1
|
Tabrik S, Dinse HR, Tegenthoff M, Behroozi M. Resting-State Network Plasticity Following Category Learning Depends on Sensory Modality. Hum Brain Mapp 2024; 45:e70111. [PMID: 39720915 PMCID: PMC11669188 DOI: 10.1002/hbm.70111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/25/2024] [Accepted: 12/08/2024] [Indexed: 12/26/2024] Open
Abstract
Learning new categories is fundamental to cognition, occurring in daily life through various sensory modalities. However, it is not well known how acquiring new categories can modulate the brain networks. Resting-state functional connectivity is an effective method for detecting short-term brain alterations induced by various modality-based learning experiences. Using fMRI, our study investigated the intricate link between novel category learning and brain network reorganization. Eighty-four adults participated in an object categorization experiment utilizing visual (n = 41, with 20 females and a mean age of 23.91 ± 3.11 years) or tactile (n = 43, with 21 females and a mean age of 24.57 ± 2.58 years) modalities. Resting-state networks (RSNs) were identified using independent component analysis across the group of participants, and their correlation with individual differences in object category learning across modalities was examined using dual regression. Our results reveal an increased functional connectivity of the frontoparietal network with the left superior frontal gyrus in visual category learning task and with the right superior occipital gyrus and the left middle temporal gyrus after tactile category learning. Moreover, the somatomotor network demonstrated an increased functional connectivity with the left parahippocampus exclusively after tactile category learning. These findings illuminate the neural mechanisms of novel category learning, emphasizing distinct brain networks' roles in diverse modalities. The dynamic nature of RSNs emphasizes the ongoing adaptability of the brain, which is essential for efficient novel object category learning. This research provides valuable insights into the dynamic interplay between sensory learning, brain plasticity, and network reorganization, advancing our understanding of cognitive processes across different modalities.
Collapse
Affiliation(s)
- Sepideh Tabrik
- Department of NeurologyBG‐University Hospital Bergmannsheil, Ruhr University BochumBochumGermany
| | - Hubert R. Dinse
- Department of NeurologyBG‐University Hospital Bergmannsheil, Ruhr University BochumBochumGermany
| | - Martin Tegenthoff
- Department of NeurologyBG‐University Hospital Bergmannsheil, Ruhr University BochumBochumGermany
| | - Mehdi Behroozi
- Institute of Cognitive Neuroscience, Department of Biopsychology, Faculty of PsychologyRuhr University BochumBochumGermany
| |
Collapse
|
2
|
Wei W, Benn RA, Scholz R, Shevchenko V, Klatzmann U, Alberti F, Chiou R, Wassermann D, Vanderwal T, Smallwood J, Margulies DS. A function-based mapping of sensory integration along the cortical hierarchy. Commun Biol 2024; 7:1593. [PMID: 39613829 PMCID: PMC11607388 DOI: 10.1038/s42003-024-07224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 11/06/2024] [Indexed: 12/01/2024] Open
Abstract
Sensory information mainly travels along a hierarchy spanning unimodal to transmodal regions, forming multisensory integrative representations crucial for higher-order cognitive functions. Here, we develop an fMRI based two-dimensional framework to characterize sensory integration based on the anchoring role of the primary cortex in the organization of sensory processing. Sensory magnitude captures the percentage of variance explained by three primary sensory signals and decreases as the hierarchy ascends, exhibiting strong similarity to the known hierarchy and high stability across different conditions. Sensory angle converts associations with three primary sensory signals to an angle representing the proportional contributions of different sensory modalities. This dimension identifies differences between brain states and emphasizes how sensory integration changes flexibly in response to varying cognitive demands. Furthermore, meta-analytic functional decoding with our model highlights the close relationship between cognitive functions and sensory integration, showing its potential for future research of human cognition through sensory information processing.
Collapse
Affiliation(s)
- Wei Wei
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France.
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| | - R Austin Benn
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Robert Scholz
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Max Planck School of Cognition, Leipzig, Germany
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
| | - Victoria Shevchenko
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Ulysse Klatzmann
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Francesco Alberti
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Rocco Chiou
- School of Psychology, University of Surrey, Surrey, United Kingdom
| | | | - Tamara Vanderwal
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
| | | | - Daniel S Margulies
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France.
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
3
|
Royer J, Paquola C, Valk SL, Kirschner M, Hong SJ, Park BY, Bethlehem RAI, Leech R, Yeo BTT, Jefferies E, Smallwood J, Margulies D, Bernhardt BC. Gradients of Brain Organization: Smooth Sailing from Methods Development to User Community. Neuroinformatics 2024; 22:623-634. [PMID: 38568476 DOI: 10.1007/s12021-024-09660-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 11/21/2024]
Abstract
Multimodal neuroimaging grants a powerful in vivo window into the structure and function of the human brain. Recent methodological and conceptual advances have enabled investigations of the interplay between large-scale spatial trends - or gradients - in brain structure and function, offering a framework to unify principles of brain organization across multiple scales. Strong community enthusiasm for these techniques has been instrumental in their widespread adoption and implementation to answer key questions in neuroscience. Following a brief review of current literature on this framework, this perspective paper will highlight how pragmatic steps aiming to make gradient methods more accessible to the community propelled these techniques to the forefront of neuroscientific inquiry. More specifically, we will emphasize how interest for gradient methods was catalyzed by data sharing, open-source software development, as well as the organization of dedicated workshops led by a diverse team of early career researchers. To this end, we argue that the growing excitement for brain gradients is the result of coordinated and consistent efforts to build an inclusive community and can serve as a case in point for future innovations and conceptual advances in neuroinformatics. We close this perspective paper by discussing challenges for the continuous refinement of neuroscientific theory, methodological innovation, and real-world translation to maintain our collective progress towards integrated models of brain organization.
Collapse
Affiliation(s)
- Jessica Royer
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.
| | - Casey Paquola
- Institute for Neuroscience and Medicine (INM-7), Forschungszentrum Jülich, Jülich, Germany
| | - Sofie L Valk
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Matthias Kirschner
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Thonex, Switzerland
| | - Seok-Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Center for the Developing Brain, Child Mind Institute, New York, USA
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Bo-Yong Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Data Science, Inha University, Incheon, South Korea
- Department of Statistics and Data Science, Inha University, Incheon, South Korea
| | | | - Robert Leech
- Centre for Neuroimaging Science, King's College London, London, UK
| | - B T Thomas Yeo
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | | | | | - Daniel Margulies
- Integrative Neuroscience and Cognition Center (UMR 8002), Centre National de la Recherche Scientifique (CNRS), Université de Paris, Paris, France
| | - Boris C Bernhardt
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
4
|
Niu M, Rapan L, Froudist-Walsh S, Zhao L, Funck T, Amunts K, Palomero-Gallagher N. Multimodal mapping of macaque monkey somatosensory cortex. Prog Neurobiol 2024; 239:102633. [PMID: 38830482 DOI: 10.1016/j.pneurobio.2024.102633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/19/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
The somatosensory cortex is a brain region responsible for receiving and processing sensory information from across the body and is structurally and functionally heterogeneous. Since the chemoarchitectonic segregation of the cerebral cortex can be revealed by transmitter receptor distribution patterns, by using a quantitative multireceptor architectonical analysis, we determined the number and extent of distinct areas of the macaque somatosensory cortex. We identified three architectonically distinct cortical entities within the primary somatosensory cortex (i.e., 3bm, 3bli, 3ble), four within the anterior parietal cortex (i.e., 3am, 3al, 1 and 2) and six subdivisions (i.e., S2l, S2m, PVl, PVm, PRl and PRm) within the lateral fissure. We provide an ultra-high resolution 3D atlas of macaque somatosensory areas in stereotaxic space, which integrates cyto- and receptor architectonic features of identified areas. Multivariate analyses of the receptor fingerprints revealed four clusters of identified areas based on the degree of (dis)similarity of their receptor architecture. Each of these clusters can be associated with distinct levels of somatosensory processing, further demonstrating that the functional segregation of cortical areas is underpinned by differences in their molecular organization.
Collapse
Affiliation(s)
- Meiqi Niu
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
| | - Lucija Rapan
- C. & O. Vogt Institute of Brain Research, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Seán Froudist-Walsh
- Bristol Computational Neuroscience Unit, Faculty of Engineering, University of Bristol, Bristol, UK
| | - Ling Zhao
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Thomas Funck
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; C. & O. Vogt Institute of Brain Research, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; C. & O. Vogt Institute of Brain Research, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
5
|
Tauste Campo A, Zainos A, Vázquez Y, Adell Segarra R, Álvarez M, Deco G, Díaz H, Parra S, Romo R, Rossi-Pool R. Thalamocortical interactions shape hierarchical neural variability during stimulus perception. iScience 2024; 27:110065. [PMID: 38993679 PMCID: PMC11237863 DOI: 10.1016/j.isci.2024.110065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/03/2024] [Accepted: 05/17/2024] [Indexed: 07/13/2024] Open
Abstract
The brain is organized hierarchically to process sensory signals. But, how do functional connections within and across areas contribute to this hierarchical order? We addressed this problem in the thalamocortical network, while monkeys detected vibrotactile stimulus. During this task, we quantified neural variability and directed functional connectivity in simultaneously recorded neurons sharing the cutaneous receptive field within and across VPL and areas 3b and 1. Before stimulus onset, VPL and area 3b exhibited similar fast dynamics while area 1 showed slower timescales. During the stimulus presence, inter-trial neural variability increased along the network VPL-3b-1 while VPL established two main feedforward pathways with areas 3b and 1 to process the stimulus. This lower variability of VPL and area 3b was found to regulate feedforward thalamocortical pathways. Instead, intra-cortical interactions were only anticipated by higher intrinsic timescales in area 1. Overall, our results provide evidence of hierarchical functional roles along the thalamocortical network.
Collapse
Affiliation(s)
- Adrià Tauste Campo
- Computational Biology and Complex Systems group, Department of Physics, Universitat Politècnica de Catalunya, Avinguda Dr. Marañón, 44-50, 08028 Barcelona, Catalonia, Spain
| | - Antonio Zainos
- Instituto de Fisiología Celular–Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Yuriria Vázquez
- Instituto de Fisiología Celular–Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Raul Adell Segarra
- Computational Biology and Complex Systems group, Department of Physics, Universitat Politècnica de Catalunya, Avinguda Dr. Marañón, 44-50, 08028 Barcelona, Catalonia, Spain
| | - Manuel Álvarez
- Instituto de Fisiología Celular–Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Gustavo Deco
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Carrer Trias I Fargas 25-27, 08005 Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Héctor Díaz
- Instituto de Fisiología Celular–Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Sergio Parra
- Instituto de Fisiología Celular–Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | - Román Rossi-Pool
- Instituto de Fisiología Celular–Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
6
|
Kusnir F, Pesin S, Landau AN. Hello from the other side: Robust contralateral interference in tactile detection. Atten Percept Psychophys 2024; 86:295-311. [PMID: 37872432 PMCID: PMC10769913 DOI: 10.3758/s13414-023-02801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2023] [Indexed: 10/25/2023]
Abstract
Touch is unique among the sensory modalities in that our tactile receptors are spread across the body surface and continuously receive different inputs at the same time. These inputs vary in type, properties, relevance according to current goals, and, of course, location on the body. Sometimes, they must be integrated, and other times set apart and distinguished. Here, we investigate how simultaneous stimulation to different body sites affects tactile cognition. Specifically, we characterized the impact of irrelevant tactile sensations on tactile change detection. To this end, we embedded detection targets amidst ongoing performance, akin to the conditions encountered in everyday life, where we are constantly confronted with new events within ongoing stimuli. In the set of experiments presented here, participants detected a brief intensity change (.04 s) within an ongoing vibrotactile stimulus (1.6 s) that was always presented in a constantly attended location. The intensity change (i.e., the detection target) varied parametrically, from hardly detectable to easily detectable. In half of the trials, irrelevant ongoing stimulation was simultaneously presented to a site across the body midline, but participants were instructed to ignore it. In line with previous bimanual studies employing brief onset targets, we document robust interference on performance due to the irrelevant stimulation at each of the measured body sites (homologous and nonhomologous fingers, and the contralateral ankle). After describing this basic phenomenon, we further examine the conditions under which such interference occurs in three additional tasks. In each task, we honed in on a different aspect of the stimulation protocol (e.g., hand distance, the strength of the irrelevant stimulation, the detection target itself) in order to better understand the principles governing the observed interference effects. Our findings suggest a minimal role for exogenous attentional capture in producing the observed interference effects (Exp. 2), and a principled distribution of attentional resources or sensory integration between body sides (Exps. 3, 4). In our last study (Exp. 4), we presented bilateral tactile targets of varying intensities to both the relevant and irrelevant stimulation sites. We then characterized the degree to which the irrelevant stimulation is also processed. Our results-that participants' perception of target intensity is always proportional to the combined bilateral signal-suggest that both body sites are equally weighed and processed despite clear instructions to attend only the target site. In light of this observation and participants' inability to use selection processes to guide their perception, we propose that bilateral tactile inputs are automatically combined, quite possibly early in the hierarchy of somatosensory processing.
Collapse
Affiliation(s)
- Flor Kusnir
- Departments of Psychology and Cognitive Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Slav Pesin
- Departments of Psychology and Cognitive Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ayelet N Landau
- Departments of Psychology and Cognitive Science, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
7
|
Brewer AA, Barton B. Cortical field maps across human sensory cortex. Front Comput Neurosci 2023; 17:1232005. [PMID: 38164408 PMCID: PMC10758003 DOI: 10.3389/fncom.2023.1232005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/07/2023] [Indexed: 01/03/2024] Open
Abstract
Cortical processing pathways for sensory information in the mammalian brain tend to be organized into topographical representations that encode various fundamental sensory dimensions. Numerous laboratories have now shown how these representations are organized into numerous cortical field maps (CMFs) across visual and auditory cortex, with each CFM supporting a specialized computation or set of computations that underlie the associated perceptual behaviors. An individual CFM is defined by two orthogonal topographical gradients that reflect two essential aspects of feature space for that sense. Multiple adjacent CFMs are then organized across visual and auditory cortex into macrostructural patterns termed cloverleaf clusters. CFMs within cloverleaf clusters are thought to share properties such as receptive field distribution, cortical magnification, and processing specialization. Recent measurements point to the likely existence of CFMs in the other senses, as well, with topographical representations of at least one sensory dimension demonstrated in somatosensory, gustatory, and possibly olfactory cortical pathways. Here we discuss the evidence for CFM and cloverleaf cluster organization across human sensory cortex as well as approaches used to identify such organizational patterns. Knowledge of how these topographical representations are organized across cortex provides us with insight into how our conscious perceptions are created from our basic sensory inputs. In addition, studying how these representations change during development, trauma, and disease serves as an important tool for developing improvements in clinical therapies and rehabilitation for sensory deficits.
Collapse
Affiliation(s)
- Alyssa A. Brewer
- mindSPACE Laboratory, Departments of Cognitive Sciences and Language Science (by Courtesy), Center for Hearing Research, University of California, Irvine, Irvine, CA, United States
| | - Brian Barton
- mindSPACE Laboratory, Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
8
|
Shaffer C, Barrett LF, Quigley KS. Signal processing in the vagus nerve: Hypotheses based on new genetic and anatomical evidence. Biol Psychol 2023; 182:108626. [PMID: 37419401 PMCID: PMC10563766 DOI: 10.1016/j.biopsycho.2023.108626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Each organism must regulate its internal state in a metabolically efficient way as it interacts in space and time with an ever-changing and only partly predictable world. Success in this endeavor is largely determined by the ongoing communication between brain and body, and the vagus nerve is a crucial structure in that dialogue. In this review, we introduce the novel hypothesis that the afferent vagus nerve is engaged in signal processing rather than just signal relay. New genetic and structural evidence of vagal afferent fiber anatomy motivates two hypotheses: (1) that sensory signals informing on the physiological state of the body compute both spatial and temporal viscerosensory features as they ascend the vagus nerve, following patterns found in other sensory architectures, such as the visual and olfactory systems; and (2) that ascending and descending signals modulate one another, calling into question the strict segregation of sensory and motor signals, respectively. Finally, we discuss several implications of our two hypotheses for understanding the role of viscerosensory signal processing in predictive energy regulation (i.e., allostasis) as well as the role of metabolic signals in memory and in disorders of prediction (e.g., mood disorders).
Collapse
Affiliation(s)
- Clare Shaffer
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA.
| | - Lisa Feldman Barrett
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Karen S Quigley
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA.
| |
Collapse
|
9
|
Oldehinkel M, Tiego J, Sabaroedin K, Chopra S, Francey SM, O'Donoghue B, Cropley V, Nelson B, Graham J, Baldwin L, Yuen HP, Allott K, Alvarez-Jimenez M, Harrigan S, Pantelis C, Wood SJ, McGorry P, Bellgrove MA, Fornito A. Gradients of striatal function in antipsychotic-free first-episode psychosis and schizotypy. Transl Psychiatry 2023; 13:128. [PMID: 37072388 PMCID: PMC10113219 DOI: 10.1038/s41398-023-02417-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/20/2023] Open
Abstract
Both psychotic illness and subclinical psychosis-like experiences (PLEs) have been associated with cortico-striatal dysfunction. This work has largely relied on a discrete parcellation of the striatum into distinct functional areas, but recent evidence suggests that the striatum comprises multiple overlapping and smoothly varying gradients (i.e., modes) of functional organization. Here, we investigated two of these functional connectivity modes, previously associated with variations in the topographic patterning of cortico-striatal connectivity (first-order gradient), and dopaminergic innervation of the striatum (second-order gradient), and assessed continuities in striatal function from subclinical to clinical domains. We applied connectopic mapping to resting-state fMRI data to obtain the first-order and second-order striatal connectivity modes in two distinct samples: (1) 56 antipsychotic-free patients (26 females) with first-episode psychosis (FEP) and 27 healthy controls (17 females); and (2) a community-based cohort of 377 healthy individuals (213 females) comprehensively assessed for subclinical PLEs and schizotypy. The first-order "cortico-striatal" and second-order "dopaminergic" connectivity gradients were significantly different in FEP patients compared to controls bilaterally. In the independent sample of healthy individuals, variations in the left first-order "cortico-striatal" connectivity gradient were associated with inter-individual differences in a factor capturing general schizotypy and PLE severity. The presumed cortico-striatal connectivity gradient was implicated in both subclinical and clinical cohorts, suggesting that variations in its organization may represent a neurobiological trait marker across the psychosis continuum. Disruption of the presumed dopaminergic gradient was only noticeable in patients, suggesting that neurotransmitter dysfunction may be more apparent to clinical illness.
Collapse
Affiliation(s)
- Marianne Oldehinkel
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Clayton, Australia.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands.
| | - Jeggan Tiego
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Kristina Sabaroedin
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Sidhant Chopra
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Shona M Francey
- Orygen Youth Health, Parkville, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | | | - Vanessa Cropley
- Orygen Youth Health, Parkville, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | - Barnaby Nelson
- Orygen Youth Health, Parkville, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | | | - Lara Baldwin
- Orygen Youth Health, Parkville, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | | | - Kelly Allott
- Orygen Youth Health, Parkville, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | - Mario Alvarez-Jimenez
- Orygen Youth Health, Parkville, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | - Susy Harrigan
- Department of Social Work, Monash University, Melbourne, Australia
- Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Stephen J Wood
- Orygen Youth Health, Parkville, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, Australia
- School of Psychology, University of Birmingham, Birmingham, UK
| | - Patrick McGorry
- Orygen Youth Health, Parkville, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Mark A Bellgrove
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Clayton, Australia
| |
Collapse
|
10
|
Muret D, Root V, Kieliba P, Clode D, Makin TR. Beyond body maps: Information content of specific body parts is distributed across the somatosensory homunculus. Cell Rep 2022; 38:110523. [PMID: 35294887 PMCID: PMC8938902 DOI: 10.1016/j.celrep.2022.110523] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/10/2021] [Accepted: 02/21/2022] [Indexed: 11/23/2022] Open
Abstract
The homunculus in primary somatosensory cortex (S1) is famous for its body part selectivity, but this dominant feature may eclipse other representational features, e.g., information content, also relevant for S1 organization. Using multivariate fMRI analysis, we ask whether body part information content can be identified in S1 beyond its primary region. Throughout S1, we identify significant representational dissimilarities between body parts but also subparts in distant non-primary regions (e.g., between the hand and the lips in the foot region and between different face parts in the foot region). Two movements performed by one body part (e.g., the hand) could also be dissociated well beyond its primary region (e.g., in the foot and face regions), even within Brodmann area 3b. Our results demonstrate that information content is more distributed across S1 than selectivity maps suggest. This finding reveals underlying information contents in S1 that could be harnessed for rehabilitation and brain-machine interfaces.
Collapse
Affiliation(s)
- Dollyane Muret
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK.
| | - Victoria Root
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK; Wellcome Centre of Integrative Neuroimaging, University of Oxford, Oxford OX3 9DU, UK
| | - Paulina Kieliba
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK
| | - Danielle Clode
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK; Dani Clode Design, 40 Hillside Road, London SW2 3HW, UK
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK; Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3AR, UK
| |
Collapse
|
11
|
Bernhardt BC, Smallwood J, Keilholz S, Margulies DS. Gradients in Brain Organization. Neuroimage 2022; 251:118987. [PMID: 35151850 DOI: 10.1016/j.neuroimage.2022.118987] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | | | - Shella Keilholz
- Biomedical Engineering, Emory University / Georgia Institute of Technology, Atlanta, Georgia
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center, Centre National de la Recherche Scientifique (CNRS) and Université de Paris, Paris, France
| |
Collapse
|
12
|
Oldehinkel M, Llera A, Faber M, Huertas I, Buitelaar JK, Bloem BR, Marquand AF, Helmich R, Haak KV, Beckmann CF. Mapping dopaminergic projections in the human brain with resting-state fMRI. eLife 2022; 11:71846. [PMID: 35113016 PMCID: PMC8843090 DOI: 10.7554/elife.71846] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/26/2022] [Indexed: 12/02/2022] Open
Abstract
The striatum receives dense dopaminergic projections, making it a key region of the dopaminergic system. Its dysfunction has been implicated in various conditions including Parkinson’s disease (PD) and substance use disorder. However, the investigation of dopamine-specific functioning in humans is problematic as current MRI approaches are unable to differentiate between dopaminergic and other projections. Here, we demonstrate that ‘connectopic mapping’ – a novel approach for characterizing fine-grained, overlapping modes of functional connectivity – can be used to map dopaminergic projections in striatum. We applied connectopic mapping to resting-state functional MRI data of the Human Connectome Project (population cohort; N = 839) and selected the second-order striatal connectivity mode for further analyses. We first validated its specificity to dopaminergic projections by demonstrating a high spatial correlation (r = 0.884) with dopamine transporter availability – a marker of dopaminergic projections – derived from DaT SPECT scans of 209 healthy controls. Next, we obtained the subject-specific second-order modes from 20 controls and 39 PD patients scanned under placebo and under dopamine replacement therapy (L-DOPA), and show that our proposed dopaminergic marker tracks PD diagnosis, symptom severity, and sensitivity to L-DOPA. Finally, across 30 daily alcohol users and 38 daily smokers, we establish strong associations with self-reported alcohol and nicotine use. Our findings provide evidence that the second-order mode of functional connectivity in striatum maps onto dopaminergic projections, tracks inter-individual differences in PD symptom severity and L-DOPA sensitivity, and exhibits strong associations with levels of nicotine and alcohol use, thereby offering a new biomarker for dopamine-related (dys)function in the human brain.
Collapse
Affiliation(s)
- Marianne Oldehinkel
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Alberto Llera
- Donders Institute for Brain, Cognition and Behaviour, Radboud, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Myrthe Faber
- Donders Institute for Brain, Cognition and Behaviour, Radboud, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Ismael Huertas
- Institute of Biomedicine of Seville (IBiS), Seville, Spain
| | - Jan K Buitelaar
- Donders Institute for Brain, Cognition and Behaviour, Radboud, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bastiaan R Bloem
- Department of Neurology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Andre F Marquand
- Donders Institute for Brain, Cognition and Behaviour, Radboud, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Rick Helmich
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Koen V Haak
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Christian F Beckmann
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| |
Collapse
|
13
|
Wang L, Ma L, Yang J, Wu J. Human Somatosensory Processing and Artificial Somatosensation. CYBORG AND BIONIC SYSTEMS 2021; 2021:9843259. [PMID: 36285142 PMCID: PMC9494715 DOI: 10.34133/2021/9843259] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/30/2021] [Indexed: 11/06/2022] Open
Abstract
In the past few years, we have gained a better understanding of the information processing mechanism in the human brain, which has led to advances in artificial intelligence and humanoid robots. However, among the various sensory systems, studying the somatosensory system presents the greatest challenge. Here, we provide a comprehensive review of the human somatosensory system and its corresponding applications in artificial systems. Due to the uniqueness of the human hand in integrating receptor and actuator functions, we focused on the role of the somatosensory system in object recognition and action guidance. First, the low-threshold mechanoreceptors in the human skin and somatotopic organization principles along the ascending pathway, which are fundamental to artificial skin, were summarized. Second, we discuss high-level brain areas, which interacted with each other in the haptic object recognition. Based on this close-loop route, we used prosthetic upper limbs as an example to highlight the importance of somatosensory information. Finally, we present prospective research directions for human haptic perception, which could guide the development of artificial somatosensory systems.
Collapse
Affiliation(s)
- Luyao Wang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Lihua Ma
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Jiajia Yang
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Jinglong Wu
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| |
Collapse
|
14
|
Invariant timescale hierarchy across the cortical somatosensory network. Proc Natl Acad Sci U S A 2021; 118:2021843118. [PMID: 33431695 PMCID: PMC7826380 DOI: 10.1073/pnas.2021843118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The ability of cortical networks to integrate information from different sources is essential for cognitive processes. On one hand, sensory areas exhibit fast dynamics often phase-locked to stimulation; on the other hand, frontal lobe areas with slow response latencies to stimuli must integrate and maintain information for longer periods. Thus, cortical areas may require different timescales depending on their functional role. Studying the cortical somatosensory network while monkeys discriminated between two vibrotactile stimulus patterns, we found that a hierarchical order could be established across cortical areas based on their intrinsic timescales. Further, even though subareas (areas 3b, 1, and 2) of the primary somatosensory (S1) cortex exhibit analogous firing rate responses, a clear differentiation was observed in their timescales. Importantly, we observed that this inherent timescale hierarchy was invariant between task contexts (demanding vs. nondemanding). Even if task context severely affected neural coding in cortical areas downstream to S1, their timescales remained unaffected. Moreover, we found that these time constants were invariant across neurons with different latencies or coding. Although neurons had completely different dynamics, they all exhibited comparable timescales within each cortical area. Our results suggest that this measure is demonstrative of an inherent characteristic of each cortical area, is not a dynamical feature of individual neurons, and does not depend on task demands.
Collapse
|