1
|
Obukhova TS, Stroganova TA, Artemenko AR, Petrokovskaia AV, Orekhova EV. Directional Motion Sensitivity in Visual Snow Syndrome and Its Relation to Trailing-Type Palinopsia. Invest Ophthalmol Vis Sci 2025; 66:24. [PMID: 40208580 PMCID: PMC11993129 DOI: 10.1167/iovs.66.4.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
Purpose Visual Snow Syndrome (VSS) is characterized by visual perceptual distortions, potentially linked to increased neural excitability and/or decreased inhibition in the visual cortex. If present, these putative physiological abnormalities may alter motion direction sensitivity. Trailing-type palinopsia (TTP), commonly associated with VSS, may further affect motion sensitivity. This study aimed to investigate the sensitivity to direction of motion and its dependence on stimulus size in patients with VSS using the Spatial Suppression paradigm. Methods We assessed motion duration discrimination thresholds for small (1 degree), medium (2.5 degrees), and large (12 degrees) high-contrast gratings in 23 patients with VSS and 27 healthy control participants. The Spatial Suppression Index (SSI) quantified size-dependent increases in duration thresholds. Visual Discomfort Questionnaire scores and VSS symptom ratings, including TTP, afterimages, photophobia, etc., were also collected. Results Patients with VSS reported higher visual discomfort and perceptual disturbances, but no group differences were found in duration thresholds or SSI. Notably, higher TTP scores were associated with lower duration thresholds, indicating a facilitatory effect of TTP on sensitivity to direction of motion. Conclusions Our findings indicate that when VSS is regarded as a unified diagnostic category, it is not associated with impaired motion direction sensitivity or abnormal center-surround suppression. However, our preliminary results suggest that an absence or presence of comorbid TTP has a qualitatively different effect on directional sensitivity in patients with VSS. The facilitatory effect of TTP on motion sensitivity provides insight into the functional concomitants of TTP, and warrants further exploration, as it may significantly influence experimental outcomes.
Collapse
Affiliation(s)
- Tatiana S. Obukhova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russia
| | - Tatiana A. Stroganova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russia
| | - Ada R. Artemenko
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russiа
| | | | - Elena V. Orekhova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russia
| |
Collapse
|
2
|
Yang H, Han F, Wang Q. A large-scale neuronal network modelling study: Stimulus size modulates gamma oscillations in the primary visual cortex by long-range connections. Eur J Neurosci 2024; 60:4224-4243. [PMID: 38812400 DOI: 10.1111/ejn.16429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
Stimulus size modulation of neuronal firing activity is a fundamental property of the primary visual cortex. Numerous biological experiments have shown that stimulus size modulation is affected by multiple factors at different spatiotemporal scales, but the exact pathways and mechanisms remain incompletely understood. In this paper, we establish a large-scale neuronal network model of primary visual cortex with layer 2/3 to study how gamma oscillation properties are modulated by stimulus size and especially how long-range connections affect the modulation as realistic neuronal properties and spatial distributions of synaptic connections are considered. It is shown that long-range horizontal synaptic connections are sufficient to produce dimensional modulation of firing rates and gamma oscillations. In particular, with increasing grating stimulus size, the firing rate increases and then decreases, the peak frequency of gamma oscillations decreases and the spectral power increases. These are consistent with biological experimental observations. Furthermore, we explain in detail how the number and spatial distribution of long-range connections affect the size modulation of gamma oscillations by using the analysis of neuronal firing activity and synaptic current fluctuations. Our results provide a mechanism explanation for size modulation of gamma oscillations in the primary visual cortex and reveal the important and unique role played by long-range connections, which contributes to a deeper understanding of the cognitive function of gamma oscillations in visual cortex.
Collapse
Affiliation(s)
- Hao Yang
- College of Information Science and Technology, Donghua University, Shanghai, China
| | - Fang Han
- College of Information Science and Technology, Donghua University, Shanghai, China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing, China
| |
Collapse
|
3
|
O’Hare L, Tarasi L, Asher JM, Hibbard PB, Romei V. Excitation-Inhibition Imbalance in Migraine: From Neurotransmitters to Brain Oscillations. Int J Mol Sci 2023; 24:10093. [PMID: 37373244 PMCID: PMC10299141 DOI: 10.3390/ijms241210093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Migraine is among the most common and debilitating neurological disorders typically affecting people of working age. It is characterised by a unilateral, pulsating headache often associated with severe pain. Despite the intensive research, there is still little understanding of the pathophysiology of migraine. At the electrophysiological level, altered oscillatory parameters have been reported within the alpha and gamma bands. At the molecular level, altered glutamate and GABA concentrations have been reported. However, there has been little cross-talk between these lines of research. Thus, the relationship between oscillatory activity and neurotransmitter concentrations remains to be empirically traced. Importantly, how these indices link back to altered sensory processing has to be clearly established as yet. Accordingly, pharmacologic treatments have been mostly symptom-based, and yet sometimes proving ineffective in resolving pain or related issues. This review provides an integrative theoretical framework of excitation-inhibition imbalance for the understanding of current evidence and to address outstanding questions concerning the pathophysiology of migraine. We propose the use of computational modelling for the rigorous formulation of testable hypotheses on mechanisms of homeostatic imbalance and for the development of mechanism-based pharmacological treatments and neurostimulation interventions.
Collapse
Affiliation(s)
- Louise O’Hare
- Division of Psychology, Nottingham Trent University, Nottingham NG1 4FQ, UK
| | - Luca Tarasi
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, Campus di Cesena, Via Rasi e Spinelli, 176, 47521 Cesena, Italy;
| | - Jordi M. Asher
- Department of Psychology, University of Essex, Colchester CO4 3SQ, UK; (J.M.A.); (P.B.H.)
| | - Paul B. Hibbard
- Department of Psychology, University of Essex, Colchester CO4 3SQ, UK; (J.M.A.); (P.B.H.)
| | - Vincenzo Romei
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, Campus di Cesena, Via Rasi e Spinelli, 176, 47521 Cesena, Italy;
- Facultad de Lenguas y Educación, Universidad Antonio de Nebrija, 28015 Madrid, Spain
| |
Collapse
|
4
|
Orekhova EV, Manyukhina VO, Galuta IA, Prokofyev AO, Goiaeva DE, Obukhova TS, Fadeev KA, Schneiderman JF, Stroganova TA. Gamma oscillations point to the role of primary visual cortex in atypical motion processing in autism. PLoS One 2023; 18:e0281531. [PMID: 36780507 PMCID: PMC9925089 DOI: 10.1371/journal.pone.0281531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Neurophysiological studies suggest that abnormal neural inhibition may explain a range of sensory processing differences in autism spectrum disorders (ASD). In particular, the impaired ability of people with ASD to visually discriminate the motion direction of small-size objects and their reduced perceptual suppression of background-like visual motion may stem from deficient surround inhibition within the primary visual cortex (V1) and/or its atypical top-down modulation by higher-tier cortical areas. In this study, we estimate the contribution of abnormal surround inhibition to the motion-processing deficit in ASD. For this purpose, we used a putative correlate of surround inhibition-suppression of the magnetoencephalographic (MEG) gamma response (GR) caused by an increase in the drift rate of a large annular high-contrast grating. The motion direction discrimination thresholds for the gratings of different angular sizes (1° and 12°) were assessed in a separate psychophysical paradigm. The MEG data were collected in 42 boys with ASD and 37 typically developing (TD) boys aged 7-15 years. Psychophysical data were available in 33 and 34 of these participants, respectively. The results showed that the GR suppression in V1 was reduced in boys with ASD, while their ability to detect the direction of motion was compromised only in the case of small stimuli. In TD boys, the GR suppression directly correlated with perceptual suppression caused by increasing stimulus size, thus suggesting the role of the top-down modulations of V1 in surround inhibition. In ASD, weaker GR suppression was associated with the poor directional sensitivity to small stimuli, but not with perceptual suppression. These results strongly suggest that a local inhibitory deficit in V1 plays an important role in the reduction of directional sensitivity in ASD and that this perceptual deficit cannot be explained exclusively by atypical top-down modulation of V1 by higher-tier cortical areas.
Collapse
Affiliation(s)
- Elena V. Orekhova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
- * E-mail:
| | - Viktoriya O. Manyukhina
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
- National Research University Higher School of Economics, Moscow, Russian Federation
| | - Ilia A. Galuta
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Andrey O. Prokofyev
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Dzerassa E. Goiaeva
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Tatiana S. Obukhova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Kirill A. Fadeev
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Justin F. Schneiderman
- MedTech West and the Institute of Neuroscience and Physiology, Sahlgrenska Academy, The University of Gothenburg, Gothenburg, Sweden
| | - Tatiana A. Stroganova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| |
Collapse
|
5
|
Altered visual cortex excitability in premenstrual dysphoric disorder: Evidence from magnetoencephalographic gamma oscillations and perceptual suppression. PLoS One 2022; 17:e0279868. [PMID: 36584199 PMCID: PMC9803314 DOI: 10.1371/journal.pone.0279868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
Premenstrual dysphoric disorder (PMDD) is a psychiatric condition characterized by extreme mood shifts during the luteal phase of the menstrual cycle (MC) due to abnormal sensitivity to neurosteroids and unbalanced neural excitation/inhibition (E/I) ratio. We hypothesized that in women with PMDD in the luteal phase, these factors would alter the frequency of magnetoencephalographic visual gamma oscillations, affect modulation of their power by excitatory drive, and decrease perceptual spatial suppression. Women with PMDD and control women were examined twice-during the follicular and luteal phases of their MC. We recorded visual gamma response (GR) while modulating the excitatory drive by increasing the drift rate of the high-contrast grating (static, 'slow', 'medium', and 'fast'). Contrary to our expectations, GR frequency was not affected in women with PMDD in either phase of the MC. GR power suppression, which is normally associated with a switch from the 'optimal' for GR slow drift rate to the medium drift rate, was reduced in women with PMDD and was the only GR parameter that distinguished them from control participants specifically in the luteal phase and predicted severity of their premenstrual symptoms. Over and above the atypical luteal GR suppression, in both phases of the MC women with PMDD had abnormally strong GR facilitation caused by a switch from the 'suboptimal' static to the 'optimal' slow drift rate. Perceptual spatial suppression did not differ between the groups but decreased from the follicular to the luteal phase only in PMDD women. The atypical modulation of GR power suggests that neuronal excitability in the visual cortex is constitutively elevated in PMDD and that this E/I imbalance is further exacerbated during the luteal phase. However, the unaltered GR frequency does not support the hypothesis of inhibitory neuron dysfunction in PMDD.
Collapse
|
6
|
Manyukhina VO, Prokofyev AO, Galuta IA, Goiaeva DE, Obukhova TS, Schneiderman JF, Altukhov DI, Stroganova TA, Orekhova EV. Globally elevated excitation-inhibition ratio in children with autism spectrum disorder and below-average intelligence. Mol Autism 2022; 13:20. [PMID: 35550191 PMCID: PMC9102291 DOI: 10.1186/s13229-022-00498-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/25/2022] [Indexed: 12/04/2022] Open
Abstract
Background Altered neuronal excitation–inhibition (E–I) balance is strongly implicated in ASD. However, it is not known whether the direction and degree of changes in the E–I ratio in individuals with ASD correlates with intellectual disability often associated with this developmental disorder. The spectral slope of the aperiodic 1/f activity reflects the E–I balance at the scale of large neuronal populations and may uncover its putative alternations in individuals with ASD with and without intellectual disability. Methods Herein, we used magnetoencephalography (MEG) to test whether the 1/f slope would differentiate ASD children with average and below–average (< 85) IQ. MEG was recorded at rest with eyes open/closed in 49 boys with ASD aged 6–15 years with IQ ranging from 54 to 128, and in 49 age-matched typically developing (TD) boys. The cortical source activity was estimated using the beamformer approach and individual brain models. We then extracted the 1/f slope by fitting a linear function to the log–log-scale power spectra in the high-frequency range. Results The global 1/f slope averaged over all cortical sources demonstrated high rank-order stability between the two conditions. Consistent with previous research, it was steeper in the eyes-closed than in the eyes-open condition and flattened with age. Regardless of condition, children with ASD and below-average IQ had flatter slopes than either TD or ASD children with average or above-average IQ. These group differences could not be explained by differences in signal-to-noise ratio or periodic (alpha and beta) activity. Limitations Further research is needed to find out whether the observed changes in E–I ratios are characteristic of children with below-average IQ of other diagnostic groups. Conclusions The atypically flattened spectral slope of aperiodic activity in children with ASD and below-average IQ suggests a shift of the global E–I balance toward hyper-excitation. The spectral slope can provide an accessible noninvasive biomarker of the E–I ratio for making objective judgments about treatment effectiveness in people with ASD and comorbid intellectual disability. Supplementary Information The online version contains supplementary material available at 10.1186/s13229-022-00498-2.
Collapse
Affiliation(s)
- Viktoriya O Manyukhina
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation.,Department of Psychology, National Research University Higher School of Economics, Moscow, Russian Federation
| | - Andrey O Prokofyev
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Ilia A Galuta
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Dzerassa E Goiaeva
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Tatiana S Obukhova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Justin F Schneiderman
- MedTech West and the Institute of Neuroscience and Physiology, Sahlgrenska Academy, The University of Gothenburg, Gothenburg, Sweden
| | - Dmitrii I Altukhov
- Department of Psychology, National Research University Higher School of Economics, Moscow, Russian Federation
| | - Tatiana A Stroganova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Elena V Orekhova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation.
| |
Collapse
|
7
|
Wang H, Wang Z, Zhou Y, Tzvetanov T. Moderate Alcohol Intake Changes Visual Perception by Enhancing V1 Inhibitory Surround Interactions. Front Neurosci 2021; 15:682229. [PMID: 34290580 PMCID: PMC8287857 DOI: 10.3389/fnins.2021.682229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Moderate alcohol consumption is considered to enhance the cortical GABA-ergic inhibitory system and it also variously affects visual perception. However, little behavioral evidence indicates changes of visual perception due to V1 modulated by alcohol intoxication. In this study, we investigated this issue by using center-surround tilt illusion (TI) as a probe of V1 inhibitory interactions, by taking into account possible higher-order effects. Participants conducted TI measures under sober, moderate alcohol intoxication, and placebo states. We found alcohol significantly increased repulsive TI effect and weakened orientation discrimination performance, which is consistent with the increase of lateral inhibition between orientation sensitive V1 neurons caused by alcohol intoxication. We also observed no visible changes in the data for global orientation processing but a presence of global attentional modulation. Thus, our results provide psychophysics evidence that alcohol changed V1 processing, which affects visual perception of contextual stimuli.
Collapse
Affiliation(s)
- Huan Wang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zhengchun Wang
- The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Yifeng Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tzvetomir Tzvetanov
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Anhui Province Key Laboratory of Affective Computing and Advanced Intelligent Machine, School of Computer and Information, Hefei University of Technology, Hefei, China.,NEUROPSYPHY Tzvetomir TZVETANOV EIRL, Horbourg-Wihr, France
| |
Collapse
|
8
|
Manyukhina VO, Rostovtseva EN, Prokofyev AO, Obukhova TS, Schneiderman JF, Stroganova TA, Orekhova EV. Visual gamma oscillations predict sensory sensitivity in females as they do in males. Sci Rep 2021; 11:12013. [PMID: 34103578 PMCID: PMC8187436 DOI: 10.1038/s41598-021-91381-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 05/21/2021] [Indexed: 02/05/2023] Open
Abstract
Gamma oscillations are driven by local cortical excitatory (E)-inhibitory (I) loops and may help to characterize neural processing involving excitatory-inhibitory interactions. In the visual cortex reliable gamma oscillations can be recorded with magnetoencephalography (MEG) in the majority of individuals, which makes visual gamma an attractive candidate for biomarkers of brain disorders associated with E/I imbalance. Little is known, however, about if/how these oscillations reflect individual differences in neural excitability and associated sensory/perceptual phenomena. The power of visual gamma response (GR) changes nonlinearly with increasing stimulation intensity: it increases with transition from static to slowly drifting high-contrast grating and then attenuates with further increase in the drift rate. In a recent MEG study we found that the GR attenuation predicted sensitivity to sensory stimuli in everyday life in neurotypical adult men and in men with autism spectrum disorders. Here, we replicated these results in neurotypical female participants. The GR enhancement with transition from static to slowly drifting grating did not correlate significantly with the sensory sensitivity measures. These findings suggest that weak velocity-related attenuation of the GR is a reliable neural concomitant of visual hypersensitivity and that the degree of GR attenuation may provide useful information about E/I balance in the visual cortex.
Collapse
Affiliation(s)
- Viktoriya O Manyukhina
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
- National Research University Higher School of Economics, Moscow, Russian Federation
| | - Ekaterina N Rostovtseva
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Andrey O Prokofyev
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Tatiana S Obukhova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Justin F Schneiderman
- MedTech West and the Institute of Neuroscience and Physiology, Sahlgrenska Academy, The University of Gothenburg, Gothenburg, Sweden
| | - Tatiana A Stroganova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Elena V Orekhova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation.
- MedTech West and the Institute of Neuroscience and Physiology, Sahlgrenska Academy, The University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
9
|
Zachariou M, Roberts MJ, Lowet E, De Weerd P, Hadjipapas A. Empirically constrained network models for contrast-dependent modulation of gamma rhythm in V1. Neuroimage 2021; 229:117748. [PMID: 33460798 DOI: 10.1016/j.neuroimage.2021.117748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/28/2020] [Accepted: 01/07/2021] [Indexed: 11/29/2022] Open
Abstract
Gamma oscillations are thought to play a key role in neuronal network function and neuronal communication, yet the underlying generating mechanisms have not been fully elucidated to date. At least partly, this may be due to the fact that even in simple network models of interconnected inhibitory (I) and excitatory (E) neurons, many parameters remain unknown and are set based on practical considerations or by convention. Here, we mitigate this problem by requiring PING (Pyramidal Interneuron Network Gamma) models to simultaneously satisfy a broad set of criteria for realistic behaviour based on empirical data spanning both the single unit (spikes) and local population (LFP) levels while unknown parameters are varied. By doing so, we were able to constrain the parameter ranges and select empirically valid models. The derived model constraints implied weak rather than strong PING as the generating mechanism for gamma, connectivity between E and I neurons within specific bounds, and variations of the external input to E but not I neurons. Constrained models showed valid behaviours, including gamma frequency increases with contrast and power saturation or decay at high contrasts. Using an empirically-validated model we studied the route to gamma instability at high contrasts. This involved increased heterogeneity of E neurons with increasing input triggering a breakdown of I neuron pacemaker function. Further, we illustrate the model's capacity to resolve disputes in the literature concerning gamma oscillation properties and GABA conductance proxies. We propose that the models derived in our study will be useful for other modelling studies, and that our approach to the empirical constraining of PING models can be expanded when richer empirical datasets become available. As local gamma networks are the building blocks of larger networks that aim to understand complex cognition through their interactions, there is considerable value in improving our models of these building blocks.
Collapse
Affiliation(s)
- Margarita Zachariou
- Medical School, University of Nicosia, Nicosia 2408, Cyprus; Bioinformatics Department, Cyprus Institute of Neurology and Genetics, Nicosia 1683, Cyprus.
| | - Mark J Roberts
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht 6229 ER, The Netherlands
| | - Eric Lowet
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Peter De Weerd
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht 6229 ER, The Netherlands; Maastricht Centre for Systems Biology (MaCSBio), Faculty of Science and Engineering, Maastricht University, Maastricht 6229 ER, the Netherlands
| | | |
Collapse
|