framework for assessing the functional interplay between cortical networks and cardiac dynamics from noninvasive electrophysiological recordings. We focused on fluctuating network metrics obtained from connectivity matrices of EEG data. Specifically, we quantified the coupling between cardiac sympathetic-vagal activity and brain network metrics of clustering, efficiency, assortativity, and modularity. We validate our proposal using open-source datasets: one that involves emotion elicitation in healthy individuals, and another with resting-state data from patients with Parkinson's disease. Our results suggest that the connection between cortical network segregation and cardiac dynamics may offer valuable insights into the affective state of healthy participants, and alterations in the network physiology of Parkinson's disease. By considering multiple network properties, this framework may offer a more comprehensive understanding of brain-heart interactions. Our findings hold promise in the development of biomarkers for diagnostic and cognitive/motor function evaluation.
Collapse
Affiliation(s)
- Diego Candia-Rivera
- Sorbonne Université, Paris Brain Institute (ICM), CNRS UMR 7225, INRIA Paris (Nerv Team), INSERM U1127, AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Mario Chavez
- Sorbonne Université, Paris Brain Institute (ICM), CNRS UMR 7225, INRIA Paris (Nerv Team), INSERM U1127, AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Fabrizio De Vico Fallani
- Sorbonne Université, Paris Brain Institute (ICM), CNRS UMR 7225, INRIA Paris (Nerv Team), INSERM U1127, AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
11
|
Goffi F, Reali P, Ferro A, Schiena G, Triulzi FM, Bianchi AM, Brambilla P, Maggioni E. Data-driven Discovery of the Central Autonomic Network: Dynamic Integration of HRV and Multivariate fMRI Connectivity. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-5. [PMID: 40040234 DOI: 10.1109/embc53108.2024.10782925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
INTRODUCTION Although the interaction between the brain and the heart, through the autonomic nervous system, is an established phenomenon, multimodal studies that have explored their bidirectional interplay are still limited. AIM In this context, the objective of the present study was to investigate the coupling between sympathetic and vagal dynamics and brain functional connectivity during resting state, thanks to simultaneously acquired electrocardiogram and functional magnetic resonance imaging (fMRI) data. METHODS Twenty healthy controls (67.42 ± 10.81 years, 60% females) were included in the study. Unimodal fMRI and heart rate variability (HRV) results were integrated in a joint analysis framework. Trivariate dynamic functional connectivity (dFC) features were correlated with time-varying HRV parameters to identify brain regions involved in autonomic modulation. RESULTS In a data-driven approach, the present analysis allowed to extract triplets of brain regions whose dFC was coupled with both sympathetic and vagal activity dynamics. The identified brain regions often belonged to the central autonomic network, which is a network of brain structures that are involved in the regulation of autonomic processes at high central level. CONCLUSION The present multimodal HRV and fMRI dFC analysis provided new findings on the physiological brain-heart interactions, paving the way to explore the same mechanisms in disorders of the brain-heart axis.
Collapse
|
12
|
Lohman T, Kapoor A, Engstrom AC, Shenasa F, Alitin JPM, Gaubert A, Rodgers KE, Bradford D, Mather M, Han SD, Head E, Sordo L, Thayer JF, Nation DA. Central autonomic network dysfunction and plasma Alzheimer's disease biomarkers in older adults. Alzheimers Res Ther 2024; 16:124. [PMID: 38851772 PMCID: PMC11162037 DOI: 10.1186/s13195-024-01486-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Higher order regulation of autonomic function is maintained by the coordinated activity of specific cortical and subcortical brain regions, collectively referred to as the central autonomic network (CAN). Autonomic changes are frequently observed in Alzheimer's disease (AD) and dementia, but no studies to date have investigated whether plasma AD biomarkers are associated with CAN functional connectivity changes in at risk older adults. METHODS Independently living older adults (N = 122) without major neurological or psychiatric disorder were recruited from the community. Participants underwent resting-state brain fMRI and a CAN network derived from a voxel-based meta-analysis was applied for overall, sympathetic, and parasympathetic CAN connectivity using the CONN Functional Toolbox. Sensorimotor network connectivity was studied as a negative control. Plasma levels of amyloid (Aβ42, Aβ40), neurofilament light chain (NfL), and glial fibrillary acidic protein (GFAP) were assessed using digital immunoassay. The relationship between plasma AD biomarkers and within-network functional connectivity was studied using multiple linear regression adjusted for demographic covariates and Apolipoprotein E (APOE) genotype. Interactive effects with APOE4 carrier status were also assessed. RESULTS All autonomic networks were positively associated with Aβ42/40 ratio and remained so after adjustment for age, sex, and APOE4 carrier status. Overall and parasympathetic networks were negatively associated with GFAP. The relationship between the parasympathetic CAN and GFAP was moderated by APOE4 carrier status, wherein APOE4 carriers with low parasympathetic CAN connectivity displayed the highest plasma GFAP concentrations (B = 910.00, P = .004). Sensorimotor connectivity was not associated with any plasma AD biomarkers, as expected. CONCLUSION The present study findings suggest that CAN function is associated with plasma AD biomarker levels. Specifically, lower CAN functional connectivity is associated with decreased plasma Aβ42/40, indicative of cerebral amyloidosis, and increased plasma GFAP in APOE4 carriers at risk for AD. These findings could suggest higher order autonomic and parasympathetic dysfunction in very early-stage AD, which may have clinical implications.
Collapse
Affiliation(s)
- Trevor Lohman
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, CA, USA
| | - Arunima Kapoor
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Allison C Engstrom
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Fatemah Shenasa
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - John Paul M Alitin
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, CA, USA
| | - Aimee Gaubert
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, CA, USA
| | - Kathleen E Rodgers
- Center for Innovations in Brain Science, Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - David Bradford
- Center for Innovations in Brain Science, Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Mara Mather
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, CA, USA
| | - S Duke Han
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Lorena Sordo
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Julian F Thayer
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Daniel A Nation
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, CA, USA.
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Madsen J, Parra LC. Bidirectional brain-body interactions during natural story listening. Cell Rep 2024; 43:114081. [PMID: 38581682 DOI: 10.1016/j.celrep.2024.114081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/25/2023] [Accepted: 03/24/2024] [Indexed: 04/08/2024] Open
Abstract
Narratives can synchronize neural and physiological signals between individuals, but the relationship between these signals, and the underlying mechanism, is unclear. We hypothesized a top-down effect of cognition on arousal and predicted that auditory narratives will drive not only brain signals but also peripheral physiological signals. We find that auditory narratives entrained gaze variation, saccade initiation, pupil size, and heart rate. This is consistent with a top-down effect of cognition on autonomic function. We also hypothesized a bottom-up effect, whereby autonomic physiology affects arousal. Controlled breathing affected pupil size, and heart rate was entrained by controlled saccades. Additionally, fluctuations in heart rate preceded fluctuations of pupil size and brain signals. Gaze variation, pupil size, and heart rate were all associated with anterior-central brain signals. Together, these results suggest bidirectional causal effects between peripheral autonomic function and central brain circuits involved in the control of arousal.
Collapse
Affiliation(s)
- Jens Madsen
- Department of Biomedical Engineering, City College of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA.
| | - Lucas C Parra
- Department of Biomedical Engineering, City College of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA
| |
Collapse
|
14
|
Catrambone V, Candia‐Rivera D, Valenza G. Intracortical brain-heart interplay: An EEG model source study of sympathovagal changes. Hum Brain Mapp 2024; 45:e26677. [PMID: 38656080 PMCID: PMC11041380 DOI: 10.1002/hbm.26677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/18/2024] [Accepted: 03/23/2024] [Indexed: 04/26/2024] Open
Abstract
The interplay between cerebral and cardiovascular activity, known as the functional brain-heart interplay (BHI), and its temporal dynamics, have been linked to a plethora of physiological and pathological processes. Various computational models of the brain-heart axis have been proposed to estimate BHI non-invasively by taking advantage of the time resolution offered by electroencephalograph (EEG) signals. However, investigations into the specific intracortical sources responsible for this interplay have been limited, which significantly hampers existing BHI studies. This study proposes an analytical modeling framework for estimating the BHI at the source-brain level. This analysis relies on the low-resolution electromagnetic tomography sources localization from scalp electrophysiological recordings. BHI is then quantified as the functional correlation between the intracortical sources and cardiovascular dynamics. Using this approach, we aimed to evaluate the reliability of BHI estimates derived from source-localized EEG signals as compared with prior findings from neuroimaging methods. The proposed approach is validated using an experimental dataset gathered from 32 healthy individuals who underwent standard sympathovagal elicitation using a cold pressor test. Additional resting state data from 34 healthy individuals has been analysed to assess robustness and reproducibility of the methodology. Experimental results not only confirmed previous findings on activation of brain structures affecting cardiac dynamics (e.g., insula, amygdala, hippocampus, and anterior and mid-cingulate cortices) but also provided insights into the anatomical bases of brain-heart axis. In particular, we show that the bidirectional activity of electrophysiological pathways of functional brain-heart communication increases during cold pressure with respect to resting state, mainly targeting neural oscillations in theδ $$ \delta $$ ,β $$ \beta $$ , andγ $$ \gamma $$ bands. The proposed approach offers new perspectives for the investigation of functional BHI that could also shed light on various pathophysiological conditions.
Collapse
Affiliation(s)
- Vincenzo Catrambone
- Neurocardiovascular Intelligence Laboratory & Department of Information Engineering & Bioengineering and Robotics Research Center, E. Piaggio, School of EngineeringUniversity of PisaPisaItaly
| | - Diego Candia‐Rivera
- Sorbonne Université, Paris Brain Institute (ICM), INRIA, CNRS, INSERM, AP‐HP, Hôpital Pitié‐SalpêtriŕeParisFrance
| | - Gaetano Valenza
- Neurocardiovascular Intelligence Laboratory & Department of Information Engineering & Bioengineering and Robotics Research Center, E. Piaggio, School of EngineeringUniversity of PisaPisaItaly
| |
Collapse
|
15
|
Catrambone V, Zallocco L, Ramoretti E, Mazzoni MR, Sebastiani L, Valenza G. Integrative neuro-cardiovascular dynamics in response to test anxiety: A brain-heart axis study. Physiol Behav 2024; 276:114460. [PMID: 38215864 DOI: 10.1016/j.physbeh.2024.114460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/08/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Test anxiety (TA), a recognized form of social anxiety, is the most prominent cause of anxiety among students and, if left unmanaged, can escalate to psychiatric disorders. TA profoundly impacts both central and autonomic nervous systems, presenting as a dual manifestation of cognitive and autonomic components. While limited studies have explored the physiological underpinnings of TA, none have directly investigated the intricate interplay between the CNS and ANS in this context. In this study, we introduce a non-invasive, integrated neuro-cardiovascular approach to comprehensively characterize the physiological responses of 27 healthy subjects subjected to test anxiety induced via a simulated exam scenario. Our experimental findings highlight that an isolated analysis of electroencephalographic and heart rate variability data fails to capture the intricate information provided by a brain-heart axis assessment, which incorporates an analysis of the dynamic interaction between the brain and heart. With respect to resting state, the simulated examination induced a decrease in the neural control onto heartbeat dynamics at all frequencies, while the studying condition induced a decrease in the ascending heart-to-brain interplay at EEG oscillations up to 12Hz. This underscores the significance of adopting a multisystem perspective in understanding the complex and especially functional directional mechanisms underlying test anxiety.
Collapse
Affiliation(s)
- Vincenzo Catrambone
- Neurocardiovascular Intelligence Laboratory, Department of Information Engineering & Bioengineering and Robotics Research Center E. Piaggio, School of Engineering, University of Pisa, Pisa, Italy.
| | - Lorenzo Zallocco
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Eleonora Ramoretti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Maria Rosa Mazzoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Laura Sebastiani
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy; Institute of Information Science and Technologies A. Faedo, ISTI-CNR, Pisa, Italy
| | - Gaetano Valenza
- Neurocardiovascular Intelligence Laboratory, Department of Information Engineering & Bioengineering and Robotics Research Center E. Piaggio, School of Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|
16
|
Haas A, Chung J, Kent C, Mills B, McCoy M. Vertebral Subluxation and Systems Biology: An Integrative Review Exploring the Salutogenic Influence of Chiropractic Care on the Neuroendocrine-Immune System. Cureus 2024; 16:e56223. [PMID: 38618450 PMCID: PMC11016242 DOI: 10.7759/cureus.56223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/16/2024] Open
Abstract
In this paper we synthesize an expansive body of literature examining the multifaceted influence of chiropractic care on processes within and modulators of the neuroendocrine-immune (NEI) system, for the purpose of generating an inductive hypothesis regarding the potential impacts of chiropractic care on integrated physiology. Taking a broad, interdisciplinary, and integrative view of two decades of research-documented outcomes of chiropractic care, inclusive of reports ranging from systematic and meta-analysis and randomized and observational trials to case and cohort studies, this review encapsulates a rigorous analysis of research and suggests the appropriateness of a more integrative perspective on the impact of chiropractic care on systemic physiology. A novel perspective on the salutogenic, health-promoting effects of chiropractic adjustment is presented, focused on the improvement of physical indicators of well-being and adaptability such as blood pressure, heart rate variability, and sleep, potential benefits that may be facilitated through multiple neurologically mediated pathways. Our findings support the biological plausibility of complex benefits from chiropractic intervention that is not limited to simple neuromusculoskeletal outcomes and open new avenues for future research, specifically the exploration and mapping of the precise neural pathways and networks influenced by chiropractic adjustment.
Collapse
Affiliation(s)
- Amy Haas
- Research, Foundation for Vertebral Subluxation, Kennesaw, USA
| | - Jonathan Chung
- Research, Foundation for Vertebral Subluxation, Kennesaw, USA
| | - Christopher Kent
- Research, Sherman College, Spartanburg, USA
- Research, Foundation for Vertebral Subluxation, Kennesaw, USA
| | - Brooke Mills
- Research, Foundation for Vertebral Subluxation, Kennesaw, USA
| | - Matthew McCoy
- Research, Foundation for Vertebral Subluxation, Kennesaw, USA
| |
Collapse
|
17
|
Christoffel K, De Asis-Cruz J, Govindan RB, Kim JH, Cook KM, Kapse K, Andescavage N, Basu S, Spoehr E, Limperopoulos C, du Plessis A. Central Autonomic Network and Heart Rate Variability in Premature Neonates. Dev Neurosci 2024; 46:373-385. [PMID: 38320522 PMCID: PMC11300706 DOI: 10.1159/000536513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
INTRODUCTION The Central Autonomic Network (CAN) is a hierarchy of brain structures that collectively influence cardiac autonomic input, mediating the majority of brain-heart interactions, but has never been studied in premature neonates. In this study, we use heart rate variability (HRV), which has been described as the "primary output" of the CAN, and resting-state functional MRI (rsfMRI) to characterize brain-heart relationships in premature neonates. METHODS We studied premature neonates who underwent rsfMRI at term (37-week postmenstrual age or above) and had HRV data recorded during the same week of their MRI. HRV was derived from continuous electrocardiogram data during the week of the rsfMRI scan. For rsfMRI, a seed-based approach was used to define regions of interest (ROIs) pertinent to the CAN, and blood oxygen level-dependent signal was correlated between each ROI as a measure of functional connectivity. HRV was correlated with CAN connectivity (CANconn) for each region, and subgroup analysis was performed based on sex and clinical comorbidities. RESULTS Forty-seven premature neonates were included in this study, with a mean gestational age at birth of 28.1 +/- 2.6 weeks. Term CANconn was found to be significantly correlated with HRV in approximately one-fifth of CAN connections. Two distinct patterns emerged among these HRV-CANconn relationships. In the first, increased HRV was associated with stronger CANconn of limbic regions. In the second pattern, stronger CANconn at the precuneus was associated with impaired HRV maturation. These patterns were especially pronounced in male premature neonates. CONCLUSION We report for the first time evidence of brain-heart relationships in premature neonates and an emerging CAN, most striking in male neonates, suggesting that the brain-heart axis may be more vulnerable in male premature neonates. Signatures in the heart rate may eventually become an important noninvasive tool to identify premature males at highest risk for neurodevelopmental impairment.
Collapse
Affiliation(s)
- Kelsey Christoffel
- Developing Brain Institute, Children's National Hospital, Washington, District of Columbia, USA,
- Prenatal Pediatrics Institute, Children's National Hospital, Washington, District of Columbia, USA,
| | - Josepheen De Asis-Cruz
- Developing Brain Institute, Children's National Hospital, Washington, District of Columbia, USA
| | - Rathinaswamy B Govindan
- Prenatal Pediatrics Institute, Children's National Hospital, Washington, District of Columbia, USA
| | - Jung Hoon Kim
- Developing Brain Institute, Children's National Hospital, Washington, District of Columbia, USA
| | - Kevin Michael Cook
- Developing Brain Institute, Children's National Hospital, Washington, District of Columbia, USA
| | - Kushal Kapse
- Developing Brain Institute, Children's National Hospital, Washington, District of Columbia, USA
| | - Nickie Andescavage
- Division of Neonatology, Children's National Hospital, Washington, District of Columbia, USA
| | - Sudeepta Basu
- Division of Neonatology, Children's National Hospital, Washington, District of Columbia, USA
| | - Emma Spoehr
- Developing Brain Institute, Children's National Hospital, Washington, District of Columbia, USA
| | - Catherine Limperopoulos
- Developing Brain Institute, Children's National Hospital, Washington, District of Columbia, USA
| | - Adre du Plessis
- Prenatal Pediatrics Institute, Children's National Hospital, Washington, District of Columbia, USA
| |
Collapse
|
18
|
Scarciglia A, Catrambone V, Bonanno C, Valenza G. Physiological Noise: Definition, Estimation, and Characterization in Complex Biomedical Signals. IEEE Trans Biomed Eng 2024; 71:45-55. [PMID: 37399153 DOI: 10.1109/tbme.2023.3291538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
BACKGROUND Nonlinear physiological systems exhibit complex dynamics driven by intrinsic dynamical noise. In cases where there is no specific knowledge or assumption about system dynamics, such as in physiological systems, it is not possible to formally estimate noise. AIM We introduce a formal method to estimate the power of dynamical noise, referred to as physiological noise, in a closed form, without specific knowledge of the system dynamics. METHODOLOGY Assuming that noise can be modeled as a sequence of independent, identically distributed (IID) random variables on a probability space, we demonstrate that physiological noise can be estimated through a nonlinear entropy profile. We estimated noise from synthetic maps that included autoregressive, logistic, and Pomeau-Manneville systems under various conditions. Noise estimation is performed on 70 heart rate variability series from healthy and pathological subjects, and 32 electroencephalographic (EEG) healthy series. RESULTS Our results showed that the proposed model-free method can discern different noise levels without any prior knowledge of the system dynamics. Physiological noise accounts for around 11% of the overall power observed in EEG signals and approximately 32% to 65% of the power related to heartbeat dynamics. Cardiovascular noise increases in pathological conditions compared to healthy dynamics, and cortical brain noise increases during mental arithmetic computations over the prefrontal and occipital regions. Brain noise is differently distributed across cortical regions. CONCLUSION Physiological noise is very part neurobiological dynamics and can be measured using the proposed framework in any biomedical series.
Collapse
|
19
|
Lee QN, Chen JE, Wheeler GJ, Fan AP. Characterizing systemic physiological effects on the blood oxygen level dependent signal of resting-state fMRI in time-frequency space using wavelets. Hum Brain Mapp 2023; 44:6537-6551. [PMID: 37950750 PMCID: PMC10681653 DOI: 10.1002/hbm.26533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/27/2023] [Accepted: 10/19/2023] [Indexed: 11/13/2023] Open
Abstract
Systemic physiological dynamics, such as heart rate variability (HRV) and respiration volume per time (RVT), are known to account for significant variance in the blood oxygen level dependent (BOLD) signal of resting-state functional magnetic resonance imaging (rsfMRI). However, synchrony between these cardiorespiratory changes and the BOLD signal could be due to neuronal (i.e., autonomic activity inducing changes in heart rate and respiration) or vascular (i.e., cardiorespiratory activity facilitating hemodynamic changes and thus the BOLD signal) effects and the contributions of these effects may differ spatially, temporally, and spectrally. In this study, we characterize these brain-body dynamics using a wavelet analysis in rapidly sampled rsfMRI data with simultaneous pulse oximetry and respiratory monitoring of the Human Connectome Project. Our time-frequency analysis across resting-state networks (RSNs) revealed differences in the coherence of the BOLD signal and heartbeat interval (HBI)/RVT dynamics across frequencies, with unique profiles per network. Somatomotor (SMN), visual (VN), and salience (VAN) networks demonstrated the greatest synchrony with both systemic physiological signals when compared to other networks; however, significant coherence was observed in all RSNs regardless of direct autonomic involvement. Our phase analysis revealed distinct frequency profiles of percentage of time with significant coherence between BOLD and systemic physiological signals for different phase offsets across RSNs, suggesting that the phase offset and temporal order of signals varies by frequency. Lastly, our analysis of temporal variability of coherence provides insight on potential influence of autonomic state on brain-body communication. Overall, the novel wavelet analysis enables an efficient characterization of the dynamic relationship between cardiorespiratory activity and the BOLD signal in spatial, temporal, and spectral dimensions to inform our understanding of autonomic states and improve our interpretation of the BOLD signal.
Collapse
Affiliation(s)
- Quimby N. Lee
- Department of NeurologyUniversity of California‐Davis, School of MedicineDavisCaliforniaUSA
| | - Jingyuan E. Chen
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMassachusettsUSA
- Department of RadiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Gregory J. Wheeler
- Department of Biomedical EngineeringUniversity of California‐DavisDavisCaliforniaUSA
| | - Audrey P. Fan
- Department of NeurologyUniversity of California‐Davis, School of MedicineDavisCaliforniaUSA
- Department of Biomedical EngineeringUniversity of California‐DavisDavisCaliforniaUSA
| |
Collapse
|
20
|
Clairis N, Lopez-Persem A. Debates on the dorsomedial prefrontal/dorsal anterior cingulate cortex: insights for future research. Brain 2023; 146:4826-4844. [PMID: 37530487 PMCID: PMC10690029 DOI: 10.1093/brain/awad263] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 08/03/2023] Open
Abstract
The dorsomedial prefrontal cortex/dorsal anterior cingulate cortex (dmPFC/dACC) is a brain area subject to many theories and debates over its function(s). Even its precise anatomical borders are subject to much controversy. In the past decades, the dmPFC/dACC has been associated with more than 15 different cognitive processes, which sometimes appear quite unrelated (e.g. body perception, cognitive conflict). As a result, understanding what the dmPFC/dACC does has become a real challenge for many neuroscientists. Several theories of this brain area's function(s) have been developed, leading to successive and competitive publications bearing different models, which sometimes contradict each other. During the last two decades, the lively scientific exchanges around the dmPFC/dACC have promoted fruitful research in cognitive neuroscience. In this review, we provide an overview of the anatomy of the dmPFC/dACC, summarize the state of the art of functions that have been associated with this brain area and present the main theories aiming at explaining the dmPFC/dACC function(s). We explore the commonalities and the arguments between the different theories. Finally, we explain what can be learned from these debates for future investigations of the dmPFC/dACC and other brain regions' functions.
Collapse
Affiliation(s)
- Nicolas Clairis
- Laboratory of Behavioral Genetics (LGC)- Brain Mind Institute (BMI)- Sciences de la Vie (SV), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Alizée Lopez-Persem
- FrontLab, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne University, AP HP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| |
Collapse
|
21
|
Catrambone V, Valenza G. Microstates of the cortical brain-heart axis. Hum Brain Mapp 2023; 44:5846-5857. [PMID: 37688575 PMCID: PMC10619395 DOI: 10.1002/hbm.26480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 08/04/2023] [Accepted: 08/24/2023] [Indexed: 09/11/2023] Open
Abstract
Electroencephalographic (EEG) microstates are brain states with quasi-stable scalp topography. Whether such states extend to the body level, that is, the peripheral autonomic nerves, remains unknown. We hypothesized that microstates extend at the brain-heart axis level as a functional state of the central autonomic network. Thus, we combined the EEG and heartbeat dynamics series to estimate the directional information transfer originating in the cortex targeting the sympathovagal and parasympathetic activity oscillations and vice versa for the afferent functional direction. Data were from two groups of participants: 36 healthy volunteers who were subjected to cognitive workload induced by mental arithmetic, and 26 participants who underwent physical stress induced by a cold pressure test. All participants were healthy at the time of the study. Based on statistical testing and goodness-of-fit evaluations, we demonstrated the existence of microstates of the functional brain-heart axis, with emphasis on the cerebral cortex, since the microstates are derived from EEG. Such nervous-system microstates are spatio-temporal quasi-stable states that exclusively refer to the efferent brain-to-heart direction. We demonstrated brain-heart microstates that could be associated with specific experimental conditions as well as brain-heart microstates that are non-specific to tasks.
Collapse
Affiliation(s)
- Vincenzo Catrambone
- Neurocardiovascular Intelligence Laboratory, Bioengineering and Robotics Research Center E. Piaggio, & Department of Information Engineering, School of EngineeringUniversity of PisaPisaItaly
| | - Gaetano Valenza
- Neurocardiovascular Intelligence Laboratory, Bioengineering and Robotics Research Center E. Piaggio, & Department of Information Engineering, School of EngineeringUniversity of PisaPisaItaly
| |
Collapse
|
22
|
Lyu H, Zhu X, He N, Li Q, Yin Q, Huang Y, Yan F, Liu J, Lu Y. Alterations in Resting-State MR Functional Connectivity of the Central Autonomic Network in Multiple System Atrophy and Relationship with Disease Severity. J Magn Reson Imaging 2023; 58:1472-1487. [PMID: 36988420 DOI: 10.1002/jmri.28693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND The central autonomic network (CAN) plays a critical role in the body's sympathetic and parasympathetic control. However, functional connectivity (FC) changes of the CAN in patients with multiple system atrophy (MSA) remain unknown. PURPOSE To investigate FC alterations of CAN in MSA patients. STUDY TYPE Prospective. POPULATION Eighty-two subjects (47 patients with MSA [44.7% female, 60.5 ± 6.9 years], 35 age- and sex-matched healthy controls [HC] [57.1% female, 62.5 ± 6.6 years]). FIELD STRENGTH/SEQUENCE 3-T, resting-state functional magnetic resonance imaging (rs-fMRI) using gradient echo-planar imaging (EPI), T1-weighted three-dimensional magnetization-prepared rapid gradient echo (3D MPRAGE) structural MRI. ASSESSMENT FC alterations were explored by using core modulatory regions of CAN as seeds, including midcingulate cortex, insula, amygdala, and ventromedial prefrontal cortex. Bartlett factor score (BFS) derived from a factor analysis of clinical assessments on disease severity was used as a grouping factor for moderate MSA (mMSA: BFS < 0) and severe MSA (sMSA: BFS > 0). STATISTICAL TESTS For FC analysis, the one-way ANCOVA with cluster-level family-wise error correction (statistical significance level of P < 0.025), and post hoc t-testing with Bonferroni correction or Tamhane's T2 correction (statistical significance level of adjusted-P < 0.05) were adopted. Correlation was assessed using Pearson correlation or Spearman correlation (statistical significance level of P < 0.05). RESULTS Compared with HC, patients with MSA exhibited significant FC aberrances between the CAN and brain areas of sensorimotor control, limbic network, putamen, and cerebellum. For MSA patients, most FC alterations of CAN, especially concerning FC between the right anterior insula and right primary sensorimotor cortices, were found to be significantly correlated with disease severity. FC changes were found to be more significant in sMSA group than in mMSA group when compared with HCs. DATA CONCLUSION MSA shows widespread FC changes of CAN, suggesting that abnormal functional integration of CAN may be involved in disease pathogenesis of MSA. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Haiying Lyu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Zhu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Li
- MR Collaborations, Siemens Healthineers Ltd., Shanghai, China
| | - Qianyi Yin
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufei Huang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Lu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Toschi N, Duggento A, Barbieri R, Garcia RG, Fisher HP, Kettner NW, Napadow V, Sclocco R. Causal influence of brainstem response to transcutaneous vagus nerve stimulation on cardiovagal outflow. Brain Stimul 2023; 16:1557-1565. [PMID: 37827358 PMCID: PMC10809655 DOI: 10.1016/j.brs.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND The autonomic response to transcutaneous auricular vagus nerve stimulation (taVNS) has been linked to the engagement of brainstem circuitry modulating autonomic outflow. However, the physiological mechanisms supporting such efferent vagal responses are not well understood, particularly in humans. HYPOTHESIS We present a paradigm for estimating directional brain-heart interactions in response to taVNS. We propose that our approach is able to identify causal links between the activity of brainstem nuclei involved in autonomic control and cardiovagal outflow. METHODS We adopt an approach based on a recent reformulation of Granger causality that includes permutation-based, nonparametric statistics. The method is applied to ultrahigh field (7T) functional magnetic resonance imaging (fMRI) data collected on healthy subjects during taVNS. RESULTS Our framework identified taVNS-evoked functional brainstem responses with superior sensitivity compared to prior conventional approaches, confirming causal links between taVNS stimulation and fMRI response in the nucleus tractus solitarii (NTS). Furthermore, our causal approach elucidated potential mechanisms by which information is relayed between brainstem nuclei and cardiovagal, i.e., high-frequency heart rate variability, in response to taVNS. Our findings revealed that key brainstem nuclei, known from animal models to be involved in cardiovascular control, exert a causal influence on taVNS-induced cardiovagal outflow in humans. CONCLUSION Our causal approach allowed us to noninvasively evaluate directional interactions between fMRI BOLD signals from brainstem nuclei and cardiovagal outflow.
Collapse
Affiliation(s)
- Nicola Toschi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome., Italy.
| | - Andrea Duggento
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome., Italy
| | - Riccardo Barbieri
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Ronald G Garcia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Harrison P Fisher
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Norman W Kettner
- Department of Radiology, Logan University, Chesterfield, MO, USA
| | - Vitaly Napadow
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Radiology, Logan University, Chesterfield, MO, USA; Scott Schoen and Nancy Adams Discovery Center for Recovery from Chronic Pain, Spaulding Rehabilitation Network, Harvard Medical School, Boston, MA, USA
| | - Roberta Sclocco
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Radiology, Logan University, Chesterfield, MO, USA; Scott Schoen and Nancy Adams Discovery Center for Recovery from Chronic Pain, Spaulding Rehabilitation Network, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Goheen J, Anderson JAE, Zhang J, Northoff G. From Lung to Brain: Respiration Modulates Neural and Mental Activity. Neurosci Bull 2023; 39:1577-1590. [PMID: 37285017 PMCID: PMC10533478 DOI: 10.1007/s12264-023-01070-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/10/2023] [Indexed: 06/08/2023] Open
Abstract
Respiration protocols have been developed to manipulate mental states, including their use for therapeutic purposes. In this systematic review, we discuss evidence that respiration may play a fundamental role in coordinating neural activity, behavior, and emotion. The main findings are: (1) respiration affects the neural activity of a wide variety of regions in the brain; (2) respiration modulates different frequency ranges in the brain's dynamics; (3) different respiration protocols (spontaneous, hyperventilation, slow or resonance respiration) yield different neural and mental effects; and (4) the effects of respiration on the brain are related to concurrent modulation of biochemical (oxygen delivery, pH) and physiological (cerebral blood flow, heart rate variability) variables. We conclude that respiration may be an integral rhythm of the brain's neural activity. This provides an intimate connection of respiration with neuro-mental features like emotion. A respiratory-neuro-mental connection holds the promise for a brain-based therapeutic usage of respiration in mental disorders.
Collapse
Affiliation(s)
- Josh Goheen
- The Royal Ottawa Mental Health Centre, The University of Ottawa, Ottawa, K1Z 7K4, Canada.
- Department of Cognitive Science, Carleton University, Ottawa, K1S 5B6, Canada.
| | - John A E Anderson
- Department of Cognitive Science, Carleton University, Ottawa, K1S 5B6, Canada
| | - Jianfeng Zhang
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, 518060, China
- School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Georg Northoff
- The Royal Ottawa Mental Health Centre, The University of Ottawa, Ottawa, K1Z 7K4, Canada
| |
Collapse
|
25
|
Shaffer C, Barrett LF, Quigley KS. Signal processing in the vagus nerve: Hypotheses based on new genetic and anatomical evidence. Biol Psychol 2023; 182:108626. [PMID: 37419401 PMCID: PMC10563766 DOI: 10.1016/j.biopsycho.2023.108626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Each organism must regulate its internal state in a metabolically efficient way as it interacts in space and time with an ever-changing and only partly predictable world. Success in this endeavor is largely determined by the ongoing communication between brain and body, and the vagus nerve is a crucial structure in that dialogue. In this review, we introduce the novel hypothesis that the afferent vagus nerve is engaged in signal processing rather than just signal relay. New genetic and structural evidence of vagal afferent fiber anatomy motivates two hypotheses: (1) that sensory signals informing on the physiological state of the body compute both spatial and temporal viscerosensory features as they ascend the vagus nerve, following patterns found in other sensory architectures, such as the visual and olfactory systems; and (2) that ascending and descending signals modulate one another, calling into question the strict segregation of sensory and motor signals, respectively. Finally, we discuss several implications of our two hypotheses for understanding the role of viscerosensory signal processing in predictive energy regulation (i.e., allostasis) as well as the role of metabolic signals in memory and in disorders of prediction (e.g., mood disorders).
Collapse
Affiliation(s)
- Clare Shaffer
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA.
| | - Lisa Feldman Barrett
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Karen S Quigley
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA.
| |
Collapse
|
26
|
Orui J, Shiraiwa K, Tazaki F, Inoue T, Ueda M, Ueno K, Naito Y, Ishii R. Social Buffering Effects during Craft Activities in Parallel Group Session Revealed by EEG Analysis and Parasympathetic Activity. Neuropsychobiology 2023; 82:287-299. [PMID: 37562371 PMCID: PMC10614439 DOI: 10.1159/000531005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/21/2023] [Indexed: 08/12/2023]
Abstract
INTRODUCTION The therapeutic structure of occupational therapy (OT) includes groups. Although the presence of others is expected to be relaxing due to the social buffering effect and the tend and befriend theory, it has not been sufficiently validated in accordance with the therapeutic structure of OT. The aim of this study was to investigate the electrophysiological evidence for the effectiveness of parallel groups and states of concentration on craft activities used in OT. METHODS Thirty healthy young adults were used as controls to measure EEG and autonomic activity during craft activities in three conditions: alone, parallel, and nonparallel. EEG was analyzed using exact low-resolution electromagnetic tomography, and autonomic activity was analyzed using Lorenz plot analysis. RESULTS Parasympathetic activity was significantly higher in the parallel condition than in the alone condition. A significant negative correlation was found between current source density and parasympathetic activity in the region centered on the right insular cortex in the α1 band, and functional connectivity in regions including the anterior cingulate cortex and insular cortex was associated with autonomic activity. CONCLUSION Craft activities that occurred during frontal midline theta rhythm also increased parasympathetic activity. The results suggest that the parallel groups used in OT and the intensive state of craft activities induce a social buffering effect that increases parasympathetic activity despite the absence of physical contact or social support. This provides evidence for the effectiveness of the therapeutic structure of occupational activities and groups in OT.
Collapse
Affiliation(s)
- Junya Orui
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Osaka, Japan
- Department of Occupational Therapy, Osaka Metropolitan University Graduate School of Rehabilitation Science, Osaka, Japan
| | - Keigo Shiraiwa
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Osaka, Japan
- Department of Occupational Therapy, Osaka Metropolitan University Graduate School of Rehabilitation Science, Osaka, Japan
| | - Fumie Tazaki
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Osaka, Japan
| | - Takao Inoue
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Osaka, Japan
| | - Masaya Ueda
- Department of Occupational Therapy, Osaka Metropolitan University Graduate School of Rehabilitation Science, Osaka, Japan
| | - Keita Ueno
- Department of Occupational Therapy, Osaka Metropolitan University Graduate School of Rehabilitation Science, Osaka, Japan
| | - Yasuo Naito
- Department of Occupational Therapy, Osaka Metropolitan University Graduate School of Rehabilitation Science, Osaka, Japan
| | - Ryouhei Ishii
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Osaka, Japan
- Department of Occupational Therapy, Osaka Metropolitan University Graduate School of Rehabilitation Science, Osaka, Japan
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
27
|
Catrambone V, Valenza G. Towards the definition of Microstates of the Cortical Brain-Heart Axis. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082600 DOI: 10.1109/embc40787.2023.10340338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Brain microstates are defined as states with quasi-stable scalp activity topography and have been widely studied in literature. Whether those states are brain-specific or extend to the body level is unknown yet. We investigate the extension of cortical microstates to the peripheral autonomic nerve, specifically at the brain-heart axis level as a functional state of the central autonomic network. To achieve this, we combined Electroencephalographic (EEG) and heart rate variability (HRV) series from 36 healthy volunteers undergoing a cognitive workload elicitation after a resting state. Our results showed the existence of microstates at the functional brain-heart axis with spatio-temporal and quasi-stable states that exclusively pertained to the efferent direction from the brain to the heart. Some of the identified microstates are specific for neural or cardiovascular frequency bands, while others topographies are recurrent over the EEG and HRV spectra. Furthermore, some of the identified brain-heart microstates were associated with specific experimental conditions, while others were nonspecific to tasks. Our findings support the hypothesis that EEG microstates extend to the brain-heart axis level and may be exploited in future neuroscience and clinical research.
Collapse
|
28
|
Cubillo A, Tkalcec A, Oldenhof H, Unternaehrer E, Raschle N, Kohls G, Nauta-Jansen L, Hervas A, Fernandez-Rivas A, Konrad K, Popma A, Freitag C, de Brito S, Fairchild G, Stadler C. Linking heart rate variability to psychological health and brain structure in adolescents with and without conduct disorder. Front Psychiatry 2023; 14:1101064. [PMID: 37441149 PMCID: PMC10333527 DOI: 10.3389/fpsyt.2023.1101064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/29/2023] [Indexed: 07/15/2023] Open
Abstract
Aims Heart rate variability (HRV) measures have been suggested in healthy individuals as a potential index of self-regulation skills, which include both cognitive and emotion regulation aspects. Studies in patients with a range of psychiatric disorders have however mostly focused on the potential association between abnormally low HRV at rest and specifically emotion regulation difficulties. Emotion regulation deficits have been reported in patients with Conduct Disorder (CD) however, the association between these emotion regulation deficits and HRV measures has yet to be fully understood. This study investigates (i) the specificity of the association between HRV and emotion regulation skills in adolescents with and without CD and (ii) the association between HRV and grey matter brain volumes in key areas of the central autonomic network which are involved in self-regulation processes, such as insula, lateral/medial prefrontal cortices or amygdala. Methods Respiratory sinus arrhythmia (RSA) measures of HRV were collected from adolescents aged between 9-18 years (693 CD (427F)/753 typically developing youth (TD) (500F)), as part of a European multi-site project (FemNAT-CD). The Inverse Efficiency Score, a speed-accuracy trade-off measure, was calculated to assess emotion and cognitive regulation abilities during an Emotional Go/NoGo task. The association between RSA and task performance was tested using multilevel regression models. T1-weighted structural MRI data were included for a subset of 577 participants (257 CD (125F); 320 TD (186F)). The CerebroMatic toolbox was used to create customised Tissue Probability Maps and DARTEL templates, and CAT12 to segment brain images, followed by a 2 × 2 (sex × group) full factorial ANOVA with RSA as regressor of interest. Results There were no significant associations between RSA and task performance, neither during emotion regulation nor during cognitive regulation trials. RSA was however positively correlated with regional grey matter volume in the left insula (pFWE = 0.011) across all subjects. Conclusion RSA was related to increased grey matter volume in the left insula across all subjects. Our results thus suggest that low RSA at rest might be a contributing or predisposing factor for potential self-regulation difficulties. Given the insula's role in both emotional and cognitive regulation processes, these brain structural differences might impact either of those.
Collapse
Affiliation(s)
- Ana Cubillo
- Department of Child and Adolescent Psychiatry (research section), University Psychiatric Clinics, Basel, Switzerland
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zurich, Switzerland
| | - Antonia Tkalcec
- Department of Child and Adolescent Psychiatry (research section), University Psychiatric Clinics, Basel, Switzerland
| | - Helena Oldenhof
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Child and Adolescent Psychiatry, Amsterdam Public Health, Amsterdam, Netherlands
| | - Eva Unternaehrer
- Department of Child and Adolescent Psychiatry (research section), University Psychiatric Clinics, Basel, Switzerland
| | - Nora Raschle
- Jacobs Center for Productive Youth Development, University of Zurich, Zurich, Switzerland
| | - Gregor Kohls
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Lucres Nauta-Jansen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Child and Adolescent Psychiatry, Amsterdam Public Health, Amsterdam, Netherlands
| | - Amaia Hervas
- Hospital Universitario Mutua Terrassa, IGAIN, Barcelona, Spain
| | - Aranzazu Fernandez-Rivas
- Biocruces Bizkaia Health Research Institute, Basurto University Hospital, University of the Basque Country, Bilbao, Spain
| | - Kerstin Konrad
- RWTH Aachen University & JARA-Brain Institute, Aachen, Germany
| | - Arne Popma
- Child and Adolescent Psychiatry Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Christine Freitag
- Child and Adolescent Psychiatry, Goethe University, Frankfurt, Germany
| | | | - Graeme Fairchild
- Developmental Psychopathology, University of Bath, Bath, United Kingdom
| | - Christina Stadler
- Department of Child and Adolescent Psychiatry (research section), University Psychiatric Clinics, Basel, Switzerland
| |
Collapse
|
29
|
Catrambone V, Valenza G. Complex Brain-Heart Mapping in Mental and Physical Stress. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2023; 11:495-504. [PMID: 37817820 PMCID: PMC10561752 DOI: 10.1109/jtehm.2023.3280974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/29/2023] [Accepted: 05/25/2023] [Indexed: 10/12/2023]
Abstract
OBJECTIVE The central and autonomic nervous systems are deemed complex dynamic systems, wherein each system as a whole shows features that the individual system sub-components do not. They also continuously interact to maintain body homeostasis and appropriate react to endogenous and exogenous stimuli. Such interactions are comprehensively referred to functional brain-heart interplay (BHI). Nevertheless, it remains uncertain whether this interaction also exhibits complex characteristics, that is, whether the dynamics of the entire nervous system inherently demonstrate complex behavior, or if such complexity is solely a trait of the central and autonomic systems. Here, we performed complexity mapping of the BHI dynamics under mental and physical stress conditions. METHODS AND PROCEDURES Electroencephalographic and heart rate variability series were obtained from 56 healthy individuals performing mental arithmetic or cold-pressure tasks, and physiological series were properly combined to derive directional BHI series, whose complexity was quantified through fuzzy entropy. RESULTS The experimental results showed that BHI complexity is mainly modulated in the efferent functional direction from the brain to the heart, and mainly targets vagal oscillations during mental stress and sympathovagal oscillations during physical stress. CONCLUSION We conclude that the complexity of BHI mapping may provide insightful information on the dynamics of both central and autonomic activity, as well as on their continuous interaction. CLINICAL IMPACT This research enhances our comprehension of the reciprocal interactions between central and autonomic systems, potentially paving the way for more accurate diagnoses and targeted treatments of cardiovascular, neurological, and psychiatric disorders.
Collapse
Affiliation(s)
- Vincenzo Catrambone
- Neurocardiovascular Intelligence Laboratory, Bioengineering and Robotics Research Center E. Piaggio, and Department of Information EngineeringSchool of EngineeringUniversity of Pisa56126PisaItaly
| | - Gaetano Valenza
- Neurocardiovascular Intelligence Laboratory, Bioengineering and Robotics Research Center E. Piaggio, and Department of Information EngineeringSchool of EngineeringUniversity of Pisa56126PisaItaly
| |
Collapse
|
30
|
Molloy C, Choy EH, Arechavala RJ, Buennagel D, Nolty A, Spezzaferri MR, Sin C, Rising S, Yu J, Al-Ezzi A, Kleinman MT, Kloner RA, Arakaki X. Resting heart rate (variability) and cognition relationships reveal cognitively healthy individuals with pathological amyloid/tau ratio. FRONTIERS IN EPIDEMIOLOGY 2023; 3:1168847. [PMID: 37587981 PMCID: PMC10428767 DOI: 10.3389/fepid.2023.1168847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Introduction Resting heart rate (HR) and heart rate variability (HRV) have been linked with cognition in the general population and in older individuals. The knowledge of this aspect of heart-brain relationship is relatively absent in older individuals with early Alzheimer's disease (AD) pathology. This study explores relationships of the HR, HRV, and cognition in cognitively healthy individuals with pathological amyloid/tau ratio (CH-PATs) in cerebral spinal fluid (CSF) compared to those with normal ratio (CH-NATs). Methods We examined therelationshipsbetween1) resting HR and Mini-Mental State Examination (MMSE); 2) resting HR and brain processing during Stroop interference; and 3) resting vagally mediated HRV (vmHRV) and task switching performance. Results Our studies showed that compared to CH-NATs, those CH-PATs with higher resting HR presented with lower MMSE, and less brain activation during interference processing. In addition, resting vmHRV was significantly correlated with task switching accuracy in CH-NATs, but not in CH-PATs. Discussion Thesethreedifferenttestsindicatedysfunctionalheart-brainconnections in CH-PATs, suggesting a potential cardio-cerebral dysfunctional integration.
Collapse
Affiliation(s)
- Cathleen Molloy
- Cognition and Brain Integration Laboratory, Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Elizabeth H. Choy
- Department of Environmental and Occupational Health, University of California, Irvine, Irvine, CA, United States
| | - Rebecca J. Arechavala
- Department of Environmental and Occupational Health, University of California, Irvine, Irvine, CA, United States
| | - David Buennagel
- Clinical Neuroscience Laboratory, Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Anne Nolty
- Graduate School of Psychology & Marriage and Family Therapy, Fuller Theological Seminary, Pasadena, CA, United States
| | - Mitchell R. Spezzaferri
- Graduate School of Psychology & Marriage and Family Therapy, Fuller Theological Seminary, Pasadena, CA, United States
| | - Caleb Sin
- Graduate School of Psychology & Marriage and Family Therapy, Fuller Theological Seminary, Pasadena, CA, United States
| | - Shant Rising
- Graduate School of Psychology & Marriage and Family Therapy, Fuller Theological Seminary, Pasadena, CA, United States
| | - Jeremy Yu
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, United States
| | - Abdulhakim Al-Ezzi
- Cognition and Brain Integration Laboratory, Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Michael T. Kleinman
- Department of Environmental and Occupational Health, University of California, Irvine, Irvine, CA, United States
| | - Robert A. Kloner
- Clinical Neuroscience Laboratory, Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
- Cardiovascular Research, Huntington Medical Research Institutes, Pasadena, CA, United States
- Cardiovascular Division, Department of Medicine, Keck School of Medicine at University of Southern California, Los Angeles, CA, United States
| | - Xianghong Arakaki
- Cognition and Brain Integration Laboratory, Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| |
Collapse
|
31
|
Kong SDX, Gordon CJ, Hoyos CM, Wassing R, D’Rozario A, Mowszowski L, Ireland C, Palmer JR, Grunstein RR, Shine JM, McKinnon AC, Naismith SL. Heart rate variability during slow wave sleep is linked to functional connectivity in the central autonomic network. Brain Commun 2023; 5:fcad129. [PMID: 37234683 PMCID: PMC10208252 DOI: 10.1093/braincomms/fcad129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/20/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Reduced heart rate variability can be an early sign of autonomic dysfunction in neurodegenerative diseases and may be related to brain dysfunction in the central autonomic network. As yet, such autonomic dysfunction has not been examined during sleep-which is an ideal physiological state to study brain-heart interaction as both the central and peripheral nervous systems behave differently compared to during wakefulness. Therefore, the primary aim of the current study was to examine whether heart rate variability during nocturnal sleep, specifically slow wave (deep) sleep, is associated with central autonomic network functional connectivity in older adults 'at-risk' of dementia. Older adults (n = 78; age range = 50-88 years; 64% female) attending a memory clinic for cognitive concerns underwent resting-state functional magnetic resonance imaging and an overnight polysomnography. From these, central autonomic network functional connectivity strength and heart rate variability data during sleep were derived, respectively. High-frequency heart rate variability was extracted to index parasympathetic activity during distinct periods of sleep, including slow wave sleep as well as secondary outcomes of non-rapid eye movement sleep, wake after sleep onset, and rapid eye movement sleep. General linear models were used to examine associations between central autonomic network functional connectivity and high-frequency heart rate variability. Analyses revealed that increased high-frequency heart rate variability during slow wave sleep was associated with stronger functional connectivity (F = 3.98, P = 0.022) in two core brain regions within the central autonomic network, the right anterior insular and posterior midcingulate cortex, as well as stronger functional connectivity (F = 6.21, P = 0.005) between broader central autonomic network brain regions-the right amygdala with three sub-nuclei of the thalamus. There were no significant associations between high-frequency heart rate variability and central autonomic network connectivity during wake after sleep onset or rapid eye movement sleep. These findings show that in older adults 'at-risk' of dementia, parasympathetic regulation during slow wave sleep is uniquely linked to differential functional connectivity within both core and broader central autonomic network brain regions. It is possible that dysfunctional brain-heart interactions manifest primarily during this specific period of sleep known for its role in memory and metabolic clearance. Further studies elucidating the pathophysiology and directionality of this relationship should be conducted to determine if heart rate variability drives neurodegeneration, or if brain degeneration within the central autonomic network promotes aberrant heart rate variability.
Collapse
Affiliation(s)
- Shawn D X Kong
- Correspondence to: Shawn Dexiao KongHealthy Brain Ageing ProgramBrain and Mind Centre, University of Sydney100 Mallett St, Camperdown, NSW 2050, Australia E-mail:
| | - Christopher J Gordon
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Glebe, NSW 2037, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
| | - Camilla M Hoyos
- Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW 2050, Australia
- School of Psychology, Faculty of Science, University of Sydney, Camperdown, NSW 2050, Australia
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Glebe, NSW 2037, Australia
| | - Rick Wassing
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Glebe, NSW 2037, Australia
| | - Angela D’Rozario
- Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050, Australia
- School of Psychology, Faculty of Science, University of Sydney, Camperdown, NSW 2050, Australia
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Glebe, NSW 2037, Australia
| | - Loren Mowszowski
- Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW 2050, Australia
- School of Psychology, Faculty of Science, University of Sydney, Camperdown, NSW 2050, Australia
| | - Catriona Ireland
- Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050, Australia
| | - Jake R Palmer
- Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050, Australia
| | - Ronald R Grunstein
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Glebe, NSW 2037, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
- Royal Prince Alfred Hospital, University of Sydney, Camperdown, NSW 2050, Australia
| | - James M Shine
- Royal Prince Alfred Hospital, University of Sydney, Camperdown, NSW 2050, Australia
| | | | | |
Collapse
|
32
|
Kassinopoulos M, Rolandi N, Alphan L, Harper RM, Oliveira J, Scott C, Kozák LR, Guye M, Lemieux L, Diehl B. Brain Connectivity Correlates of Breathing and Cardiac Irregularities in SUDEP: A Resting-State fMRI Study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541412. [PMID: 37293113 PMCID: PMC10245782 DOI: 10.1101/2023.05.19.541412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of premature mortality among people with epilepsy. Evidence from witnessed and monitored SUDEP cases indicate seizure-induced cardiovascular and respiratory failures; yet, the underlying mechanisms remain obscure. SUDEP occurs often during the night and early morning hours, suggesting that sleep or circadian rhythm-induced changes in physiology contribute to the fatal event. Resting-state fMRI studies have found altered functional connectivity between brain structures involved in cardiorespiratory regulation in later SUDEP cases and in individuals at high-risk of SUDEP. However, those connectivity findings have not been related to changes in cardiovascular or respiratory patterns. Here, we compared fMRI patterns of brain connectivity associated with regular and irregular cardiorespiratory rhythms in SUDEP cases with those of living epilepsy patients of varying SUDEP risk, and healthy controls. We analysed resting-state fMRI data from 98 patients with epilepsy (9 who subsequently succumbed to SUDEP, 43 categorized as low SUDEP risk (no tonic-clonic seizures (TCS) in the year preceding the fMRI scan), and 46 as high SUDEP risk (>3 TCS in the year preceding the scan)) and 25 healthy controls. The global signal amplitude (GSA), defined as the moving standard deviation of the fMRI global signal, was used to identify periods with regular ('low state') and irregular ('high state') cardiorespiratory rhythms. Correlation maps were derived from seeds in twelve regions with a key role in autonomic or respiratory regulation, for the low and high states. Following principal component analysis, component weights were compared between the groups. We found widespread alterations in connectivity of precuneus/posterior cingulate cortex in epilepsy compared to controls, in the low state (regular cardiorespiratory activity). In the low state, and to a lesser degree in the high state, reduced anterior insula connectivity (mainly with anterior and posterior cingulate cortex) in epilepsy appeared, relative to healthy controls. For SUDEP cases, the insula connectivity differences were inversely related to the interval between the fMRI scan and death. The findings suggest that anterior insula connectivity measures may provide a biomarker of SUDEP risk. The neural correlates of autonomic brain structures associated with different cardiorespiratory rhythms may shed light on the mechanisms underlying terminal apnea observed in SUDEP.
Collapse
Affiliation(s)
- Michalis Kassinopoulos
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Epilepsy Society, Chalfont St. Peter, Buckinghamshire, United Kingdom
| | - Nicolo Rolandi
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Epilepsy Society, Chalfont St. Peter, Buckinghamshire, United Kingdom
| | - Laren Alphan
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Ronald M. Harper
- UCLA Brain Research Institute, Los Angeles, CA, United States
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Joana Oliveira
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, UCLH, London, United Kingdom
| | - Catherine Scott
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, UCLH, London, United Kingdom
| | - Lajos R. Kozák
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Neuroradiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Maxime Guye
- Aix Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France
- APHM, Hôpital de la Timone, CEMEREM, Marseille, France
| | - Louis Lemieux
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Epilepsy Society, Chalfont St. Peter, Buckinghamshire, United Kingdom
| | - Beate Diehl
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Epilepsy Society, Chalfont St. Peter, Buckinghamshire, United Kingdom
| |
Collapse
|
33
|
Valenza G. Depression as a cardiovascular disorder: central-autonomic network, brain-heart axis, and vagal perspectives of low mood. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1125495. [PMID: 37260560 PMCID: PMC10228690 DOI: 10.3389/fnetp.2023.1125495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/04/2023] [Indexed: 06/02/2023]
Abstract
If depressive symptoms are not caused by the physiological effects of a substance or other medical or neurological conditions, they are generally classified as mental disorders that target the central nervous system. However, recent evidence suggests that peripheral neural dynamics on cardiovascular control play a causal role in regulating and processing emotions. In this perspective, we explore the dynamics of the Central-Autonomic Network (CAN) and related brain-heart interplay (BHI), highlighting their psychophysiological correlates and clinical symptoms of depression. Thus, we suggest that depression may arise from dysregulated cardiac vagal and sympathovagal dynamics that lead to CAN and BHI dysfunctions. Therefore, treatments for depression should target the nervous system as a whole, with particular emphasis on regulating vagal and BHI dynamics.
Collapse
|
34
|
Bouny P, Arsac LM, Guérin A, Nerincx G, Deschodt-Arsac V. Guiding Breathing at the Resonance Frequency with Haptic Sensors Potentiates Cardiac Coherence. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094494. [PMID: 37177701 PMCID: PMC10181630 DOI: 10.3390/s23094494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Cardiac coherence is a state achieved when one controls their breathing rate during the so-called resonance frequency breathing. This maneuver allows respiratory-driven vagal modulations of the heart rate to superimpose with sympathetic modulations occurring at 0.1 Hz, thereby maximizing autonomous power in heart-to-brain connections. These stimulations have been shown to improve vagal regulations, which results in obvious benefits for both mental and organic health. Here, we present a device that is able to deliver visual and haptic cues, as well as HRV biofeedback information to guide the user in maintaining a 0.1 Hz breathing frequency. We explored the effectiveness of cardiac coherence in three guidance conditions: visual, haptic and visuo-haptic breathing. Thirty-two healthy students (sixteen males) were divided into three groups that experienced five minutes of either visual, haptic and visuo-haptic guided breathing at 0.1 Hz. The effects of guidance on the (adequate) breathing pattern and heart rate variability (HRV) were analyzed. The interest of introducing haptic breathing to achieve cardiac coherence was shown in the haptic and visuo-haptic groups. Especially, the P0.1 index, which indicates how the autonomous power is 'concentrated' at 0.1 Hz in the PSD spectrum, demonstrated the superiority of combining haptic with visual sensory inputs in potentiating cardiac coherence (0.55 ± 0.20 for visuo-haptic vs. 0.28 ± 0.14 for visual only guidance; p < 0.05) haptic-induced effectiveness could be an asset for a more efficient and time-saving practice, allowing improved health and well-being even under tight time constraints.
Collapse
Affiliation(s)
- Pierre Bouny
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, F-33400 Talence, France
- URGOTECH, 15 Avenue d'Iéna, F-75116 Paris, France
| | - Laurent M Arsac
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, F-33400 Talence, France
| | | | - Guillam Nerincx
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, F-33400 Talence, France
- URGOTECH, 15 Avenue d'Iéna, F-75116 Paris, France
| | | |
Collapse
|
35
|
Valenza G. Specific Brain-Heart Axis-Related Pathomechanism in Heart Failure Are Revealed Through Analysis of Cardiovascular Dynamics. J Am Coll Cardiol 2023; 81:e109. [PMID: 36990551 DOI: 10.1016/j.jacc.2022.11.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 03/31/2023]
|
36
|
Candia-Rivera D, Norouzi K, Ramsøy TZ, Valenza G. Dynamic fluctuations in ascending heart-to-brain communication under mental stress. Am J Physiol Regul Integr Comp Physiol 2023; 324:R513-R525. [PMID: 36802949 PMCID: PMC10026986 DOI: 10.1152/ajpregu.00251.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Dynamical information exchange between central and autonomic nervous systems, as referred to functional brain-heart interplay, occurs during emotional and physical arousal. It is well documented that physical and mental stress lead to sympathetic activation. Nevertheless, the role of autonomic inputs in nervous system-wise communication under mental stress is yet unknown. In this study, we estimated the causal and bidirectional neural modulations between electroencephalogram (EEG) oscillations and peripheral sympathetic and parasympathetic activities using a recently proposed computational framework for a functional brain-heart interplay assessment, namely the sympathovagal synthetic data generation model. Mental stress was elicited in 37 healthy volunteers by increasing their cognitive demands throughout three tasks associated with increased stress levels. Stress elicitation induced an increased variability in sympathovagal markers, as well as increased variability in the directional brain-heart interplay. The observed heart-to-brain interplay was primarily from sympathetic activity targeting a wide range of EEG oscillations, whereas variability in the efferent direction seemed mainly related to EEG oscillations in the γ band. These findings extend current knowledge on stress physiology, which mainly referred to top-down neural dynamics. Our results suggest that mental stress may not cause an increase in sympathetic activity exclusively as it initiates a dynamic fluctuation within brain-body networks including bidirectional interactions at a brain-heart level. We conclude that directional brain-heart interplay measurements may provide suitable biomarkers for a quantitative stress assessment and bodily feedback may modulate the perceived stress caused by increased cognitive demand.
Collapse
Affiliation(s)
- Diego Candia-Rivera
- Department of Information Engineering & Bioengineering and Robotics Research Center E. Piaggio, School of Engineering, University of Pisa, Pisa, Italy
| | - Kian Norouzi
- Department of Applied Neuroscience, Neurons, Inc., Taastrup, Denmark
- Faculty of Management, University of Tehran, Tehran, Iran
| | - Thomas Zoëga Ramsøy
- Department of Applied Neuroscience, Neurons, Inc., Taastrup, Denmark
- Faculty of Neuroscience, Singularity University, Santa Clara, California, United States
| | - Gaetano Valenza
- Department of Information Engineering & Bioengineering and Robotics Research Center E. Piaggio, School of Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|
37
|
Central control of cardiac activity as assessed by intra-cerebral recordings and stimulations. Neurophysiol Clin 2023; 53:102849. [PMID: 36867969 DOI: 10.1016/j.neucli.2023.102849] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 03/05/2023] Open
Abstract
Some of the most important integrative control centers for the autonomic nervous system are located in the brainstem and the hypothalamus. However, growing recent neuroimaging evidence support that a set of cortical regions, named the central autonomic network (CAN), is involved in autonomic control and seems to play a major role in continuous autonomic cardiac adjustments to high-level emotional, cognitive or sensorimotor cortical activities. Intracranial explorations during stereo-electroencephalography (SEEG) offer a unique opportunity to address the question of the brain regions involved in heart-brain interaction, by studying: (i) direct cardiac effects produced by the electrical stimulation of specific brain areas; (ii) epileptic seizures inducing cardiac modifications; (iii) cortical regions involved in cardiac interoception and source of cardiac evoked potentials. In this review, we detail the available data assessing cardiac central autonomic regulation using SEEG, address the strengths and also the limitations of this technique in this context, and discuss perspectives. The main cortical regions that emerge from SEEG studies as being involved in cardiac autonomic control are the insula and regions belonging to the limbic system: the amygdala, the hippocampus, and the anterior and mid-cingulate. Although many questions remain, SEEG studies have already demonstrated afferent and efferent interactions between the CAN and the heart. Future studies in SEEG should integrate these afferent and efferent dimensions as well as their interaction with other cortical networks to better understand the functional heart-brain interaction.
Collapse
|
38
|
Matusik PS, Zhong C, Matusik PT, Alomar O, Stein PK. Neuroimaging Studies of the Neural Correlates of Heart Rate Variability: A Systematic Review. J Clin Med 2023; 12:jcm12031016. [PMID: 36769662 PMCID: PMC9917610 DOI: 10.3390/jcm12031016] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 02/03/2023] Open
Abstract
Direct and indirect links between brain regions and cardiac function have been reported. We performed a systematic literature review to summarize current knowledge regarding the associations of heart rate variability (HRV) and brain region morphology, activity and connectivity involved in autonomic control at rest in healthy subjects. Both positive and negative correlations of cortical thickness and gray matter volumes of brain structures with HRV were observed. The strongest were found for a cluster located within the cingulate cortex. A decline in HRV, as well as cortical thickness with increasing age, especially in the orbitofrontal cortex were noted. When associations of region-specific brain activity with HRV were examined, HRV correlated most strongly with activity in the insula, cingulate cortex, frontal and prefrontal cortices, hippocampus, thalamus, striatum and amygdala. Furthermore, significant correlations, largely positive, between HRV and brain region connectivity (in the amygdala, cingulate cortex and prefrontal cortex) were observed. Notably, right-sided neural structures may be preferentially involved in heart rate and HRV control. However, the evidence for left hemispheric control of cardiac vagal function has also been reported. Our findings provide support for the premise that the brain and the heart are interconnected by both structural and functional networks and indicate complex multi-level interactions. Further studies of brain-heart associations promise to yield insights into their relationship to health and disease.
Collapse
Affiliation(s)
- Patrycja S. Matusik
- Department of Diagnostic Imaging, University Hospital, 30-688 Kraków, Poland
| | - Chuwen Zhong
- Center for Social Epidemiology and Population Health, Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Paweł T. Matusik
- Department of Electrocardiology, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, 31-202 Kraków, Poland
- Department of Electrocardiology, The John Paul II Hospital, 31-202 Kraków, Poland
| | - Omar Alomar
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Phyllis K. Stein
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Correspondence:
| |
Collapse
|
39
|
Liu Y, Niu H, Zhang T, Cai L, Liu D, Zhao E, Zhu L, Qiao P, Zheng W, Ren P, Wang Z. Altered spontaneous brain activity during dobutamine challenge in healthy young adults: A resting-state functional magnetic resonance imaging study. Front Neurosci 2023; 16:1033569. [PMID: 36685245 PMCID: PMC9853379 DOI: 10.3389/fnins.2022.1033569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/14/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction There is a growing interest in exploring brain-heart interactions. However, few studies have investigated the brain-heart interactions in healthy populations, especially in healthy young adults. The aim of this study was to explore the association between cardiovascular and spontaneous brain activities during dobutamine infusion in healthy young adults. Methods Forty-eight right-handed healthy participants (43 males and 5 females, range: 22-34 years) underwent vital signs monitoring, cognitive function assessment and brain MRI scans. Cardiovascular function was evaluated using blood pressure and heart rate, while two resting-state functional magnetic resonance imaging (rs-fMRI) methods-regional homogeneity (ReHo) and amplitude of low-frequency fluctuation (ALFF)-were used together to reflect the local neural activity of the brain. Logistic regression was used to model the association between brain and heart. Results Results showed that blood pressure and heart rate significantly increased after dobutamine infusion, and the performance in brain functional activity was the decrease in ReHo in the left gyrus rectus and in ALFF in the left frontal superior orbital. The results of logistic regression showed that the difference of diastolic blood pressure (DBP) had significant positive relationship with the degree of change of ReHo, while the difference of systolic blood pressure (SBP) had significant negative impact on the degree of change in ALFF. Discussion These findings suggest that the brain-heart interactions exist in healthy young adults under acute cardiovascular alterations, and more attention should be paid to blood pressure changes in young adults and assessment of frontal lobe function to provide them with more effective health protection management.
Collapse
Affiliation(s)
- Yawen Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Haijun Niu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Tingting Zhang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China,Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Linkun Cai
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Dong Liu
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Erwei Zhao
- National Space Science Center, Chinese Academy of Sciences (CAS), Beijing, China
| | - Liang Zhu
- National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - PengGang Qiao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei Zheng
- National Space Science Center, Chinese Academy of Sciences (CAS), Beijing, China
| | - Pengling Ren
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China,Pengling Ren,
| | - Zhenchang Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China,Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China,*Correspondence: Zhenchang Wang,
| |
Collapse
|
40
|
Sleep Loss Influences the Interconnected Brain-Body Regulation of Cardiovascular Function in Humans. Psychosom Med 2023; 85:34-41. [PMID: 36417580 DOI: 10.1097/psy.0000000000001150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Poor sleep is associated with hypertension, a major risk factor for cardiovascular disease. However, the mechanism(s) through which sleep loss affects cardiovascular health remains largely unknown, including the brain and body systems that regulate vascular function. METHODS Sixty-six healthy adults participated in a repeated-measures, crossover, experimental study involving assessments of cardiovascular function and brain connectivity after a night of sleep and a night of sleep deprivation. RESULTS First, sleep deprivation significantly increased blood pressure-both systolic and diastolic. Interestingly, this change was independent of any increase in heart rate, inferring a vasculature-specific rather than direct cardiac pathway. Second, sleep loss compromised functional brain connectivity within the vascular control network, specifically the insula, anterior cingulate, amygdala, and ventral and medial prefrontal cortices. Third, sleep loss-related changes in brain connectivity and vascular tone were not independent, but significantly interdependent, with changes within the vascular control brain network predicting the sleep-loss shift toward hypertension. CONCLUSIONS These findings establish an embodied framework in which sleep loss confers increased risk of cardiovascular disease through an impact upon central brain control of vascular tone, rather than a direct impact on accelerated heart rate itself.
Collapse
|
41
|
Dell’Acqua C, Mura F, Messerotti Benvenuti S, Patron E, Palomba D. Reduced heart rate variability and expressive suppression interact to prospectively predict COVID-19 pandemic-related post-traumatic stress symptoms. Sci Rep 2022; 12:21311. [PMID: 36494439 PMCID: PMC9734110 DOI: 10.1038/s41598-022-25915-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
The COVID-19 pandemic is a unique period of stress that, in some cases, led to post-traumatic stress symptoms (PTSSs). Emotion regulation strategies are known to modulate the emotional response to stressful events. Expressive suppression (ES) is a maladaptive strategy related to the exacerbation of the physiological stress response. Heart rate variability (HRV), an index of cardiac autonomic balance strictly related to ES, was also shown to predict PTSSs. This was the first study to investigate whether the pre-pandemic ES use and resting-state HRV predicted pandemic-related PTSSs. Before the pandemic, 83 (58 females) university students completed the Emotion Regulation Questionnaire (ERQ), self-report measures of anxiety and depressive symptoms, and a three-minute resting-state electrocardiogram recording. After 12 months, 61 (45 females) participants completed a self-report measure of pandemic-related PTSSs and repeated the self-report psychological measures. Pre-pandemic anxiety symptoms prospectively predicted greater PTSSs. Moreover, a significant interaction between HRV and ES in predicting PTSSs emerged, whereby those who had higher levels of ES and reduced HRV showed higher PTSSs. These findings suggest that an integrated assessment of HRV and ES might be useful for identifying individuals who are more vulnerable to the development of PTSSs during crises.
Collapse
Affiliation(s)
- Carola Dell’Acqua
- grid.5608.b0000 0004 1757 3470Department of General Psychology, University of Padua, Via Venezia, 8, 35131 Padua, Italy ,grid.5608.b0000 0004 1757 3470Padova Neuroscience Center (PNC), University of Padua, Padua, Italy
| | - Francesca Mura
- grid.5608.b0000 0004 1757 3470Department of General Psychology, University of Padua, Via Venezia, 8, 35131 Padua, Italy ,grid.5608.b0000 0004 1757 3470Padova Neuroscience Center (PNC), University of Padua, Padua, Italy
| | - Simone Messerotti Benvenuti
- grid.5608.b0000 0004 1757 3470Department of General Psychology, University of Padua, Via Venezia, 8, 35131 Padua, Italy ,grid.5608.b0000 0004 1757 3470Padova Neuroscience Center (PNC), University of Padua, Padua, Italy ,grid.411474.30000 0004 1760 2630Hospital Psychology Unit, Padua University Hospital, Padua, Italy
| | - Elisabetta Patron
- grid.5608.b0000 0004 1757 3470Department of General Psychology, University of Padua, Via Venezia, 8, 35131 Padua, Italy
| | - Daniela Palomba
- grid.5608.b0000 0004 1757 3470Department of General Psychology, University of Padua, Via Venezia, 8, 35131 Padua, Italy ,grid.5608.b0000 0004 1757 3470Padova Neuroscience Center (PNC), University of Padua, Padua, Italy
| |
Collapse
|
42
|
Katsumi Y, Theriault JE, Quigley KS, Barrett LF. Allostasis as a core feature of hierarchical gradients in the human brain. Netw Neurosci 2022; 6:1010-1031. [PMID: 38800458 PMCID: PMC11117115 DOI: 10.1162/netn_a_00240] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/11/2022] [Indexed: 05/29/2024] Open
Abstract
This paper integrates emerging evidence from two broad streams of scientific literature into one common framework: (a) hierarchical gradients of functional connectivity that reflect the brain's large-scale structural architecture (e.g., a lamination gradient in the cerebral cortex); and (b) approaches to predictive processing and one of its specific instantiations called allostasis (i.e., the predictive regulation of energetic resources in the service of coordinating the body's internal systems). This synthesis begins to sketch a coherent, neurobiologically inspired framework suggesting that predictive energy regulation is at the core of human brain function, and by extension, psychological and behavioral phenomena, providing a shared vocabulary for theory building and knowledge accumulation.
Collapse
Affiliation(s)
- Yuta Katsumi
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Karen S. Quigley
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Lisa Feldman Barrett
- Department of Psychology, Northeastern University, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Patodia S, Lim YM, Chung F, Stylianou I, El Hachami H, Thom M. Cortical neuronal hypertrophy and mTOR pathway activation in CAN regions in SUDEP. Epilepsia 2022; 63:2427-2438. [PMID: 35716147 PMCID: PMC9795893 DOI: 10.1111/epi.17335] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Dysfunctional connectivity and preexisting structural abnormalities of central autonomic network (CAN) regions have been shown on magnetic resonance imaging (MRI) in sudden unexpected death in epilepsy (SUDEP) and may be mechanistically relevant. In a previous postmortem study we reported increased microglia in CAN regions, including the superior temporal gyrus (STG) in SUDEP. In this current study we investigated mammalian target of rapamycin (mTOR) pathway activation and neuronal c-Fos activation in CAN regions in SUDEP compared to control groups. METHODS In a series of 59 postmortem cases (SUDEP, n = 26; epilepsy controls [EPCs], n = 14; and nonepilepsy controls [NECs], n = 19), we quantified pS6-240/4, pS6-235/6 (markers of mTOR activation) and c-Fos neuronal densities and labeling index in the STG, anterior cingulate, insula, frontobasal, and pulvinar regions using immunohistochemistry with whole-slide automated image analysis. RESULTS Significantly more pS6-positive neurons were present in the STG in cases with a history of recent seizures prior to death and also in SUDEP compared to other cause of death groups. No differences were noted for c-Fos neuronal labeling in any region between cause of death groups. Cortical neuronal hypertrophy in the STG was observed in some SUDEP cases and associated with pS6-240/4 expression. pS6-235/6 highlighted neuronal intranuclear inclusions, mainly in SUDEP cases and in the STG region. SIGNIFICANCE Neuronal labeling for pS6 in the STG correlated with both seizure activity in the period prior to death and SUDEP. Further investigations are required to explore the significance of this region in terms of autonomic network dysfunction that may increase the vulnerability for SUDEP.
Collapse
Affiliation(s)
- Smriti Patodia
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
| | - Yau Mun Lim
- Department of NeurodegenerationUCL Queen Square Institute of NeurologyLondonUK
| | - Freda Chung
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
| | - Irene Stylianou
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
| | - Hanaa El Hachami
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
| | - Maria Thom
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
| |
Collapse
|
44
|
Kryklywy JH, Lu A, Roberts KH, Rowan M, Todd RM. Lateralization of autonomic output in response to limb-specific threat. eNeuro 2022; 9:ENEURO.0011-22.2022. [PMID: 36028330 PMCID: PMC9463978 DOI: 10.1523/eneuro.0011-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/23/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
In times of stress or danger, the autonomic nervous system (ANS) signals the fight or flight response. A canonical function of ANS activity is to globally mobilize metabolic resources, preparing the organism to respond to threat. Yet a body of research has demonstrated that, rather than displaying a homogenous pattern across the body, autonomic responses to arousing events - as measured through changes in electrodermal activity (EDA) - can differ between right and left body locations. Surprisingly, an attempt to identify a function of ANS asymmetry consistent with its metabolic role has not been investigated. In the current study, we investigated whether asymmetric autonomic responses could be induced through limb-specific aversive stimulation. Participants were given mild electric stimulation to either the left or right arm while EDA was monitored bilaterally. In a group-level analyses, an ipsilateral EDA response bias was observed, with increased EDA response in the hand adjacent to the stimulation. This effect was observable in ∼50% of individual particpants. These results demonstrate that autonomic output is more complex than canonical interpretations suggest. We suggest that, in stressful situations, autonomic outputs can prepare either the whole-body fight or flight response, or a simply a limb-localized flick, which can effectively neutralize the threat while minimizing global resource consumption. These findings are consistent with recent theories proposing evolutionary leveraging of neural structures organized to mediate sensory responses for processing of cognitive emotional cues.Significance statementThe present study constitutes novel evidence for an autonomic nervous response specific to the side of the body exposed to direct threat. We identify a robust pattern of electrodermal response at the body location that directly receives aversive tactile stimulation. Thus, we demonstrate for the first time in contemporary research that the ANS is capable of location-specific outputs within single effector organs in response to small scale threat. This extends the canonical view of the role of ANS responses in stressful or dangerous stresses - that of provoking a 'fight or flight' response - suggesting a further role of this system: preparation of targeted limb-specific action, i.e., a flick.
Collapse
Affiliation(s)
| | - Amy Lu
- Department of Psychology, University of British Columbia
| | | | - Matt Rowan
- Peter A. Allard School of Law, University of British Columbia
| | - Rebecca M Todd
- Department of Psychology, University of British Columbia
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia
| |
Collapse
|
45
|
Candia-Rivera D. Brain-heart interactions in the neurobiology of consciousness. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100050. [PMID: 36685762 PMCID: PMC9846460 DOI: 10.1016/j.crneur.2022.100050] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 01/25/2023] Open
Abstract
Recent experimental evidence on patients with disorders of consciousness revealed that observing brain-heart interactions helps to detect residual consciousness, even in patients with absence of behavioral signs of consciousness. Those findings support hypotheses suggesting that visceral activity is involved in the neurobiology of consciousness, and sum to the existing evidence in healthy participants in which the neural responses to heartbeats reveal perceptual and self-consciousness. More evidence obtained through mathematical modeling of physiological dynamics revealed that emotion processing is prompted by an initial modulation from ascending vagal inputs to the brain, followed by sustained bidirectional brain-heart interactions. Those findings support long-lasting hypotheses on the causal role of bodily activity in emotions, feelings, and potentially consciousness. In this paper, the theoretical landscape on the potential role of heartbeats in cognition and consciousness is reviewed, as well as the experimental evidence supporting these hypotheses. I advocate for methodological developments on the estimation of brain-heart interactions to uncover the role of cardiac inputs in the origin, levels, and contents of consciousness. The ongoing evidence depicts interactions further than the cortical responses evoked by each heartbeat, suggesting the potential presence of non-linear, complex, and bidirectional communication between brain and heartbeat dynamics. Further developments on methodologies to analyze brain-heart interactions may contribute to a better understanding of the physiological dynamics involved in homeostatic-allostatic control, cognitive functions, and consciousness.
Collapse
Affiliation(s)
- Diego Candia-Rivera
- Bioengineering and Robotics Research Center E. Piaggio and the Department of Information Engineering, School of Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|
46
|
A Single Session of SMR-Neurofeedback Training Improves Selective Attention Emerging from a Dynamic Structuring of Brain-Heart Interplay. Brain Sci 2022; 12:brainsci12060794. [PMID: 35741679 PMCID: PMC9221475 DOI: 10.3390/brainsci12060794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Research on sensorimotor rhythms (SMR) based on neurofeedback (NFb) emphasizes improvements in selective attention associated with SMR amplification. However, the long-term training proposed in most studies posed the question of acceptability, which led to the evaluation of the potential of a single NFb session. Based on cognitive and autonomic controls interfering with attention processes, we hypothesized changes in selective attention after a single SMR-NFb session, along with changes in brain-heart interplay, which are reflected in the multifractality of heartbeat dynamics. Here, young healthy participants (n = 35, 20 females, 21 ± 3 years) were randomly assigned either to a control group (Ctrl) watching a movie or to a neurofeedback (NFb) group performing a single session of SMR-NFb. A headset with EEG electrodes (positioned on C3 and C4) connected to a smartphone app served to guide and to evaluate NFb training efficacy. A Stroop task was performed for 8 min by each group before and after the intervention (movie vs. SMR-NFb) while collecting heart rate variability and C4-EEG for 20 min. When compared to Ctrl, the NFb group exhibited better Stroop performance, especially when facing incongruent trials. The multifractality and NFb training efficacy were identified as strong predictors of the gain in global Stroop performance, while multifractality was the only predictor regarding incongruent trials. We conclude that a single session of SMR-NFb improves selective attention in healthy individuals through the specific reorganization of brain-heart interplay, which is reflected in multifractal heartbeat dynamics.
Collapse
|
47
|
Mental Stress and Cardiovascular Health-Part I. J Clin Med 2022; 11:jcm11123353. [PMID: 35743423 PMCID: PMC9225328 DOI: 10.3390/jcm11123353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 12/30/2022] Open
Abstract
Epidemiological studies have shown that a substantial proportion of acute coronary events occur in individuals who lack the traditional high-risk cardiovascular (CV) profile. Mental stress is an emerging risk and prognostic factor for coronary artery disease and stroke, independently of conventional risk factors. It is associated with an increased rate of CV events. Acute mental stress may develop as a result of anger, fear, or job strain, as well as consequence of earthquakes or hurricanes. Chronic stress may develop as a result of long-term or repetitive stress exposure, such as job-related stress, low socioeconomic status, financial problems, depression, and type A and type D personality. While the response to acute mental stress may result in acute coronary events, the relationship of chronic stress with increased risk of coronary artery disease (CAD) is mainly due to acceleration of atherosclerosis. Emotionally stressful stimuli are processed by a network of cortical and subcortical brain regions, including the prefrontal cortex, insula, amygdala, hypothalamus, and hippocampus. This system is involved in the interpretation of relevance of environmental stimuli, according to individual’s memory, past experience, and current context. The brain transduces the cognitive process of emotional stimuli into hemodynamic, neuroendocrine, and immune changes, called fight or flight response, through the autonomic nervous system and the hypothalamic–pituitary–adrenal axis. These changes may induce transient myocardial ischemia, defined as mental stress-induced myocardial ischemia (MSIMI) in patients with and without significant coronary obstruction. The clinical consequences may be angina, myocardial infarction, arrhythmias, and left ventricular dysfunction. Although MSIMI is associated with a substantial increase in CV mortality, it is usually underestimated because it arises without pain in most cases. MSIMI occurs at lower levels of cardiac work than exercise-induced ischemia, suggesting that the impairment of myocardial blood flow is mainly due to paradoxical coronary vasoconstriction and microvascular dysfunction.
Collapse
|
48
|
Cardiac sympathetic-vagal activity initiates a functional brain-body response to emotional arousal. Proc Natl Acad Sci U S A 2022; 119:e2119599119. [PMID: 35588453 PMCID: PMC9173754 DOI: 10.1073/pnas.2119599119] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We investigate the temporal dynamics of brain and cardiac activities in healthy subjects who underwent an emotional elicitation through videos. We demonstrate that, within the first few seconds, emotional stimuli modulate heartbeat activity, which in turn stimulates an emotion intensity (arousal)–specific cortical response. The emotional processing is then sustained by a bidirectional brain–heart interplay, where the perceived arousal level modulates the amplitude of ascending heart-to-brain neural information flow. These findings may constitute fundamental knowledge linking neurophysiology and psychiatric disorders, including the link between depressive symptoms and cardiovascular disorders. A century-long debate on bodily states and emotions persists. While the involvement of bodily activity in emotion physiology is widely recognized, the specificity and causal role of such activity related to brain dynamics has not yet been demonstrated. We hypothesize that the peripheral neural control on cardiovascular activity prompts and sustains brain dynamics during an emotional experience, so these afferent inputs are processed by the brain by triggering a concurrent efferent information transfer to the body. To this end, we investigated the functional brain–heart interplay under emotion elicitation in publicly available data from 62 healthy subjects using a computational model based on synthetic data generation of electroencephalography and electrocardiography signals. Our findings show that sympathovagal activity plays a leading and causal role in initiating the emotional response, in which ascending modulations from vagal activity precede neural dynamics and correlate to the reported level of arousal. The subsequent dynamic interplay observed between the central and autonomic nervous systems sustains the processing of emotional arousal. These findings should be particularly revealing for the psychophysiology and neuroscience of emotions.
Collapse
|
49
|
Schmaußer M, Hoffmann S, Raab M, Laborde S. The effects of noninvasive brain stimulation on heart rate and heart rate variability: A systematic review and meta-analysis. J Neurosci Res 2022; 100:1664-1694. [PMID: 35582757 DOI: 10.1002/jnr.25062] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/25/2022] [Accepted: 04/30/2022] [Indexed: 12/30/2022]
Abstract
Noninvasive brain stimulation (NIBS) techniques such as transcranial magnetic stimulation and transcranial direct current stimulation are widely used to test the involvement of specific cortical regions in various domains such as cognition and emotion. Despite the capability of stimulation techniques to test causal directions, this approach has been only sparsely used to examine the cortical regulation of autonomic nervous system (ANS) functions such as heart rate (HR) and heart rate variability (HRV) and to test current models in this regard. In this preregistered (PROSPERO) systematic review and meta-analysis, we aimed to investigate, based on meta-regression, whether NIBS represents an effective method for modulating HR and HRV measures, and to evaluate whether the ANS is modulated by cortical mechanisms affected by NIBS. Here we have adhered to the PRISMA guidelines. In a series of four meta-analyses, a total of 131 effect sizes from 35 sham-controlled trials were analyzed using robust variance estimation random-effects meta-regression technique. NIBS was found to effectively modulate HR and HRV with small to medium effect sizes. Moderator analyses yielded significant differences in effects between stimulation of distinct cortical areas. Our results show that NIBS is a promising tool to investigate the cortical regulation of ANS, which may add to the existing brain imaging and animal study literature. Future research is needed to identify further factors modulating the size of effects. As many of the studies reviewed were found to be at high risk of bias, we recommend that methods to reduce potential risk of bias be used in the design and conduct of future studies.
Collapse
Affiliation(s)
| | - Sven Hoffmann
- Institute of Psychology, University of Hagen, Hagen, Germany
| | - Markus Raab
- Institute of Psychology, German Sport University, Cologne, Germany.,School of Applied Sciences, London South Bank University, London, UK
| | - Sylvain Laborde
- Institute of Psychology, German Sport University, Cologne, Germany.,UFR STAPS, EA 4260, Université de Caen Normandie, Caen, France
| |
Collapse
|
50
|
John AT, Barthel A, Wind J, Rizzi N, Schöllhorn WI. Acute Effects of Various Movement Noise in Differential Learning of Rope Skipping on Brain and Heart Recovery Analyzed by Means of Multiscale Fuzzy Measure Entropy. Front Behav Neurosci 2022; 16:816334. [PMID: 35283739 PMCID: PMC8914377 DOI: 10.3389/fnbeh.2022.816334] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
In search of more detailed explanations for body-mind interactions in physical activity, neural and physiological effects, especially regarding more strenuous sports activities, increasingly attract interest. Little is known about the underlying manifold (neuro-)physiological impacts induced by different motor learning approaches. The various influences on brain or cardiac function are usually studied separately and modeled linearly. Limitations of these models have recently led to a rapidly growing application of nonlinear models. This study aimed to investigate the acute effects of various sequences of rope skipping on irregularity of the electrocardiography (ECG) and electroencephalography (EEG) signals as well as their interaction and whether these depend on different levels of active movement noise, within the framework of differential learning theory. Thirty-two males were randomly and equally distributed to one of four rope skipping conditions with similar cardiovascular but varying coordinative demand. ECG and EEG were measured simultaneously at rest before and immediately after rope skipping for 25 mins. Signal irregularity of ECG and EEG was calculated via the multiscale fuzzy measure entropy (MSFME). Statistically significant ECG and EEG brain area specific changes in MSFME were found with different pace of occurrence depending on the level of active movement noise of the particular rope skipping condition. Interaction analysis of ECG and EEG MSFME specifically revealed an involvement of the frontal, central, and parietal lobe in the interplay with the heart. In addition, the number of interaction effects indicated an inverted U-shaped trend presenting the interaction level of ECG and EEG MSFME dependent on the level of active movement noise. In summary, conducting rope skipping with varying degrees of movement variation appears to affect the irregularity of cardiac and brain signals and their interaction during the recovery phase differently. These findings provide enough incentives to foster further constructive nonlinear research in exercise-recovery relationship and to reconsider the philosophy of classical endurance training.
Collapse
Affiliation(s)
- Alexander Thomas John
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University, Mainz, Germany
| | | | | | | | | |
Collapse
|