1
|
Matuszewski J, Bola Ł, Collignon O, Marchewka A. Similar Computational Hierarchies for Reading and Speech in the Occipital Cortex of Sighed and Blind: Converging Evidence from fMRI and Chronometric TMS. J Neurosci 2025; 45:e1153242024. [PMID: 40032525 PMCID: PMC12079739 DOI: 10.1523/jneurosci.1153-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 03/05/2025] Open
Abstract
High-level perception results from interactions between hierarchical brain systems responsive to gradually increasing feature complexities. During reading, the initial evaluation of simple visual features in the early visual cortex (EVC) is followed by orthographic and lexical computations in the ventral occipitotemporal cortex (vOTC). While similar visual regions are engaged in tactile Braille reading in congenitally blind people, it is unclear whether the visual network maintains or reorganizes its hierarchy for reading in this population. Combining fMRI and chronometric transcranial magnetic stimulation (TMS), our study revealed a clear correspondence between sighted and blind individuals (both male and female) on how their occipital cortices functionally supports reading and speech processing. Using fMRI, we first observed that vOTC, but not EVC, showed an enhanced response to lexical vs nonlexical information in both groups and sensory modalities. Using TMS, we further found that, in both groups, the processing of written words and pseudowords was disrupted by the EVC stimulation at both early and late time windows. In contrast, the vOTC stimulation disrupted the processing of these written stimuli only when applied at late time windows, again in both groups. In the speech domain, we observed TMS effects only for meaningful words and only in the blind participants. Overall, our results suggest that, while the responses in the deprived visual areas might extend their functional response to other sensory modalities, the computational gradients between early and higher-order occipital regions are retained, at least for reading.
Collapse
Affiliation(s)
- Jacek Matuszewski
- Crossmodal Perception and Plasticity Lab, Institute of Research in Psychology (IPSY) and Institute of Neuroscience (IoNS), Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Łukasz Bola
- Institute of Psychology, Polish Academy of Sciences, Warsaw 00-378, Poland
| | - Olivier Collignon
- Crossmodal Perception and Plasticity Lab, Institute of Research in Psychology (IPSY) and Institute of Neuroscience (IoNS), Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
- School of Health Sciences, HES-SO Valais-Wallis, The Sense Innovation and Research Center, Lausanne 1011, Switzerland
| | - Artur Marchewka
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| |
Collapse
|
2
|
Seydell-Greenwald A, Vladyko N, Chambers CE, Gaillard WD, Landau B, Newport EL. Right-Lateralization of the Visual Word Form Area after Left-Hemisphere Perinatal Stroke. J Neurosci 2025; 45:e0924242024. [PMID: 39794131 PMCID: PMC11884401 DOI: 10.1523/jneurosci.0924-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/30/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
In literate adults, an area along the left posterior fusiform gyrus that is often referred to as the "visual word form area" (VWFA) responds particularly strongly to written characters compared with other visually similar stimuli. Theoretical accounts differ in whether they attribute the strong left-lateralization of the VWFA to a left-hemisphere (LH) bias toward visual features used in script, to competition of visual word form processing with that of other visual stimuli processed in the same general cortical territory (especially faces), or to the well established left-lateralization of the language system. Here we used functional magnetic resonance imaging to test the last hypothesis by investigating lateralization of the VWFA in participants (male and female) who have right-hemisphere language due to a large LH perinatal stroke. Demographically matched controls were included for comparison. All participants had intact language skills and were proficient readers; age at testing ranged from 9.75 years to early adulthood. Activation maps contrasting activation during rapid presentation of pseudowords and pictures of places revealed left-lateralized fusiform activation in controls, as expected. In participants with left-hemisphere perinatal stroke and right-lateralized language, the VWFA was instead found in the right fusiform gyrus, despite the fact that the left-hemisphere tissue normally occupied by the VWFA was intact and responded normally to pictures of places. Region-of-interest analyses confirmed right-lateralization for visual word form processing, both relative to place stimuli and relative to a resting baseline. This provides compelling evidence that the lateralization of the VWFA indeed follows that of the frontotemporal language system.
Collapse
Affiliation(s)
| | | | | | - William D Gaillard
- Children's National Hospital, George Washington University, Washington, DC 20010
| | | | | |
Collapse
|
3
|
Li J, Hiersche KJ, Saygin ZM. Demystifying visual word form area visual and nonvisual response properties with precision fMRI. iScience 2024; 27:111481. [PMID: 39759006 PMCID: PMC11696768 DOI: 10.1016/j.isci.2024.111481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/05/2024] [Accepted: 11/22/2024] [Indexed: 01/07/2025] Open
Abstract
The visual word form area (VWFA) is a region in the left ventrotemporal cortex (VTC) whose specificity remains contentious. Using precision fMRI, we examine the VWFA's responses to numerous visual and nonvisual stimuli, comparing them to adjacent category-selective visual regions and regions involved in language and attentional demand. We find that VWFA responds moderately to non-word visual stimuli, but is unique within VTC in its pronounced selectivity for visual words. Interestingly, the VWFA is also the only category-selective visual region engaged in auditory language, unlike the ubiquitous attentional demand effect throughout the VTC. However, this language selectivity is dwarfed by its visual responses even to nonpreferred categories, indicating the VWFA is not a core (amodal) language region. We also observed two additional auditory language VTC clusters, but these had no specificity for visual words. Our detailed investigation clarifies longstanding controversies about the landscape of visual and auditory language functionality within VTC.
Collapse
Affiliation(s)
- Jin Li
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
- Center for Cognitive and Behavioral Brain Imaging, The Ohio State University, Columbus, OH 43210, USA
- School of Psychology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kelly J. Hiersche
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
- Center for Cognitive and Behavioral Brain Imaging, The Ohio State University, Columbus, OH 43210, USA
| | - Zeynep M. Saygin
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
- Center for Cognitive and Behavioral Brain Imaging, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Perron M, Vuong V, Grassi MW, Imran A, Alain C. Engagement of the speech motor system in challenging speech perception: Activation likelihood estimation meta-analyses. Hum Brain Mapp 2024; 45:e70023. [PMID: 39268584 PMCID: PMC11393483 DOI: 10.1002/hbm.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024] Open
Abstract
The relationship between speech production and perception is a topic of ongoing debate. Some argue that there is little interaction between the two, while others claim they share representations and processes. One perspective suggests increased recruitment of the speech motor system in demanding listening situations to facilitate perception. However, uncertainties persist regarding the specific regions involved and the listening conditions influencing its engagement. This study used activation likelihood estimation in coordinate-based meta-analyses to investigate the neural overlap between speech production and three speech perception conditions: speech-in-noise, spectrally degraded speech and linguistically complex speech. Neural overlap was observed in the left frontal, insular and temporal regions. Key nodes included the left frontal operculum (FOC), left posterior lateral part of the inferior frontal gyrus (IFG), left planum temporale (PT), and left pre-supplementary motor area (pre-SMA). The left IFG activation was consistently observed during linguistic processing, suggesting sensitivity to the linguistic content of speech. In comparison, the left pre-SMA activation was observed when processing degraded and noisy signals, indicating sensitivity to signal quality. Activations of the left PT and FOC activation were noted in all conditions, with the posterior FOC area overlapping in all conditions. Our meta-analysis reveals context-independent (FOC, PT) and context-dependent (pre-SMA, posterior lateral IFG) regions within the speech motor system during challenging speech perception. These regions could contribute to sensorimotor integration and executive cognitive control for perception and production.
Collapse
Affiliation(s)
- Maxime Perron
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Veronica Vuong
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Ontario, Canada
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Music and Health Science Research Collaboratory, Faculty of Music, University of Toronto, Toronto, Ontario, Canada
| | - Madison W Grassi
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Ontario, Canada
| | - Ashna Imran
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Ontario, Canada
| | - Claude Alain
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Music and Health Science Research Collaboratory, Faculty of Music, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Chauhan VS, McCook KC, White AL. Reading Reshapes Stimulus Selectivity in the Visual Word Form Area. eNeuro 2024; 11:ENEURO.0228-24.2024. [PMID: 38997142 DOI: 10.1523/eneuro.0228-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Reading depends on a brain region known as the "visual word form area" (VWFA) in the left ventral occipitotemporal cortex. This region's function is debated because its stimulus selectivity is not absolute, it is modulated by a variety of task demands, and it is inconsistently localized. We used fMRI to characterize the combination of sensory and cognitive factors that activate word-responsive regions that we precisely localized in 16 adult humans (4 male). We then presented three types of character strings: English words, pseudowords, and unfamiliar characters with matched visual features. Participants performed three different tasks while viewing those stimuli: detecting real words, detecting color in the characters, and detecting color in the fixation mark. There were three primary findings about the VWFA's response: (1) It preferred letter strings over unfamiliar characters even when the stimuli were ignored during the fixation task. (2) Compared with those baseline responses, engaging in the word reading task enhanced the response to words but suppressed the response to unfamiliar characters. (3) Attending to the stimuli to judge their color had little effect on the response magnitudes. Thus, the VWFA is uniquely modulated by a cognitive signal that is specific to voluntary linguistic processing and is not additive. Functional connectivity analyses revealed that communication between the VWFA and a left frontal language area increased when the participant engaged in the linguistic task. We conclude that the VWFA is inherently selective for familiar orthography, but it falls under control of the language network when the task demands it.
Collapse
Affiliation(s)
- Vassiki S Chauhan
- Department of Neuroscience & Behavior, Barnard College, Columbia University, New York, New York 10027
| | - Krystal C McCook
- Department of Neuroscience & Behavior, Barnard College, Columbia University, New York, New York 10027
| | - Alex L White
- Department of Neuroscience & Behavior, Barnard College, Columbia University, New York, New York 10027
| |
Collapse
|
6
|
Chauhan VS, McCook KC, White AL. Reading reshapes stimulus selectivity in the visual word form area. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.04.560764. [PMID: 38948708 PMCID: PMC11212929 DOI: 10.1101/2023.10.04.560764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Reading depends on a brain region known as the "visual word form area" (VWFA) in left ventral occipito-temporal cortex. This region's function is debated because its stimulus selectivity is not absolute, it is modulated by a variety of task demands, and it is inconsistently localized. We used fMRI to characterize the combination of sensory and cognitive factors that activate word-responsive regions that we precisely localized in 16 adult humans (4 male). We then presented three types of character strings: English words, pseudowords, and unfamiliar characters with matched visual features. Participants performed three different tasks while viewing those stimuli: detecting real words, detecting color in the characters, and detecting color in the fixation mark. There were three primary findings about the VWFA's response: (1) It preferred letter strings over unfamiliar characters even when the stimuli were ignored during the fixation task; (2) Compared to those baseline responses, engaging in the word reading task enhanced the response to words but suppressed the response to unfamiliar characters. (3) Attending to the stimuli to judge their font color had little effect on the response magnitudes. Thus, the VWFA is uniquely modulated by a cognitive signal that is specific to voluntary linguistic processing and is not additive. Functional connectivity analyses revealed that communication between the VWFA and a left frontal language area increased when the participant engaged in the linguistic task. We conclude that the VWFA is inherently selective for familiar orthography, but it falls under control of the language network when the task demands it.
Collapse
Affiliation(s)
- Vassiki S. Chauhan
- Department of Neuroscience & Behavior Barnard College, Columbia University 76 Claremont Ave New York, NY 10027 USA
| | - Krystal C McCook
- Department of Neuroscience & Behavior Barnard College, Columbia University 76 Claremont Ave New York, NY 10027 USA
| | - Alex L. White
- Department of Neuroscience & Behavior Barnard College, Columbia University 76 Claremont Ave New York, NY 10027 USA
| |
Collapse
|
7
|
Bartha-Doering L, Roberts D, Baumgartner B, Yildirim MS, Giordano V, Spagna A, Pal-Handl K, Javorszky SM, Kasprian G, Seidl R. Developmental surface dyslexia and dysgraphia in a child with corpus callosum agenesis: an approach to diagnosis and treatment. Cogn Neuropsychol 2024; 41:148-170. [PMID: 38942485 DOI: 10.1080/02643294.2024.2368876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/30/2024]
Abstract
We present a case study detailing cognitive performance, functional neuroimaging, and effects of a hypothesis-driven treatment in a 10-year-old girl diagnosed with complete, isolated corpus callosum agenesis. Despite having average overall intellectual abilities, the girl exhibited profound surface dyslexia and dysgraphia. Spelling treatment significantly and persistently improved her spelling of trained irregular words, and this improvement generalized to reading accuracy and speed of trained words. Diffusion weighted imaging revealed strengthened intrahemispheric white matter connectivity of the left temporal cortex after treatment and identified interhemispheric connectivity between the occipital lobes, likely facilitated by a pathway crossing the midline via the posterior commissure. This case underlines the corpus callosum's critical role in lexical reading and writing. It demonstrates that spelling treatment may enhance interhemispheric connectivity in corpus callosum agenesis through alternative pathways, boosting the development of a more efficient functional organization of the visual word form area within the left temporo-occipital cortex.
Collapse
Affiliation(s)
- Lisa Bartha-Doering
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Daniel Roberts
- Department of Psychology, Institute of Population Health, University of Liverpool, Liverpool, UK
| | - Bettina Baumgartner
- Department of Logopedics, Phoniatrics, and Audiology, University of Applied Sciences, Vienna, Austria
| | - Mehmet Salih Yildirim
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Vito Giordano
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Alfredo Spagna
- Department of Psychology, Columbia University, New York, NY, USA
| | - Katharina Pal-Handl
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Susanne Maria Javorszky
- Department of Logopedics, Phoniatrics, and Audiology, University of Applied Sciences, Vienna, Austria
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Rainer Seidl
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Yablonski M, Karipidis II, Kubota E, Yeatman JD. The transition from vision to language: Distinct patterns of functional connectivity for subregions of the visual word form area. Hum Brain Mapp 2024; 45:e26655. [PMID: 38488471 PMCID: PMC10941549 DOI: 10.1002/hbm.26655] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/22/2023] [Accepted: 02/26/2024] [Indexed: 03/18/2024] Open
Abstract
Reading entails transforming visual symbols to sound and meaning. This process depends on specialized circuitry in the visual cortex, the visual word form area (VWFA). Recent findings suggest that this text-selective cortex comprises at least two distinct subregions: the more posterior VWFA-1 is sensitive to visual features, while the more anterior VWFA-2 processes higher level language information. Here, we explore whether these two subregions also exhibit different patterns of functional connectivity. To this end, we capitalize on two complementary datasets: Using the Natural Scenes Dataset (NSD), we identify text-selective responses in high-quality 7T adult data (N = 8), and investigate functional connectivity patterns of VWFA-1 and VWFA-2 at the individual level. We then turn to the Healthy Brain Network (HBN) database to assess whether these patterns replicate in a large developmental sample (N = 224; age 6-20 years), and whether they relate to reading development. In both datasets, we find that VWFA-1 is primarily correlated with bilateral visual regions. In contrast, VWFA-2 is more strongly correlated with language regions in the frontal and lateral parietal lobes, particularly the bilateral inferior frontal gyrus. Critically, these patterns do not generalize to adjacent face-selective regions, suggesting a specific relationship between VWFA-2 and the frontal language network. No correlations were observed between functional connectivity and reading ability. Together, our findings support the distinction between subregions of the VWFA, and suggest that functional connectivity patterns in the ventral temporal cortex are consistent over a wide range of reading skills.
Collapse
Affiliation(s)
- Maya Yablonski
- Division of Developmental‐Behavioral Pediatrics, Department of PediatricsStanford University School of MedicineStanfordCaliforniaUSA
- Stanford University Graduate School of EducationStanfordCaliforniaUSA
| | - Iliana I. Karipidis
- Department of Psychiatry and Behavioral SciencesStanford School of MedicineStanfordCaliforniaUSA
- Department of Child and Adolescent Psychiatry and PsychotherapyUniversity Hospital of Psychiatry Zurich, University of ZurichZürichSwitzerland
- Neuroscience Center ZurichUniversity of Zurich and ETHZurichSwitzerland
| | - Emily Kubota
- Psychology DepartmentStanford UniversityStanfordCaliforniaUSA
| | - Jason D. Yeatman
- Division of Developmental‐Behavioral Pediatrics, Department of PediatricsStanford University School of MedicineStanfordCaliforniaUSA
- Stanford University Graduate School of EducationStanfordCaliforniaUSA
- Psychology DepartmentStanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
9
|
Dziȩgiel-Fivet G, Beck J, Jednoróg K. The role of the left ventral occipitotemporal cortex in speech processing-The influence of visual deprivation. Front Hum Neurosci 2023; 17:1228808. [PMID: 38125712 PMCID: PMC10730934 DOI: 10.3389/fnhum.2023.1228808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
The role of the left ventral occipitotemporal cortex (vOT) in reading is well-established in both sighted and blind readers. Its role in speech processing remains only partially understood. Here, we test the involvement of the left vOT in phonological processing of spoken language in the blind (N = 50, age: 6.76-60.32) and in the sighted (N = 54, age: 6.79-59.83) by means of whole-brain and region-of-interest (including individually identified) fMRI analyses. We confirm that the left vOT is sensitive to phonological processing (shows greater involvement in rhyming compared to control spoken language task) in both blind and sighted participants. However, in the sighted, the activation was observed only during the rhyming task and in the speech-specific region of the left vOT, pointing to task and modality specificity. In contrast, in the blind group, the left vOT was active during speech processing irrespective of task and in both speech and reading-specific vOT regions. Only in the blind, the left vOT presented a higher degree of sensitivity to phonological processing than other language nodes in the left inferior frontal and superior temporal cortex. Our results suggest a changed development of the left vOT sensitivity to spoken language, resulting from visual deprivation.
Collapse
Affiliation(s)
- Gabriela Dziȩgiel-Fivet
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | | | - Katarzyna Jednoróg
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
10
|
Dȩbska A, Wójcik M, Chyl K, Dziȩgiel-Fivet G, Jednoróg K. Beyond the Visual Word Form Area - a cognitive characterization of the left ventral occipitotemporal cortex. Front Hum Neurosci 2023; 17:1199366. [PMID: 37576470 PMCID: PMC10416454 DOI: 10.3389/fnhum.2023.1199366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
The left ventral occipitotemporal cortex has been traditionally viewed as a pathway for visual object recognition including written letters and words. Its crucial role in reading was strengthened by the studies on the functionally localized "Visual Word Form Area" responsible for processing word-like information. However, in the past 20 years, empirical studies have challenged the assumptions of this brain region as processing exclusively visual or even orthographic stimuli. In this review, we aimed to present the development of understanding of the left ventral occipitotemporal cortex from the visually based letter area to the modality-independent symbolic language related region. We discuss theoretical and empirical research that includes orthographic, phonological, and semantic properties of language. Existing results showed that involvement of the left ventral occipitotemporal cortex is not limited to unimodal activity but also includes multimodal processes. The idea of the integrative nature of this region is supported by the broad functional and structural connectivity with language-related and attentional brain networks. We conclude that although the function of the area is not yet fully understood in human cognition, its role goes beyond visual word form processing. The left ventral occipitotemporal cortex seems to be crucial for combining higher-level language information with abstract forms that convey meaning independently of modality.
Collapse
Affiliation(s)
- Agnieszka Dȩbska
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Wójcik
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Chyl
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- The Educational Research Institute, Warsaw, Poland
| | - Gabriela Dziȩgiel-Fivet
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Jednoróg
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
11
|
White AL, Kay KN, Tang KA, Yeatman JD. Engaging in word recognition elicits highly specific modulations in visual cortex. Curr Biol 2023; 33:1308-1320.e5. [PMID: 36889316 PMCID: PMC10089978 DOI: 10.1016/j.cub.2023.02.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/26/2023] [Accepted: 02/13/2023] [Indexed: 03/09/2023]
Abstract
A person's cognitive state determines how their brain responds to visual stimuli. The most common such effect is a response enhancement when stimuli are task relevant and attended rather than ignored. In this fMRI study, we report a surprising twist on such attention effects in the visual word form area (VWFA), a region that plays a key role in reading. We presented participants with strings of letters and visually similar shapes, which were either relevant for a specific task (lexical decision or gap localization) or ignored (during a fixation dot color task). In the VWFA, the enhancement of responses to attended stimuli occurred only for letter strings, whereas non-letter shapes evoked smaller responses when attended than when ignored. The enhancement of VWFA activity was accompanied by strengthened functional connectivity with higher-level language regions. These task-dependent modulations of response magnitude and functional connectivity were specific to the VWFA and absent in the rest of visual cortex. We suggest that language regions send targeted excitatory feedback into the VWFA only when the observer is trying to read. This feedback enables the discrimination of familiar and nonsense words and is distinct from generic effects of visual attention.
Collapse
Affiliation(s)
- Alex L White
- Department of Neuroscience & Behavior, Barnard College, Columbia University, 76 Claremont Ave, New York, NY 10027, USA.
| | - Kendrick N Kay
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, 2021 6th Street SE, Minneapolis, MN 55455, USA
| | - Kenny A Tang
- Graduate School of Education and Department of Psychology, Stanford University, Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, 520 Galvez Mall, Stanford, CA 94305, USA
| | - Jason D Yeatman
- Graduate School of Education and Department of Psychology, Stanford University, Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, 520 Galvez Mall, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Liu X, Hu L, Qu J, Zhang S, Su X, Li A, Mei L. Neural similarities and differences between native and second languages in the bilateral fusiform cortex in Chinese-English bilinguals. Neuropsychologia 2023; 179:108464. [PMID: 36565993 DOI: 10.1016/j.neuropsychologia.2022.108464] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/20/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
In the field of bilingualism, researchers have proposed an assimilation hypothesis that posits that bilinguals apply the neural network of their native language to process their second language. In Chinese-English bilinguals, the bilateral fusiform gyrus has been identified as the key brain region showing the assimilation process. Specifically, in contrast to left-lateralized activation in the fusiform gyrus in native English speakers, Chinese-English bilinguals recruit the bilateral fusiform cortex to process English words as they do in the processing of Chinese characters. Nevertheless, it is unclear which type of information processing is assimilated in the fusiform gyrus. Using representational similarity analysis (RSA) and psychophysiological interaction (PPI) analysis, this study examined the differences in information representation and functional connectivity between both languages in the fusiform subregions in Chinese-English bilinguals. Univariate analysis revealed that both Chinese and English naming elicited strong activations in the bilateral fusiform gyrus, which confirmed the assimilation process at the activation intensity level. RSA indicated that the neural pattern of English phonological information was assimilated by Chinese in the anterior and middle right fusiform gyrus, while those of orthographic and visual form information were not. Further PPI analysis demonstrated that the neural representation of English phonological information in the right anterior fusiform subregion was related to its interaction with the frontotemporal areas for high-level linguistic processing, while the neural representation of English orthographic information in the right middle fusiform subregion was linked to its interaction with the left inferior occipital cortex for visual processing. These results suggest that, despite the recruitment of similar neural resources in one's native and second languages, the assimilation of information representation is limited in the bilateral fusiform cortex. Our results shed light on the neural mechanisms of second language processing.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631, Guangzhou, China
| | - Liyuan Hu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631, Guangzhou, China
| | - Jing Qu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631, Guangzhou, China
| | - Shuo Zhang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631, Guangzhou, China
| | - Xinqi Su
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631, Guangzhou, China
| | - Aqian Li
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631, Guangzhou, China
| | - Leilei Mei
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China.
| |
Collapse
|
13
|
Wang S, Planton S, Chanoine V, Sein J, Anton JL, Nazarian B, Dubarry AS, Pallier C, Pattamadilok C. Graph theoretical analysis reveals the functional role of the left ventral occipito-temporal cortex in speech processing. Sci Rep 2022; 12:20028. [PMID: 36414688 PMCID: PMC9681757 DOI: 10.1038/s41598-022-24056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022] Open
Abstract
The left ventral occipito-temporal cortex (left-vOT) plays a key role in reading. Interestingly, the area also responds to speech input, suggesting that it may have other functions beyond written word recognition. Here, we adopt graph theoretical analysis to investigate the left-vOT's functional role in the whole-brain network while participants process spoken sentences in different contexts. Overall, different connectivity measures indicate that the left-vOT acts as an interface enabling the communication between distributed brain regions and sub-networks. During simple speech perception, the left-vOT is systematically part of the visual network and contributes to the communication between neighboring areas, remote areas, and sub-networks, by acting as a local bridge, a global bridge, and a connector, respectively. However, when speech comprehension is explicitly required, the specific functional role of the area and the sub-network to which the left-vOT belongs change and vary with the quality of speech signal and task difficulty. These connectivity patterns provide insightful information on the contribution of the left-vOT in various contexts of language processing beyond its role in reading. They advance our general understanding of the neural mechanisms underlying the flexibility of the language network that adjusts itself according to the processing context.
Collapse
Affiliation(s)
- Shuai Wang
- grid.462776.60000 0001 2206 2382Aix Marseille Univ, CNRS, LPL, Aix-en-Provence, France ,grid.5399.60000 0001 2176 4817Aix Marseille Univ, Institute of Language, Communication and the Brain, Aix-en-Provence, France
| | - Samuel Planton
- grid.462776.60000 0001 2206 2382Aix Marseille Univ, CNRS, LPL, Aix-en-Provence, France ,grid.7429.80000000121866389Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin Center, Gif/Yvette, France
| | - Valérie Chanoine
- grid.462776.60000 0001 2206 2382Aix Marseille Univ, CNRS, LPL, Aix-en-Provence, France ,grid.5399.60000 0001 2176 4817Aix Marseille Univ, Institute of Language, Communication and the Brain, Aix-en-Provence, France
| | - Julien Sein
- grid.462486.a0000 0004 4650 2882Aix Marseille Univ, CNRS, Centre IRM-INT@CERIMED, Institut de Neurosciences de la Timone, UMR 7289 Marseille, France
| | - Jean-Luc Anton
- grid.462486.a0000 0004 4650 2882Aix Marseille Univ, CNRS, Centre IRM-INT@CERIMED, Institut de Neurosciences de la Timone, UMR 7289 Marseille, France
| | - Bruno Nazarian
- grid.462486.a0000 0004 4650 2882Aix Marseille Univ, CNRS, Centre IRM-INT@CERIMED, Institut de Neurosciences de la Timone, UMR 7289 Marseille, France
| | - Anne-Sophie Dubarry
- grid.462776.60000 0001 2206 2382Aix Marseille Univ, CNRS, LPL, Aix-en-Provence, France ,grid.4444.00000 0001 2112 9282 Aix Marseille Univ, CNRS, LNC, Marseille, France
| | - Christophe Pallier
- grid.7429.80000000121866389Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin Center, Gif/Yvette, France
| | - Chotiga Pattamadilok
- grid.462776.60000 0001 2206 2382Aix Marseille Univ, CNRS, LPL, Aix-en-Provence, France
| |
Collapse
|
14
|
Qu J, Pang Y, Liu X, Cao Y, Huang C, Mei L. Task modulates the orthographic and phonological representations in the bilateral ventral Occipitotemporal cortex. Brain Imaging Behav 2022; 16:1695-1707. [PMID: 35247162 DOI: 10.1007/s11682-022-00641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 11/25/2022]
Abstract
As a key area in word reading, the left ventral occipitotemporal cortex is proposed for abstract orthographic processing, and its middle part has even been labeled as the visual word form area. Because the definition of the VWFA largely varies and the reading task differs across studies, the function of the left ventral occipitotemporal cortex in word reading is continuingly debated on whether this region is specific for orthographic processing or be involved in an interactive framework. By using representational similarity analysis (RSA), this study examined information representation in the VWFA at the individual level and the modulatory effect of reading task. Twenty-four subjects were scanned while performing the explicit (i.e., the naming task) and implicit (i.e., the perceptual task) reading tasks. Activation analysis showed that the naming task elicited greater activation in regions related to phonological processing (e.g., the bilateral prefrontal cortex and temporoparietal cortex), while the perceptual task recruited greater activation in visual cortex and default mode network (e.g., the bilateral middle frontal gyrus, angular gyrus, and the right middle temporal gyrus). More importantly, RSA also showed that task modulated information representation in the bilateral anterior occipitotemporal cortex and VWFA. Specifically, ROI-based RSA revealed enhanced orthographic and phonological representations in the bilateral anterior fusiform cortex and VWFA in the naming task relative to the perceptual task. These results suggest that lexical representation in the VWFA is influenced by the demand of phonological processing, which supports the interactive account of the VWFA.
Collapse
Affiliation(s)
- Jing Qu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Yingdan Pang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Xiaoyu Liu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Ying Cao
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Chengmei Huang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Leilei Mei
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
15
|
How does inattention affect written and spoken language processing? Cortex 2021; 138:212-227. [PMID: 33713968 DOI: 10.1016/j.cortex.2021.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/20/2020] [Accepted: 02/02/2021] [Indexed: 11/22/2022]
Abstract
The classic cocktail party effect suggests that some, but probably not all levels of language processing can proceed without attention. We used whole-brain functional MRI to investigate how modality-specific and modality-independent language areas are modulated by the withdrawal of attention to another sensory modality (e.g., attending to vision during the presentation of auditory sentences, or vice-versa). We tested the hypotheses that inattention may abolish sentence-level integration and eliminate top-down effects. In both written and spoken modalities, language processing was strongly modulated by the distraction of attention, but this inattention effect varied considerably depending on the area and hierarchical level of language processing. Under inattention, a bottom-up activation remained in early modality-specific areas, particularly in superior temporal spoken-language areas, but the difference between sentences and words lists vanished. Under both attended and unattended conditions, ventral temporal cortices were activated in a top-down manner by spoken language more than by control stimuli, reaching posteriorily the Visual Word Form Area. We conclude that inattention prevents sentence-level syntactic and semantic integration, but preserves some top-down crossmodal processing, plus a large degree of bottom-up modality-specific processing, including a ventral occipito-temporal specialization for letter strings in a known alphabet.
Collapse
|
16
|
Wang J, Joanisse MF, Booth JR. Letter fluency in 7-8-year-old children is related to the anterior, but not posterior, ventral occipito-temporal cortex during an auditory phonological task. Dev Cogn Neurosci 2021; 47:100898. [PMID: 33341533 PMCID: PMC7750687 DOI: 10.1016/j.dcn.2020.100898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 11/29/2022] Open
Abstract
Previous studies have shown that reading skill in 3- to 6-year-old children is related to the automatic activation of the posterior left ventral occipitotemporal cortex (vOT) during spoken language processing, whereas 8- to 15-year-old children and adult readers activate the anterior vOT. However, it is unknown how children who are between these two age groups automatically activate orthographic representations in vOT for spoken language. In the current study, we recruited 153 7- to 8-year-old children to fill the age gap from previous studies. Using functional magnetic resonance imaging (fMRI), we measured children's reading-related skills and brain activity during an auditory phonological task with both a small (i.e. onset) and a large (i.e. rhyme) grain size condition. We found that letter fluency, but not reading accuracy, was correlated with activation in the anterior vOT for the rhyme condition. There were no reading-related skill correlations for the posterior vOT or for activation during the onset condition in this age group. Our findings reveal that automatic activation in the anterior vOT during spoken language processing already occurs in higher skilled 7- to 8-year-old children. In addition, increases in naming automaticity is the primary determinant of the engagement of vOT during phonological awareness tasks.
Collapse
Affiliation(s)
- Jin Wang
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA.
| | - Marc F Joanisse
- Department of Psychology & Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| | - James R Booth
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
17
|
Neural Representation in Visual Word Form Area during Word Reading. Neuroscience 2020; 452:49-62. [PMID: 33212220 DOI: 10.1016/j.neuroscience.2020.10.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 11/23/2022]
Abstract
The visual word form area (VWFA) has been consistently identified as a crucial structure in visual word processing. Nevertheless, it is controversial whether the VWFA represents external visual information (e.g., case information) of visual words. To address that question, we functionally localized VWFA at the group level (gVWFA) and at the individual level (iVWFA), and used multivariate pattern analysis (MVPA) to explore the information representation in the VWFA during an implicit reading task (i.e., a passive viewing task). Univariate activation analysis revealed that participants showed stronger activations for uppercase English words compared to lowercase ones in the VWFA. MVPA further revealed that the classifier trained based on lowercase words versus letter strings significantly distinguished uppercase words versus letter strings in the iVWFA, while that trained based on lowercase words versus uppercase words distinguished lowercase letter strings versus uppercase letter strings neither in the gVWFA nor in the iVWFA. These results suggest that the VWFA does not represent case information, but represents case-independent linguistic information. Our findings elaborate the function in the VWFA and support the VWFA hypothesis.
Collapse
|