1
|
Pili MP, Provenzi L, Billeci L, Riva V, Cassa M, Siri E, Procissi G, Roberti E, Capelli E. Exploring the impact of manual and automatic EEG pre-processing methods on interpersonal neural synchrony measures in parent-infant hyperscanning studies. J Neurosci Methods 2025; 417:110400. [PMID: 39978481 DOI: 10.1016/j.jneumeth.2025.110400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/31/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Electroencephalograph (EEG) hyperscanning allows studying Interpersonal Neural Synchrony (INS) between two or more individuals across different social conditions, including parent-infant interactions. Signal pre-processing is crucial to optimize computation of INS estimates; however, few attempts have been made at comparing the impact of different dyadic EEG data pre-processing methods on INS estimates. NEW METHODS EEG data collected on 31 mother-infant dyads (8-10 months) engaged in a Face-to-Face Still-Face Procedure were pre-processed with two versions of the same pipeline, the "automated" and the "manual". Cross-frequency PLV in the theta (3-5 Hz, 4-7 Hz) and alpha (6-9 Hz, 8-12 Hz) frequency bands were computed after automated and manual pre-processing and compared through Pearson's correlations and Repeated Measures ANOVAs. RESULTS PLVs computed in the theta, but not alpha, frequency band were significantly higher after automated pre-processing than after manual pre-processing. Moreover, the automated pipeline rejected a significantly lower percentage of ICs and epochs compared to the manual pipeline. COMPARISON WITH EXISTING METHODS While no direct comparison with existing dyadic EEG data pre-processing pipelines was made, this is the first study assessing the impact of different methodological decisions, particularly of the degree of pre-processing automatization, on cross-frequency PLV computed on a dataset of parent-infant dyads. CONCLUSIONS Non-directional phase-based INS indexes such as the PLV seem to be affected by the degree of automatization of the pre-processing pipeline. Future research should strive for standardization of dyadic EEG pre-processing methods.
Collapse
Affiliation(s)
- Miriam Paola Pili
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Livio Provenzi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy.
| | - Lucia Billeci
- Institute of Clinical Physiology, National Research Council of Italy (CNR-IFC), Pisa, Italy
| | - Valentina Riva
- Child Psychopathology Unit, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Maddalena Cassa
- Child Psychopathology Unit, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Eleonora Siri
- Child Psychopathology Unit, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Giorgia Procissi
- Institute of Clinical Physiology, National Research Council of Italy (CNR-IFC), Pisa, Italy
| | - Elisa Roberti
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy
| | - Elena Capelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
2
|
Carollo A, Stella M, Lim M, Bizzego A, Esposito G. Emotional content and semantic structure of dialogues are associated with Interpersonal Neural Synchrony in the Prefrontal Cortex. Neuroimage 2025; 309:121087. [PMID: 39993613 DOI: 10.1016/j.neuroimage.2025.121087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/29/2024] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
A fundamental characteristic of social exchanges is the synchronization of individuals' behaviors, physiological responses, and neural activity. However, the association between how individuals communicate in terms of emotional content and expressed associative knowledge and interpersonal synchrony has been scarcely investigated so far. This study addresses this research gap by bridging recent advances in cognitive neuroscience data, affective computing, and cognitive data science frameworks. Using functional near-infrared spectroscopy (fNIRS) hyperscanning, prefrontal neural data were collected during social interactions involving 84 participants (i.e., 42 dyads) aged 18-35 years. Wavelet transform coherence was used to assess interpersonal neural synchrony between participants. We used manual transcription of dialogues and automated methods to codify transcriptions as emotional levels and syntactic/semantic networks. Our quantitative findings reveal higher than random expectations levels of interpersonal neural synchrony in the superior frontal gyrus (q = .038) and the bilateral middle frontal gyri (q< .001, q< .001). Linear mixed models based on dialogues' emotional content only significantly predicted interpersonal neural synchrony across the prefrontal cortex (Rmarginal2=3.62%). Conversely, models relying on syntactic/semantic features were more effective at the local level, for predicting brain synchrony in the right middle frontal gyrus (Rmarginal2=9.97%). Generally, models based on the emotional content of dialogues were not effective when limited to data from one region of interest at a time, whereas models based on syntactic/semantic features show the opposite trend, losing predictive power when incorporating data from all regions of interest. Moreover, we found an interplay between emotions and associative knowledge in predicting brain synchrony, providing quantitative support to the major role played by these linguistic components in social interactions and in prefrontal processes. Our study identifies a mind-brain duality in emotions and associative knowledge reflecting neural synchrony levels, opening new ways for investigating human interactions.
Collapse
Affiliation(s)
- Alessandro Carollo
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy.
| | - Massimo Stella
- CogNosco Lab, Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
| | - Mengyu Lim
- Psychology Program, Nanyang Technological University, Singapore 639818, Singapore
| | - Andrea Bizzego
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy.
| |
Collapse
|
3
|
Rosen ML, Li A, Mikkelsen CA, Aslin RN. Neural hyperscanning in caregiver-child dyads: A paradigm for studying the long-term effects of facilitated vs. disrupted attention on working memory and executive functioning in young children. DEVELOPMENTAL REVIEW 2025; 75:101170. [PMID: 39802123 PMCID: PMC11720965 DOI: 10.1016/j.dr.2024.101170] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Parent-child interactions shape children's cognitive outcomes such that caregivers can guide attention and facilitate learning opportunities. These interactions provide infants and toddlers with rich, naturalistic experiences that engage complex cognitive functions and lay the groundwork for the development of mature executive functions. Although most caregivers seek to engage children optimally, they can unintentionally impede this developmental process by being under-engaged or intrusive. When caregivers are under engaged, children do not have the proper scaffolding to know what to attend to in a complex environment. When parents are intrusive, they inadvertently disrupt the child's attention and direct learning to information that the parent deems important, but the child may find uninteresting or irrelevant. This disruption can impede the learning process even if the child's behavior does not appear to be negatively affected during the unfolding parent-child interaction. Understanding the moment-to-moment neural basis of these processes is critical to uncover the role that caregivers play in the development of attention and learning, which in turn impacts the development of working memory and executive function. Simultaneous brain recording, called hyperscanning, is a burgeoning method that measures brain synchrony across parent-child dyads when engaged in a shared task. In this opinion piece, we first review existing literature that highlights the important role caregivers play in guiding attention and learning in infants and toddlers and how these interactions contribute to the development of working memory and executive function in young children. Next, we review the existing literature using hyperscanning and dual eye tracking paradigms to uncover the patterning of interactions when caregivers guide attention in a manner that either matches the expectations of the child or over- or under-directs the child's attention. We provide best-practices for employing hyperscanning techniques to uncover how caregivers optimally engage infant and toddlers' attention in the moment, and how children's developing memory of these patterns of interaction build their executive function abilities, both with their caregivers and with other adults and children.
Collapse
Affiliation(s)
- Maya L Rosen
- Smith College, Program in Neuroscience, 44 College Lane, Northampton, MA 01073, USA
| | - Annabelle Li
- Smith College, Program in Neuroscience, 44 College Lane, Northampton, MA 01073, USA
| | | | - Richard N Aslin
- Child Study Center, Yale School of Medicine, 230 S Frontage Rd, New Haven, CT 06519, USA
- Department of Psychology, Yale University, 100 College St, New Haven, CT 06511, USA
| |
Collapse
|
4
|
Chen Y, Zhao Y, Deng X. Mindful bridge: Brief mindfulness practices alter negative emotion transmission and cooperative performance in parent-adolescent dynamics. Appl Psychol Health Well Being 2025; 17:e70002. [PMID: 39895149 DOI: 10.1111/aphw.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/12/2025] [Indexed: 02/04/2025]
Abstract
Parent-adolescent emotion transmission is crucial for adolescents' psychological development. Parental negative emotions could impair parent-adolescent interaction and relationships. Brief mindfulness practices (BMPs) are effective for improving emotional regulation and reducing negative emotions. However, few studies explored the effects of BMP on parent-adolescent negative emotion transmission. This study used the hyperscanning technique to examine the differences in the change of emotional states, cooperative performance, and interbrain synchrony (IBS) between the BMP group (20 parent-adolescent dyads) and the control rest (CR) group (20 parent-adolescent dyads) under induced parental negative emotions in cooperation interaction tasks. Results showed (1) decreases in negative emotions, hostility, and state anxiety in the BMP group after BMP, but only negative emotions decreased in the CR group after rest; (2) an increase in the success rate in the BMP group after BMP, but no change in the CR group after rest; and (3) decreases in IBS in the delta and theta bands in success feedback and increases in IBS in failure feedback in the BMP group after BMP, but no change in the CR group after rest. These findings suggest that BMP may mitigate parental negative emotion transmission to adolescents and promote their focused attitude toward cooperation.
Collapse
Affiliation(s)
- Yangdi Chen
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Yanhui Zhao
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Xinmei Deng
- School of Psychology, Shenzhen University, Shenzhen, China
- The Shenzhen Humanities & Social Sciences Key Research Bases of the Center for Mental Health, Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Billeci L, Riva V, Capelli E, Grumi S, Paola Pili M, Cassa M, Siri E, Roberti E, Borgatti R, Provenzi L. 2-Brain Regulation for Improved Neuroprotection during Early Development (2-BRAINED): a translational hyperscanning research project. Front Psychol 2025; 15:1516616. [PMID: 39980884 PMCID: PMC11841415 DOI: 10.3389/fpsyg.2024.1516616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/17/2024] [Indexed: 02/22/2025] Open
Abstract
Introduction Very preterm (VPT) birth is a major risk condition for child development and parental wellbeing, mainly due to multiple sources of stress (e.g., separation and pain exposure) during the neonatal intensive care unit (NICU) stay. Early video-feedback (VF) interventions proved effective in promoting VOT infants' development and parental wellbeing. Electroencephalography (EEG) hyperscanning allows the assessment of brain-to-brain co-regulation during live interaction between infants and parents, offering promising insights into the mechanisms behind the interactive benefits of early VF interventions. Goals This study aimed to compare indices of brain-to-brain co-regulation between dyads of full-term (FT) and VPT infants interacting with their mothers and investigate the effect of an early post-discharge VF intervention on the brain-to-brain co-regulation indices of VPT dyads. Methods and analysis VPT and FT dyads will be enrolled at birth, and the former will be randomly allocated to one of two arms: VF intervention or care as usual. Short-term effectiveness will be assessed through ratings of mother-infant interaction videotaped before and after the VF intervention or care as usual. Mothers of VPT and FT infants will report on their mental state, parenting stress and bonding, and infant temperament and sensory profile at 3 and 6 months (corrected age, CA). At 9 months CA, all dyads will participate in a lab-based EEG-hyperscanning paradigm to assess brain-to-brain co-regulation through phase-locking value (PLV) and other explorative indices. Ethics and dissemination This study was funded by the Italian Ministry of Health and received approval by the Ethics Committee of Pavia (Italy) and participating hospitals. Research findings will be reported in scientific publications, presented at international conferences, and disseminated to the general public. Study registration number GR-2021-12375213 (Italian Ministry of Health registry).
Collapse
Affiliation(s)
- Lucia Billeci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), Pisa, Italy
| | - Valentina Riva
- Child Psychopathology Unit, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Elena Capelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Serena Grumi
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy
| | - Miriam Paola Pili
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Maddalena Cassa
- Child Psychopathology Unit, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Eleonora Siri
- Child Psychopathology Unit, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Elisa Roberti
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy
| | - Renato Borgatti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Livio Provenzi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
6
|
Antonelli F, Bernardi F, Koul A, Novembre G, Papaleo F. Emotions in multi-brain dynamics: A promising research frontier. Neurosci Biobehav Rev 2025; 168:105965. [PMID: 39617219 DOI: 10.1016/j.neubiorev.2024.105965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024]
Abstract
Emotions drive and influence social interactions. Actions and reactions driven by emotions are dynamically modulated by continuous feedback loops between all interacting subjects. In this framework, interacting brains operate as an integrated system, with neural dynamics coevolving over time. Neuronal synchronization across brains has been observed in a range of species, including humans, monkeys, bats, and mice. This inter-neural synchrony (INS) has been proposed as a potential mechanism facilitating social interaction by enabling the functional integration of multiple brains. However, the role of emotions in modulating these processes remains underexplored and warrants further investigation. Here we provide a brief overview of studies on inter-neural synchrony in humans and other species, emphasizing the critical role that emotions might play in shaping multibrain dynamics.
Collapse
Affiliation(s)
- Federica Antonelli
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, Genova 16163, Italy
| | - Fabrizio Bernardi
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, Genova 16163, Italy
| | - Atesh Koul
- Neuroscience of Perception and Action Laboratory, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Roma 00161, Italy
| | - Giacomo Novembre
- Neuroscience of Perception and Action Laboratory, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Roma 00161, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, Genova 16163, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, Genova 16132, Italy.
| |
Collapse
|
7
|
Kim JS. A novel approach for brain connectivity using recurrent neural networks and integrated gradients. Comput Biol Med 2025; 184:109404. [PMID: 39577352 DOI: 10.1016/j.compbiomed.2024.109404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
Brain connectivity is an important tool for understanding the cognitive and perceptive neural mechanisms in the neuroimaging field. Many methods for estimating effective connectivity have relied on the linear regressive model. However, the linear regression approach might fail to account for the complexity inherent in brain connectivity. Due to the recent success of deep neural networks (DNNs), regressive data are able to be predicted with high accuracy. This study aimed to develop a connectivity method using the prediction performance of a DNN model and the parameters of the model. To this end, a method is proposed that utilizes integrated gradients in a recurrent neural network model. It is an extended application of explainable artificial intelligence in the multivariate autoregressive DNN model. It would be advantageous compared to the methods using the parameters of the linear regressive model or Granger's approach referring to the difference in error between the models. The performance of the connectivity estimation was tested by simulated datasets with various conditions. The overall performance was good on multiple metrics including recall (0.94), precision (0.90), F1-score (0.92), and accuracy (0.97). Compared with other conventional methods, the proposed method is robust and precise. The proposed method also demonstrates that it can be applied to estimate the actual brain connectivity in a magnetoencephalography study. In conclusion, the connectivity method based on integrated gradients provides an accurate estimation of brain connectivity by effectively capturing complex interactions, which is validated through high performance metrics such as recall, precision, F1-score, and accuracy across multiple simulated datasets. It introduces a novel framework to combine DNN and integrated gradients and to estimate effective connectivity by the explainable AI.
Collapse
Affiliation(s)
- June Sic Kim
- Clinical Research Institute, Konkuk University Medical Center, South Korea; Institute of Biomedical Science and Technology, Konkuk University, South Korea.
| |
Collapse
|
8
|
Schilbach L, Redcay E. Synchrony Across Brains. Annu Rev Psychol 2025; 76:883-911. [PMID: 39441884 DOI: 10.1146/annurev-psych-080123-101149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Second-person neuroscience focuses on studying the behavioral and neuronal mechanisms of real-time social interactions within single and across interacting brains. In this review article, we describe the developments that have been undertaken to study socially interactive phenomena and the behavioral and neurobiological processes that extend across interaction partners. More specifically, we focus on the role that synchrony across brains plays in enabling and facilitating social interaction and communication and in shaping social coordination and learning, and we consider how reduced synchrony across brains may constitute a core feature of psychopathology.
Collapse
Affiliation(s)
- Leonhard Schilbach
- Department of General Psychiatry 2, LVR-Klinikum Düsseldorf / Kliniken der Heinrich-Heine-Universität, Düsseldorf, Germany;
- Department of Psychiatry and Psychotherapy, Clinic of the Ludwig-Maximilians-University, Munich, Germany
| | - Elizabeth Redcay
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, USA
- Department of Psychology, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
9
|
Roche EC, Redcay E, Romeo RR. Caregiver-child neural synchrony: Magic, mirage, or developmental mechanism? Dev Cogn Neurosci 2025; 71:101482. [PMID: 39693894 PMCID: PMC11720112 DOI: 10.1016/j.dcn.2024.101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
Young children transition in and out of synchronous states with their caregivers across physiology, behavior, and brain activity, but what do these synchronous periods mean? One body of two-brain studies using functional near-infrared spectroscopy (fNIRS) finds that individual, family, and moment-to-moment behavioral and contextual factors are associated with caregiver-child neural synchrony, while another body of literature finds that neural synchrony is associated with positive child outcomes. Taken together, it is tempting to conclude that caregiver-child neural synchrony may act as a foundational developmental mechanism linking children's experiences to their healthy development, but many questions remain. In this review, we synthesize recent findings and open questions from caregiver-child studies using fNIRS, which is uniquely well suited for use with caregivers and children, but also laden with unique constraints. Throughout, we highlight open questions alongside best practices for optimizing two-brain fNIRS to examine hypothesized developmental mechanisms. We particularly emphasize the need to consider immediate and global stressors as context for interpretation of neural synchrony findings, and the need for full inclusion of socioeconomically and racially diverse families in future studies.
Collapse
Affiliation(s)
- Ellen C Roche
- Language, Experience, and Development (LEAD) Lab, Benjamin Building (4th Floor), 3942 Campus Dr., College Park, MD 20742, United States.
| | - Elizabeth Redcay
- Language, Experience, and Development (LEAD) Lab, Benjamin Building (4th Floor), 3942 Campus Dr., College Park, MD 20742, United States.
| | - Rachel R Romeo
- Language, Experience, and Development (LEAD) Lab, Benjamin Building (4th Floor), 3942 Campus Dr., College Park, MD 20742, United States.
| |
Collapse
|
10
|
Reindl V, Konrad K, Poon KK, Leong V. Classroom-based learning dynamics: the role of interbrain synchrony. Trends Cogn Sci 2024; 28:1063-1065. [PMID: 39496533 DOI: 10.1016/j.tics.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 11/06/2024]
Abstract
Classroom learning occurs within a multidimensional context of inter-related neurocognitive, motivational, and socioemotional processes. Multisubject approaches in neuroscience are poised to capture these dynamics using multimodal, time-resolved, and nonlinear methodologies and may help us identify the factors that facilitate or impede learning in such highly complex and social environments.
Collapse
Affiliation(s)
- Vanessa Reindl
- Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Republic of Singapore; Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - Kerstin Konrad
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Aachen, Germany; JARA-BRAIN Institute II, Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Jülich, Germany
| | - Kenneth K Poon
- National Institute of Education, Nanyang Technological University, Singapore, Republic of Singapore
| | - Victoria Leong
- Early Mental Potential and Wellbeing Research (EMPOWER) Centre, Nanyang Technological University, Singapore, Republic of Singapore; Department of Pediatrics, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Nguyen T, Kungl MT, Hoehl S, White LO, Vrtička P. Visualizing the invisible tie: Linking parent-child neural synchrony to parents' and children's attachment representations. Dev Sci 2024; 27:e13504. [PMID: 38523055 DOI: 10.1111/desc.13504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/29/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
It is a central tenet of attachment theory that individual differences in attachment representations organize behavior during social interactions. Secure attachment representations also facilitate behavioral synchrony, a key component of adaptive parent-child interactions. Yet, the dynamic neural processes underlying these interactions and the potential role of attachment representations remain largely unknown. A growing body of research indicates that interpersonal neural synchrony (INS) could be a potential neurobiological correlate of high interaction and relationship quality. In this study, we examined whether interpersonal neural and behavioral synchrony during parent-child interaction is associated with parent and child attachment representations. In total, 140 parents (74 mothers and 66 fathers) and their children (age 5-6 years; 60 girls and 80 boys) engaged in cooperative versus individual problem-solving. INS in frontal and temporal regions was assessed with functional near-infrared spectroscopy hyperscanning. Attachment representations were ascertained by means of the Adult Attachment Interview in parents and a story-completion task in children, alongside video-coded behavioral synchrony. Findings revealed increased INS during cooperative versus individual problem solving across all dyads (𝛸2(2) = 9.37, p = 0.009). Remarkably, individual differences in attachment representations were associated with INS but not behavioral synchrony (p > 0.159) during cooperation. More specifically, insecure maternal attachment representations were related to higher mother-child INS in frontal regions (𝛸2(3) = 9.18, p = 0.027). Conversely, secure daughter attachment representations were related to higher daughter-parent INS within temporal regions (𝛸2(3) = 12.58, p = 0.006). Our data thus provide further indication for INS as a promising correlate to probe the neurobiological underpinnings of attachment representations in the context of early parent-child interactions. RESEARCH HIGHLIGHTS: We assessed attachment representations using narrative measures and interpersonal neural synchrony (INS) during parent-child problem-solving. Dyads including mothers with insecure attachment representations showed higher INS in left prefrontal regions. Dyads including daughters with secure attachment representations showed higher INS in right temporo-parietal regions. INS is a promising correlate to probe the neurobiological underpinnings of attachment representations in the context of parent-child interactions, especially within the mutual prediction framework.
Collapse
Affiliation(s)
- Trinh Nguyen
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Developmental and Educational Psychology, University of Vienna, Vienna, Austria
- Neuroscience of Perception and Action Lab, Italian Institute of Technology (IIT), Rome, Italy
| | - Melanie T Kungl
- Department of Psychology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stefanie Hoehl
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Developmental and Educational Psychology, University of Vienna, Vienna, Austria
| | - Lars O White
- Department of Child and Adolescent Psychiatry, University of Leipzig, Leipzig, Germany
- Clinical Psychology, Psychological University Berlin, Berlin, Germany
| | - Pascal Vrtička
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Centre for Brain Science, Department of Psychology, University of Essex, Colchester, UK
| |
Collapse
|
12
|
Stern JA, Kelsey CM, Yancey H, Grossmann T. Love on the developing brain: Maternal sensitivity and infants' neural responses to emotion in the dorsolateral prefrontal cortex. Dev Sci 2024; 27:e13497. [PMID: 38511516 PMCID: PMC11415551 DOI: 10.1111/desc.13497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
Infancy is a sensitive period of development, during which experiences of parental care are particularly important for shaping the developing brain. In a longitudinal study of N = 95 mothers and infants, we examined links between caregiving behavior (maternal sensitivity observed during a mother-infant free-play) and infants' neural response to emotion (happy, angry, and fearful faces) at 5 and 7 months of age. Neural activity was assessed using functional Near-Infrared Spectroscopy (fNIRS) in the dorsolateral prefrontal cortex (dlPFC), a region involved in cognitive control and emotion regulation. Maternal sensitivity was positively correlated with infants' neural responses to happy faces in the bilateral dlPFC and was associated with relative increases in such responses from 5 to 7 months. Multilevel analyses revealed caregiving-related individual differences in infants' neural responses to happy compared to fearful faces in the bilateral dlPFC, as well as other brain regions. We suggest that variability in dlPFC responses to emotion in the developing brain may be one correlate of early experiences of caregiving, with implications for social-emotional functioning and self-regulation. RESEARCH HIGHLIGHTS: Infancy is a sensitive period of brain development, during which experiences with caregivers are especially important. This study examined links between sensitive maternal care and infants' neural responses to emotion at 5-7 months of age, using functional near-infrared spectroscopy (fNIRS). Experiences of sensitive care were associated with infants' neural responses to emotion-particularly happy faces-in the dorsolateral prefrontal cortex.
Collapse
Affiliation(s)
- Jessica A Stern
- Psychology, University of Virginia, Charlottesville, Virginia, USA
| | - Caroline M Kelsey
- Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Heath Yancey
- Psychology, University of Virginia, Charlottesville, Virginia, USA
| | - Tobias Grossmann
- Psychology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
13
|
Grasso-Cladera A, Costa-Cordella S, Mattoli-Sánchez J, Vilina E, Santander V, Hiltner SE, Parada FJ. Embodied hyperscanning for studying social interaction: A scoping review of simultaneous brain and body measurements. Soc Neurosci 2024:1-17. [PMID: 39387663 DOI: 10.1080/17470919.2024.2409758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/12/2024] [Indexed: 10/15/2024]
Abstract
We systematically investigated the application of embodied hyperscanning methodologies in social neuroscience research. Hyperscanning enables the simultaneous recording of neurophysiological and physiological signals from multiple participants. We highlight the trend toward integrating Mobile Brain/Body Imaging (MoBI) within the 4E research framework, which emphasizes the interconnectedness of brain, body, and environment. Our analysis revealed a geographic concentration of studies in the Global North, calling for global collaboration and transcultural research to balance the field. The predominant use of Magneto/Electroencephalogram (M/EEG) in these studies suggests a traditional brain-centric perspective in social neuroscience. Future research directions should focus on integrating diverse techniques to capture the dynamic interplay between brain and body functions in real-world contexts. Our review also finds a preference for tasks involving natural settings. Nevertheless, the analysis in hyperscanning studies is often limited to physiological signal synchrony between participants. This suggests a need for more holistic and complex approaches that combine inter-corporeal synchrony with intra-individual measures. We believe that the future of the neuroscience of relationships lies in embracing the complexity of cognition, integrating diverse methods and theories to enrich our grasp of human social behavior in its natural contexts.
Collapse
Affiliation(s)
| | - Stefanella Costa-Cordella
- Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
- Centro de Estudios en Psicología Clínica y Psicoterapia (CEPPS), Facultad de Psicología, Universidad Diego Portales institution, Santiago, Chile
- Instituto Milenio para la Investigación en Depresión y Personalidad (MIDAP), Santiago, Chile
| | - Josefina Mattoli-Sánchez
- Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
- Programa de Pregrado en Psicología, Facultad de Psicología. Universidad Diego Portales, Santiago, Chile
| | - Erich Vilina
- Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| | - Valentina Santander
- Programa de Magíster en Neurociencia Social, Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| | - Shari E Hiltner
- Department of Psychology, Carl-von-Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Francisco J Parada
- Department of Psychology, Carl-von-Ossietzky University of Oldenburg, Oldenburg, Germany
- Escuela de Diseño, Facultad de Arquitectura, Arte y Diseño, Universidad Diego Portales, Santiago, Chile
| |
Collapse
|
14
|
Zhou X, Wong PCM. Hyperscanning to explore social interaction among autistic minds. Neurosci Biobehav Rev 2024; 163:105773. [PMID: 38889594 DOI: 10.1016/j.neubiorev.2024.105773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Hyperscanning - the monitoring of brain activity of two or more people simultaneously - has emerged to be a popular tool for assessing neural features of social interaction. This perspective article focuses on hyperscanning studies that use functional near-infrared spectroscopy (fNIRS), a technique that is very conducive to studies requiring naturalistic paradigms. In particular, we are interested in neural features that are related to social interaction deficits among individuals with autism spectrum disorders (ASD). This population has received relatively little attention in research using neuroimaging hyperscanning techniques, compared to neurotypical individuals. The study is outlined as follows. First, we summarize the findings about brain-behavior connections related to autism from previously published fNIRS hyperscanning studies. Then, we propose a preliminary theoretical framework of inter-brain coherence (IBC) with testable hypotheses concerning this population. Finally, we provide two examples of areas of inquiry in which studies could be particularly relevant for social-emotional/behavioral development for autistic children, focusing on intergenerational relationships in family units and learning in classroom settings in mainstream schools.
Collapse
Affiliation(s)
- Xin Zhou
- Brain and Mind Institute, the Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.
| | - Patrick C M Wong
- Brain and Mind Institute, the Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Department of Linguistics and Modern Languages, the Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| |
Collapse
|
15
|
Deng X, Chen X, Wang J. The paradox of social avoidance and the yearning for understanding: Elevated interbrain synchrony among socially avoidant individuals during expression of negative emotions. Int J Clin Health Psychol 2024; 24:100500. [PMID: 39282223 PMCID: PMC11402401 DOI: 10.1016/j.ijchp.2024.100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024] Open
Abstract
Social avoidance refers to the tendency to be alone and non-participating to social interactions, which is considered to hamper health interpersonal relationship. However, the neural underpinnings of social and emotional interactions among social avoidant individuals have not been fully studied. In the present study, we used EEG hyperscanning technology to investigate the brain activity and its synchronization of 25 socially avoidant dyads and 28 comparison dyads during an emotional communication task. The emotional communication task consisted of the emotional processing stage and emotional interaction stage. Event-related potentials (ERPs) of the senders during the emotional processing stage and the interbrain synchrony (IBS) of the dyads during the emotional interaction stage were analyzed. Results showed that (1) socially avoidant group showed higher beta, theta and gamma IBS in the negative condition than in the positive and neutral condition; (2) in positive condition, the N1 and LPP amplitudes during the emotional processing stage of socially avoidant individuals were negatively correlated with the IBS within dyads during the emotional communication stage. The findings suggest that the dysfunctional emotional interaction of social avoidant individuals may be attributed to the negative impact of emotional stimuli processing during emotional communication.
Collapse
Affiliation(s)
- Xinmei Deng
- School of Psychology, Shenzhen University, Shenzhen, China
- The Shenzhen Humanities & Social Sciences Key Research Bases of the Center for Mental Health, Shenzhen University, Shenzhen, China
| | - Xiaomin Chen
- Baolong School, Longgang, Shenzhen, Guangdong Province, China
| | - Jiao Wang
- School of Psychology, Shenzhen University, Shenzhen, China
- The Shenzhen Humanities & Social Sciences Key Research Bases of the Center for Mental Health, Shenzhen University, Shenzhen, China
| |
Collapse
|
16
|
Grootjans Y, Harrewijn A, Fornari L, Janssen T, de Bruijn ERA, van Atteveldt N, Franken IHA. Getting closer to social interactions using electroencephalography in developmental cognitive neuroscience. Dev Cogn Neurosci 2024; 67:101391. [PMID: 38759529 PMCID: PMC11127236 DOI: 10.1016/j.dcn.2024.101391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/12/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024] Open
Abstract
The field of developmental cognitive neuroscience is advancing rapidly, with large-scale, population-wide, longitudinal studies emerging as a key means of unraveling the complexity of the developing brain and cognitive processes in children. While numerous neuroscientific techniques like functional magnetic resonance imaging (fMRI), functional near-infrared spectroscopy (fNIRS), magnetoencephalography (MEG), and transcranial magnetic stimulation (TMS) have proved advantageous in such investigations, this perspective proposes a renewed focus on electroencephalography (EEG), leveraging underexplored possibilities of EEG. In addition to its temporal precision, low costs, and ease of application, EEG distinguishes itself with its ability to capture neural activity linked to social interactions in increasingly ecologically valid settings. Specifically, EEG can be measured during social interactions in the lab, hyperscanning can be used to study brain activity in two (or more) people simultaneously, and mobile EEG can be used to measure brain activity in real-life settings. This perspective paper summarizes research in these three areas, making a persuasive argument for the renewed inclusion of EEG into the toolkit of developmental cognitive and social neuroscientists.
Collapse
Affiliation(s)
- Yvette Grootjans
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, the Netherlands.
| | - Anita Harrewijn
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, the Netherlands
| | - Laura Fornari
- Department of Clinical, Neuro, and Developmental Psychology & Institute LEARN!, Vrije Universiteit Amsterdam, the Netherlands
| | - Tieme Janssen
- Department of Clinical, Neuro, and Developmental Psychology & Institute LEARN!, Vrije Universiteit Amsterdam, the Netherlands
| | | | - Nienke van Atteveldt
- Department of Clinical, Neuro, and Developmental Psychology & Institute LEARN!, Vrije Universiteit Amsterdam, the Netherlands
| | - Ingmar H A Franken
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, the Netherlands
| |
Collapse
|
17
|
Marriot Haresign I, A M Phillips E, V Wass S. Why behaviour matters: Studying inter-brain coordination during child-caregiver interaction. Dev Cogn Neurosci 2024; 67:101384. [PMID: 38657470 PMCID: PMC11059326 DOI: 10.1016/j.dcn.2024.101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Modern technology allows for simultaneous neuroimaging from interacting caregiver-child dyads. Whereas most analyses that examine the coordination between brain regions within an individual brain do so by measuring changes relative to observed events, studies that examine coordination between two interacting brains generally do this by measuring average intra-brain coordination across entire blocks or experimental conditions. In other words, they do not examine changes in inter-brain coordination relative to individual behavioural events. Here, we discuss the limitations of this approach. First, we present data suggesting that fine-grained temporal interdependencies in behaviour can leave residual artifact in neuroimaging data. We show how artifact can manifest as both power and (through that) phase synchrony effects in EEG and affect wavelet transform coherence in fNIRS analyses. Second, we discuss different possible mechanistic explanations of how inter-brain coordination is established and maintained. We argue that non-event-locked approaches struggle to differentiate between them. Instead, we contend that approaches which examine how interpersonal dynamics change around behavioural events have better potential for addressing possible artifactual confounds and for teasing apart the overlapping mechanisms that drive changes in inter-brain coordination.
Collapse
Affiliation(s)
| | | | - Sam V Wass
- Department of Psychology, University of East London, London, UK
| |
Collapse
|
18
|
Li Y, Wu S, Xu J, Wang H, Zhu Q, Shi W, Fang Y, Jiang F, Tong S, Zhang Y, Guo X. Interbrain substrates of role switching during mother-child interaction. Hum Brain Mapp 2024; 45:e26672. [PMID: 38549429 PMCID: PMC10979116 DOI: 10.1002/hbm.26672] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/23/2024] [Accepted: 03/13/2024] [Indexed: 04/01/2024] Open
Abstract
Mother-child interaction is highly dynamic and reciprocal. Switching roles in these back-and-forth interactions serves as a crucial feature of reciprocal behaviors while the underlying neural entrainment is still not well-studied. Here, we designed a role-controlled cooperative task with dual EEG recording to explore how differently two brains interact when mothers and children hold different roles. When children were actors and mothers were observers, mother-child interbrain synchrony emerged primarily within the theta oscillations and the frontal lobe, which highly correlated with children's attachment to their mothers (self-reported by mothers). When their roles were reversed, this synchrony was shifted to the alpha oscillations and the central area and associated with mothers' perception of their relationship with their children. The results suggested an observer-actor neural alignment within the actor's oscillations, which was related to the actor-toward-observer emotional bonding. Our findings contribute to the understanding of how interbrain synchrony is established and dynamically changed during mother-child reciprocal interaction.
Collapse
Affiliation(s)
- Yamin Li
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
- Department of Computer ScienceVanderbilt UniversityNashvilleTennesseeUSA
| | - Saishuang Wu
- Department of Developmental and Behavioral PediatricsNational Children's Medical Center, Shanghai Children's Medical Center, Affiliated to School of Medicine Shanghai Jiao Tong UniversityShanghaiChina
| | - Jiayang Xu
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Haiwa Wang
- Department of Developmental and Behavioral PediatricsNational Children's Medical Center, Shanghai Children's Medical Center, Affiliated to School of Medicine Shanghai Jiao Tong UniversityShanghaiChina
| | - Qi Zhu
- Department of Developmental and Behavioral PediatricsNational Children's Medical Center, Shanghai Children's Medical Center, Affiliated to School of Medicine Shanghai Jiao Tong UniversityShanghaiChina
| | - Wen Shi
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Yue Fang
- China Welfare Institute NurseryShanghaiChina
| | - Fan Jiang
- Department of Developmental and Behavioral PediatricsNational Children's Medical Center, Shanghai Children's Medical Center, Affiliated to School of Medicine Shanghai Jiao Tong UniversityShanghaiChina
| | - Shanbao Tong
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Yunting Zhang
- Child Health Advocacy InstituteNational Children's Medical Center, Shanghai Children's Medical Center, Affiliated to School of Medicine Shanghai Jiao Tong UniversityShanghaiChina
| | - Xiaoli Guo
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
19
|
Papoutselou E, Harrison S, Mai G, Buck B, Patil N, Wiggins I, Hartley D. Investigating mother-child inter-brain synchrony in a naturalistic paradigm: A functional near infrared spectroscopy (fNIRS) hyperscanning study. Eur J Neurosci 2024; 59:1386-1403. [PMID: 38155106 DOI: 10.1111/ejn.16233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/30/2023]
Abstract
Successful social interactions between mothers and children are hypothesised to play a significant role in a child's social, cognitive and language development. Earlier research has confirmed, through structured experimental paradigms, that these interactions could be underpinned by coordinated neural activity. Nevertheless, the extent of neural synchrony during real-life, ecologically valid interactions between mothers and their children remains largely unexplored. In this study, we investigated mother-child inter-brain synchrony using a naturalistic free-play paradigm. We also examined the relationship between neural synchrony, verbal communication patterns and personality traits to further understand the underpinnings of brain synchrony. Twelve children aged between 3 and 5 years old and their mothers participated in this study. Neural synchrony in mother-child dyads were measured bilaterally over frontal and temporal areas using functional Near Infra-red Spectroscopy (fNIRS) whilst the dyads were asked to play with child-friendly toys together (interactive condition) and separately (independent condition). Communication patterns were captured via video recordings and conversational turns were coded. Compared to the independent condition, mother-child dyads showed increased neural synchrony in the interactive condition across the prefrontal cortex and temporo-parietal junction. There was no significant relationship found between neural synchrony and turn-taking and between neural synchrony and the personality traits of each member of the dyad. Overall, we demonstrate the feasibility of measuring inter-brain synchrony between mothers and children in a naturalistic environment. These findings can inform future study designs to assess inter-brain synchrony between parents and pre-lingual children and/or children with communication needs.
Collapse
Affiliation(s)
- Efstratia Papoutselou
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham Biomedical Research Centre (BRC), National Institute for Health Research (NIHR), Nottingham, UK
| | - Samantha Harrison
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham Biomedical Research Centre (BRC), National Institute for Health Research (NIHR), Nottingham, UK
| | - Guangting Mai
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham Biomedical Research Centre (BRC), National Institute for Health Research (NIHR), Nottingham, UK
| | - Bryony Buck
- Hearing Sciences - Scottish Section, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK
| | - Nikita Patil
- Nottingham Biomedical Research Centre (BRC), National Institute for Health Research (NIHR), Nottingham, UK
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Ian Wiggins
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham Biomedical Research Centre (BRC), National Institute for Health Research (NIHR), Nottingham, UK
| | - Douglas Hartley
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham Biomedical Research Centre (BRC), National Institute for Health Research (NIHR), Nottingham, UK
- Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
20
|
Alonso A, McDorman SA, Romeo RR. How parent-child brain-to-brain synchrony can inform the study of child development. CHILD DEVELOPMENT PERSPECTIVES 2024; 18:26-35. [PMID: 39421441 PMCID: PMC11486517 DOI: 10.1111/cdep.12494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
It is well established that parent-child dyadic synchrony (e.g., mutual emotions, behaviors) can support development across cognitive and socioemotional domains. The advent of simultaneous two-brain hyperscanning (i.e., neuroimaging techniques to measure the brain activity of two individuals at the same time) allows further insight into dyadic neural synchrony. In this article, we review 16 recent studies of naturalistic, parent-child brain-to-brain synchrony, finding relations with the nature of interactions (collaborative versus competitive, parent versus stranger), proximal social cues (gaze, affect, touch, reciprocity), child-level variables (irritability, self-regulation), and environmental factors (parental stress, family cohesion, adversity). We then discuss how neural synchrony may provide a biological mechanism for refining broader theories on developmental benefits of dyadic synchrony. We also highlight critical areas for future study, including examining synchrony trajectories longitudinally, including more diverse participants and interaction contexts, and studying caregivers beyond mothers (e.g., other family members, teachers). We conclude that neural synchrony is an exciting and important window into understanding how caregiver-child dyadic synchrony supports children's social and cognitive development.
Collapse
Affiliation(s)
- Angelica Alonso
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park
| | - S Alexa McDorman
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park
| | - Rachel R Romeo
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park
| |
Collapse
|
21
|
Kurihara Y, Takahashi T, Osu R. The topology of interpersonal neural network in weak social ties. Sci Rep 2024; 14:4961. [PMID: 38418895 PMCID: PMC11336176 DOI: 10.1038/s41598-024-55495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024] Open
Abstract
The strategies for social interaction between strangers differ from those between acquaintances, whereas the differences in neural basis of social interaction have not been fully elucidated. In this study, we examined the geometrical properties of interpersonal neural networks in pairs of strangers and acquaintances during antiphase joint tapping. Dual electroencephalogram (EEG) of 29 channels per participant was measured from 14 strangers and 13 acquaintance pairs.Intra-brain synchronizations were calculated using the weighted phase lag index (wPLI) for intra-brain electrode combinations, and inter-brain synchronizations were calculated using the phase locking value (PLV) for inter-brain electrode combinations in the theta, alpha, and beta frequency bands. For each participant pair, electrode combinations with larger wPLI/PLV than their surrogates were defined as the edges of the neural networks. We calculated global efficiency, local efficiency, and modularity derived from graph theory for the combined intra- and inter-brain networks of each pair. In the theta band networks, stranger pairs showed larger local efficiency than acquaintance pairs, indicating that the two brains of stranger pairs were more densely connected. Hence, weak social ties require extensive social interactions and result in high efficiency of information transfer between neighbors in neural network.
Collapse
Affiliation(s)
- Yuto Kurihara
- Graduate School of Human Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Toru Takahashi
- Advanced Research Center for Human Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Rieko Osu
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, Japan.
| |
Collapse
|
22
|
Deng X, Chen K, Chen X, Zhang L, Lin M, Li X, Gao Q. Parental involvement affects parent-adolescents brain-to-brain synchrony when experiencing different emotions together: An EEG-based hyperscanning study. Behav Brain Res 2024; 458:114734. [PMID: 37926335 DOI: 10.1016/j.bbr.2023.114734] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Parental involvement (PI) is a broad and multifaceted construct, which refers to the parental demonstration of interest in their child, caring, and warmth (Davis et al., 2021). Parental involvement affects parent-adolescent's relationship and communication. However, there was little research to examine the underlying neural mechanism. The present study aimed to explore how parental involvement is associated with the brain-to-brain synchronous activation between parent-adolescent dyads when sharing emotional experience together by using the electroencephalograph (EEG) hyperscanning. EEG was recorded simultaneously in a sample of 26 parent-adolescent dyads (Mparents'age=43.312, SD=5.468; Madolescents' age=12.077, SD=1.412) when completing the picture processing task. Phase locking values (PLVs) in beta band and gamma band were used to compare the differences in the parent-adolescent dyads' induced brain-to-brain synchrony between the high parental involvement group (HPI) and the low parental involvement group (LPI). Results showed that greater beta brain-to-brain synchrony was observed in the HPIs than in the LPIs when experiencing positive emotions together in the central region. However, there was no significant difference between the HPIs and the LPIs in the negative and neutral condition. Moreover, greater gamma brain-to-brain synchrony was observed when viewing negative emotional stimuli together than viewing positive emotional stimuli together in the LPIs in the central region. However, there was no significant difference between different emotional conditions in the HPIs. Findings of the present study provide neuroscientific evidence that parental involvement may strengthen parent-adolescent's emotional interaction and communication.
Collapse
Affiliation(s)
- Xinmei Deng
- School of Psychology, Shenzhen University, Shenzhen, China; Center for Mental Health, Shenzhen University, Shenzhen, China
| | - Kexin Chen
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Xiaoming Chen
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Lin Zhang
- School of Psychology, Shenzhen University, Shenzhen, China; Fushun No.1 Middle School, Zigong, China
| | - Mingping Lin
- School of Psychology, Shenzhen University, Shenzhen, China; Lihu Subdistrict No. 1 Primary School, Guangzhou, China
| | - Xiaoqing Li
- School of Psychology, Shenzhen University, Shenzhen, China; Center for Mental Health, Shenzhen University, Shenzhen, China.
| | - Qiufeng Gao
- Department of Society, School of Government, Shenzhen University, Shenzhen, China.
| |
Collapse
|
23
|
Santamaria L, Koopman ACM, Bekinschtein T, Lewis P. Effects of Targeted Memory Reactivation on Cortical Networks. Brain Sci 2024; 14:114. [PMID: 38391689 PMCID: PMC10886727 DOI: 10.3390/brainsci14020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Sleep is a complex physiological process with an important role in memory consolidation characterised by a series of spatiotemporal changes in brain activity and connectivity. Here, we investigate how task-related responses differ between pre-sleep wake, sleep, and post-sleep wake. To this end, we trained participants on a serial reaction time task using both right and left hands using Targeted Memory Reactivation (TMR), in which auditory cues are associated with learned material and then re-presented in subsequent wake or sleep periods in order to elicit memory reactivation. The neural responses just after each cue showed increased theta band connectivity between frontal and other cortical regions, as well as between hemispheres, in slow wave sleep compared to pre- or post-sleep wake. This pattern was consistent across the cues associated with both right- and left-handed movements. We also searched for hand-specific connectivity and found that this could be identified in within-hemisphere connectivity after TMR cues during sleep and post-sleep sessions. The fact that we could identify which hand had been cued during sleep suggests that these connectivity measures could potentially be used to determine how successfully memory is reactivated by our manipulation. Collectively, these findings indicate that TMR modulates the brain cortical networks showing clear differences between wake and sleep connectivity patterns.
Collapse
Affiliation(s)
| | | | | | - Penelope Lewis
- School of Psychology, Cardiff University, Wales CF10 3AT, UK
| |
Collapse
|
24
|
Hakim U, De Felice S, Pinti P, Zhang X, Noah JA, Ono Y, Burgess PW, Hamilton A, Hirsch J, Tachtsidis I. Quantification of inter-brain coupling: A review of current methods used in haemodynamic and electrophysiological hyperscanning studies. Neuroimage 2023; 280:120354. [PMID: 37666393 DOI: 10.1016/j.neuroimage.2023.120354] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023] Open
Abstract
Hyperscanning is a form of neuroimaging experiment where the brains of two or more participants are imaged simultaneously whilst they interact. Within the domain of social neuroscience, hyperscanning is increasingly used to measure inter-brain coupling (IBC) and explore how brain responses change in tandem during social interaction. In addition to cognitive research, some have suggested that quantification of the interplay between interacting participants can be used as a biomarker for a variety of cognitive mechanisms aswell as to investigate mental health and developmental conditions including schizophrenia, social anxiety and autism. However, many different methods have been used to quantify brain coupling and this can lead to questions about comparability across studies and reduce research reproducibility. Here, we review methods for quantifying IBC, and suggest some ways moving forward. Following the PRISMA guidelines, we reviewed 215 hyperscanning studies, across four different brain imaging modalities: functional near-infrared spectroscopy (fNIRS), functional magnetic resonance (fMRI), electroencephalography (EEG) and magnetoencephalography (MEG). Overall, the review identified a total of 27 different methods used to compute IBC. The most common hyperscanning modality is fNIRS, used by 119 studies, 89 of which adopted wavelet coherence. Based on the results of this literature survey, we first report summary statistics of the hyperscanning field, followed by a brief overview of each signal that is obtained from each neuroimaging modality used in hyperscanning. We then discuss the rationale, assumptions and suitability of each method to different modalities which can be used to investigate IBC. Finally, we discuss issues surrounding the interpretation of each method.
Collapse
Affiliation(s)
- U Hakim
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom.
| | - S De Felice
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom; Department of Psychology, University of Cambridge, United Kingdom
| | - P Pinti
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom; Centre for Brain and Cognitive Development, Birkbeck, University of London, London, United Kingdom
| | - X Zhang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - J A Noah
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Y Ono
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki, Kanagawa, Japan
| | - P W Burgess
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - A Hamilton
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - J Hirsch
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom; Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States; Departments of Neuroscience and Comparative Medicine, Yale School of Medicine, New Haven, CT, United States; Yale University, Wu Tsai Institute, New Haven, CT, United States
| | - I Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
25
|
Nguyen T, Flaten E, Trainor LJ, Novembre G. Early social communication through music: State of the art and future perspectives. Dev Cogn Neurosci 2023; 63:101279. [PMID: 37515832 PMCID: PMC10407289 DOI: 10.1016/j.dcn.2023.101279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/03/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023] Open
Abstract
A growing body of research shows that the universal capacity for music perception and production emerges early in development. Possibly building on this predisposition, caregivers around the world often communicate with infants using songs or speech entailing song-like characteristics. This suggests that music might be one of the earliest developing and most accessible forms of interpersonal communication, providing a platform for studying early communicative behavior. However, little research has examined music in truly communicative contexts. The current work aims to facilitate the development of experimental approaches that rely on dynamic and naturalistic social interactions. We first review two longstanding lines of research that examine musical interactions by focusing either on the caregiver or the infant. These include defining the acoustic and non-acoustic features that characterize infant-directed (ID) music, as well as behavioral and neurophysiological research examining infants' processing of musical timing and pitch. Next, we review recent studies looking at early musical interactions holistically. This research focuses on how caregivers and infants interact using music to achieve co-regulation, mutual engagement, and increase affiliation and prosocial behavior. We conclude by discussing methodological, technological, and analytical advances that might empower a comprehensive study of musical communication in early childhood.
Collapse
Affiliation(s)
- Trinh Nguyen
- Neuroscience of Perception and Action Lab, Italian Institute of Technology, Rome, Italy.
| | - Erica Flaten
- Department of Psychology, Neuroscience and Behavior, McMaster University, Hamilton, Canada
| | - Laurel J Trainor
- Department of Psychology, Neuroscience and Behavior, McMaster University, Hamilton, Canada; McMaster Institute for Music and the Mind, McMaster University, Hamilton, Canada; Rotman Research Institute, Baycrest Hospital, Toronto, Canada
| | - Giacomo Novembre
- Neuroscience of Perception and Action Lab, Italian Institute of Technology, Rome, Italy
| |
Collapse
|
26
|
Zhai Y, Xie H, Zhao H, Wang W, Lu C. Neural synchrony underlies the positive effect of shared reading on children's language ability. Cereb Cortex 2023; 33:10426-10440. [PMID: 37562850 DOI: 10.1093/cercor/bhad293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023] Open
Abstract
Although it is well recognized that parent-child shared reading produces positive effects on children's language ability, the underlying neurocognitive mechanisms are not well understood. Here, we addressed this issue by measuring brain activities from mother-child dyads simultaneously during a shared book reading task using functional near infrared spectroscopy hyperscanning. The behavioral results showed that the long-term experience of shared reading significantly predicted children's language ability. Interestingly, the prediction was moderated by children's age: for older children over 30 months, the more the shared reading experience, the better the language performance; for younger children below 30 months, however, no significant relationship was observed. The brain results showed significant interpersonal neural synchronization between mothers and children at the superior temporal cortex, which was closely associated with older children's language ability through the mediation of long-term experience of shared reading. Finally, the results showed that the instantaneous quality of shared reading contributed to children's language ability through enhancing interpersonal neural synchronization and increasing long-term experience. Based on these findings, we tentatively proposed a theoretical model for the relationship among interpersonal neural synchronization, shared reading and children's language ability. These findings will facilitate our understanding on the role of shared reading in children's language development.
Collapse
Affiliation(s)
- Yu Zhai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Huixin Xie
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- School of Preschool Education, Beijing Institute of Education, Beijing 100009, China
| | - Hui Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Wenjing Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
27
|
Atilla F, Alimardani M, Kawamoto T, Hiraki K. Mother-child inter-brain synchrony during a mutual visual search task: A study of feedback valence and role. Soc Neurosci 2023; 18:232-244. [PMID: 37395457 DOI: 10.1080/17470919.2023.2228545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 07/04/2023]
Abstract
Parent and child have been shown to synchronize their behaviors and physiology during social interactions. This synchrony is an important marker of their relationship quality and subsequently the child's social and emotional development. Therefore, understanding the factors that influence parent-child synchrony is an important undertaking. Using EEG hyperscanning, this study investigated brain-to-brain synchrony in mother-child dyads when they took turns performing a visual search task and received positive or negative feedback. In addition to the effect of feedback valence, we studied how their assigned role, i.e., observing or performing the task, influenced synchrony. Results revealed that mother-child synchrony was higher during positive feedback relative to negative feedback in delta and gamma frequency bands. Furthermore, a main effect was found for role in the alpha band with higher synchrony when a child observed their mother performing the task compared to when the mother observed their child. These findings reveal that a positive social context could lead a mother and child to synchronize more on a neural level, which could subsequently improve the quality of their relationship. This study provides insight into mechanisms that underlie mother-child brain-to-brain synchrony, and establishes a framework by which the impact of emotion and task demand on a dyad's synchrony can be investigated.
Collapse
Affiliation(s)
- Fred Atilla
- Department of Cognitive Science and Artificial Intelligence, Tilburg University, Tilburg, Netherlands
| | - Maryam Alimardani
- Department of Cognitive Science and Artificial Intelligence, Tilburg University, Tilburg, Netherlands
| | | | - Kazuo Hiraki
- Department of General Systems Studies, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
28
|
Bornstein MH, Esposito G. Coregulation: A Multilevel Approach via Biology and Behavior. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1323. [PMID: 37628322 PMCID: PMC10453544 DOI: 10.3390/children10081323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023]
Abstract
In this article, we explore the concept of coregulation, which encompasses the mutual adaptation between partners in response to one another's biology and behavior. Coregulation operates at both biological (hormonal and nervous system) and behavioral (affective and cognitive) levels and plays a crucial role in the development of self-regulation. Coregulation extends beyond the actions of individuals in a dyad and involves interactive contributions of both partners. We use as an example parent-child coregulation, which is pervasive and expected, as it emerges from shared genetic relatedness, cohabitation, continuous interaction, and the influence of common factors like culture, which facilitate interpersonal coregulation. We also highlight the emerging field of neural attunement, which investigates the coordination of brain-based neural activities between individuals, particularly in social interactions. Understanding the mechanisms and significance of neural attunement adds a new dimension to our understanding of coregulation and its implications for parent-child relationships and child development.
Collapse
Affiliation(s)
- Marc H. Bornstein
- Child and Family Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, 38068 Trento, Italy;
| |
Collapse
|
29
|
Zhou L, Xie Y, Wang R, Fan Y, Wu Y. Dynamic segregation and integration of brain functional networks associated with emotional arousal. iScience 2023; 26:106609. [PMID: 37250309 PMCID: PMC10214403 DOI: 10.1016/j.isci.2023.106609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/12/2023] [Accepted: 03/31/2023] [Indexed: 05/31/2023] Open
Abstract
The organization of brain functional networks dynamically changes with emotional stimuli, but its relationship to emotional behaviors is still unclear. In the DEAP dataset, we used the nested-spectral partition approach to identify the hierarchical segregation and integration of functional networks and investigated the dynamic transitions between connectivity states under different arousal conditions. The frontal and right posterior parietal regions were dominant for network integration whereas the bilateral temporal, left posterior parietal, and occipital regions were responsible for segregation and functional flexibility. High emotional arousal behavior was associated with stronger network integration and more stable state transitions. Crucially, the connectivity states of frontal, central, and right parietal regions were closely related to arousal ratings in individuals. Besides, we predicted the individual emotional performance based on functional connectivity activities. Our results demonstrate that brain connectivity states are closely associated with emotional behaviors and could be reliable and robust indicators for emotional arousal.
Collapse
Affiliation(s)
- Lv Zhou
- School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an 710049, China
- National Demonstration Center for Experimental Mechanics Education, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yong Xie
- School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an 710049, China
| | - Rong Wang
- School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- College of Science, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Yongchen Fan
- School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an 710049, China
| | - Ying Wu
- School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an 710049, China
- National Demonstration Center for Experimental Mechanics Education, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
30
|
Bulgarelli C, Jones EJH. The typical and atypical development of empathy: How big is the gap from lab to field? JCPP ADVANCES 2023; 3:e12136. [PMID: 37431324 PMCID: PMC10241450 DOI: 10.1002/jcv2.12136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/03/2022] [Indexed: 01/26/2023] Open
Abstract
Background Empathy-understanding and sharing someone else's feelings-is crucial for social bonds. Studies on empathy development are limited and mainly performed with behavioural assessments. This is in contrast to the extensive literature on cognitive and affective empathy in adults. However, understanding the mechanisms behind empathy development is critical to developing early interventions to support children with limited empathy. This is particularly key in toddlerhood, as children transition from highly scaffolded interactions with their parents and towards interactions with their peers. However, we know little about toddlers' empathy, in part due to the methodological constraints of testing this population in traditional lab settings. Methods Here, we combine naturalistic observations with a targeted review of the literature to provide an assessment of our current understanding of the development of empathy in toddlerhood as it is expressed in real-world settings. We went into toddlers' typical habitat, a nursery, and we performed 21 h of naturalistic observations of 2-to-4-year-olds. We then reviewed the literature to evaluate our current understanding of the mechanisms that underpin observed behaviours. Results We observed that (i) emotional contagion, possibly a primitive form of empathy, was observed at the nursery, but rarely; (ii) older toddlers often stared when someone cried, but there was no clear evidence of shared feelings; (iii) teacher and parent scaffolding might be paramount for empathy development; (iv) as some atypical empathic reactions can be observed from toddlerhood, early interventions could be developed. Several competing theoretical frameworks could account for current findings. Conclusions Targeted studies of toddlers and their interaction partners in both controlled and naturalistic contexts are required to distinguish different mechanistic explanations for empathic behaviour in toddlerhood. We recommend the use of new cutting-edge methodologies to embed neurocognitively-informed frameworks into toddlers' natural social world.
Collapse
Affiliation(s)
- Chiara Bulgarelli
- Centre for Brain and Cognitive DevelopmentBirkbeckUniversity of LondonLondonUK
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Emily J. H. Jones
- Centre for Brain and Cognitive DevelopmentBirkbeckUniversity of LondonLondonUK
| |
Collapse
|
31
|
Endevelt-Shapira Y, Feldman R. Mother-Infant Brain-to-Brain Synchrony Patterns Reflect Caregiving Profiles. BIOLOGY 2023; 12:biology12020284. [PMID: 36829560 PMCID: PMC9953313 DOI: 10.3390/biology12020284] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Biobehavioral synchrony, the coordination of physiological and behavioral signals between mother and infant during social contact, tunes the child's brain to the social world. Probing this mechanism from a two-brain perspective, we examine the associations between patterns of mother-infant inter-brain synchrony and the two well-studied maternal behavioral orientations-sensitivity and intrusiveness-which have repeatedly been shown to predict positive and negative socio-emotional outcomes, respectively. Using dual-electroencephalogram (EEG) recordings, we measure inter-brain connectivity between 60 mothers and their 5- to 12-month-old infants during face-to-face interaction. Thirty inter-brain connections show significantly higher correlations during the real mother-infant face-to-face interaction compared to surrogate data. Brain-behavior correlations indicate that higher maternal sensitivity linked with greater mother-infant neural synchrony, whereas higher maternal intrusiveness is associated with lower inter-brain coordination. Post hoc analysis reveals that the mother-right-frontal-infant-left-temporal connection is particularly sensitive to the mother's sensitive style, while the mother-left-frontal-infant-right-temporal connection indexes the intrusive style. Our results support the perspective that inter-brain synchrony is a mechanism by which mature brains externally regulate immature brains to social living and suggest that one pathway by which sensitivity and intrusiveness exert their long-term effect may relate to the provision of coordinated inputs to the social brain during its sensitive period of maturation.
Collapse
Affiliation(s)
- Yaara Endevelt-Shapira
- Center for Developmental Social Neuroscience, Reichman University, Herzliya 4610101, Israel
- Correspondence: (Y.E.-S.); (R.F.)
| | - Ruth Feldman
- Center for Developmental Social Neuroscience, Reichman University, Herzliya 4610101, Israel
- Child Study Center, Yale University, New Haven, CT 06520, USA
- Correspondence: (Y.E.-S.); (R.F.)
| |
Collapse
|
32
|
Ham GX, Lim KE, Augustine GJ, Leong V. Synchrony in parent-offspring social interactions across development: A cross-species review of rodents and humans. J Neuroendocrinol 2023:e13241. [PMID: 36929715 DOI: 10.1111/jne.13241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
In humans, parent-child neural synchrony has been shown to support early communication, social attunement and learning. Further, some animal species (including rodents and bats) are now known to share neural synchrony during certain forms of social behaviour. However, very little is known about the developmental origins and sequelae of neural synchrony, and whether this neural mechanism might play a causal role in the control of social and communicative behaviour across species. Rodent models are optimal for exploring such questions of causality, with a plethora of tools available for both disruption/induction (optogenetics) and even mechanistic dissection of synchrony-induction pathways (in vivo electrical or optical recording of neural activity). However, before the benefits of rodent models for advancing research on parent-infant synchrony can be realised, it is first important to address a gap in understanding the forms of parent-pup synchrony that occur during rodent development, and how these social relationships evolve over time. Accordingly, this review seeks to identify parent-pup social behaviours that could potentially drive or facilitate synchrony and to discuss key differences or limitations when comparing mouse to human models of parent-infant synchrony. Uniquely, our review will focus on parent-pup dyadic social behaviours that have particular analogies to the human context, including instrumental, social interactive and vocal communicative behaviours. This review is intended to serve as a primer on the study of neurobehavioral synchrony across human and rodent dyadic developmental models.
Collapse
Affiliation(s)
- Gao Xiang Ham
- Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
- Lee Kong China School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Kai En Lim
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - George J Augustine
- Lee Kong China School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Victoria Leong
- Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Pediatrics, University of Cambridge, Cambridge, UK
| |
Collapse
|
33
|
Horowitz-Kraus T, Gashri C. Multimodal Approach for Characterizing the Quality of Parent-Child Interaction: A Single Synchronization Source May Not Tell the Whole Story. BIOLOGY 2023; 12:biology12020241. [PMID: 36829518 PMCID: PMC9952901 DOI: 10.3390/biology12020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
The interaction between the parent and child is essential for the child's cognitive and emotional development and sets the path for future well-being. These interactions, starting from birth, are necessary for providing the sensory stimulation the child needs in the critical time window of brain development. The characterization of parent-child interactions is traditionally performed by human decoding. This approach is considered the leading and most accurate way of characterizing the quality of these interactions. However, the development of computational tools and especially the concept of parent-child synchronization opened up an additional source of data characterizing these interactions in an objective, less human-labor manner. Such sources include brain-to-brain, voice/speech, eye contact, motor, and heart-rate synchronization. However, can a single source synchronization dataset accurately represent parent-child interaction? Will attending to the same stimulation, often resulting in a higher brain-to-brain synchronization, be considered an interactive condition? In this perspective, we will try to convey a new concept of the child-parent interaction synchronization (CHIPS) matrix, which includes the different sources of signals generated during an interaction. Such a model may assist in explaining the source of interaction alterations in the case of child/parent developmental/emotional or sensory deficits and may open up new ways of assessing interventions and changes in parent-child interactions along development. We will discuss this interaction during one of the parent-child joint activities providing opportunities for interaction, i.e., storytelling.
Collapse
Affiliation(s)
- Tzipi Horowitz-Kraus
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Technion, Haifa 3200003, Israel
- Faculty of Biomedical Engineering, Technion, Haifa 3200003, Israel
- Neuropsychology Department, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Correspondence: ; Tel.: +972-522-989298
| | - Carmel Gashri
- Faculty of Biomedical Engineering, Technion, Haifa 3200003, Israel
| |
Collapse
|
34
|
Azhari A, Bizzego A, Esposito G. Parent-child dyads with greater parenting stress exhibit less synchrony in posterior areas and more synchrony in frontal areas of the prefrontal cortex during shared play. Soc Neurosci 2023; 17:520-531. [PMID: 36576051 DOI: 10.1080/17470919.2022.2162118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Parent-child dyads who are mutually attuned to each other during social interactions display interpersonal synchrony that can be observed behaviorally and through the temporal coordination of brain signals called interbrain synchrony. Parenting stress undermines the quality of parent-child interactions. However, no study has examined synchrony in relation to parenting stress during everyday shared play. The present fNIRS study examined the association between parenting stress and interbrain synchrony in the prefrontal cortex (PFC) of 31 mother-child and 29 father-child dyads while they engaged in shared play for 10 min. Shared play was micro-analytically coded into joint and non-joint segments. Interbrain synchrony was computed using cross-correlations over 15-, 20-, 25-, 30- and 35-s fixed-length windows. Findings showed that stressed dyads exhibited less synchrony in the posterior right cluster of the PFC during joint segments of play, and, contrary to expectations, stressed dyads also showed greater synchrony in the frontal left cluster. These findings suggest that dyads with more parenting stress experienced less similarities in brain areas involved in emotional processing and regulation, whilst simultaneously requiring greater neural entrainment in brain areas that support task management and social-behavioral organization in order to sustain prolonged periods of joint interactions.
Collapse
Affiliation(s)
- Atiqah Azhari
- Psychology Programme, School of Humanities and Behavioural Sciences, Singapore University of Social Sciences, Singapore, Singapore
| | - Andrea Bizzego
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| |
Collapse
|
35
|
Rahimi MD, Hassani P, Kheirkhah MT, Fadardi JS. Effectiveness of eye movement exercise and diaphragmatic breathing with jogging in reducing migraine symptoms: A preliminary, randomized comparison trial. Brain Behav 2023; 13:e2820. [PMID: 36454123 PMCID: PMC9847608 DOI: 10.1002/brb3.2820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Migraine is a multifactorial headache disorder. Maladaptive functional networks or altered circuit-related connectivity in the brain with migraine appear to perturb the effects of usual treatments. OBJECTIVES In the present preliminary trial, we aim to study the effectiveness of performing pieces of body-mind, cognitive, or network reconstruction-based training (i.e., eye movement exercise plus jogging; EME+J and diaphragmatic breathing plus jogging; DB+J) in decreasing migraine symptoms. METHODS We used a three-arm, triple-blind, non-inferiority randomized comparison design with pre-test, post-test, and follow-up measurements to assess the effectiveness of EME+J and DB+J in the brain with migraine. Participants were randomly assigned to one of the study groups to perform either 12 consecutive weeks of EME+J (n = 22), DB+J (n = 19), or receiving, treatment as usual, TAU (n = 22). RESULTS The primary outcome statistical analysis through a linear mixed model showed a significant decrease in the frequency (p = .0001), duration (p = .003), and intensity (p = .007) of migraine attacks among the interventions and measurement times. The pairwise comparisons of simple effects showed that EME+J and DB+J effectively reduced migraine symptoms at the post-test and follow-up (p < .05). Cochran's tests showed that interventions decreased the number of menses-related migraine attacks. EME+J and DB+J effectively decreased over-the-counter (OTC) drug use, refreshed wake-up mode, and improved sleep and water drinking patterns. These are the secondary outcomes that Cochran's tests showed in the interventional groups after the interventions and at 12 months of follow-up. CONCLUSION EME+J or DB+J can be an effective and safe method with no adverse effects to decrease the symptoms of migraine attacks. Moreover, a reduction in the frequency of menstrual cycle-related attacks, OTC drug use, and improved quality of sleep and drinking water were the secondary outcomes of the post-test and a 12-month follow-up.
Collapse
Affiliation(s)
| | - Pouriya Hassani
- Department of Cognitive Neuroscience and Clinical Neuropsychology, University of Padova, Padua, Italy
| | | | - Javad Salehi Fadardi
- Faculty of Education and Psychology, Ferdowsi University of Mashhad, Mashhad, Iran.,School of Community and Global Health, Claremont Graduate University, Claremont, California, USA.,School of Psychology, Bangor University, Bangor, UK
| |
Collapse
|
36
|
Provenzi L, Roberti E, Capelli E. Envisioning translational hyperscanning: how applied neuroscience might improve family-centered care. Soc Cogn Affect Neurosci 2022; 18:6953329. [PMID: 36542821 PMCID: PMC9910277 DOI: 10.1093/scan/nsac061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
From the very beginning of their life, human beings are immersed in a social and interactive environment that contributes to shaping their social and cognitive development under typical and at-risk conditions. In order to understand human development in its bidirectional relationship with the social environment, we need to develop a 'complexity-sensitive' approach in neuroscience. Recent advances have started to do so with the application of hyperscanning techniques which involve recording adult and child neural activity simultaneously and highlighting the presence of similar patterns of brain activity in the dyad. Numerous studies focused on typically developing children have been published in recent years with the application of this technique to different fields of developmental research. However, hyperscanning techniques could also be extremely beneficial and effective in studying development in atypical and clinical populations. Such application, namely translational hyperscanning, should foster the transition toward a two-brain translational neuroscience. In this paper, we envision how the application of hyperscanning to atypical and clinical child populations can inform family-centered care for children and their parents.
Collapse
Affiliation(s)
- Livio Provenzi
- Correspondence should be addressed to Livio Provenzi, Department of Brain and Behavioral Sciences, University of Pavia, via Mondino 2, Pavia 27100, Italy. E-mail:
| | - Elisa Roberti
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia 27100, Italy
| | - Elena Capelli
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia 27100, Italy
| |
Collapse
|
37
|
Deng X, Lin M, Zhang L, Li X, Gao Q. Relations between family cohesion and adolescent-parent's neural synchrony in response to emotional stimulations. Behav Brain Funct 2022; 18:11. [PMID: 36167576 PMCID: PMC9516805 DOI: 10.1186/s12993-022-00197-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The interaction between parent and adolescent is more challenging than in other age periods. Family cohesion seriously impacts parent-adolescent emotional interactions. However, the underlying neural mechanism has not been fully examined. This study examined the differences in the neural synchrony in response to emotional film clips between high and low family cohesion adolescent-parent dyads by using the electroencephalograph (EEG) hyperscanning. RESULTS Simultaneously electroencephalograph (EEG) was recorded while 15 low family cohesion parent-adolescent dyads (LFCs)and 14 high family cohesion parent-adolescent dyads (HFCs)received different emotional induction when viewing film clips. Interbrain phase-locking-value (PLV) in gamma band was used to calculate parent-adolescent dyads' interbrain synchrony. Results showed that higher gamma interbrain synchrony was observed in the HFCs than the LFCs in the positive conditions. However, there was no significant difference between the HFCs and LFCs in other conditions. Also, the HFCs had significantly higher gamma interbrain synchrony in the positive conditions than in the negative conditions. CONCLUSION Interbrain synchrony may represent an underlying neural mechanism of the parent-adolescent emotional bonding, which is the core of family cohesion.
Collapse
Affiliation(s)
- Xinmei Deng
- School of Psychology, Shenzhen University, Shenzhen, China.
| | - Mingping Lin
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Lin Zhang
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Xiaoqing Li
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Qiufeng Gao
- Department of Society, School of Government, Shenzhen University, Shenzhen, China
| |
Collapse
|
38
|
Lin JFL, Imada T, Meltzoff AN, Hiraishi H, Ikeda T, Takahashi T, Hasegawa C, Yoshimura Y, Kikuchi M, Hirata M, Minabe Y, Asada M, Kuhl PK. Dual-MEG interbrain synchronization during turn-taking verbal interactions between mothers and children. Cereb Cortex 2022; 33:4116-4134. [PMID: 36130088 PMCID: PMC10068303 DOI: 10.1093/cercor/bhac330] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/14/2022] Open
Abstract
Verbal interaction and imitation are essential for language learning and development in young children. However, it is unclear how mother-child dyads synchronize oscillatory neural activity at the cortical level in turn-based speech interactions. Our study investigated interbrain synchrony in mother-child pairs during a turn-taking paradigm of verbal imitation. A dual-MEG (magnetoencephalography) setup was used to measure brain activity from interactive mother-child pairs simultaneously. Interpersonal neural synchronization was compared between socially interactive and noninteractive tasks (passive listening to pure tones). Interbrain networks showed increased synchronization during the socially interactive compared to noninteractive conditions in the theta and alpha bands. Enhanced interpersonal brain synchrony was observed in the right angular gyrus, right triangular, and left opercular parts of the inferior frontal gyrus. Moreover, these parietal and frontal regions appear to be the cortical hubs exhibiting a high number of interbrain connections. These cortical areas could serve as a neural marker for the interactive component in verbal social communication. The present study is the first to investigate mother-child interbrain neural synchronization during verbal social interactions using a dual-MEG setup. Our results advance our understanding of turn-taking during verbal interaction between mother-child dyads and suggest a role for social "gating" in language learning.
Collapse
Affiliation(s)
- Jo-Fu Lotus Lin
- Institute for Learning & Brain Sciences (I-LABS), University of Washington, Portage Bay Building, University of Washington, Seattle, WA 98105, USA.,Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan.,Institute of Linguistics, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Toshiaki Imada
- Institute for Learning & Brain Sciences (I-LABS), University of Washington, Portage Bay Building, University of Washington, Seattle, WA 98105, USA.,Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Andrew N Meltzoff
- Institute for Learning & Brain Sciences (I-LABS), University of Washington, Portage Bay Building, University of Washington, Seattle, WA 98105, USA
| | - Hirotoshi Hiraishi
- Hamamatsu University School of Medicine, 1 Chome-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka 431-3192, Japan
| | - Takashi Ikeda
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | | | - Chiaki Hasegawa
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Masayuki Hirata
- Department of Neurosurgery, Osaka University Medical School, 2 Chome-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshio Minabe
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Minoru Asada
- Department of Adaptive Machine Systems, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Patricia K Kuhl
- Institute for Learning & Brain Sciences (I-LABS), University of Washington, Portage Bay Building, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
39
|
Adolescent social anxiety undermines adolescent-parent interbrain synchrony during emotional processing: A hyperscanning study. Int J Clin Health Psychol 2022; 22:100329. [PMID: 36111264 PMCID: PMC9449656 DOI: 10.1016/j.ijchp.2022.100329] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
Social anxiety severely impacts adolescents’ social interactions with others; however, the underlying neural mechanism has not been revealed. This study examined how adolescent's social anxiety level influences the interbrain synchrony within adolescent-parent dyads during emotional processing by using electroencephalograph (EEG) hyperscanning. A sample of 25 adolescent-parent dyads completed the picture processing task. Adolescents’ ages ranged from 10 to 14 years old. The results showed that (1) at parietal areas, greater gamma interbrain synchrony was observed in the high social anxiety adolescent-parent dyads (HSAs) than the low social anxiety adolescent-parent dyads (LSAs) in the positive conditions. However, greater gamma interbrain synchrony of the picture processing task was observed in the LSAs than the HSAs in the negative conditions. (2) Compared with the neutral condition, LSAs induced greater interbrain synchronization in the negative condition than in the neutral condition at central and parietal areas. However, HSAs induced greater interbrain synchronization in the positive condition than in the negative condition at parietal areas. (3) HSAs induced greater interbrain synchronization at parietal areas than in the central areas in positive conditions. The results provide neurological evidence that the way parent and adolescent process different emotions in the same emotional episode could be affected by the adolescent's anxiety level.
Collapse
|
40
|
Narrative as co-regulation: A review of embodied narrative in infant development. Infant Behav Dev 2022; 68:101747. [PMID: 35839557 DOI: 10.1016/j.infbeh.2022.101747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 11/21/2022]
Abstract
We review evidence of non-verbal, embodied narratives in human infancy to better understand their form and function as generators of common experience, regulation, and learning. We examine their development prior to the onset of language, with a view to improve understanding of narrative as regular motifs or schemas of early experience in both solitary and social engagement. Embodied narratives are composed of regular patterns of interest, arousal, affect, and intention that yield a characteristic four-part structure of (i) introduction, (ii) development, (iii) climax, and (iv) resolution. Made with others these form co-created shared acts of meaning, and are parsed in time with discreet beginnings and endings that allow a regular pattern to frame and give predictive understanding for prospective regulation (especially important within social contexts) that safely returns to baseline again. This characteristic pattern, co-created between infant and adult from the beginning of life, allows the infant to contribute to, and learn, the patterns of its culture. We conclude with a view on commonalities and differences of co-created narrative in non-human primates, and discuss implications of disruption to narrative co-creation for developmental psychopathology.
Collapse
|
41
|
Gerloff C, Konrad K, Bzdok D, Büsing C, Reindl V. Interacting brains revisited: A cross-brain network neuroscience perspective. Hum Brain Mapp 2022; 43:4458-4474. [PMID: 35661477 PMCID: PMC9435014 DOI: 10.1002/hbm.25966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/25/2022] [Accepted: 05/02/2022] [Indexed: 12/14/2022] Open
Abstract
Elucidating the neural basis of social behavior is a long‐standing challenge in neuroscience. Such endeavors are driven by attempts to extend the isolated perspective on the human brain by considering interacting persons' brain activities, but a theoretical and computational framework for this purpose is still in its infancy. Here, we posit a comprehensive framework based on bipartite graphs for interbrain networks and address whether they provide meaningful insights into the neural underpinnings of social interactions. First, we show that the nodal density of such graphs exhibits nonrandom properties. While the current hyperscanning analyses mostly rely on global metrics, we encode the regions' roles via matrix decomposition to obtain an interpretable network representation yielding both global and local insights. With Bayesian modeling, we reveal how synchrony patterns seeded in specific brain regions contribute to global effects. Beyond inferential inquiries, we demonstrate that graph representations can be used to predict individual social characteristics, outperforming functional connectivity estimators for this purpose. In the future, this may provide a means of characterizing individual variations in social behavior or identifying biomarkers for social interaction and disorders.
Collapse
Affiliation(s)
- Christian Gerloff
- JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging, RWTH Aachen & Research Centre Juelich, Aachen, Germany.,Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Chair II of Mathematics, Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, Aachen, Germany
| | - Kerstin Konrad
- JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging, RWTH Aachen & Research Centre Juelich, Aachen, Germany.,Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Danilo Bzdok
- Department of Biomedical Engineering, McConnell Brain Imaging Centre, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Canada.,Mila - Quebec Artificial Intelligence Institute, Montreal, Canada
| | - Christina Büsing
- Chair II of Mathematics, Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, Aachen, Germany
| | - Vanessa Reindl
- JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging, RWTH Aachen & Research Centre Juelich, Aachen, Germany.,Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
42
|
Turk E, Endevelt-Shapira Y, Feldman R, van den Heuvel MI, Levy J. Brains in Sync: Practical Guideline for Parent-Infant EEG During Natural Interaction. Front Psychol 2022; 13:833112. [PMID: 35572249 PMCID: PMC9093685 DOI: 10.3389/fpsyg.2022.833112] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/05/2022] [Indexed: 12/14/2022] Open
Abstract
Parent-infant EEG is a novel hyperscanning paradigm to measure social interaction simultaneously in the brains of parents and infants. The number of studies using parent-infant dual-EEG as a theoretical framework to measure brain-to-brain synchrony during interaction is rapidly growing, while the methodology for measuring synchrony is not yet uniform. While adult dual-EEG methodology is quickly improving, open databases, tutorials, and methodological validations for dual-EEG with infants are largely missing. In this practical guide, we provide a step-by-step manual on how to implement and run parent-infant EEG paradigms in a neurodevelopmental laboratory in naturalistic settings (e.g., free interactions). Next, we highlight insights on the variety of choices that can be made during (pre)processing dual-EEG data, including recommendations on interpersonal neural coupling metrics and interpretations of the results. Moreover, we provide an exemplar dataset of two mother-infant dyads during free interactions ("free play") that may serve as practice material. Instead of providing a critical note, we would like to move the field of parent-infant EEG forward and be transparent about the challenges that come along with the exciting opportunity to study the development of our social brain within the naturalistic context of dual-EEG.
Collapse
Affiliation(s)
- Elise Turk
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, Netherlands
| | - Yaara Endevelt-Shapira
- Baruch Ivcher School of Psychology, Interdisciplinary Center Herzliya, Reichman University, Herzliya, Israel
| | - Ruth Feldman
- Baruch Ivcher School of Psychology, Interdisciplinary Center Herzliya, Reichman University, Herzliya, Israel
| | | | - Jonathan Levy
- Baruch Ivcher School of Psychology, Interdisciplinary Center Herzliya, Reichman University, Herzliya, Israel.,Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| |
Collapse
|
43
|
Luft CDB, Zioga I, Giannopoulos A, Di Bona G, Binetti N, Civilini A, Latora V, Mareschal I. Social synchronization of brain activity increases during eye-contact. Commun Biol 2022; 5:412. [PMID: 35508588 PMCID: PMC9068716 DOI: 10.1038/s42003-022-03352-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Humans make eye-contact to extract information about other people’s mental states, recruiting dedicated brain networks that process information about the self and others. Recent studies show that eye-contact increases the synchronization between two brains but do not consider its effects on activity within single brains. Here we investigate how eye-contact affects the frequency and direction of the synchronization within and between two brains and the corresponding network characteristics. We also evaluate the functional relevance of eye-contact networks by comparing inter- and intra-brain networks of friends vs. strangers and the direction of synchronization between leaders and followers. We show that eye-contact increases higher inter- and intra-brain synchronization in the gamma frequency band. Network analysis reveals that some brain areas serve as hubs linking within- and between-brain networks. During eye-contact, friends show higher inter-brain synchronization than strangers. Dyads with clear leader/follower roles demonstrate higher synchronization from leader to follower in the alpha frequency band. Importantly, eye-contact affects synchronization between brains more than within brains, demonstrating that eye-contact is an inherently social signal. Future work should elucidate the causal mechanisms behind eye-contact induced synchronization. Friends making eye-contact have higher inter-brain synchronization than strangers. Eye-contact affects neural synchronization between brains more than within a brain, highlighting that eye-contact is an inherently social signal.
Collapse
Affiliation(s)
- Caroline Di Bernardi Luft
- School of Biological and Behavioural Sciences, Queen Mary, University of London, London, E1 4NS, United Kingdom.
| | - Ioanna Zioga
- School of Biological and Behavioural Sciences, Queen Mary, University of London, London, E1 4NS, United Kingdom.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Anastasios Giannopoulos
- School of Electrical and Computer Engineering, National Technical University of Athens (NTUA), Athens, Greece
| | - Gabriele Di Bona
- School of Mathematical Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom
| | - Nicola Binetti
- School of Biological and Behavioural Sciences, Queen Mary, University of London, London, E1 4NS, United Kingdom
| | - Andrea Civilini
- School of Mathematical Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom
| | - Vito Latora
- School of Mathematical Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom.,Dipartimento di Fisica ed Astronomia, Università di Catania and INFN, I-95123, Catania, Italy.,The Alan Turing Institute, The British Library, London, NW1 2DB, United Kingdom.,Complexity Science Hub, Josefstäadter Strasse 39, A 1080, Vienna, Austria
| | - Isabelle Mareschal
- School of Biological and Behavioural Sciences, Queen Mary, University of London, London, E1 4NS, United Kingdom
| |
Collapse
|
44
|
Wass SV, Perapoch Amadó M, Ives J. Oscillatory entrainment to our early social or physical environment and the emergence of volitional control. Dev Cogn Neurosci 2022; 54:101102. [PMID: 35398645 PMCID: PMC9010552 DOI: 10.1016/j.dcn.2022.101102] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/18/2022] [Accepted: 03/23/2022] [Indexed: 01/08/2023] Open
Abstract
An individual's early interactions with their environment are thought to be largely passive; through the early years, the capacity for volitional control develops. Here, we consider: how is the emergence of volitional control characterised by changes in the entrainment observed between internal activity (behaviour, physiology and brain activity) and the sights and sounds in our everyday environment (physical and social)? We differentiate between contingent responsiveness (entrainment driven by evoked responses to external events) and oscillatory entrainment (driven by internal oscillators becoming temporally aligned with external oscillators). We conclude that ample evidence suggests that children show behavioural, physiological and neural entrainment to their physical and social environment, irrespective of volitional attention control; however, evidence for oscillatory entrainment beyond contingent responsiveness is currently lacking. Evidence for how oscillatory entrainment changes over developmental time is also lacking. Finally, we suggest a mechanism through which periodic environmental rhythms might facilitate both sensory processing and the development of volitional control even in the absence of oscillatory entrainment.
Collapse
Affiliation(s)
- S V Wass
- Department of Psychology, University of East London, UK.
| | | | - J Ives
- Department of Psychology, University of East London, UK
| |
Collapse
|
45
|
Turk E, Vroomen J, Fonken Y, Levy J, van den Heuvel MI. In sync with your child: The potential of parent-child electroencephalography in developmental research. Dev Psychobiol 2022; 64:e22221. [PMID: 35312051 DOI: 10.1002/dev.22221] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022]
Abstract
Healthy interaction between parent and child is foundational for the child's socioemotional development. Recently, an innovative paradigm shift in electroencephalography (EEG) research has enabled the simultaneous measurement of neural activity in caregiver and child. This dual-EEG or hyperscanning approach, termed parent-child dual-EEG, combines the strength of both behavioral observations and EEG methods. In this review, we aim to inform on the potential of dual-EEG in parents and children (0-6 years) for developmental researchers. We first provide a general overview of the dual-EEG technique and continue by reviewing the first empirical work on the emerging field of parent-child dual-EEG, discussing the limited but fascinating findings on parent-child brain-to-behavior and brain-to-brain synchrony. We then continue by providing an overview of dual-EEG analysis techniques, including the technical challenges and solutions one may encounter. We finish by discussing the potential of parent-child dual-EEG for the future of developmental research. The analysis of multiple EEG data is technical and challenging, but when performed well, parent-child EEG may transform the way we understand how caregiver and child connect on a neurobiological level. Importantly, studying objective physiological measures of parent-child interactions could lead to the identification of novel brain-to-brain synchrony markers of interaction quality.
Collapse
Affiliation(s)
- Elise Turk
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Jean Vroomen
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Yvonne Fonken
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Jonathan Levy
- Baruch Ivcher School of Psychology, Interdisciplinary Center Herzliya (IDC), Herzliya, Israel.,Department of Neuroscience and Biomedical Engineering, Aalto University, Aalto, Finland
| | | |
Collapse
|
46
|
DEEP: A dual EEG pipeline for developmental hyperscanning studies. Dev Cogn Neurosci 2022; 54:101104. [PMID: 35367895 PMCID: PMC8980555 DOI: 10.1016/j.dcn.2022.101104] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/31/2022] [Accepted: 03/25/2022] [Indexed: 12/21/2022] Open
Abstract
Cutting-edge hyperscanning methods led to a paradigm shift in social neuroscience. It allowed researchers to measure dynamic mutual alignment of neural processes between two or more individuals in naturalistic contexts. The ever-growing interest in hyperscanning research calls for the development of transparent and validated data analysis methods to further advance the field. We have developed and tested a dual electroencephalography (EEG) analysis pipeline, namely DEEP. Following the preprocessing of the data, DEEP allows users to calculate Phase Locking Values (PLVs) and cross-frequency PLVs as indices of inter-brain phase alignment of dyads as well as time-frequency responses and EEG power for each participant. The pipeline also includes scripts to control for spurious correlations. Our goal is to contribute to open and reproducible science practices by making DEEP publicly available together with an example mother-infant EEG hyperscanning dataset.
Collapse
|
47
|
Bembich S, Saksida A, Mastromarino S, Travan L, Di Risio G, Cont G, Demarini S. Empathy at birth: Mother's cortex synchronizes with that of her newborn in pain. Eur J Neurosci 2022; 55:1519-1531. [PMID: 35266192 PMCID: PMC9314789 DOI: 10.1111/ejn.15641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 01/07/2022] [Accepted: 03/02/2022] [Indexed: 11/26/2022]
Abstract
Early neonatal relation with the caregiver is vital for newborn survival and for the promotion of an appropriate neural development. The aim of this study was to assess if the empathic cortical response of a mother to her baby's pain is synchronized with the neonatal cortical response to the painful stimulation. We used hyperscanning, a functional neuroimaging approach that allows studying functional synchronization between two brains. Sixteen mother-newborn dyads were recruited. Maternal and neonatal cortical activities were simultaneously monitored, by near-infrared spectroscopy, during a heel prick performed on the baby and observed by the mother. Multiple paired t test was used to identify cortical activation, and wavelet transform coherence method was used to explore possible synchronization between the maternal and neonatal cortical areas. Activations were observed in mother's parietal cortex, bilaterally, and in newborn's superior motor/somatosensory cortex. The main functional synchronization analysis showed that mother's left parietal cortex activity cross-correlated with that of her newborn's superior motor/somatosensory cortex. Such synchronization dynamically changed throughout assessment, becoming positively cross-correlated only after the leading role in synchronizing cortical activities was taken up by the newborn. Thus, maternal empathic cortical response to baby pain was guided by and synchronized to the newborn's cortical response to pain. We conclude that, in case of potential danger for the infant, brain areas involved in mother-newborn relationship appear to be already co-regulated at birth.
Collapse
Affiliation(s)
- Stefano Bembich
- Division of Neonatology and Neonatal Intensive Care Unit, Institute for Maternal and Child HealthIRCCS “Burlo Garofolo”TriesteItaly
| | - Amanda Saksida
- Division of Neonatology and Neonatal Intensive Care Unit, Institute for Maternal and Child HealthIRCCS “Burlo Garofolo”TriesteItaly
| | - Simona Mastromarino
- Division of Neonatology and Neonatal Intensive Care Unit, Institute for Maternal and Child HealthIRCCS “Burlo Garofolo”TriesteItaly
| | - Laura Travan
- Division of Neonatology and Neonatal Intensive Care Unit, Institute for Maternal and Child HealthIRCCS “Burlo Garofolo”TriesteItaly
| | - Giovanna Di Risio
- Division of Neonatology and Neonatal Intensive Care Unit, Institute for Maternal and Child HealthIRCCS “Burlo Garofolo”TriesteItaly
| | - Gabriele Cont
- Division of Neonatology and Neonatal Intensive Care Unit, Institute for Maternal and Child HealthIRCCS “Burlo Garofolo”TriesteItaly
| | - Sergio Demarini
- Division of Neonatology and Neonatal Intensive Care Unit, Institute for Maternal and Child HealthIRCCS “Burlo Garofolo”TriesteItaly
| |
Collapse
|
48
|
Polver S, Quadrelli E, Turati C, Bulf H. Decoding functional brain networks through graph measures in infancy: The case of emotional faces. Biol Psychol 2022; 170:108292. [PMID: 35217132 DOI: 10.1016/j.biopsycho.2022.108292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/02/2022] [Accepted: 02/21/2022] [Indexed: 11/26/2022]
Abstract
Graph measures represent an optimal way to investigate neural networks' organization, yet their application is still limited in developmental samples. To uncover the organization of 7-month-old infants' functional brain networks during an emotional perception task, we combined a decoding technique (i.e., Principal Component Regression) to graph metrics computation. Nodes' Within Module Degree Z Score (WMDZ) was computed as a measure of modular organization, and we decoded networks' functional organizations across EEG alpha and theta bands in response to static and dynamic facial expressions of emotions. We found that infants' brain topological activity differentiates between static and dynamic emotional faces due to the involvement of visual streams and sensorimotor areas, as often observed in adults. Moreover, network invariances point toward an already present rudimental network structure tuned to face processing already at 7-months of age. Overall, our results affirm the fruitfulness of the application of graph measures in developmental samples, due to their flexibility and the wealth of information they provide over infants' networks functional organization.
Collapse
Affiliation(s)
- Silvia Polver
- Department of Psychology, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126 Milano (MI), Italy.
| | - Ermanno Quadrelli
- Department of Psychology, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126 Milano (MI), Italy; NeuroMI, Milan Center for Neuroscience, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126 Milano (MI), Italy.
| | - Chiara Turati
- Department of Psychology, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126 Milano (MI), Italy; NeuroMI, Milan Center for Neuroscience, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126 Milano (MI), Italy.
| | - Hermann Bulf
- Department of Psychology, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126 Milano (MI), Italy; NeuroMI, Milan Center for Neuroscience, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126 Milano (MI), Italy.
| |
Collapse
|
49
|
Reindl V, Wass S, Leong V, Scharke W, Wistuba S, Wirth CL, Konrad K, Gerloff C. Multimodal hyperscanning reveals that synchrony of body and mind are distinct in mother-child dyads. Neuroimage 2022; 251:118982. [PMID: 35149229 DOI: 10.1016/j.neuroimage.2022.118982] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/15/2021] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
Hyperscanning studies have begun to unravel the brain mechanisms underlying social interaction, indicating a functional role for interpersonal neural synchronization (INS), yet the mechanisms that drive INS are poorly understood. The current study, thus, addresses whether INS is functionally-distinct from synchrony in other systems - specifically the autonomic nervous system and motor behavior. To test this, we used concurrent functional near-infrared spectroscopy - electrocardiography recordings, while N = 34 mother-child and stranger-child dyads engaged in cooperative and competitive tasks. Only in the neural domain was a higher synchrony for mother-child compared to stranger-child dyads observed. Further, autonomic nervous system and neural synchrony were positively related during competition but not during cooperation. These results suggest that synchrony in different behavioral and biological systems may reflect distinct processes. Furthermore, they show that increased mother-child INS is unlikely to be explained solely by shared arousal and behavioral similarities, supporting recent theories that postulate that INS is higher in close relationships.
Collapse
Affiliation(s)
- Vanessa Reindl
- Department of Child and Adolescent Psychiatry, Child Neuropsychology Section, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Germany; JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging, RWTH Aachen & Research Centre Juelich, Germany; Psychology, School of Social Sciences, Nanyang Technological University, Singapore S639818, Republic of Singapore.
| | - Sam Wass
- Division of Psychology, University of East London, London E16 2RD, United Kingdom
| | - Victoria Leong
- Psychology, School of Social Sciences, Nanyang Technological University, Singapore S639818, Republic of Singapore; Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - Wolfgang Scharke
- Department of Child and Adolescent Psychiatry, Child Neuropsychology Section, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Germany; Chair of Cognitive and Experimental Psychology, Institute of Psychology, RWTH Aachen University, Germany
| | - Sandra Wistuba
- Department of Child and Adolescent Psychiatry, Child Neuropsychology Section, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Germany
| | - Christina Lisa Wirth
- Department of Child and Adolescent Psychiatry, Child Neuropsychology Section, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Germany
| | - Kerstin Konrad
- Department of Child and Adolescent Psychiatry, Child Neuropsychology Section, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Germany; JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging, RWTH Aachen & Research Centre Juelich, Germany
| | - Christian Gerloff
- Department of Child and Adolescent Psychiatry, Child Neuropsychology Section, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Germany; JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging, RWTH Aachen & Research Centre Juelich, Germany; Chair II of Mathematics, Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, Germany
| |
Collapse
|
50
|
Zivan M, Gashri C, Habuba N, Horowitz-Kraus T. Reduced mother-child brain-to-brain synchrony during joint storytelling interaction interrupted by a media usage. Child Neuropsychol 2022; 28:918-937. [PMID: 35129078 DOI: 10.1080/09297049.2022.2034774] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Parent-child synchrony is related to the quality of parent and child interactions and child development. One very emotionally and cognitively beneficial interaction in early childhood is Dialogic Reading (DR). Screen exposure was previously related to decreased parent-child interaction. Using a hyperscanning Electroencephalogram (EEG) method, the current study examined the neurobiological correlates for mother-child DR vs. mobile phone-interrupted DR in twenty-four white toddlers (24-42 months old, 8 girls) and their mothers. The DR-interrupted condition was related to decreased mother-child neural synchrony between the mother's language-related brain regions (left hemisphere) and the child's comprehension-related regions (right hemisphere) compared to the uninterrupted DR. This is the first neural evidence of the negative effect of parental smartphone use on parent-child interaction quality.
Collapse
Affiliation(s)
- Michal Zivan
- Educational Neuroimaging Group, Faculty of Education in Science and Technology and the Faculty of Biomedical Engineering, Technion.,Faculty of Education in Science and Technology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Carmel Gashri
- Educational Neuroimaging Group, Faculty of Education in Science and Technology and the Faculty of Biomedical Engineering, Technion
| | - Nir Habuba
- Educational Neuroimaging Group, Faculty of Education in Science and Technology and the Faculty of Biomedical Engineering, Technion
| | - Tzipi Horowitz-Kraus
- Educational Neuroimaging Group, Faculty of Education in Science and Technology and the Faculty of Biomedical Engineering, Technion.,Faculty of Education in Science and Technology, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|