1
|
Gilli F, Ceccarelli A. Magnetic resonance imaging approaches for studying mouse models of multiple sclerosis: A mini review. J Neurosci Res 2023. [DOI: 10.1002/jnr.25193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 01/30/2023] [Accepted: 03/10/2023] [Indexed: 04/03/2023]
Affiliation(s)
- Francesca Gilli
- Department of Neurology, Dartmouth Hitchcock Medical Center Geisel School of Medicine at Dartmouth Lebanon New Hampshire USA
| | - Antonia Ceccarelli
- Department of Neurology EpiCURA Centre Hospitalier Ath Belgium
- Hearthrhythmanagement, UZB Brussels Belgium
| |
Collapse
|
2
|
Chen Z, Huang J, Lai JHC, Tse KH, Xu J, Chan KWY. Chemical exchange saturation transfer MRI detects myelin changes in cuprizone mouse model at 3T. NMR IN BIOMEDICINE 2023:e4937. [PMID: 36965064 DOI: 10.1002/nbm.4937] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/18/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Chemical exchange saturation transfer (CEST) sensitively detects molecular alterations in the brain, such as relayed nuclear Overhauser effect (rNOE) CEST contrast at -3.5 ppm representing aliphatic protons in both lipids and proteins, and CEST contrast at 3.5 ppm correlating with amide proton in proteins. Myelin is rich in lipids and proteins, and therefore CEST can be explored as a biomarker for myelin pathology, which could contribute to the diagnosis and prognosis of multiple sclerosis (MS). In the current study, we investigate the specificity of aliphatic rNOE and the amide pool in myelin detection using the cuprizone (CPZ) mouse model, which recapitulates the demyelination and remyelination of MS. In this study, preclinical 3T MRI was performed in 19 male C57BL/6 mice. Mice in the normal control (NC) group (n = 9) were fed a normal diet for the whole course, while mice in the CPZ group (n = 10) were fed with CPZ for 10 weeks, followed by 4 weeks with a normal diet. The CEST contrast of rNOE (-3.5 ppm) and amide (3.5 ppm) in brain regions of the corpus callosum (CC) and the caudate putamen were compared. Statistical differences between the groups were calculated using two-way ANOVA. We observed significantly decreased rNOE (NC: 4.85% ± 0.09%/s vs. CPZ: 3.88% ± 0.18%/s, p = 0.007) and amide pool (NC: 3.20% ± 0.10%/s vs. CPZ: 2.46% ± 0.16%/s, p = 0.02) in the CC after 8 weeks on CPZ diet (p < 0.05). Moreover, the rNOE in the CPZ group recovered to a level comparable with the NC group at week 14 (p = 0.39), while amide remained at a level as low as that for the NC group (p = 0.051). Significant rNOE and amide changes, validated by immunohistochemistry results for demyelination and remyelination, demonstrate the huge potential of CEST for revealing myelin pathology, which has implications for MS identification at the clinical field strength of 3T.
Collapse
Affiliation(s)
- Zilin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Joseph H C Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kai-Hei Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Tung Biomedical Science Centre, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Thomas AM, Yang E, Smith MD, Chu C, Calabresi PA, Glunde K, van Zijl PCM, Bulte JWM. CEST MRI and MALDI imaging reveal metabolic alterations in the cervical lymph nodes of EAE mice. J Neuroinflammation 2022; 19:130. [PMID: 35659311 PMCID: PMC9164344 DOI: 10.1186/s12974-022-02493-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a neurodegenerative disease, wherein aberrant immune cells target myelin-ensheathed nerves. Conventional magnetic resonance imaging (MRI) can be performed to monitor damage to the central nervous system that results from previous inflammation; however, these imaging biomarkers are not necessarily indicative of active, progressive stages of the disease. The immune cells responsible for MS are first activated and sensitized to myelin in lymph nodes (LNs). Here, we present a new strategy for monitoring active disease activity in MS, chemical exchange saturation transfer (CEST) MRI of LNs. METHODS AND RESULTS We studied the potential utility of conventional (T2-weighted) and CEST MRI to monitor changes in these LNs during disease progression in an experimental autoimmune encephalomyelitis (EAE) model. We found CEST signal changes corresponded temporally with disease activity. CEST signals at the 3.2 ppm frequency during the active stage of EAE correlated significantly with the cellular (flow cytometry) and metabolic (mass spectrometry imaging) composition of the LNs, as well as immune cell infiltration into brain and spinal cord tissue. Correlating primary metabolites as identified by matrix-assisted laser desorption/ionization (MALDI) imaging included alanine, lactate, leucine, malate, and phenylalanine. CONCLUSIONS Taken together, we demonstrate the utility of CEST MRI signal changes in superficial cervical LNs as a complementary imaging biomarker for monitoring disease activity in MS. CEST MRI biomarkers corresponded to disease activity, correlated with immune activation (surface markers, antigen-stimulated proliferation), and correlated with LN metabolite levels.
Collapse
Affiliation(s)
- Aline M Thomas
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, MD, 21205, Baltimore, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ethan Yang
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, MD, 21205, Baltimore, USA
| | - Matthew D Smith
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chengyan Chu
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, MD, 21205, Baltimore, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristine Glunde
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, MD, 21205, Baltimore, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, MD, 21205, Baltimore, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, MD, 21205, Baltimore, USA.
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Li AM, Chen L, Liu H, Li Y, Duan W, Xu J. Age-dependent cerebrospinal fluid-tissue water exchange detected by magnetization transfer indirect spin labeling MRI. Magn Reson Med 2022; 87:2287-2298. [PMID: 34958518 PMCID: PMC8847338 DOI: 10.1002/mrm.29137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 01/29/2023]
Abstract
PURPOSE A non-invasive magnetization transfer indirect spin labeling (MISL) MRI method is developed to quantify the water exchange between cerebrospinal fluid (CSF) and other tissues in the brain and to examine the age-dependence of water exchange. METHOD In the pulsed MISL, we implemented a short selective pulse followed by a post-labeling delay before an MRI acquisition with a long echo time; in the continuous MISL, a train of saturation pulses was applied. MISL signal (∆Z) was obtained by the subtraction of the label MRI at -3.5 ppm from the control MRI at 200 ppm. CSF was extracted from the mouse ventricles for the MISL optimization and validation. Comparison between wild type (WT) and aquaporin-4 knockout (AQP4-/- ) mice was performed to examine the contributions of CSF water exchange, whereas its age-dependence was investigated by comparing the adult and young WT mice. RESULTS The pulsed MISL method observed that the MISL signal reached the maximum at 1.5 s. The continuous MISL method showed the highest MISL signal in the fourth ventricle (∆Z = 13.5% ± 1.4%), whereas the third ventricle and the lateral ventricles had similar MISL ∆Z values (∆Z = 12.0% ± 1.8%). Additionally, significantly lower ∆Z (9.3%-18.7% reduction) was found in all ventricles for the adult mice than those of the young mice (p < 0.02). For the AQP4-/- mice, the ∆Z values were 5.9%-8.3% smaller than those of the age-matched WT mice in the lateral and fourth ventricles, but were not significant. CONCLUSION The MISL method has a great potential to study CSF water exchange with the surrounding tissues in brain.
Collapse
Affiliation(s)
- Anna M. Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD 21205, USA
| | - Lin Chen
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD 21205, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Hongshuai Liu
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yuguo Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD 21205, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD 21205, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
O'Grady KP, Satish S, Owen QR, Box BA, Bagnato F, Combes AJE, Cook SR, Westervelt HJ, Feiler HR, Lawless RD, Sarma A, Malone SD, Ndolo JM, Yoon K, Dortch RD, Rogers BP, Smith SA. Relaxation-Compensated Chemical Exchange Saturation Transfer MRI in the Brain at 7T: Application in Relapsing-Remitting Multiple Sclerosis. Front Neurol 2022; 13:764690. [PMID: 35299614 PMCID: PMC8923037 DOI: 10.3389/fneur.2022.764690] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) can probe tissue biochemistry in vivo with high resolution and sensitivity without requiring exogenous contrast agents. Applying CEST MRI at ultrahigh field provides advantages of increasing spectral resolution and improving sensitivity to metabolites with faster proton exchange rates such as glutamate, a critical neurotransmitter in the brain. Prior magnetic resonance spectroscopy and CEST MRI studies have revealed altered regulation of glutamate in patients with multiple sclerosis (MS). While CEST imaging facilitates new strategies for investigating the pathology underlying this complex and heterogeneous neurological disease, CEST signals are contaminated or diluted by concurrent effects (e.g., semi-solid magnetization transfer (MT) and direct water saturation) and are scaled by the T1 relaxation time of the free water pool which may also be altered in the context of disease. In this study of 20 relapsing-remitting MS patients and age- and sex-matched healthy volunteers, glutamate-weighted CEST data were acquired at 7.0 T. A Lorentzian fitting procedure was used to remove the asymmetric MT contribution from CEST z-spectra, and the apparent exchange-dependent relaxation (AREX) correction was applied using an R1 map derived from an inversion recovery sequence to further isolate glutamate-weighted CEST signals from concurrent effects. Associations between AREX and cognitive function were examined using the Minimal Assessment of Cognitive Function in MS battery. After isolating CEST effects from MT, direct water saturation, and T1 effects, glutamate-weighted AREX contrast remained higher in gray matter than in white matter, though the difference between these tissues decreased. Glutamate-weighted AREX in normal-appearing gray and white matter in MS patients did not differ from healthy gray and white matter but was significantly elevated in white matter lesions. AREX in some cortical regions and in white matter lesions correlated with disability and measures of cognitive function in MS patients. However, further studies with larger sample sizes are needed to confirm these relationships due to potential confounding effects. The application of MT and AREX corrections in this study demonstrates the importance of isolating CEST signals for more specific characterization of the contribution of metabolic changes to tissue pathology and symptoms in MS.
Collapse
Affiliation(s)
- Kristin P. O'Grady
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sanjana Satish
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Quinn R. Owen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Bailey A. Box
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Francesca Bagnato
- Neuroimaging Unit, Division of Neuroimmunology, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Neurology, Nashville VA Medical Center, TN Valley Healthcare System, Nashville, TN, United States
| | - Anna J. E. Combes
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sarah R. Cook
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Holly James Westervelt
- Division of Behavioral and Cognitive Neurology, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Haley R. Feiler
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Richard D. Lawless
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Asha Sarma
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Shekinah D. Malone
- School of Medicine, Meharry Medical College, Nashville, TN, United States
| | - Josephine M. Ndolo
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Keejin Yoon
- Neuroimaging Unit, Division of Neuroimmunology, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Richard D. Dortch
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Baxter P. Rogers
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
- Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Seth A. Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
- Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
6
|
Xiong H, Zhou Z, Wu Z, Feng Y, Xie F. BALB/c mice infected with Angiostrongylus cantonensis: A new model for demyelination in the brain. Anat Rec (Hoboken) 2020; 304:1084-1093. [PMID: 33068322 DOI: 10.1002/ar.24538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/14/2020] [Accepted: 08/13/2020] [Indexed: 02/03/2023]
Abstract
In this study, we present a new model for demyelination of the central nervous system (CNS). BALB/c mice were infected with Angiostrongylus cantonensis and analyzed 7, 14, and 21 days postinfection. Neurological scale evaluation, magnetic resonance imaging (MRI), histology, real-time quantitative polymerase chain reaction, and western blotting were all performed on days 7, 14, and 21. The results showed that the neurological functions and weight of A. cantonensis-infected mice decreased markedly after 21 days of infection. MRI showed subdural effusion and white high signals in the corpus callosum in both T1WI and T2WI, while hematoxylin and eosin and luxol fast blue staining showed hemorrhage and demyelination in the corpus callosum. Transmission electron microscopy revealed that the ultrastructure of the myelin sheath in the corpus callosum was dispersed or disintegrated. The percentage of myelinated axons was significantly decreased, and the g-ratio was lower than that in the normal group. Both protein and mRNA levels of myelin basic protein decreased markedly at 21 days postinfection. Immunofluorescence revealed that the number of CC1 positive cells in the corpus callosum also decreased, which confirmed the damage of A. cantonensis to oligodendrocytes. Our experiments confirmed that A. cantonensis infection caused demyelination in the CNS of BALB/c mice after 21 days, and its clinical manifestations and pathological changes were similar to those of multiple sclerosis and other CNS demyelination models. Thus, mice infected with A. cantonensis could be used as a new model to study acute demyelination of the CNS.
Collapse
Affiliation(s)
- Huihui Xiong
- Histology and Embryology Department of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zongpu Zhou
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhongdao Wu
- Parasitology Department of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China
| | - Ying Feng
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Fukang Xie
- Histology and Embryology Department of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Thomas AM, Li S, Chu C, Shats I, Xu J, Calabresi PA, van Zijl PCM, Walczak P, Bulte JWM. Evaluation of cell transplant-mediated attenuation of diffuse injury in experimental autoimmune encephalomyelitis using onVDMP CEST MRI. Exp Neurol 2020; 329:113316. [PMID: 32304749 DOI: 10.1016/j.expneurol.2020.113316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
The development and translation of cell therapies have been hindered by an inability to predict and evaluate their efficacy after transplantation. Using an experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis (MS), we studied attenuation of the diffuse injury characteristic of EAE and MS by transplanted glial-restricted precursor cells (GRPs). We assessed the potential of on-resonance variable delay multiple pulse (onVDMP) chemical exchange saturation transfer (CEST) MRI to visualize this attenuation. Allogeneic GRPs transplanted in the motor cortex or lateral ventricles attenuated paralysis in EAE mice and attenuated differences compared to naïve mice in onVDMP CEST signal 5 days after transplantation near the transplantation site. Histological analysis revealed that transplanted GRPs co-localized with attenuated astrogliosis. Hence, diffuse injury-sensitive onVDMP CEST MRI may complement conventional MRI to locate and monitor tissue regions responsive to GRP therapy.
Collapse
Affiliation(s)
- A M Thomas
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, United States of America; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, United States of America
| | - S Li
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, United States of America; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, United States of America
| | - C Chu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, United States of America; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, United States of America
| | - I Shats
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, United States of America; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, United States of America
| | - J Xu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, United States of America; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, United States of America
| | - P A Calabresi
- Department of Neurology, The Johns Hopkins University School of Medicine, United States of America; The Solomon H Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, United States of America
| | - P C M van Zijl
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, United States of America; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, United States of America; Department of Oncology, the Johns Hopkins University School of Medicine, United States of America
| | - P Walczak
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, United States of America; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, United States of America
| | - J W M Bulte
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, United States of America; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, United States of America; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, United States of America; Department of Oncology, the Johns Hopkins University School of Medicine, United States of America; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, United States of America; Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, United States of America.
| |
Collapse
|
8
|
Jia Y, Chen Y, Geng K, Cheng Y, Li Y, Qiu J, Huang H, Wang R, Zhang Y, Wu R. Glutamate Chemical Exchange Saturation Transfer (GluCEST) Magnetic Resonance Imaging in Pre-clinical and Clinical Applications for Encephalitis. Front Neurosci 2020; 14:750. [PMID: 32848546 PMCID: PMC7399024 DOI: 10.3389/fnins.2020.00750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/25/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Encephalitis is a common central nervous system inflammatory disease that seriously endangers human health owing to the lack of effective diagnostic methods, which leads to a high rate of misdiagnosis and mortality. Glutamate is implicated closely in microglial activation, and activated microglia are key players in encephalitis. Hence, using glutamate chemical exchange saturation transfer (GluCEST) imaging for the early diagnosis of encephalitis holds promise. METHODS The sensitivity of GluCEST imaging with different concentrations of glutamate and other major metabolites in the brain was validated in phantoms. Twenty-seven Sprague-Dawley (SD) rats with encephalitis induced by Staphylococcus aureus infection were used for preclinical research of GluCEST imaging in a 7.0-Tesla scanner. For the clinical study, six patients with encephalitis, six patients with lacunar infarction, and six healthy volunteers underwent GluCEST imaging in a 3.0-Tesla scanner. RESULTS The number of amine protons on glutamate that had a chemical shift of 3.0 ppm away from bulk water and the signal intensity of GluCEST were concentration-dependent. Under physiological conditions, glutamate is the main contributor to the GluCEST signal. Compared with normal tissue, in both rats and patients with encephalitis, the encephalitis areas demonstrated a hyper-intense GluCEST signal, while the lacunar infarction had a decreased GluCEST signal intensity. After intravenous immunoglobulin therapy, patients with encephalitis lesions showed a decrease in GluCEST signal, and the results were significantly different from the pre-treatment signal (1.34 ± 0.31 vs 5.0 ± 0.27%, respectively; p = 0.000). CONCLUSION Glutamate plays a role in encephalitis, and the GluCEST imaging signal has potential as an in vivo imaging biomarker for the early diagnosis of encephalitis. GluCEST will provide new insight into encephalitis and help improve the differential diagnosis of brain disorders.
Collapse
Affiliation(s)
- Yanlong Jia
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yanzi Chen
- Department of Radiology, Affiliated Longhua People’s Hospital, Southern Medical University, Shenzhen, China
| | - Kuan Geng
- Department of Radiology, The First People’s Hospital of Honghe Prefecture, Mengzi, China
| | - Yan Cheng
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yan Li
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Jinming Qiu
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Huaidong Huang
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Runrun Wang
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yunping Zhang
- Department of Nuclear Medicine, Shenzhen Luohu District People’s Hospital, Shenzhen, China
- *Correspondence: Yunping Zhang,
| | - Renhua Wu
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Renhua Wu,
| |
Collapse
|