1
|
Maxouri O, Bodalal Z, Daal M, Rostami S, Rodriguez I, Akkari L, Srinivas M, Bernards R, Beets-Tan R. How to 19F MRI: applications, technique, and getting started. BJR Open 2023; 5:20230019. [PMID: 37953866 PMCID: PMC10636348 DOI: 10.1259/bjro.20230019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 11/14/2023] Open
Abstract
Magnetic resonance imaging (MRI) plays a significant role in the routine imaging workflow, providing both anatomical and functional information. 19F MRI is an evolving imaging modality where instead of 1H, 19F nuclei are excited. As the signal from endogenous 19F in the body is negligible, exogenous 19F signals obtained by 19F radiofrequency coils are exceptionally specific. Highly fluorinated agents targeting particular biological processes (i.e., the presence of immune cells) have been visualised using 19F MRI, highlighting its potential for non-invasive and longitudinal molecular imaging. This article aims to provide both a broad overview of the various applications of 19F MRI, with cancer imaging as a focus, as well as a practical guide to 19F imaging. We will discuss the essential elements of a 19F system and address common pitfalls during acquisition. Last but not least, we will highlight future perspectives that will enhance the role of this modality. While not an exhaustive exploration of all 19F literature, we endeavour to encapsulate the broad themes of the field and introduce the world of 19F molecular imaging to newcomers. 19F MRI bridges several domains, imaging, physics, chemistry, and biology, necessitating multidisciplinary teams to be able to harness this technology effectively. As further technical developments allow for greater sensitivity, we envision that 19F MRI can help unlock insight into biological processes non-invasively and longitudinally.
Collapse
Affiliation(s)
| | | | | | | | | | - Leila Akkari
- Division of Tumor Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | |
Collapse
|
2
|
Yan J, Huang L, Feng J, Yang X. The Recent Applications of PLGA-Based Nanostructures for Ischemic Stroke. Pharmaceutics 2023; 15:2322. [PMID: 37765291 PMCID: PMC10535132 DOI: 10.3390/pharmaceutics15092322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
With the accelerated development of nanotechnology in recent years, nanomaterials have become increasingly prevalent in the medical field. The poly (lactic acid-glycolic acid) copolymer (PLGA) is one of the most commonly used biodegradable polymers. It is biocompatible and can be fabricated into various nanostructures, depending on requirements. Ischemic stroke is a common, disabling, and fatal illness that burdens society. There is a need for further improvement in the diagnosis and treatment of this disease. PLGA-based nanostructures can facilitate therapeutic compounds' passage through the physicochemical barrier. They further provide both sustained and controlled release of therapeutic compounds when loaded with drugs for the treatment of ischemic stroke. The clinical significance and potential of PLGA-based nanostructures can also be seen in their applications in cell transplantation and imaging diagnostics of ischemic stroke. This paper summarizes the synthesis and properties of PLGA and reviews in detail the recent applications of PLGA-based nanostructures for drug delivery, disease therapy, cell transplantation, and the imaging diagnosis of ischemic stroke.
Collapse
Affiliation(s)
- Jun Yan
- Department of Neurology, Fushun Central Hospital, Fushun 113000, China;
| | - Lei Huang
- Department of Cardiac Function, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xue Yang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
3
|
Liu H, Chen B, Zhu Q. Potential application of hydrogel to the diagnosis and treatment of multiple sclerosis. J Biol Eng 2022; 16:10. [PMID: 35395765 PMCID: PMC8991948 DOI: 10.1186/s13036-022-00288-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/12/2022] [Indexed: 11/18/2022] Open
Abstract
Abstract Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system. This disorder may cause progressive and permanent impairment, placing significant physical and psychological strain on sufferers. Each progress in MS therapy marks a significant advancement in neurological research. Hydrogels can serve as a scaffold with high water content, high expansibility, and biocompatibility to improve MS cell proliferation in vitro and therapeutic drug delivery to cells in vivo. Hydrogels may also be utilized as biosensors to detect MS-related proteins. Recent research has employed hydrogels as an adjuvant imaging agent in immunohistochemistry assays. Following an overview of the development and use of hydrogels in MS diagnostic and therapy, this review discussed hydrogel’s advantages and future opportunities in the diagnosis and treatment of MS. Graphical abstract ![]()
Collapse
Affiliation(s)
- Haochuan Liu
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Xiantai Street No. 126, Changchun, TX, 130031, PR China
| | - Bing Chen
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Xiantai Street No. 126, Changchun, TX, 130031, PR China.
| | - Qingsan Zhu
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Xiantai Street No. 126, Changchun, TX, 130031, PR China.
| |
Collapse
|
4
|
Chapelin F, Gedaly R, Sweeney Z, Gossett LJ. Prognostic Value of Fluorine-19 MRI Oximetry Monitoring in cancer. Mol Imaging Biol 2022; 24:208-219. [PMID: 34708396 DOI: 10.1007/s11307-021-01648-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/24/2022]
Abstract
Hypoxia is a key prognostic indicator in most solid tumors, as it is correlated to tumor angiogenesis, metastasis, recurrence, and response to therapy. Accurate measurement and mapping of tumor oxygenation profile and changes upon intervention could facilitate disease progression assessment and assist in treatment planning. Currently, no gold standard exists for non-invasive spatiotemporal measurement of hypoxia. Magnetic resonance imaging (MRI) represents an attractive option as it is a clinically available and non-ionizing imaging modality. Specifically, perfluorocarbon (PFC) beacons can be externally introduced into the tumor tissue and the linear dependence of their spin-lattice relaxation rate (R1) on the local partial pressure of oxygen (pO2) exploited for real-time tissue oxygenation monitoring in vivo. In this review, we will focus on early studies and recent developments of fluorine-19 MRI and spectroscopy (MRS) for evaluation of tumor oximetry and response to therapy.
Collapse
Affiliation(s)
- Fanny Chapelin
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, 514F RMB, 143 Graham Avenue, Lexington, KY, USA.
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| | - Roberto Gedaly
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Department of Surgery, Transplant Division, University of Kentucky, Lexington, KY, USA
| | - Zachary Sweeney
- College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Liza J Gossett
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, 514F RMB, 143 Graham Avenue, Lexington, KY, USA
| |
Collapse
|
5
|
Modo M, Ghuman H, Azar R, Krafty R, Badylak SF, Hitchens TK. Mapping the acute time course of immune cell infiltration into an ECM hydrogel in a rat model of stroke using 19F MRI. Biomaterials 2022; 282:121386. [PMID: 35093825 DOI: 10.1016/j.biomaterials.2022.121386] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/09/2022] [Accepted: 01/21/2022] [Indexed: 12/27/2022]
Abstract
Extracellular matrix (ECM) hydrogel implantation into a stroke-induced tissue cavity invokes a robust cellular immune response. However, the spatio-temporal dynamics of immune cell infiltration into peri-infarct brain tissues versus the ECM-bioscaffold remain poorly understood. We here tagged peripheral immune cells using perfluorocarbon (PFC) nanoemulsions that afford their visualization by 19F magnetic resonance imaging (MRI). Prior to ECM hydrogel implantation, only blood vessels could be detected using 19F MRI. Using "time-lapse" 19F MRI, we established the infiltration of immune cells into the peri-infarct area occurs 5-6 h post-ECM implantation. Immune cells also infiltrated through the stump of the MCA, as well as a hydrogel bridge that formed between the tissue cavity and the burr hole in the skull. Tissue-based migration into the bioscaffold was observed between 9 and 12 h with a peak signal measured between 12 and 18 h post-implantation. Fluorescence-activated cell sorting of circulating immune cells revealed that 9% of cells were labeled with PFC nanoemulsions, of which the vast majority were neutrophils (40%) or monocytes (48%). Histology at 24 h post-implantation, in contrast, indicated that macrophages (35%) were more numerous in the peri-infarct area than neutrophils (11%), whereas the vast majority of immune cells within the ECM hydrogel were neutrophils (66%). Only a small fraction (12%) of immune cells did not contain PFC nanoemulsions, indicating a low type II error for 19F MRI. 19F MRI hence provides a unique tool to improve our understanding of the spatio-temporal dynamics of immune cells invading bioscaffolds and effecting biodegradation.
Collapse
Affiliation(s)
- Michel Modo
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA; University of Pittsburgh, Department of Radiology, Pittsburgh, PA, USA; University of Pittsburgh, Department of Bioengineering, Pittsburgh, PA, USA.
| | - Harmanvir Ghuman
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA; University of Pittsburgh, Department of Bioengineering, Pittsburgh, PA, USA
| | - Reem Azar
- University of Pittsburgh, Department of Bioengineering, Pittsburgh, PA, USA
| | - Ryan Krafty
- University of Pittsburgh, Department of Biological Sciences, Pittsburgh, PA, USA
| | - Stephen F Badylak
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA; University of Pittsburgh, Department of Surgery, Pittsburgh, PA, USA
| | - T Kevin Hitchens
- University of Pittsburgh, Department of Neurobiology, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Platt T, Ladd ME, Paech D. 7 Tesla and Beyond: Advanced Methods and Clinical Applications in Magnetic Resonance Imaging. Invest Radiol 2021; 56:705-725. [PMID: 34510098 PMCID: PMC8505159 DOI: 10.1097/rli.0000000000000820] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/07/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022]
Abstract
ABSTRACT Ultrahigh magnetic fields offer significantly higher signal-to-noise ratio, and several magnetic resonance applications additionally benefit from a higher contrast-to-noise ratio, with static magnetic field strengths of B0 ≥ 7 T currently being referred to as ultrahigh fields (UHFs). The advantages of UHF can be used to resolve structures more precisely or to visualize physiological/pathophysiological effects that would be difficult or even impossible to detect at lower field strengths. However, with these advantages also come challenges, such as inhomogeneities applying standard radiofrequency excitation techniques, higher energy deposition in the human body, and enhanced B0 field inhomogeneities. The advantages but also the challenges of UHF as well as promising advanced methodological developments and clinical applications that particularly benefit from UHF are discussed in this review article.
Collapse
Affiliation(s)
- Tanja Platt
- From the Medical Physics in Radiology, German Cancer Research Center (DKFZ)
| | - Mark E. Ladd
- From the Medical Physics in Radiology, German Cancer Research Center (DKFZ)
- Faculty of Physics and Astronomy
- Faculty of Medicine, University of Heidelberg, Heidelberg
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen
| | - Daniel Paech
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg
- Clinic for Neuroradiology, University of Bonn, Bonn, Germany
| |
Collapse
|
7
|
Damian C, Ghuman H, Mauney C, Azar R, Reinartz J, Badylak SF, Modo M. Post-Stroke Timing of ECM Hydrogel Implantation Affects Biodegradation and Tissue Restoration. Int J Mol Sci 2021; 22:ijms222111372. [PMID: 34768800 PMCID: PMC8583606 DOI: 10.3390/ijms222111372] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 01/01/2023] Open
Abstract
Extracellular matrix (ECM) hydrogel promotes tissue regeneration in lesion cavities after stroke. However, a bioscaffold's regenerative potential needs to be considered in the context of the evolving pathological environment caused by a stroke. To evaluate this key issue in rats, ECM hydrogel was delivered to the lesion core/cavity at 7-, 14-, 28-, and 90-days post-stroke. Due to a lack of tissue cavitation 7-days post-stroke, implantation of ECM hydrogel did not achieve a sufficient volume and distribution to warrant comparison with the other time points. Biodegradation of ECM hydrogel implanted 14- and 28-days post-stroke were efficiently (80%) degraded by 14-days post-bioscaffold implantation, whereas implantation 90-days post-stroke revealed only a 60% decrease. Macrophage invasion was robust at 14- and 28-days post-stroke but reduced in the 90-days post-stroke condition. The pro-inflammation (M1) and pro-repair (M2) phenotype ratios were equivalent at all time points, suggesting that the pathological environment determines macrophage invasion, whereas ECM hydrogel defines their polarization. Neural cells (neural progenitors, neurons, astrocytes, oligodendrocytes) were found at all time points, but a 90-days post-stroke implantation resulted in reduced densities of mature phenotypes. Brain tissue restoration is therefore dependent on an efficient delivery of a bioscaffold to a tissue cavity, with 28-days post-stroke producing the most efficient biodegradation and tissue regeneration, whereas by 90-days post-stroke, these effects are significantly reduced. Improving our understanding of how the pathological environment influences biodegradation and the tissue restoration process is hence essential to devise engineering strategies that could extend the therapeutic window for bioscaffolds to repair the damaged brain.
Collapse
Affiliation(s)
- Corina Damian
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; (C.D.); (C.M.)
| | - Harmanvir Ghuman
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; (H.G.); (R.A.); (S.F.B.)
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Carrinton Mauney
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; (C.D.); (C.M.)
| | - Reem Azar
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; (H.G.); (R.A.); (S.F.B.)
| | - Janina Reinartz
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Stephen F. Badylak
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; (H.G.); (R.A.); (S.F.B.)
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michel Modo
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; (H.G.); (R.A.); (S.F.B.)
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15260, USA;
- Correspondence: ; Tel.: +1-(412)-383-7200
| |
Collapse
|
8
|
Parsa J, O'Reilly T, Webb A. Very low field 19F MRI of perfluoro-octylbromide: Minimizing chemical shift effects and signal loss due to scalar coupling. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 325:106946. [PMID: 33676267 DOI: 10.1016/j.jmr.2021.106946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
19F images have been obtained from perflurooctylbromide (PFOB) at very low magnetic field (50 mT). The small spectral dispersion (in Hz) means that all fluorine nuclei contribute to the signal without chemical shift artifacts or the need for specialized imaging sequences. Turbo spin echo trains with short interpulse intervals and full 180° refocussing pulses suppress scalar coupling, leading to long apparent T2 values and highly efficient data collection. Overall, the detection efficiency of PFOB is very similar that of water in tissue.
Collapse
Affiliation(s)
- Javad Parsa
- C.J. Gorter Center for High-Field MRI, Leiden University Medical Center, Department of Radiology, Albinusdreef 22333 ZA Leiden, the Netherlands
| | - Thomas O'Reilly
- C.J. Gorter Center for High-Field MRI, Leiden University Medical Center, Department of Radiology, Albinusdreef 22333 ZA Leiden, the Netherlands
| | - Andrew Webb
- C.J. Gorter Center for High-Field MRI, Leiden University Medical Center, Department of Radiology, Albinusdreef 22333 ZA Leiden, the Netherlands.
| |
Collapse
|
9
|
Modo M. 19F Magnetic Resonance Imaging and Spectroscopy in Neuroscience. Neuroscience 2021; 474:37-50. [PMID: 33766776 DOI: 10.1016/j.neuroscience.2021.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022]
Abstract
1H magnetic resonance imaging (MRI) has established itself as a key diagnostic technique, affording the visualization of brain anatomy, blood flow, activity and connectivity. The detection of other atoms (e.g. 19F, 23Na, 31P), so called hetero-nuclear MRI and spectroscopy (MRS), provides investigative avenues that complement and extend the richness of information that can be gained from 1H MRI. Especially 19F MRI is increasingly emerging as a multi-nuclear (1H/19F) technique that can be exploited to visualize cell migration and trafficking. The lack of a 19F background signal in the brain affords an unequivocal detection suitable for quantification. Fluorine-based contrast material can be engineered as nanoemulsions, nanocapsules, or nanoparticles to label cells in vitro or in vivo. Fluorinated blood substitutes, typically nanoemulsions, can also carry oxygen and serve as a theranostic in poorly perfused brain regions. Brain tissue concentrations of fluorinated pharmaceuticals, including inhalation anesthetics (e.g. isoflurane) and anti-depressants (e.g. fluoxetine), can also be measured using MRS. However, the low signal from these compounds provides a challenge for imaging. Further methodological advances that accelerate signal acquisition (e.g. compressed sensing, cryogenic coils) are required to expand the applications of 19F MR imaging to, for instance, determine the regional pharmacokinetics of novel fluorine-based drugs. Improvements in 19F signal detection and localization, combined with the development of novel sensitive probes, will increase the utility of these multi-nuclear studies. These advances will provide new insights into cellular and molecular processes involved in neurodegenerative disease, as well as the mode of action of pharmaceutical compounds.
Collapse
Affiliation(s)
- Michel Modo
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|