1
|
Morgan AM, Devinsky O, Doyle WK, Dugan P, Friedman D, Flinker A. Decoding words during sentence production with ECoG reveals syntactic role encoding and structure-dependent temporal dynamics. COMMUNICATIONS PSYCHOLOGY 2025; 3:87. [PMID: 40461573 PMCID: PMC12133590 DOI: 10.1038/s44271-025-00270-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 05/19/2025] [Indexed: 06/11/2025]
Abstract
Sentence production is the uniquely human ability to transform complex thoughts into strings of words. Despite the importance of this process, language production research has primarily focused on single words. It remains a largely untested assumption that the principles of word production generalize to more naturalistic utterances like sentences. Here, we investigate this using high-resolution neurosurgical recordings (ECoG) and an overt production experiment where ten patients produced six words in isolation (picture naming) and in sentences (scene description). We trained machine learning classifiers to identify the unique brain activity patterns for each word during picture naming, and used these patterns to decode which words patients were processing while they produced sentences. Our findings confirm that words share cortical representations across tasks, but reveal a division of labor within the language network. In sensorimotor cortex, words were consistently activated in the order in which they were said in the sentence. However, in prefrontal cortex, the order in which words were processed depended on the syntactic structure of the sentence. In non-canonical sentences (passives), we further observed a spatial code for syntactic roles, with subjects selectively encoded in inferior frontal gyrus (IFG) and objects selectively encoded in middle frontal gyrus (MFG). We suggest that these complex dynamics of prefrontal cortex may impose a subtle pressure on language evolution, potentially explaining why nearly all the world's languages position subjects before objects.
Collapse
Affiliation(s)
- Adam M Morgan
- Neurology Department, NYU Grossman School of Medicine, New York, NY, USA.
| | - Orrin Devinsky
- Neurosurgery Department, NYU Grossman School of Medicine, New York, NY, USA
| | - Werner K Doyle
- Neurology Department, NYU Grossman School of Medicine, New York, NY, USA
| | - Patricia Dugan
- Neurology Department, NYU Grossman School of Medicine, New York, NY, USA
| | - Daniel Friedman
- Neurology Department, NYU Grossman School of Medicine, New York, NY, USA
| | - Adeen Flinker
- Neurology Department, NYU Grossman School of Medicine, New York, NY, USA
- Biomedical Engineering Department, NYU Tandon School of Engineering, New York, NY, USA
| |
Collapse
|
2
|
Xu M, Zhang B, Chen Y, Zhang Q, Tan Z, Li Y, Kong Q, Zhang L, He J, Wang H, Xie W, Gao Y, Chang J. An innovation scalp acupuncture prescription for post-stroke aphasia: A neuroimaging-based validation study. Brain Res Bull 2025; 225:111334. [PMID: 40194668 DOI: 10.1016/j.brainresbull.2025.111334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 02/07/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025]
Abstract
BACKGROUND AND OBJECTIVE The coexistence of speech disorders in stroke patients can negatively impact their quality of life and rehabilitation outcomes. Scalp acupuncture (SA) has shown potential as a non-pharmacological treatment for post-stroke aphasia (PSA). As the location of SA in PSA treatment is controversial, this study aims to utilize neuroimaging techniques for identifying and validation the promising target. METHODS The study was divided into two phases. In phase Ⅰ, three pipelines, including lesion mapping, meta-analysis, and resting-state functional connectivity, were integrated for identifying the potential targets. In phase Ⅱ, Centro-square needling manipulations were then applied to evaluate the SA prescription in patients with PSA. RESULTS The left middle temporal gyrus (MTG) was chosen as one of the promising targets as it had the highest occurrence among the outcomes of three pipelines. It has been discovered that the Centro-square needling technique applied to the left MTG can immediately enhance the reduced functional connectivity (FC) between the left MTG and the middle frontal gyrus caused by diseases. Moreover, it enhances the FC between the left MTG and the superior temporal gyrus, which may constitute the therapeutic mechanism underlying its efficacy in improving the verb understanding scores on the Chinese Rehabilitation Research Center Standard Aphasia Examination scale. CONCLUSIONS In summary, the SA protocol integrating traditional Chinese medicine and neuroimaging may help refine the locations for the treatment of PSA.
Collapse
Affiliation(s)
- Minjie Xu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Hearing and Language Rehabilitation Department, China Rehabilitation Research Center, Beijing, China
| | - Binlong Zhang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhang Chen
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qingsu Zhang
- Hearing and Language Rehabilitation Department, China Rehabilitation Research Center, Beijing, China
| | - Zhongjian Tan
- Radiological Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanli Li
- Traditional Chinese Medicine Department, China Rehabilitation Research Center, Beijing, China
| | - Qiao Kong
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - LeYi Zhang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Junyi He
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haifang Wang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Xie
- Good Clinical Practice Office, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Ying Gao
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Jingling Chang
- Hearing and Language Rehabilitation Department, China Rehabilitation Research Center, Beijing, China.
| |
Collapse
|
3
|
Yeaton JD. The neurobiology of sentence production: A narrative review and meta-analysis. BRAIN AND LANGUAGE 2025; 264:105549. [PMID: 39983635 DOI: 10.1016/j.bandl.2025.105549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/13/2025] [Accepted: 02/05/2025] [Indexed: 02/23/2025]
Abstract
Although there is a sizeable body of literature on sentence comprehension and processing both in healthy and disordered language users, the literature on sentence production remains much more sparse. Linguistic and computational descriptions of expressive syntactic deficits in aphasia are especially rare. In addition, the neuroimaging and (psycho) linguistic literatures operate largely separately. In this paper, I will first lay out the theoretical lay of the land with regard to psycholinguistic models of sentence production. I will then provide a brief narrative overview and large-scale meta-analysis of the neuroimaging literature as it pertains to syntactic computation, followed by an attempt to integrate the psycholinguistic models with the findings from functional and clinical neuroimaging. Finally, I provide a brief overview of the literature surrounding expressive syntactic deficits and propose a path forward to close some of the existing gaps.
Collapse
|
4
|
Beber S, Capasso R, Maffei C, Tettamanti M, Miceli G. Distinct neural correlates of morphosyntactic and thematic comprehension processes in aphasia. Brain Commun 2025; 7:fcaf093. [PMID: 40129862 PMCID: PMC11930358 DOI: 10.1093/braincomms/fcaf093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/19/2024] [Accepted: 02/24/2025] [Indexed: 03/26/2025] Open
Abstract
Functional neuroimaging studies in neurotypical subjects correlate sentence comprehension to a left fronto-temporo-parietal network. Recent voxel-based lesion-symptom mapping (VLSM) studies of aphasia confirm the link between sentence comprehension and a left posterior region including the angular gyrus, the supra-marginal gyrus and the postero-superior division of the temporal lobe but support left pre-frontal involvement inconsistently. However, these studies focus on thematic role assignment without considering morphosyntactic processes. Hence, available VLSM evidence could provide a partial view of the neurofunctional substrate of sentence comprehension. In the present VLSM study, both morphosyntactic and thematic processes were evaluated systematically and in the same sentence types in each participant, to provide a more detailed picture of the sentence comprehension network. Participants (33 patients with post-stroke aphasia and 90 healthy controls) completed a sentence-picture matching task in which active and passive, declarative reversible sentences were paired with morphosyntactic, thematic and lexical-semantic alternatives. Phonological short-term memory tasks were also administered. Aphasic participants were selected from an initial pool of 70 because they scored below norm on thematic foils (n = 18) or on thematic and morphological foils (n = 15), but within the norm on lexical-semantic foils. The neurofunctional correlates of morphosyntactic and thematic processes were starkly distinguishable. Pre-frontal areas including the inferior and middle frontal gyrus were involved directly in processing local morphosyntactic features and only indirectly in thematic processes. When these areas were damaged, morphosyntactic errors always co-occurred with thematic errors, probably because morphosyntactic damage disrupts the assignment of grammatical roles and ultimately that of thematic roles. Morphosyntactic errors were not influenced by word order canonicity. In contrast, selective thematic role reversals were linked to temporal and parietal damage and were significantly influenced by word order, occurring on passive more than on active sentences. An area including the angular and supra-marginal gyrus was critical for processing non-canonical word order. In sentence comprehension, pre-frontal regions are critical for processing local morphosyntactic features (at least in simple declarative sentences). Temporal and parietal regions are critical for thematic processes. Postero-superior temporal areas are involved in retrieving verb argument structure. Parietal areas are critical for assigning morphosyntactically analysed constituents to the appropriate thematic role, thus serving a crucial function in thematic re-analysis. Each area plays a prevailing but not exclusive role in these processes, interacting with other areas in the network and possibly providing both the language-specific and the domain-general resources needed at various stages of sentence comprehension.
Collapse
Affiliation(s)
- Sabrina Beber
- Center for Mind/Brain Sciences—CIMeC, University of Trento, Rovereto 38068, Italy
| | | | - Chiara Maffei
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston 02129, MA, USA
| | - Marco Tettamanti
- Department of Psychology, University of Milano-Bicocca, Milano 20126, Italy
| | - Gabriele Miceli
- Center for Mind/Brain Sciences—CIMeC, University of Trento, Rovereto 38068, Italy
- Brain Associates, Roma 00195, Italy
| |
Collapse
|
5
|
Li R, Foland-Ross LC, Jordan T, Marzelli MJ, Ross JL, Reiss AL. Associations between brain network, puberty, and behaviors in boys with Klinefelter syndrome. Eur Child Adolesc Psychiatry 2025; 34:585-597. [PMID: 38904702 PMCID: PMC11662083 DOI: 10.1007/s00787-024-02501-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Klinefelter syndrome (KS), also referred to as XXY syndrome, is a significant but inadequately studied risk factor for neuropsychiatric disability. Whether alterations in functional brain connectivity or pubertal delays are associated with aberrant cognitive-behavioral outcomes in individuals with KS is largely unknown. In this observational study, we investigated KS-related alterations in the resting-state brain network, testosterone level, and cognitive-behavioral impairment in adolescents with Klinefelter syndrome. METHODS We recruited 46 boys with KS, ages 8 to 17 years, and 51 age-matched typically developing (TD) boys. All participants underwent resting-state functional magnetic resonance imaging scans, pubertal, and cognitive-behavioral assessments. Resting-state functional connectivity and regional brain activity of the participants were assessed. RESULTS We found widespread alterations in global functional connectivity among the inferior frontal gyrus, temporal-parietal area, and hippocampus in boys with KS. Aberrant regional activities, including enhanced fALFF in the motor area and reduced ReHo in the caudate, were also found in the KS group compared to the TD children. Further, using machine learning methods, brain network alterations in these regions accurately differentiated boys with KS from TD controls. Finally, we showed that the alterations of brain network properties not only effectively predict cognitive-behavioral impairment in boys with KS, but also appear to mediate the association between total testosterone level and language ability, a cognitive domain at particular risk for dysfunction in this condition. CONCLUSION Our results offer an informatic neurobiological foundation for understanding cognitive-behavioral impairments in individuals with KS and contribute to our understanding of the interplay between pubertal status, brain function, and cognitive-behavioral outcome in this population.
Collapse
Affiliation(s)
- Rihui Li
- Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Taipa, Macao S.A.R., China.
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 74305, USA.
| | - Lara C Foland-Ross
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 74305, USA
| | - Tracy Jordan
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 74305, USA
| | - Matthew J Marzelli
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 74305, USA
| | - Judith L Ross
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Nemours duPont Hospital for Children, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Allan L Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 74305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 74305, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, 74305, USA
| |
Collapse
|
6
|
Morgan AM, Devinsky O, Doyle WK, Dugan P, Friedman D, Flinker A. Decoding words during sentence production: Syntactic role encoding and structure-dependent dynamics revealed by ECoG. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.30.621177. [PMID: 39554006 PMCID: PMC11565881 DOI: 10.1101/2024.10.30.621177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Sentence production is the uniquely human ability to transform complex thoughts into strings of words. Despite the importance of this process, language production research has primarily focused on single words. However, it remains a largely untested assumption that the principles of word production generalize to more naturalistic utterances like sentences. Here, we investigate this using high-resolution neurosurgical recordings (ECoG) and an overt production experiment where patients produced six words in isolation (picture naming) and in sentences (scene description). We trained machine learning classifiers to identify the unique brain activity patterns for each word during picture naming, and used these patterns to decode which words patients were processing while they produced sentences. Our findings confirm that words share cortical representations across tasks, but reveal a division of labor within the language network. In sensorimotor cortex, words were consistently activated in the order in which they were said in the sentence. However, in inferior and middle frontal gyri (IFG and MFG), the order in which words were processed depended on the syntactic structure of the sentence. Deeper analysis of this pattern revealed a spatial code for representing a word's position in the sentence, with subjects selectively encoded in IFG and objects in MFG. Finally, we argue that the processes we observe in prefrontal cortex may impose a subtle pressure on language evolution, explaining why nearly all the world's languages position subjects before objects.
Collapse
Affiliation(s)
| | - Orrin Devinsky
- Neurosurgery Department, NYU Grossman School of Medicine
| | | | | | | | - Adeen Flinker
- Neurology Department, NYU Grossman School of Medicine
- Biomedical Engineering Department, NYU Tandon School of Engineering
| |
Collapse
|
7
|
Matchin W, Mollasaraei ZK, Bonilha L, Rorden C, Hickok G, den Ouden D, Fridriksson J. Verbal working memory and syntactic comprehension segregate into the dorsal and ventral streams, respectively. Brain Commun 2024; 6:fcae449. [PMID: 39713237 PMCID: PMC11660927 DOI: 10.1093/braincomms/fcae449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/16/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024] Open
Abstract
Syntactic processing and verbal working memory are both essential components to sentence comprehension. Nonetheless, the separability of these systems in the brain remains unclear. To address this issue, we performed causal-inference analyses based on lesion and connectome network mapping using MRI and behavioural testing in two groups of individuals with chronic post-stroke aphasia. We employed a rhyme judgement task with heavy working memory load without articulatory confounds, controlling for the overall ability to match auditory words to pictures and to perform a metalinguistic rhyme judgement, isolating the effect of working memory load (103 individuals). We assessed non-canonical sentence comprehension, isolating syntactic processing by incorporating residual rhyme judgement performance as a covariate for working memory load (78 individuals). Voxel-based lesion analyses and structural connectome-based lesion symptom mapping controlling for total lesion volume were performed, with permutation testing to correct for multiple comparisons (4000 permutations). We observed that effects of working memory load localized to dorsal stream damage: posterior temporal-parietal lesions and frontal-parietal white matter disconnections. These effects were differentiated from syntactic comprehension deficits, which were primarily associated with ventral stream damage: lesions to temporal lobe and temporal-parietal white matter disconnections, particularly when incorporating the residual measure of working memory load as a covariate. Our results support the conclusion that working memory and syntactic processing are associated with distinct brain networks, largely loading onto dorsal and ventral streams, respectively.
Collapse
Affiliation(s)
- William Matchin
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Zeinab K Mollasaraei
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Leonardo Bonilha
- Department of Pharmacology, Physiology, Neuroscience, University of South Carolina, Columbia, SC 29208, USA
| | - Christopher Rorden
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| | - Gregory Hickok
- Department of Cognitive Sciences, University of California Irvine, Irvine, CA 92697, USA
- Department of Language Science, University of California Irvine, Irvine, CA 92697, USA
| | - Dirk den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
8
|
Biondo N, Ivanova MV, Pracar AL, Baldo J, Dronkers NF. Mapping sentence comprehension and syntactic complexity: evidence from 131 stroke survivors. Brain Commun 2024; 6:fcae379. [PMID: 39554380 PMCID: PMC11565230 DOI: 10.1093/braincomms/fcae379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/13/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024] Open
Abstract
Understanding and interpreting how words are organized in a sentence to convey distinct meanings is a cornerstone of human communication. The neural underpinnings of this ability, known as syntactic comprehension, are far from agreed upon in current neurocognitive models of language comprehension. Traditionally, left frontal regions (e.g. left posterior inferior frontal gyrus) were considered critical, while more recently, left temporal regions (most prominently, left posterior middle temporal gyrus) have been identified as more indispensable to syntactic comprehension. Syntactic processing has been investigated by using different types of non-canonical sentences i.e. those that do not follow prototypical word order and are considered more syntactically complex. However, non-canonical sentences can be complex for different linguistic reasons, and thus, their comprehension might rely on different neural underpinnings. In this cross-sectional study, we explored the neural correlates of syntactic comprehension by investigating the roles of left hemisphere brain regions and white matter pathways in processing sentences with different levels of syntactic complexity. Participants were assessed at a single point in time using structural MRI and behavioural tests. Employing lesion-symptom mapping and indirect structural disconnection mapping in a cohort of 131 left hemisphere stroke survivors, our analysis revealed the following left temporal regions and underlying white matter pathways as crucial for general sentence comprehension: the left mid-posterior superior temporal gyrus, middle temporal gyrus and superior temporal sulcus and the inferior longitudinal fasciculus, the inferior fronto-occipital fasciculus, the middle longitudinal fasciculus, the uncinate fasciculus and the tracts crossing the most posterior part of the corpus callosum. We further found significant involvement of different white matter tracts connecting the left temporal and frontal lobes for different sentence types. Spared connections between the left temporal and frontal regions were critical for the comprehension of non-canonical sentences requiring long-distance retrieval (spared superior longitudinal fasciculus for both subject and object extraction and spared arcuate fasciculus for object extraction) but not for comprehension of non-canonical passive sentences and canonical declarative sentences. Our results challenge traditional language models that emphasize the primary role of the left frontal regions, such as Broca's area, in basic sentence structure comprehension. Our findings suggest a gradient of syntactic complexity, rather than a clear-cut dichotomy between canonical and non-canonical sentence structures. Our findings contribute to a more nuanced understanding of the neural architecture of language comprehension and highlight potential directions for future research.
Collapse
Affiliation(s)
- Nicoletta Biondo
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
- Basque Center on Cognition, Brain, and Language, Donostia 20009, Spain
| | - Maria V Ivanova
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Alexis L Pracar
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Juliana Baldo
- Veteran Affairs Northern California Health Care System, Martinez, CA 94553, USA
| | - Nina F Dronkers
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Neurology, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
9
|
Huang LZ, Cao Y, Janse E, Piai V. Functional Roles of Sensorimotor Alpha and Beta Oscillations in Overt Speech Production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611312. [PMID: 39416142 PMCID: PMC11482788 DOI: 10.1101/2024.09.04.611312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Power decreases, or desynchronization, of sensorimotor alpha and beta oscillations (i.e., alpha and beta ERD) have long been considered as indices of sensorimotor control in overt speech production. However, their specific functional roles are not well understood. Hence, we first conducted a systematic review to investigate how these two oscillations are modulated by speech motor tasks in typically fluent speakers (TFS) and in persons who stutter (PWS). Eleven EEG/MEG papers with source localization were included in our systematic review. The results revealed consistent alpha and beta ERD in the sensorimotor cortex of TFS and PWS. Furthermore, the results suggested that sensorimotor alpha and beta ERD may be functionally dissociable, with alpha related to (somato-)sensory feedback processing during articulation and beta related to motor processes throughout planning and articulation. To (partly) test this hypothesis of a potential functional dissociation between alpha and beta ERD, we then analyzed existing intracranial electro-encephalography (iEEG) data from the primary somatosensory cortex (S1) of picture naming. We found moderate evidence for alpha, but not beta, ERD's sensitivity to speech movements in S1, lending supporting evidence for the functional dissociation hypothesis identified by the systematic review.
Collapse
Affiliation(s)
- Lydia Z. Huang
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Yang Cao
- Donders Centre for Cognition, Radboud University, Nijmegen, Netherlands
| | - Esther Janse
- Centre for Language Studies, Radboud University, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Vitória Piai
- Donders Centre for Cognition, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
10
|
Beber S, Bontempi G, Miceli G, Tettamanti M. The Neurofunctional Correlates of Morphosyntactic and Thematic Impairments in Aphasia: A Systematic Review and Meta-analysis. Neuropsychol Rev 2024:10.1007/s11065-024-09648-0. [PMID: 39214956 DOI: 10.1007/s11065-024-09648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Lesion-symptom studies in persons with aphasia showed that left temporoparietal damage, but surprisingly not prefrontal damage, correlates with impaired ability to process thematic roles in the comprehension of semantically reversible sentences (The child is hugged by the mother). This result has led to challenge the time-honored view that left prefrontal regions are critical for sentence comprehension. However, most studies focused on thematic role assignment and failed to consider morphosyntactic processes that are also critical for sentence processing. We reviewed and meta-analyzed lesion-symptom studies on the neurofunctional correlates of thematic role assignment and morphosyntactic processing in comprehension and production in persons with aphasia. Following the PRISMA checklist, we selected 43 papers for the review and 27 for the meta-analysis, identifying a set of potential bias risks. Both the review and the meta-analysis confirmed the correlation between thematic role processing and temporoparietal regions but also clearly showed the involvement of prefrontal regions in sentence processing. Exploratory meta-analyses suggested that both thematic role and morphosyntactic processing correlate with left prefrontal and temporoparietal regions, that morphosyntactic processing correlates with prefrontal structures more than with temporoparietal regions, and that thematic role assignment displays the opposite trend. We discuss current limitations in the literature and propose a set of recommendations for clarifying unresolved issues.
Collapse
Affiliation(s)
- Sabrina Beber
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, TN, 38122, Italy.
| | - Giorgia Bontempi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, TN, 38122, Italy
| | - Gabriele Miceli
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, TN, 38122, Italy
| | | |
Collapse
|
11
|
Huang S, Wang S, Che Z, Ge H, Yan Z, Fan J, Lu X, Liu L, Liu W, Zhong Y, Zou C, Rao J, Chen J. Brain-wide functional connectivity alterations and their cognitive correlates in subjective cognitive decline. Front Neurosci 2024; 18:1438260. [PMID: 39148525 PMCID: PMC11324595 DOI: 10.3389/fnins.2024.1438260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Background Individuals with subjective cognitive decline (SCD) are at risk of developing Alzheimer's Disease (AD). Traditional seed-based analysis has shown biased functional connectivity (FC) in SCD individuals. To investigate unbiased altered FC by the brain-wide association study (BWAS) and to determine its association with cognition in SCD individuals. Methods Measure of association (MA) analysis was applied to detect significant voxels with FC changes. Based on these changes, we identified regions of interest (ROIs) and conducted ROI-wise FC analyses. Correlation analyses were then performed between these FC circuits and cognition. Results MA analysis identified 10 ROIs with significantly altered voxels. ROI-wise FC analyses revealed 14 strengthened FC, predominantly parietal-occipital link alterations. The FC between the right superior occipital gyrus and the right postcentral gyrus correlated positively with executive function, while the FC between the right middle occipital gyrus and the left angular gyrus correlated positively with episodic memory in SCD individuals. Conclusion SCD involves multifocal impairments, of which regions of default mode network (DMN) and occipital lobe should be specially focused. Cross-hemispheric alterations indicate an internal interactive impairment pattern in SCD. The reduced FC between the right superior occipital gyrus and the right postcentral gyrus, and between the right middle occipital gyrus and the left angular gyrus, which correlate with specific cognitive functions, could serve as potential biomarkers for SCD diagnosis.
Collapse
Affiliation(s)
- Shaochun Huang
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Siyu Wang
- Fourth Clinical College, Nanjing Medical University, Nanjing, China
| | - Zigang Che
- Department of Radiology, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Honglin Ge
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zheng Yan
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jia Fan
- Department of Human Biology, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
| | - Xiang Lu
- Department of Neurology, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Li Liu
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wan Liu
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yeming Zhong
- Department of Radiology, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Caiyun Zou
- Department of Radiology, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jiang Rao
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
12
|
Matchin W, Mollasaraei ZK, Bonilha L, Rorden C, Hickok G, den Ouden D, Fridriksson J. Verbal working memory and syntactic comprehension segregate into the dorsal and ventral streams. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.05.592577. [PMID: 38746328 PMCID: PMC11092776 DOI: 10.1101/2024.05.05.592577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Syntactic processing and verbal working memory are both essential components to sentence comprehension. Nonetheless, the separability of these systems in the brain remains unclear. To address this issue, we performed causal-inference analyses based on lesion and connectome network mapping using MRI and behavioral testing in 103 individuals with chronic post-stroke aphasia. We employed a rhyme judgment task with heavy working memory load without articulatory confounds, controlling for the overall ability to match auditory words to pictures and to perform a metalinguistic rhyme judgment, isolating the effect of working memory load. We assessed noncanonical sentence comprehension, isolating syntactic processing by incorporating residual rhyme judgment performance as a covariate for working memory load. Voxel-based lesion analyses and structural connectome-based lesion symptom mapping controlling for total lesion volume were performed, with permutation testing to correct for multiple comparisons (4,000 permutations). We observed that effects of working memory load localized to dorsal stream damage: posterior temporal-parietal lesions and frontal-parietal white matter disconnections. These effects were differentiated from syntactic comprehension deficits, which were primarily associated with ventral stream damage: lesions to temporal lobe and temporal-parietal white matter disconnections, particularly when incorporating the residual measure of working memory load as a covariate. Our results support the conclusion that working memory and syntactic processing are associated with distinct brain networks, largely loading onto dorsal and ventral streams, respectively.
Collapse
|
13
|
Harrington RM, Kristinsson S, Wilmskoetter J, Busby N, den Ouden D, Rorden C, Fridriksson J, Bonilha L. Dissociating reading and auditory comprehension in persons with aphasia. Brain Commun 2024; 6:fcae102. [PMID: 38585671 PMCID: PMC10998352 DOI: 10.1093/braincomms/fcae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/10/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
Language comprehension is often affected in individuals with post-stroke aphasia. However, deficits in auditory comprehension are not fully correlated with deficits in reading comprehension and the mechanisms underlying this dissociation remain unclear. This distinction is important for understanding language mechanisms, predicting long-term impairments and future development of treatment interventions. Using comprehensive auditory and reading measures from a large cohort of individuals with aphasia, we evaluated the relationship between aphasia type and reading comprehension impairments, the relationship between auditory versus reading comprehension deficits and the crucial neuroanatomy supporting the dissociation between post-stroke reading and auditory deficits. Scores from the Western Aphasia Battery-Revised from 70 participants with aphasia after a left-hemisphere stroke were utilized to evaluate both reading and auditory comprehension of linguistically equivalent stimuli. Repeated-measures and univariate ANOVA were used to assess the relationship between auditory comprehension and aphasia types and correlations were employed to test the relationship between reading and auditory comprehension deficits. Lesion-symptom mapping was used to determine the dissociation of crucial brain structures supporting reading comprehension deficits controlling for auditory deficits and vice versa. Participants with Broca's or global aphasia had the worst performance on reading comprehension. Auditory comprehension explained 26% of the variance in reading comprehension for sentence completion and 44% for following sequential commands. Controlling for auditory comprehension, worse reading comprehension performance was independently associated with damage to the inferior temporal gyrus, fusiform gyrus, posterior inferior temporal gyrus, inferior occipital gyrus, lingual gyrus and posterior thalamic radiation. Auditory and reading comprehension are only partly correlated in aphasia. Reading is an integral part of daily life and directly associated with quality of life and functional outcomes. This study demonstrated that reading performance is directly related to lesioned areas in the boundaries between visual association regions and ventral stream language areas. This behavioural and neuroanatomical dissociation provides information about the neurobiology of language and mechanisms for potential future treatment interventions.
Collapse
Affiliation(s)
- Rachael M Harrington
- Department of Communication Sciences and Disorders and Center for Research on the Challenges of Acquiring Language and Literacy, Georgia State University, Atlanta, GA 30310, USA
| | - Sigfus Kristinsson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Janina Wilmskoetter
- Department of Health and Rehabilitation Sciences, Medical University of South Carolina, Charleston, SC 29464, USA
| | - Natalie Busby
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Dirk den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Leonardo Bonilha
- School of Medicine Columbia, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
14
|
Malcorra BLC, García AO, Marcotte K, de Paz H, Schilling LP, da Silva Filho IG, Soder R, da Rosa Franco A, Loureiro F, Hübner LC. Exploring Spoken Discourse and Its Neural Correlates in Women With Alzheimer's Disease With Low Levels of Education and Socioeconomic Status. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2024; 33:893-911. [PMID: 38157526 DOI: 10.1044/2023_ajslp-23-00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE Early impairments in spoken discourse abilities have been identified in Alzheimer's disease (AD). However, the impact of AD on spoken discourse and the associated neuroanatomical correlates have mainly been studied in populations with higher levels of education, although preliminary evidence seems to indicate that socioeconomic status (SES) and level of education have an impact on spoken discourse. The purpose of this study was to analyze microstructural variables in spoken discourse in people with AD with low-to-middle SES and low level of education and to study their association with gray matter (GM) density. METHOD Nine women with AD and 10 matched (age, SES, and education) women without brain injury (WWBI) underwent a neuropsychological assessment, which included two spoken discourse tasks, and structural magnetic resonance imaging. Microstructural variables were extracted from the discourse samples using NILC-Metrix software. Brain density, measured by voxel-based morphometry, was compared between groups and then correlated with the differentiating microstructural variables. RESULTS The AD group produced a lower diversity of verbal time moods and fewer words and sentences than WWBI but a greater diversity of pronouns, prepositions, and lexical richness. At the neural level, the AD group presented a lower GM density bilaterally in the hippocampus, the inferior temporal gyrus, and the anterior cingulate gyrus. Number of words and sentences produced were associated with GM density in the left parahippocampal gyrus, whereas the diversity of verbal moods was associated with the basal ganglia and the anterior cingulate gyrus bilaterally. CONCLUSIONS The present findings are mainly consistent with previous studies conducted in groups with higher levels of SES and education, but they suggest that atrophy in the left inferior temporal gyrus could be critical in AD in populations with lower levels of SES and education. This research provides evidence on the importance of pursuing further studies including people with various SES and education levels. WHAT IS ALREADY KNOWN ON THIS SUBJECT Spoken discourse has been shown to be affected in Alzheimer disease, but most studies have been conducted on individuals with middle-to-high SES and high educational levels. WHAT THIS STUDY ADDS The study reports on microstructural measures of spoken discourse in groups of women in the early stage of AD and healthy women, with low-to-middle SES and lower levels of education. CLINICAL IMPLICATIONS OF THIS STUDY This study highlights the importance of taking into consideration the SES and education level in spoken discourse analysis and in investigating the neural correlates of AD. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.24905046.
Collapse
Affiliation(s)
- Bárbara Luzia Covatti Malcorra
- Department of Linguistics, School of Humanities, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Alberto Osa García
- Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Hôpital du Sacré-Cœur de Montréal, Québec, Canada
- École d'orthophonie et d'audiologie, Faculté de médecine, Université de Montréal, Québec, Canada
| | - Karine Marcotte
- Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Hôpital du Sacré-Cœur de Montréal, Québec, Canada
- École d'orthophonie et d'audiologie, Faculté de médecine, Université de Montréal, Québec, Canada
| | - Hanna de Paz
- Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Hôpital du Sacré-Cœur de Montréal, Québec, Canada
- École d'orthophonie et d'audiologie, Faculté de médecine, Université de Montréal, Québec, Canada
| | - Lucas Porcello Schilling
- Graduate Course in Medicine and Healthy Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Graduate Course in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Brain Institute of Rio Grande do Sul (InsCer)Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Institute of Geriatrics and Gerontology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Irênio Gomes da Silva Filho
- Graduate Course in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Ricardo Soder
- Graduate Course in Medicine and Healthy Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Brain Institute of Rio Grande do Sul (InsCer)Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Alexandre da Rosa Franco
- Center for Biomedical Imaging and Neuromodulation, The Nathan S. Kline for Psychiatric Research, Orangeburg, NY
- Center for the Developing Brain, Child Mind Institute, New York, NY
- Department of Psychiatry, NYU Grossman School of Medicine, New York
| | - Fernanda Loureiro
- Graduate Course in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Lilian Cristine Hübner
- Department of Linguistics, School of Humanities, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Institute of Geriatrics and Gerontology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- National Council for Scientific and Technological Development (CNPq), Brasília, DF, Brazil
| |
Collapse
|
15
|
Lorca-Puls DL, Gajardo-Vidal A, Mandelli ML, Illán-Gala I, Ezzes Z, Wauters LD, Battistella G, Bogley R, Ratnasiri B, Licata AE, Battista P, García AM, Tee BL, Lukic S, Boxer AL, Rosen HJ, Seeley WW, Grinberg LT, Spina S, Miller BL, Miller ZA, Henry ML, Dronkers NF, Gorno-Tempini ML. Neural basis of speech and grammar symptoms in non-fluent variant primary progressive aphasia spectrum. Brain 2024; 147:607-626. [PMID: 37769652 PMCID: PMC10834255 DOI: 10.1093/brain/awad327] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/28/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
The non-fluent/agrammatic variant of primary progressive aphasia (nfvPPA) is a neurodegenerative syndrome primarily defined by the presence of apraxia of speech (AoS) and/or expressive agrammatism. In addition, many patients exhibit dysarthria and/or receptive agrammatism. This leads to substantial phenotypic variation within the speech-language domain across individuals and time, in terms of both the specific combination of symptoms as well as their severity. How to resolve such phenotypic heterogeneity in nfvPPA is a matter of debate. 'Splitting' views propose separate clinical entities: 'primary progressive apraxia of speech' when AoS occurs in the absence of expressive agrammatism, 'progressive agrammatic aphasia' (PAA) in the opposite case, and 'AOS + PAA' when mixed motor speech and language symptoms are clearly present. While therapeutic interventions typically vary depending on the predominant symptom (e.g. AoS versus expressive agrammatism), the existence of behavioural, anatomical and pathological overlap across these phenotypes argues against drawing such clear-cut boundaries. In the current study, we contribute to this debate by mapping behaviour to brain in a large, prospective cohort of well characterized patients with nfvPPA (n = 104). We sought to advance scientific understanding of nfvPPA and the neural basis of speech-language by uncovering where in the brain the degree of MRI-based atrophy is associated with inter-patient variability in the presence and severity of AoS, dysarthria, expressive agrammatism or receptive agrammatism. Our cross-sectional examination of brain-behaviour relationships revealed three main observations. First, we found that the neural correlates of AoS and expressive agrammatism in nfvPPA lie side by side in the left posterior inferior frontal lobe, explaining their behavioural dissociation/association in previous reports. Second, we identified a 'left-right' and 'ventral-dorsal' neuroanatomical distinction between AoS versus dysarthria, highlighting (i) that dysarthria, but not AoS, is significantly influenced by tissue loss in right-hemisphere motor-speech regions; and (ii) that, within the left hemisphere, dysarthria and AoS map onto dorsally versus ventrally located motor-speech regions, respectively. Third, we confirmed that, within the large-scale grammar network, left frontal tissue loss is preferentially involved in expressive agrammatism and left temporal tissue loss in receptive agrammatism. Our findings thus contribute to define the function and location of the epicentres within the large-scale neural networks vulnerable to neurodegenerative changes in nfvPPA. We propose that nfvPPA be redefined as an umbrella term subsuming a spectrum of speech and/or language phenotypes that are closely linked by the underlying neuroanatomy and neuropathology.
Collapse
Affiliation(s)
- Diego L Lorca-Puls
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
- Sección de Neurología, Departamento de Especialidades, Facultad de Medicina, Universidad de Concepción, Concepción, 4070105, Chile
| | - Andrea Gajardo-Vidal
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
- Centro de Investigación en Complejidad Social (CICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, 7590943, Chile
- Dirección de Investigación y Doctorados, Vicerrectoría de Investigación y Doctorados, Universidad del Desarrollo, Concepción, 4070001, Chile
| | - Maria Luisa Mandelli
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
| | - Ignacio Illán-Gala
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, 08025, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, 28029, Spain
- Global Brain Health Institute, University of California, San Francisco, CA 94143, USA
| | - Zoe Ezzes
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
| | - Lisa D Wauters
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
- Department of Speech, Language and Hearing Sciences, University of Texas, Austin, TX 78712-0114, USA
| | - Giovanni Battistella
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
- Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA 02114, USA
| | - Rian Bogley
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
| | - Buddhika Ratnasiri
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
| | - Abigail E Licata
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
| | - Petronilla Battista
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
- Global Brain Health Institute, University of California, San Francisco, CA 94143, USA
- Laboratory of Neuropsychology, Istituti Clinici Scientifici Maugeri IRCCS, Bari, 70124, Italy
| | - Adolfo M García
- Global Brain Health Institute, University of California, San Francisco, CA 94143, USA
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, Buenos Aires, B1644BID, Argentina
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, 9160000, Chile
| | - Boon Lead Tee
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
- Global Brain Health Institute, University of California, San Francisco, CA 94143, USA
| | - Sladjana Lukic
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
- Department of Communication Sciences and Disorders, Ruth S. Ammon College of Education and Health Sciences, Adelphi University, Garden City, NY 11530-0701, USA
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
| | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Lea T Grinberg
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
- Global Brain Health Institute, University of California, San Francisco, CA 94143, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Salvatore Spina
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
- Global Brain Health Institute, University of California, San Francisco, CA 94143, USA
| | - Zachary A Miller
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
| | - Maya L Henry
- Department of Speech, Language and Hearing Sciences, University of Texas, Austin, TX 78712-0114, USA
- Department of Neurology, Dell Medical School, University of Texas, Austin, TX 78712, USA
| | - Nina F Dronkers
- Department of Psychology, University of California, Berkeley, CA 94720, USA
- Department of Neurology, University of California, Davis, CA 95817, USA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
| |
Collapse
|
16
|
Jiang Y, Gong G. Common and distinct patterns underlying different linguistic tasks: multivariate disconnectome symptom mapping in poststroke patients. Cereb Cortex 2024; 34:bhae008. [PMID: 38265297 DOI: 10.1093/cercor/bhae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/25/2024] Open
Abstract
Numerous studies have been devoted to neural mechanisms of a variety of linguistic tasks (e.g. speech comprehension and production). To date, however, whether and how the neural patterns underlying different linguistic tasks are similar or differ remains elusive. In this study, we compared the neural patterns underlying 3 linguistic tasks mainly concerning speech comprehension and production. To address this, multivariate regression approaches with lesion/disconnection symptom mapping were applied to data from 216 stroke patients with damage to the left hemisphere. The results showed that lesion/disconnection patterns could predict both poststroke scores of speech comprehension and production tasks; these patterns exhibited shared regions on the temporal pole of the left hemisphere as well as unique regions contributing to the prediction for each domain. Lower scores in speech comprehension tasks were associated with lesions/abnormalities in the superior temporal gyrus and middle temporal gyrus, while lower scores in speech production tasks were associated with lesions/abnormalities in the left inferior parietal lobe and frontal lobe. These results suggested an important role of the ventral and dorsal stream pathways in speech comprehension and production (i.e. supporting the dual stream model) and highlighted the applicability of the novel multivariate disconnectome-based symptom mapping in cognitive neuroscience research.
Collapse
Affiliation(s)
- Yaya Jiang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
17
|
Barbieri E, Lukic S, Rogalski E, Weintraub S, Mesulam MM, Thompson CK. Neural mechanisms of sentence production: a volumetric study of primary progressive aphasia. Cereb Cortex 2024; 34:bhad470. [PMID: 38100360 PMCID: PMC10793577 DOI: 10.1093/cercor/bhad470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
Studies on the neural bases of sentence production have yielded mixed results, partly due to differences in tasks and participant types. In this study, 101 individuals with primary progressive aphasia (PPA) were evaluated using a test that required spoken production following an auditory prime (Northwestern Assessment of Verbs and Sentences-Sentence Production Priming Test, NAVS-SPPT), and one that required building a sentence by ordering word cards (Northwestern Anagram Test, NAT). Voxel-Based Morphometry revealed that gray matter (GM) volume in left inferior/middle frontal gyri (L IFG/MFG) was associated with sentence production accuracy on both tasks, more so for complex sentences, whereas, GM volume in left posterior temporal regions was exclusively associated with NAVS-SPPT performance and predicted by performance on a Digit Span Forward (DSF) task. Verb retrieval deficits partly mediated the relationship between L IFG/MFG and performance on the NAVS-SPPT. These findings underscore the importance of L IFG/MFG for sentence production and suggest that this relationship is partly accounted for by verb retrieval deficits, but not phonological loop integrity. In contrast, it is possible that the posterior temporal cortex is associated with auditory short-term memory ability, to the extent that DSF performance is a valid measure of this in aphasia.
Collapse
Affiliation(s)
- Elena Barbieri
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Department of Neurology, Northwestern University, 300 E Superior Street, Chicago, IL 60611, United States
| | - Sladjana Lukic
- Department of Communication Sciences and Disorders, Adelphi University, 158 Cambridge Avenue, Garden City, NY 11530, United States
| | - Emily Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Department of Neurology, Northwestern University, 300 E Superior Street, Chicago, IL 60611, United States
| | - Sandra Weintraub
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Department of Neurology, Northwestern University, 300 E Superior Street, Chicago, IL 60611, United States
- Department of Psychiatry and Behavioral Sciences, Northwestern University, 676 N Saint Clair Street, Chicago, IL 60611, United States
| | - Marek-Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Department of Neurology, Northwestern University, 300 E Superior Street, Chicago, IL 60611, United States
- Department of Neurology, Northwestern University, 300 E Superior Street, Chicago, IL 60611, United States
| | - Cynthia K Thompson
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Department of Neurology, Northwestern University, 300 E Superior Street, Chicago, IL 60611, United States
- Department of Neurology, Northwestern University, 300 E Superior Street, Chicago, IL 60611, United States
- Department of Communication Sciences and Disorders, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, United States
| |
Collapse
|
18
|
Schroën JAM, Gunter TC, Numssen O, Kroczek LOH, Hartwigsen G, Friederici AD. Causal evidence for a coordinated temporal interplay within the language network. Proc Natl Acad Sci U S A 2023; 120:e2306279120. [PMID: 37963247 PMCID: PMC10666120 DOI: 10.1073/pnas.2306279120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023] Open
Abstract
Recent neurobiological models on language suggest that auditory sentence comprehension is supported by a coordinated temporal interplay within a left-dominant brain network, including the posterior inferior frontal gyrus (pIFG), posterior superior temporal gyrus and sulcus (pSTG/STS), and angular gyrus (AG). Here, we probed the timing and causal relevance of the interplay between these regions by means of concurrent transcranial magnetic stimulation and electroencephalography (TMS-EEG). Our TMS-EEG experiments reveal region- and time-specific causal evidence for a bidirectional information flow from left pSTG/STS to left pIFG and back during auditory sentence processing. Adapting a condition-and-perturb approach, our findings further suggest that the left pSTG/STS can be supported by the left AG in a state-dependent manner.
Collapse
Affiliation(s)
- Joëlle A. M. Schroën
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
| | - Thomas C. Gunter
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
| | - Ole Numssen
- Methods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
| | - Leon O. H. Kroczek
- Department of Psychology, Clinical Psychology and Psychotherapy, Universität Regensburg, Regensburg93053, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
- Cognitive and Biological Psychology, Wilhelm Wundt Institute for Psychology, Leipzig04109, Germany
| | - Angela D. Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
| |
Collapse
|
19
|
Lyu H, Zhu X, He N, Li Q, Yin Q, Huang Y, Yan F, Liu J, Lu Y. Alterations in Resting-State MR Functional Connectivity of the Central Autonomic Network in Multiple System Atrophy and Relationship with Disease Severity. J Magn Reson Imaging 2023; 58:1472-1487. [PMID: 36988420 DOI: 10.1002/jmri.28693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND The central autonomic network (CAN) plays a critical role in the body's sympathetic and parasympathetic control. However, functional connectivity (FC) changes of the CAN in patients with multiple system atrophy (MSA) remain unknown. PURPOSE To investigate FC alterations of CAN in MSA patients. STUDY TYPE Prospective. POPULATION Eighty-two subjects (47 patients with MSA [44.7% female, 60.5 ± 6.9 years], 35 age- and sex-matched healthy controls [HC] [57.1% female, 62.5 ± 6.6 years]). FIELD STRENGTH/SEQUENCE 3-T, resting-state functional magnetic resonance imaging (rs-fMRI) using gradient echo-planar imaging (EPI), T1-weighted three-dimensional magnetization-prepared rapid gradient echo (3D MPRAGE) structural MRI. ASSESSMENT FC alterations were explored by using core modulatory regions of CAN as seeds, including midcingulate cortex, insula, amygdala, and ventromedial prefrontal cortex. Bartlett factor score (BFS) derived from a factor analysis of clinical assessments on disease severity was used as a grouping factor for moderate MSA (mMSA: BFS < 0) and severe MSA (sMSA: BFS > 0). STATISTICAL TESTS For FC analysis, the one-way ANCOVA with cluster-level family-wise error correction (statistical significance level of P < 0.025), and post hoc t-testing with Bonferroni correction or Tamhane's T2 correction (statistical significance level of adjusted-P < 0.05) were adopted. Correlation was assessed using Pearson correlation or Spearman correlation (statistical significance level of P < 0.05). RESULTS Compared with HC, patients with MSA exhibited significant FC aberrances between the CAN and brain areas of sensorimotor control, limbic network, putamen, and cerebellum. For MSA patients, most FC alterations of CAN, especially concerning FC between the right anterior insula and right primary sensorimotor cortices, were found to be significantly correlated with disease severity. FC changes were found to be more significant in sMSA group than in mMSA group when compared with HCs. DATA CONCLUSION MSA shows widespread FC changes of CAN, suggesting that abnormal functional integration of CAN may be involved in disease pathogenesis of MSA. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Haiying Lyu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Zhu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Li
- MR Collaborations, Siemens Healthineers Ltd., Shanghai, China
| | - Qianyi Yin
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufei Huang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Lu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Matchin W, den Ouden DB, Basilakos A, Stark BC, Fridriksson J, Hickok G. Grammatical Parallelism in Aphasia: A Lesion-Symptom Mapping Study. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2023; 4:550-574. [PMID: 37946730 PMCID: PMC10631800 DOI: 10.1162/nol_a_00117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 07/19/2023] [Indexed: 11/12/2023]
Abstract
Sentence structure, or syntax, is potentially a uniquely creative aspect of the human mind. Neuropsychological experiments in the 1970s suggested parallel syntactic production and comprehension deficits in agrammatic Broca's aphasia, thought to result from damage to syntactic mechanisms in Broca's area in the left frontal lobe. This hypothesis was sometimes termed overarching agrammatism, converging with developments in linguistic theory concerning central syntactic mechanisms supporting language production and comprehension. However, the evidence supporting an association among receptive syntactic deficits, expressive agrammatism, and damage to frontal cortex is equivocal. In addition, the relationship among a distinct grammatical production deficit in aphasia, paragrammatism, and receptive syntax has not been assessed. We used lesion-symptom mapping in three partially overlapping groups of left-hemisphere stroke patients to investigate these issues: grammatical production deficits in a primary group of 53 subjects and syntactic comprehension in larger sample sizes (N = 130, 218) that overlapped with the primary group. Paragrammatic production deficits were significantly associated with multiple analyses of syntactic comprehension, particularly when incorporating lesion volume as a covariate, but agrammatic production deficits were not. The lesion correlates of impaired performance of syntactic comprehension were significantly associated with damage to temporal lobe regions, which were also implicated in paragrammatism, but not with the inferior and middle frontal regions implicated in expressive agrammatism. Our results provide strong evidence against the overarching agrammatism hypothesis. By contrast, our results suggest the possibility of an alternative grammatical parallelism hypothesis rooted in paragrammatism and a central syntactic system in the posterior temporal lobe.
Collapse
Affiliation(s)
- William Matchin
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Dirk-Bart den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Alexandra Basilakos
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Brielle Caserta Stark
- Department of Speech, Language and Hearing Sciences, Program for Neuroscience, Indiana University Bloomington, Bloomington, IN, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Gregory Hickok
- Department of Cognitive Sciences, Department of Language Science, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
21
|
Magnotti JF, Patterson JS, Schnur TT. Using predictive validity to compare associations between brain damage and behavior. Hum Brain Mapp 2023; 44:4738-4753. [PMID: 37417774 PMCID: PMC10400786 DOI: 10.1002/hbm.26413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/15/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023] Open
Abstract
Lesion-behavior mapping (LBM) provides a statistical map of the association between voxel-wise brain damage and individual differences in behavior. To understand whether two behaviors are mediated by damage to distinct regions, researchers often compare LBM weight outputs by either the Overlap method or the Correlation method. However, these methods lack statistical criteria to determine whether two LBM are distinct versus the same and are disconnected from a major goal of LBMs: predicting behavior from brain damage. Without such criteria, researchers may draw conclusions from numeric differences between LBMs that are irrelevant to predicting behavior. We developed and validated a predictive validity comparison method (PVC) that establishes a statistical criterion for comparing two LBMs using predictive accuracy: two LBMs are distinct if and only if they provide unique predictive power for the behaviors being assessed. We applied PVC to two lesion-behavior stroke data sets, demonstrating its utility for determining when behaviors arise from the same versus different lesion patterns. Using region-of-interest-based simulations derived from proportion damage from a large data set (n = 131), PVC accurately detected when behaviors were mediated by different regions (high sensitivity) versus the same region (high specificity). Both the Overlap method and Correlation method performed poorly on the simulated data. By objectively determining whether two behavioral deficits can be explained by single versus distinct patterns of brain damage, PVC provides a critical advance in establishing the brain bases of behavior. We have developed and released a GUI-driven web app to encourage widespread adoption.
Collapse
Affiliation(s)
- John F. Magnotti
- Department of NeurosurgeryBaylor College of MedicineHoustonTexasUSA
- Department of NeurosurgeryPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Tatiana T. Schnur
- Department of NeurosurgeryBaylor College of MedicineHoustonTexasUSA
- Department of NeuroscienceBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
22
|
McCarty MJ, Murphy E, Scherschligt X, Woolnough O, Morse CW, Snyder K, Mahon BZ, Tandon N. Intraoperative cortical localization of music and language reveals signatures of structural complexity in posterior temporal cortex. iScience 2023; 26:107223. [PMID: 37485361 PMCID: PMC10362292 DOI: 10.1016/j.isci.2023.107223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/01/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Language and music involve the productive combination of basic units into structures. It remains unclear whether brain regions sensitive to linguistic and musical structure are co-localized. We report an intraoperative awake craniotomy in which a left-hemispheric language-dominant professional musician underwent cortical stimulation mapping (CSM) and electrocorticography of music and language perception and production during repetition tasks. Musical sequences were melodic or amelodic, and differed in algorithmic compressibility (Lempel-Ziv complexity). Auditory recordings of sentences differed in syntactic complexity (single vs. multiple phrasal embeddings). CSM of posterior superior temporal gyrus (pSTG) disrupted music perception and production, along with speech production. pSTG and posterior middle temporal gyrus (pMTG) activated for language and music (broadband gamma; 70-150 Hz). pMTG activity was modulated by musical complexity, while pSTG activity was modulated by syntactic complexity. This points to shared resources for music and language comprehension, but distinct neural signatures for the processing of domain-specific structural features.
Collapse
Affiliation(s)
- Meredith J. McCarty
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Elliot Murphy
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xavier Scherschligt
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Oscar Woolnough
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Cale W. Morse
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kathryn Snyder
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Bradford Z. Mahon
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Memorial Hermann Hospital, Texas Medical Center, Houston, TX 77030, USA
| |
Collapse
|
23
|
Townsend SAM, Marcotte K, Brisebois A, Smidarle AD, Schneider F, Loureiro F, Soder RB, Franco ADR, Marrone LCP, Hübner LC. Neuroanatomical correlates of macrostructural receptive abilities in narrative discourse in unilateral left hemisphere stroke: A behavioural and voxel-based morphometry study. INTERNATIONAL JOURNAL OF LANGUAGE & COMMUNICATION DISORDERS 2023; 58:826-847. [PMID: 36448625 DOI: 10.1111/1460-6984.12825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 10/29/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND Little is known about story retelling and comprehension abilities in groups with lower levels of education and socio-economic status (SES). A growing body of evidence suggests the role of an extended network supporting narrative comprehension, but few studies have been conducted in clinical populations, even less in developing countries. AIMS To extend our knowledge of the impact of a stroke on macrostructural aspects of discourse processes, namely main and complementary information, in individuals with middle-low to low SES and low levels of education. Relationships were tested between the performance in story retell and comprehension and reading and writing habits (RWH). Also, the associations between retelling and comprehension measures and their structural grey matter (GM) correlates were explored. METHODS & PROCEDURES A total of 17 adults with unilateral left hemisphere (LH) chronic ischaemic stroke without the presence of significant aphasia and 10 matched (age, education and SES) healthy controls (HC) participated in the study. Retell and comprehension tasks were performed after listening or reading narrative stories. Voxel-based morphometry (VBM) analysis was conducted on a subgroup of nine individuals with LH stroke and the 10 matched controls using structural magnetic resonance imaging (MRI). OUTCOMES & RESULTS Retelling and comprehension abilities were not significantly different between LH and HC, nonetheless quantitively lower in LH. Exploratory correlations showed that retelling and comprehension abilities in both written and auditory modalities were correlated with naming abilities. At the neural level, written comprehension positively correlated with GM density of the LH, including areas in the temporal pole, superior and middle temporal gyrus as well as the orbitofrontal cortex, precentral and postcentral gyri. Auditory narrative comprehension was associated with GM density of the lingual gyrus in the right hemisphere. CONCLUSIONS & IMPLICATIONS The present results suggest that retelling and comprehension of auditory and written narratives are relatively well-preserved in individuals with a LH stroke without significant aphasia, but poorer than in HC. The findings replicate previous studies conducted in groups with higher levels of education and SES both at the behavioural and neural levels. Considering that naming seems to be associated with narrative retell and comprehension in individuals with lower SES and education, this research provides evidence on the importance of pursuing further studies including larger samples with and without aphasia as well as with various SES and education levels. WHAT THIS PAPER ADDS What is already known on this subject Story retell and comprehension of auditory and written discourse have been shown to be affected after stroke, but most studies have been conducted on individuals with middle to high SES and high educational levels. What this paper adds to existing knowledge The study reports on narrative retell and comprehension in both auditory and written modalities in groups of HC and individuals with LH brain damage, with low-to-middle SES and lower levels of education. What are the potential or actual clinical implications of this work? This study highlights the importance of taking into consideration the sociodemographic and RWH of patients when assessing discourse retell and comprehension in both auditory and written modalities. It also underlines the importance of including patients without significant aphasia following LH stroke to look at the effect of both stroke and aphasia on narrative comprehension and story retelling.
Collapse
Affiliation(s)
- Sabrine Amaral Martins Townsend
- School of Humanities (Linguistics Department), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
- University of Santa Cruz do Sul (UNISC), Postdoctoral Program in Linguistics-Santa Cruz do Sul, Rio Grande do Sul, Brazil
| | - Karine Marcotte
- Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Montréal, QC, Canada
- École d'orthophonie et d'audiologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Amelie Brisebois
- Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Montréal, QC, Canada
- École d'orthophonie et d'audiologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Anderson Dick Smidarle
- School of Humanities (Linguistics Department), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Schneider
- Federal Institute of Education, Science and Technology of Rio Grande do Sul (IFRS-Ibirubá), Bento Goncalves, Rio Grande do Sul, Brazil
| | - Fernanda Loureiro
- Institut of Geriatrics and Gerontology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Ricardo Bernardi Soder
- Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Alexandre da Rosa Franco
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
- Center for Biomedical Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA
| | - Luiz Carlos Porcello Marrone
- Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Neurology Center, Hospital São Lucas at Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
- Medicine School, Luteran University of Brazil (ULBRA), Porto Alegre, Rio Grande do Sul, Brazil
- Morphology Sciences Department, ICBS, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Lilian Cristine Hübner
- School of Humanities (Linguistics Department), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
- National Council for Scientific and Technological Development (CNPq), Federal Capital, Brasília, Brazil
| |
Collapse
|
24
|
Vadinova V, Sihvonen AJ, Garden KL, Ziraldo L, Roxbury T, O'Brien K, Copland DA, McMahon KL, Brownsett SLE. Early Subacute White Matter Hyperintensities and Recovery of Language After Stroke. Neurorehabil Neural Repair 2023; 37:218-227. [PMID: 37083133 PMCID: PMC10152219 DOI: 10.1177/15459683231168384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
BACKGROUND White matter hyperintensities (WMH) are considered to contribute to diminished brain reserve, negatively impacting on stroke recovery. While WMH identified in the chronic phase after stroke have been associated with post-stroke aphasia, the contribution of premorbid WMH to the early recovery of language across production and comprehension has not been investigated. OBJECTIVE To investigate the relationship between premorbid WMH severity and longitudinal comprehension and production outcomes in aphasia, after controlling for stroke lesion variables. METHODS Longitudinal behavioral data from individuals with a left-hemisphere stroke were included at the early subacute (n = 37) and chronic (n = 28) stage. Spoken language comprehension and production abilities were assessed at both timepoints using word and sentence-level tasks. Magnetic resonance imaging (MRI) was performed at the early subacute stage to derive stroke lesion variables (volume and proportion damage to critical regions) and WMH severity rating. RESULTS The presence of severe WMH explained an additional 18% and 25% variance in early subacute (t = -3.00, p = .004) and chronic (t = -3.60, P = .001) language comprehension abilities respectively, after controlling for stroke lesion variables. WMH did not predict additional variance of language production scores. CONCLUSIONS Subacute clinical MRI can be used to improve prognoses of recovery of aphasia after stroke. We demonstrate that severe early subacute WMH add to the prediction of impaired longitudinal language recovery in comprehension, but not production. This emphasizes the need to consider different domains of language when investigating novel neurobiological predictors of aphasia recovery.
Collapse
Affiliation(s)
- Veronika Vadinova
- Queensland Aphasia Research Centre, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane Australia
- Surgical Treatment and Rehabilitation Service (STARS) Education and Research Alliance, The University of Queensland and Metro North Health, Queensland, Australia
| | - Aleksi J Sihvonen
- Queensland Aphasia Research Centre, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane Australia
- Surgical Treatment and Rehabilitation Service (STARS) Education and Research Alliance, The University of Queensland and Metro North Health, Queensland, Australia
- Centre of Research Excellence in Aphasia Recovery and Rehabilitation, La Trobe University, Australia
- Cognitive Brain Research Unit (CBRU), University of Helsinki, Helsinki, Finland
- Centre of Excellence in Music, Mind, Body and Brain, University of Helsinki, Helsinki, Finland
| | - Kimberley L Garden
- Queensland Aphasia Research Centre, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane Australia
- Surgical Treatment and Rehabilitation Service (STARS) Education and Research Alliance, The University of Queensland and Metro North Health, Queensland, Australia
| | - Laura Ziraldo
- Queensland Aphasia Research Centre, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane Australia
| | - Tracy Roxbury
- Queensland Aphasia Research Centre, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane Australia
| | - Kate O'Brien
- Queensland Aphasia Research Centre, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane Australia
| | - David A Copland
- Surgical Treatment and Rehabilitation Service (STARS) Education and Research Alliance, The University of Queensland and Metro North Health, Queensland, Australia
- Centre of Research Excellence in Aphasia Recovery and Rehabilitation, La Trobe University, Australia
| | - Katie L McMahon
- School of Clinical Sciences, Centre for Biomedical Technologies, Queensland University of Technology, Queensland, Australia
| | - Sonia L E Brownsett
- Queensland Aphasia Research Centre, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane Australia
- Surgical Treatment and Rehabilitation Service (STARS) Education and Research Alliance, The University of Queensland and Metro North Health, Queensland, Australia
- Centre of Research Excellence in Aphasia Recovery and Rehabilitation, La Trobe University, Australia
| |
Collapse
|
25
|
Piai V, Eikelboom D. Brain Areas Critical for Picture Naming: A Systematic Review and Meta-Analysis of Lesion-Symptom Mapping Studies. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2023; 4:280-296. [PMID: 37229507 PMCID: PMC10205157 DOI: 10.1162/nol_a_00097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/16/2022] [Indexed: 05/27/2023]
Abstract
Lesion-symptom mapping (LSM) studies have revealed brain areas critical for naming, typically finding significant associations between damage to left temporal, inferior parietal, and inferior fontal regions and impoverished naming performance. However, specific subregions found in the available literature vary. Hence, the aim of this study was to perform a systematic review and meta-analysis of published lesion-based findings, obtained from studies with unique cohorts investigating brain areas critical for accuracy in naming in stroke patients at least 1 month post-onset. An anatomic likelihood estimation (ALE) meta-analysis of these LSM studies was performed. Ten papers entered the ALE meta-analysis, with similar lesion coverage over left temporal and left inferior frontal areas. This small number is a major limitation of the present study. Clusters were found in left anterior temporal lobe, posterior temporal lobe extending into inferior parietal areas, in line with the arcuate fasciculus, and in pre- and postcentral gyri and middle frontal gyrus. No clusters were found in left inferior frontal gyrus. These results were further substantiated by examining five naming studies that investigated performance beyond global accuracy, corroborating the ALE meta-analysis results. The present review and meta-analysis highlight the involvement of left temporal and inferior parietal cortices in naming, and of mid to posterior portions of the temporal lobe in particular in conceptual-lexical retrieval for speaking.
Collapse
Affiliation(s)
- Vitória Piai
- Radboud University, Donders Centre for Cognition, Nijmegen, Netherlands
- Radboudumc, Donders Centre for Medical Neuroscience, Department of Medical Psychology, Nijmegen, Netherlands
| | - Dilys Eikelboom
- Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| |
Collapse
|
26
|
Busby N, Hillis AE, Bunker L, Rorden C, Newman-Norlund R, Bonilha L, Meier E, Goldberg E, Hickok G, Yourganov G, Fridriksson J. Comparing the brain-behaviour relationship in acute and chronic stroke aphasia. Brain Commun 2023; 5:fcad014. [PMID: 37056476 PMCID: PMC10088484 DOI: 10.1093/braincomms/fcad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/23/2022] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
In stroke aphasia, lesion volume is typically associated with aphasia severity. Although this relationship is likely present throughout recovery, different factors may affect lesion volume and behaviour early into recovery (acute) and in the later stages of recovery (chronic). Therefore, studies typically separate patients into two groups (acute/chronic), and this is often accompanied with arguments for and against using data from acute stroke patients over chronic. However, no comprehensive studies have provided strong evidence of whether the lesion-behaviour relationship early in recovery is comparable to later in the recovery trajectory. To that end, we investigated two aims: (i) whether lesion data from acute and chronic patients yield similar results in region-based lesion-symptom mapping analyses and (ii) if models based on one timepoint accurately predict the other. Lesions and aphasia severity scores from acute (N = 63) and chronic (N = 109) stroke survivors with aphasia were entered into separate univariate region-based lesion-symptom mapping analyses. A support vector regression model was trained on lesion data from either the acute or chronic data set to give an estimate of aphasia severity. Four model-based analyses were conducted: trained on acute/chronic using leave-one-out, tested on left-out behaviour or trained on acute/chronic to predict the other timepoint. Region-based lesion-symptom mapping analyses identified similar but not identical regions in both timepoints. All four models revealed positive correlations between actual and predicted Western Aphasia Battery-Revised aphasia-quotient scores. Lesion-to-behaviour predictions were almost equivalent when comparing within versus across stroke stage, despite differing lesion size/locations and distributions of aphasia severity between stroke timepoints. This suggests that research investigating the brain-behaviour relationship including subsets of patients from only one timepoint may also be applicable at other timepoints, although it is important to note that these comparable findings may only be seen using broad measures such as aphasia severity, rather than those aimed at identifying more specific deficits. Subtle differences found between timepoints may also be useful in understanding the nature of lesion volume and aphasia severity over time. Stronger correlations found when predicting acute behaviour (e.g. predicting acute: r = 0.6888, P < 0.001, predicting chronic r = 0.5014, P < 0.001) suggest that the acute lesion/perfusion patterns more accurately capture the critical changes in underlying vascular territories. Differences in critical brain regions between timepoints may shed light on recovery patterns. Future studies could focus on a longitudinal design to compare acute and chronic patients in a more controlled manner.
Collapse
Affiliation(s)
- Natalie Busby
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29209, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MA 21287, USA
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MA 21218, USA
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MA 21287, USA
| | - Lisa Bunker
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MA 21287, USA
| | - Chis Rorden
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| | - Roger Newman-Norlund
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29209, USA
| | - Leo Bonilha
- Department of Neurology, Emory University, Atlanta, GA 30322, USA
| | - Erin Meier
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MA 21287, USA
- Department of Communication Sciences and Disorders, Northeastern University, Boston, MA 02115, USA
| | - Emily Goldberg
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MA 21287, USA
- Department of Communication Disorders, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Gregory Hickok
- Department of Cognitive Sciences, University of California, Irvine, CA 92697, USA
- Department of Language Science, University of California, Irvine, CA 92697, USA
| | - Grigori Yourganov
- Advanced Computing and Data Science, Cyberinfrastructure and Technology Integration, Clemson University, Clemson, SC 29634, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29209, USA
| |
Collapse
|
27
|
Busby N, Wilmskoetter J, Gleichgerrcht E, Rorden C, Roth R, Newman-Norlund R, Hillis AE, Keller SS, de Bezenac C, Kristinsson S, Fridriksson J, Bonilha L. Advanced Brain Age and Chronic Poststroke Aphasia Severity. Neurology 2023; 100:e1166-e1176. [PMID: 36526425 PMCID: PMC10074460 DOI: 10.1212/wnl.0000000000201693] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/31/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Chronic poststroke language impairment is typically worse in older individuals or those with large stroke lesions. However, there is unexplained variance that likely depends on intact tissue beyond the lesion. Brain age is an emerging concept, which is partially independent from chronologic age. Advanced brain age is associated with cognitive decline in healthy older adults; therefore, we aimed to investigate the relationship with stroke aphasia. We hypothesized that advanced brain age is a significant factor associated with chronic poststroke language impairments, above and beyond chronologic age, and lesion characteristics. METHODS This cohort study retrospectively evaluated participants from the Predicting Outcomes of Language Rehabilitation in Aphasia clinical trial (NCT03416738), recruited through local advertisement in South Carolina (US). Primary inclusion criteria were left hemisphere stroke and chronic aphasia (≥12 months after stroke). Participants completed baseline behavioral testing including the Western Aphasia Battery-Revised (WAB-R), Philadelphia Naming Test (PNT), Pyramids and Palm Trees Test (PPTT), and Wechsler Adult Intelligence Scale Matrices subtest, before completing 6 weeks of language therapy. The PNT was repeated 1 month after therapy. We leveraged modern neuroimaging techniques to estimate brain age and computed a proportional difference between chronologic age and estimated brain age. Multiple linear regression models were used to evaluate the relationship between proportional brain age difference (PBAD) and behavior. RESULTS Participants (N = 93, 58 males and 35 females, average age = 61 years) had estimated brain ages ranging from 14 years younger to 23 years older than chronologic age. Advanced brain age predicted performance on semantic tasks (PPTT) and language tasks (WAB-R). For participants with advanced brain aging (n = 47), treatment gains (improvement on the PNT) were independently predicted by PBAD (T = -2.0474, p = 0.0468, 9% of variance explained). DISCUSSION Through the application of modern neuroimaging techniques, advanced brain aging was associated with aphasia severity and performance on semantic tasks. Notably, therapy outcome scores were also associated with PBAD, albeit only among participants with advanced brain aging. These findings corroborate the importance of brain age as a determinant of poststroke recovery and underscore the importance of personalized health factors in determining recovery trajectories, which should be considered during the planning or implementation of therapeutic interventions.
Collapse
Affiliation(s)
- Natalie Busby
- From the Departments of Communication Sciences and Disorders (N.B., J.F.), and Psychology (C.R., R.N.N.), University of South Carolina, Columbia; Department of Health and Rehabilitation Sciences (J.W., E.G., S.K., J.F.), Medical University of South Carolina, Charleston; Department of Neurology (R.R., L.B.), Emory University, Atlanta, GA; Department of Neurology (A.E.H.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pharmacology and Therapeutics (S.S.K., C.d.B.), Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom; The Walton Centre NHS Foundation Trust (S.S.K., C.d.B.), Liverpool, United Kingdom.
| | - Janina Wilmskoetter
- From the Departments of Communication Sciences and Disorders (N.B., J.F.), and Psychology (C.R., R.N.N.), University of South Carolina, Columbia; Department of Health and Rehabilitation Sciences (J.W., E.G., S.K., J.F.), Medical University of South Carolina, Charleston; Department of Neurology (R.R., L.B.), Emory University, Atlanta, GA; Department of Neurology (A.E.H.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pharmacology and Therapeutics (S.S.K., C.d.B.), Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom; The Walton Centre NHS Foundation Trust (S.S.K., C.d.B.), Liverpool, United Kingdom
| | - Ezequiel Gleichgerrcht
- From the Departments of Communication Sciences and Disorders (N.B., J.F.), and Psychology (C.R., R.N.N.), University of South Carolina, Columbia; Department of Health and Rehabilitation Sciences (J.W., E.G., S.K., J.F.), Medical University of South Carolina, Charleston; Department of Neurology (R.R., L.B.), Emory University, Atlanta, GA; Department of Neurology (A.E.H.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pharmacology and Therapeutics (S.S.K., C.d.B.), Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom; The Walton Centre NHS Foundation Trust (S.S.K., C.d.B.), Liverpool, United Kingdom
| | - Chris Rorden
- From the Departments of Communication Sciences and Disorders (N.B., J.F.), and Psychology (C.R., R.N.N.), University of South Carolina, Columbia; Department of Health and Rehabilitation Sciences (J.W., E.G., S.K., J.F.), Medical University of South Carolina, Charleston; Department of Neurology (R.R., L.B.), Emory University, Atlanta, GA; Department of Neurology (A.E.H.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pharmacology and Therapeutics (S.S.K., C.d.B.), Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom; The Walton Centre NHS Foundation Trust (S.S.K., C.d.B.), Liverpool, United Kingdom
| | - Rebecca Roth
- From the Departments of Communication Sciences and Disorders (N.B., J.F.), and Psychology (C.R., R.N.N.), University of South Carolina, Columbia; Department of Health and Rehabilitation Sciences (J.W., E.G., S.K., J.F.), Medical University of South Carolina, Charleston; Department of Neurology (R.R., L.B.), Emory University, Atlanta, GA; Department of Neurology (A.E.H.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pharmacology and Therapeutics (S.S.K., C.d.B.), Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom; The Walton Centre NHS Foundation Trust (S.S.K., C.d.B.), Liverpool, United Kingdom
| | - Roger Newman-Norlund
- From the Departments of Communication Sciences and Disorders (N.B., J.F.), and Psychology (C.R., R.N.N.), University of South Carolina, Columbia; Department of Health and Rehabilitation Sciences (J.W., E.G., S.K., J.F.), Medical University of South Carolina, Charleston; Department of Neurology (R.R., L.B.), Emory University, Atlanta, GA; Department of Neurology (A.E.H.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pharmacology and Therapeutics (S.S.K., C.d.B.), Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom; The Walton Centre NHS Foundation Trust (S.S.K., C.d.B.), Liverpool, United Kingdom
| | - Argye Elizabeth Hillis
- From the Departments of Communication Sciences and Disorders (N.B., J.F.), and Psychology (C.R., R.N.N.), University of South Carolina, Columbia; Department of Health and Rehabilitation Sciences (J.W., E.G., S.K., J.F.), Medical University of South Carolina, Charleston; Department of Neurology (R.R., L.B.), Emory University, Atlanta, GA; Department of Neurology (A.E.H.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pharmacology and Therapeutics (S.S.K., C.d.B.), Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom; The Walton Centre NHS Foundation Trust (S.S.K., C.d.B.), Liverpool, United Kingdom
| | - Simon S Keller
- From the Departments of Communication Sciences and Disorders (N.B., J.F.), and Psychology (C.R., R.N.N.), University of South Carolina, Columbia; Department of Health and Rehabilitation Sciences (J.W., E.G., S.K., J.F.), Medical University of South Carolina, Charleston; Department of Neurology (R.R., L.B.), Emory University, Atlanta, GA; Department of Neurology (A.E.H.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pharmacology and Therapeutics (S.S.K., C.d.B.), Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom; The Walton Centre NHS Foundation Trust (S.S.K., C.d.B.), Liverpool, United Kingdom
| | - Christophe de Bezenac
- From the Departments of Communication Sciences and Disorders (N.B., J.F.), and Psychology (C.R., R.N.N.), University of South Carolina, Columbia; Department of Health and Rehabilitation Sciences (J.W., E.G., S.K., J.F.), Medical University of South Carolina, Charleston; Department of Neurology (R.R., L.B.), Emory University, Atlanta, GA; Department of Neurology (A.E.H.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pharmacology and Therapeutics (S.S.K., C.d.B.), Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom; The Walton Centre NHS Foundation Trust (S.S.K., C.d.B.), Liverpool, United Kingdom
| | - Sigfus Kristinsson
- From the Departments of Communication Sciences and Disorders (N.B., J.F.), and Psychology (C.R., R.N.N.), University of South Carolina, Columbia; Department of Health and Rehabilitation Sciences (J.W., E.G., S.K., J.F.), Medical University of South Carolina, Charleston; Department of Neurology (R.R., L.B.), Emory University, Atlanta, GA; Department of Neurology (A.E.H.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pharmacology and Therapeutics (S.S.K., C.d.B.), Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom; The Walton Centre NHS Foundation Trust (S.S.K., C.d.B.), Liverpool, United Kingdom
| | - Julius Fridriksson
- From the Departments of Communication Sciences and Disorders (N.B., J.F.), and Psychology (C.R., R.N.N.), University of South Carolina, Columbia; Department of Health and Rehabilitation Sciences (J.W., E.G., S.K., J.F.), Medical University of South Carolina, Charleston; Department of Neurology (R.R., L.B.), Emory University, Atlanta, GA; Department of Neurology (A.E.H.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pharmacology and Therapeutics (S.S.K., C.d.B.), Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom; The Walton Centre NHS Foundation Trust (S.S.K., C.d.B.), Liverpool, United Kingdom
| | - Leonardo Bonilha
- From the Departments of Communication Sciences and Disorders (N.B., J.F.), and Psychology (C.R., R.N.N.), University of South Carolina, Columbia; Department of Health and Rehabilitation Sciences (J.W., E.G., S.K., J.F.), Medical University of South Carolina, Charleston; Department of Neurology (R.R., L.B.), Emory University, Atlanta, GA; Department of Neurology (A.E.H.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pharmacology and Therapeutics (S.S.K., C.d.B.), Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom; The Walton Centre NHS Foundation Trust (S.S.K., C.d.B.), Liverpool, United Kingdom
| |
Collapse
|
28
|
Gastaldon S, Busan P, Arcara G, Peressotti F. Inefficient speech-motor control affects predictive speech comprehension: atypical electrophysiological correlates in stuttering. Cereb Cortex 2023:6995383. [PMID: 36682885 DOI: 10.1093/cercor/bhad004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/24/2023] Open
Abstract
Listeners predict upcoming information during language comprehension. However, how this ability is implemented is still largely unknown. Here, we tested the hypothesis proposing that language production mechanisms have a role in prediction. We studied 2 electroencephalographic correlates of predictability during speech comprehension-pre-target alpha-beta (8-30 Hz) power decrease and the post-target N400 event-related potential effect-in a population with impaired speech-motor control, i.e. adults who stutter (AWS), compared to typically fluent adults (TFA). Participants listened to sentences that could either constrain towards a target word or not, modulating its predictability. As a complementary task, participants also performed context-driven word production. Compared to TFA, AWS not only displayed atypical neural responses in production, but, critically, they showed a different pattern also in comprehension. Specifically, while TFA showed the expected pre-target power decrease, AWS showed a power increase in frontal regions, associated with speech-motor control. In addition, the post-target N400 effect was reduced for AWS with respect to TFA. Finally, we found that production and comprehension power changes were positively correlated in TFA, but not in AWS. Overall, the results support the idea that processes and neural structures prominently devoted to speech planning also support prediction during speech comprehension.
Collapse
Affiliation(s)
- Simone Gastaldon
- Dipartimento di Psicologia dello Sviluppo e della Socializzazione (DPSS), University of Padova, Via Venezia 8, Padova (PD) 35131, Italy.,Padova Neuroscience Center (PNC), University of Padova, Via Giuseppe Orus 2/B, Padova (PD) 35131, Italy
| | - Pierpaolo Busan
- IRCCS Ospedale San Camillo, Via Alberoni 70, Lido (VE) 30126, Italy
| | - Giorgio Arcara
- IRCCS Ospedale San Camillo, Via Alberoni 70, Lido (VE) 30126, Italy
| | - Francesca Peressotti
- Dipartimento di Psicologia dello Sviluppo e della Socializzazione (DPSS), University of Padova, Via Venezia 8, Padova (PD) 35131, Italy.,Padova Neuroscience Center (PNC), University of Padova, Via Giuseppe Orus 2/B, Padova (PD) 35131, Italy.,Centro Interdipartimentale di Ricerca "I-APPROVE-International Auditory Processing Project in Venice", University of Padova, Via Belzoni 160, Padova (PD) 35121, Italy
| |
Collapse
|
29
|
Billot A, Thiebaut de Schotten M, Parrish TB, Thompson CK, Rapp B, Caplan D, Kiran S. Structural disconnections associated with language impairments in chronic post-stroke aphasia using disconnectome maps. Cortex 2022; 155:90-106. [PMID: 35985126 PMCID: PMC9623824 DOI: 10.1016/j.cortex.2022.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/14/2021] [Accepted: 06/10/2022] [Indexed: 11/16/2022]
Abstract
Inconsistent findings have been reported about the impact of structural disconnections on language function in post-stroke aphasia. This study investigated patterns of structural disconnections associated with chronic language impairments using disconnectome maps. Seventy-six individuals with post-stroke aphasia underwent a battery of language assessments and a structural MRI scan. Support-vector regression disconnectome-symptom mapping analyses were performed to examine the correlations between disconnectome maps, representing the probability of disconnection at each white matter voxel and different language scores. To further understand whether significant disconnections were primarily representing focal damage or a more extended network of seemingly preserved but disconnected areas beyond the lesion site, results were qualitatively compared to support-vector regression lesion-symptom mapping analyses. Part of the left white matter perisylvian network was similarly disconnected in 90% of the individuals with aphasia. Surrounding this common left perisylvian disconnectome, specific structural disconnections in the left fronto-temporo-parietal network were significantly associated with aphasia severity and with lower performance in auditory comprehension, syntactic comprehension, syntactic production, repetition and naming tasks. Auditory comprehension, repetition and syntactic processing deficits were related to disconnections in areas that overlapped with and extended beyond lesion sites significant in SVR-LSM analyses. In contrast, overall language abilities as measured by aphasia severity and naming seemed to be mostly explained by focal damage at the level of the insular and central opercular cortices, given the high overlap between SVR-DSM and SVR-LSM results for these scores. While focal damage seems to be sufficient to explain broad measures of language performance, the structural disconnections between language areas provide additional information on the neural basis of specific and persistent language impairments at the chronic stage beyond lesion volume. Leveraging routinely available clinical data, disconnectome mapping furthers our understanding of anatomical connectivity constraints that may limit the recovery of some language abilities in chronic post-stroke aphasia.
Collapse
Affiliation(s)
- Anne Billot
- Sargent College of Health & Rehabilitation Sciences, Boston University, Boston, MA, USA; School of Medicine, Boston University, Boston, MA, USA.
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Todd B Parrish
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Cynthia K Thompson
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Brenda Rapp
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA
| | - David Caplan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Swathi Kiran
- Sargent College of Health & Rehabilitation Sciences, Boston University, Boston, MA, USA
| |
Collapse
|
30
|
Riccardi N, Rorden C, Fridriksson J, Desai RH. Canonical Sentence Processing and the Inferior Frontal Cortex: Is There a Connection? NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:318-344. [PMID: 37215558 PMCID: PMC10158581 DOI: 10.1162/nol_a_00067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 01/21/2022] [Indexed: 05/24/2023]
Abstract
The role of left inferior frontal cortex (LIFC) in canonical sentence comprehension is controversial. Many studies have found involvement of LIFC in sentence production or complex sentence comprehension, but negative or mixed results are often found in comprehension of simple or canonical sentences. We used voxel-, region-, and connectivity-based lesion symptom mapping (VLSM, RLSM, CLSM) in left-hemisphere chronic stroke survivors to investigate canonical sentence comprehension while controlling for lexical-semantic, executive, and phonological processes. We investigated how damage and disrupted white matter connectivity of LIFC and two other language-related regions, the left anterior temporal lobe (LATL) and posterior temporal-inferior parietal area (LpT-iP), affected sentence comprehension. VLSM and RLSM revealed that LIFC damage was not associated with canonical sentence comprehension measured by a sensibility judgment task. LIFC damage was associated instead with impairments in a lexical semantic similarity judgment task with high semantic/executive demands. Damage to the LpT-iP, specifically posterior middle temporal gyrus (pMTG), predicted worse sentence comprehension after controlling for visual lexical access, semantic knowledge, and auditory-verbal short-term memory (STM), but not auditory single-word comprehension, suggesting pMTG is vital for auditory language comprehension. CLSM revealed that disruption of left-lateralized white-matter connections from LIFC to LATL and LpT-iP was associated with worse sentence comprehension, controlling for performance in tasks related to lexical access, auditory word comprehension, and auditory-verbal STM. However, the LIFC connections were accounted for by the lexical semantic similarity judgment task, which had high semantic/executive demands. This suggests that LIFC connectivity is relevant to canonical sentence comprehension when task-related semantic/executive demands are high.
Collapse
Affiliation(s)
- Nicholas Riccardi
- Department of Psychology, University of South Carolina, Columbia, SC
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC
- Institute for Mind and Brain, University of South Carolina, Columbia, SC
| | - Julius Fridriksson
- Institute for Mind and Brain, University of South Carolina, Columbia, SC
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC
| | - Rutvik H. Desai
- Department of Psychology, University of South Carolina, Columbia, SC
- Institute for Mind and Brain, University of South Carolina, Columbia, SC
| |
Collapse
|
31
|
Barattieri di San Pietro C, Barbieri E, Marelli M, de Girolamo G, Luzzatti C. Processing Argument Structure and Syntactic Complexity in People with Schizophrenia Spectrum Disorders. JOURNAL OF COMMUNICATION DISORDERS 2022; 96:106182. [PMID: 35065337 DOI: 10.1016/j.jcomdis.2022.106182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Deficits in language comprehension and production have been repeatedly observed in Schizophrenia Spectrum Disorders (SSD). However, the characterization of the language profile of this population is far from complete, and the relationship between language deficits, impaired thinking and cognitive functions is widely debated. OBJECTIVE The aims of the present study were to assess production and comprehension of verbs with different argument structures, as well as production and comprehension of sentences with canonical and non-canonical word order in people with SSD. In addition, the study investigated the relationship between language deficits and cognitive functions. METHODS Thirty-four participants with a diagnosis of SSD and a group of healthy control participants (HC) were recruited and evaluated using the Italian version of the Northwestern Assessment of Verbs and Sentences (NAVS, Cho-Reyes & Thompson, 2012; Barbieri et al., 2019). RESULTS Results showed that participants with SSD were impaired - compared to HC - on both verb and sentence production, as well as on comprehension of syntactically complex (but not simple) sentences. While verb production was equally affected by verb-argument structure complexity in both SSD and HC, sentence comprehension was disproportionately more affected by syntactic complexity in SSD than in HC. In addition, in the SSD group, verb production deficits were predicted by performance on a measure of visual attention, while sentence production and comprehension deficits were explained by performance on measures of executive functions and working memory, respectively. DISCUSSION Our findings support the hypothesis that language deficits in SSD may be one aspect of a more generalized, multi-domain, cognitive impairment, and are consistent with previous findings pointing to reduced inter- and intra-hemispheric connectivity as a possible substrate for such deficits. The study provides a systematic characterization of lexical and syntactic deficits in SSD and demonstrates that psycholinguistically-based assessment tools may be able to capture language deficits in this population.
Collapse
Affiliation(s)
| | - Elena Barbieri
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Marco Marelli
- Department of Psychology, University of Milano-Bicocca, Milan, Italy; Milan Center for Neuroscience, NeuroMI
| | - Giovanni de Girolamo
- Psychiatric Epidemiology and Evaluation Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Claudio Luzzatti
- Department of Psychology, University of Milano-Bicocca, Milan, Italy; Milan Center for Neuroscience, NeuroMI
| |
Collapse
|
32
|
Parrish A, Pylkkänen L. Conceptual Combination in the LATL With and Without Syntactic Composition. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:46-66. [PMID: 37215334 PMCID: PMC10158584 DOI: 10.1162/nol_a_00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/15/2021] [Indexed: 05/24/2023]
Abstract
The relationship among syntactic, semantic, and conceptual processes in language comprehension is a central question to the neurobiology of language. Several studies have suggested that conceptual combination in particular can be localized to the left anterior temporal lobe (LATL), while syntactic processes are more often associated with the posterior temporal lobe or inferior frontal gyrus. However, LATL activity can also correlate with syntactic computations, particularly in narrative comprehension. Here we investigated the degree to which LATL conceptual combination is dependent on syntax, specifically asking whether rapid (∼200 ms) magnetoencephalography effects of conceptual combination in the LATL can occur in the absence of licit syntactic phrase closure and in the absence of a semantically plausible output for the composition. We find that such effects do occur: LATL effects of conceptual combination were observed even when there was no syntactic phrase closure or plausible meaning. But syntactic closure did have an additive effect such that LATL signals were the highest for expressions that composed both conceptually and syntactically. Our findings conform to an account in which LATL conceptual composition is influenced by local syntactic composition but is also able to operate without it.
Collapse
Affiliation(s)
- Alicia Parrish
- Department of Linguistics, New York University, New York, USA
| | - Liina Pylkkänen
- Department of Linguistics, New York University, New York, USA
- Department of Psychology, New York University, New York, USA
- NYUAD Institute, New York University Abu Dhabi, Abu Dhabi, UAE
| |
Collapse
|
33
|
Billot A, Lai S, Varkanitsa M, Braun EJ, Rapp B, Parrish TB, Higgins J, Kurani AS, Caplan D, Thompson CK, Ishwar P, Betke M, Kiran S. Multimodal Neural and Behavioral Data Predict Response to Rehabilitation in Chronic Poststroke Aphasia. Stroke 2022; 53:1606-1614. [PMID: 35078348 PMCID: PMC9022691 DOI: 10.1161/strokeaha.121.036749] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Poststroke recovery depends on multiple factors and varies greatly across individuals. Using machine learning models, this study investigated the independent and complementary prognostic role of different patient-related factors in predicting response to language rehabilitation after a stroke. METHODS Fifty-five individuals with chronic poststroke aphasia underwent a battery of standardized assessments and structural and functional magnetic resonance imaging scans, and received 12 weeks of language treatment. Support vector machine and random forest models were constructed to predict responsiveness to treatment using pretreatment behavioral, demographic, and structural and functional neuroimaging data. RESULTS The best prediction performance was achieved by a support vector machine model trained on aphasia severity, demographics, measures of anatomic integrity and resting-state functional connectivity (F1=0.94). This model resulted in a significantly superior prediction performance compared with support vector machine models trained on all feature sets (F1=0.82, P<0.001) or a single feature set (F1 range=0.68-0.84, P<0.001). Across random forest models, training on resting-state functional magnetic resonance imaging connectivity data yielded the best F1 score (F1=0.87). CONCLUSIONS While behavioral, multimodal neuroimaging data and demographic information carry complementary information in predicting response to rehabilitation in chronic poststroke aphasia, functional connectivity of the brain at rest after stroke is a particularly important predictor of responsiveness to treatment, both alone and combined with other patient-related factors.
Collapse
Affiliation(s)
- Anne Billot
- Sargent College of Health and Rehabilitation Sciences (A.B., M.V., E.J.B., S.K.), Boston University, MA
- School of Medicine (A.B.), Boston University, MA
| | - Sha Lai
- Department of Computer Science (S.L., P.I., M.B.), Boston University, MA
| | - Maria Varkanitsa
- Sargent College of Health and Rehabilitation Sciences (A.B., M.V., E.J.B., S.K.), Boston University, MA
| | - Emily J. Braun
- Sargent College of Health and Rehabilitation Sciences (A.B., M.V., E.J.B., S.K.), Boston University, MA
| | - Brenda Rapp
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD (B.R.)
| | - Todd B. Parrish
- Department of Radiology (T.B.P., J.H.), Northwestern University, Chicago, IL
| | - James Higgins
- Department of Radiology (T.B.P., J.H.), Northwestern University, Chicago, IL
| | - Ajay S. Kurani
- Department of Neurology (A.S.K.), Northwestern University, Chicago, IL
| | - David Caplan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (D.C.)
| | - Cynthia K. Thompson
- Feinberg School of Medicine and Department of Communication Sciences and Disorders (C.K.T.), Northwestern University, Chicago, IL
| | - Prakash Ishwar
- Department of Computer Science (S.L., P.I., M.B.), Boston University, MA
| | - Margrit Betke
- Department of Computer Science (S.L., P.I., M.B.), Boston University, MA
| | - Swathi Kiran
- Sargent College of Health and Rehabilitation Sciences (A.B., M.V., E.J.B., S.K.), Boston University, MA
| |
Collapse
|
34
|
Geraudie A, Battista P, García AM, Allen IE, Miller ZA, Gorno-Tempini ML, Montembeault M. Speech and language impairments in behavioral variant frontotemporal dementia: A systematic review. Neurosci Biobehav Rev 2021; 131:1076-1095. [PMID: 34673112 PMCID: PMC12169595 DOI: 10.1016/j.neubiorev.2021.10.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 01/11/2023]
Abstract
Although behavioral variant frontotemporal dementia (bvFTD) is classically defined by behavioral and socio-emotional changes, impairments often extend to other cognitive functions. These include early speech and language deficits related to the disease's core neural disruptions. Yet, their scope and clinical relevance remains poorly understood. This systematic review characterizes such disturbances in bvFTD, considering clinically, neuroanatomically, genetically, and neuropathologically defined subgroups. We included 181 experimental studies, with at least 5 bvFTD patients diagnosed using accepted criteria, comparing speech and language outcomes between bvFTD patients and healthy controls or between bvFTD subgroups. Results reveal extensive and heterogeneous deficits across cohorts, with (a) consistent lexico-semantic, reading & writing, and prosodic impairments; (b) inconsistent deficits in motor speech and grammar; and (c) relative preservation of phonological skills. Also, preliminary findings suggest that the severity of speech and language deficits might be associated with global cognitive impairment, predominantly temporal or fronto-temporal atrophy and MAPT mutations (vs C9orf72). Although under-recognized, these impairments contribute to patient characterization and phenotyping, while potentially informing diagnosis and management.
Collapse
Affiliation(s)
- Amandine Geraudie
- Memory and Aging Center, Department of Neurology, University of California San Francisco, CA, USA; Neurology Department, Toulouse University Hospital, Toulouse, France
| | - Petronilla Battista
- Memory and Aging Center, Department of Neurology, University of California San Francisco, CA, USA; Global Brain Health Institute, University of California, San Francisco, USA; Istituti Clinici Scientifici Maugeri IRCCS, Institute of Bari, Via Generale Nicola Bellomo, Bari, Italy
| | - Adolfo M García
- Global Brain Health Institute, University of California, San Francisco, USA; Universidad De San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile
| | - Isabel E Allen
- Global Brain Health Institute, University of California, San Francisco, USA; Department of Epidemiology & Biostatistics, University of California San Francisco, CA, USA
| | - Zachary A Miller
- Memory and Aging Center, Department of Neurology, University of California San Francisco, CA, USA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California San Francisco, CA, USA; Global Brain Health Institute, University of California, San Francisco, USA
| | - Maxime Montembeault
- Memory and Aging Center, Department of Neurology, University of California San Francisco, CA, USA.
| |
Collapse
|
35
|
Gleichgerrcht E, Roth R, Fridriksson J, den Ouden D, Delgaizo J, Stark B, Hickok G, Rorden C, Wilmskoetter J, Hillis A, Bonilha L. Neural bases of elements of syntax during speech production in patients with aphasia. BRAIN AND LANGUAGE 2021; 222:105025. [PMID: 34555689 PMCID: PMC8546356 DOI: 10.1016/j.bandl.2021.105025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
The ability to string together words into a structured arrangement capable of conveying nuanced information is key to speech production. The assessment of the neural bases for structuring sentences has been challenged by the need of experts to delineate the aberrant morphosyntactic structures in aphasic speech. Most studies have relied on focused tasks with limited ecological validity. We characterized syntactic complexity during connected speech produced by patients with chronic post-stroke aphasia. We automated this process by employing Natural Language Processing (NLP). We conducted voxel-based and connectome-based lesion-symptom mapping to identify brain regions crucially associated with sentence production and syntactic complexity. Posterior-inferior aspects of left frontal and parietal lobes, as well as white matter tracts connecting these areas, were essential for syntactic complexity, particularly the posterior inferior frontal gyrus. These findings suggest that sentence structuring during word production depends on the integrity of Broca's area and the dorsal stream of language processing.
Collapse
Affiliation(s)
| | - Rebecca Roth
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Dirk den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - John Delgaizo
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Brielle Stark
- Department of Speech and Hearing Sciences, Indiana University, Bloomington, IN, USA
| | - Gregory Hickok
- Department of Cognitive Sciences, University of California, Irvine, CA, USA
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Janina Wilmskoetter
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Argye Hillis
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
36
|
Lukic S, Borghesani V, Weis E, Welch A, Bogley R, Neuhaus J, Deleon J, Miller ZA, Kramer JH, Miller BL, Dronkers NF, Gorno-Tempini ML. Dissociating nouns and verbs in temporal and perisylvian networks: Evidence from neurodegenerative diseases. Cortex 2021; 142:47-61. [PMID: 34182153 PMCID: PMC8556704 DOI: 10.1016/j.cortex.2021.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/27/2021] [Accepted: 05/08/2021] [Indexed: 12/11/2022]
Abstract
Naming of nouns and verbs can be selectively impaired in neurological disorders, but the specificity of the neural and cognitive correlates of such dissociation remains unclear. Functional imaging and stroke research sought to identify cortical regions selectively recruited for nouns versus verbs, yet findings are inconsistent. The present study investigated this issue in neurodegenerative diseases known to selectively affect different brain networks, thus providing new critical evidence of network specificity. We examined naming performances on nouns and verbs in 146 patients with different neurodegenerative syndromes (Primary Progressive Aphasia - PPA, Alzheimer's disease - AD, and behavioral variant Frontotemporal Dementia - FTD) and 30 healthy adults. We then correlated naming scores with MRI-derived cortical thickness values as well as with performances in semantic and syntactic tasks, across all subjects. Results indicated that patients with the semantic variant PPA named significantly fewer nouns than verbs. Instead, nonfluent/agrammatic PPA patients named fewer verbs than nouns. Across all subjects, performance on nouns (adjusted for verbs) specifically correlated with cortical atrophy in left anterior temporal regions, and performance on verbs (adjusted for nouns) with atrophy in left inferior and middle frontal, inferior parietal and posterior temporal regions. Furthermore, lower lexical-semantic abilities correlated with deficits in naming both nouns and verbs, while lower syntactic abilities only correlated with naming verbs. Our results show that different neural and cognitive mechanisms underlie naming of specific grammatical categories in neurodegenerative diseases. Importantly, our findings showed that verb processing depends on a widespread perisylvian networks, suggesting that some regions might be involved in processing different types of action knowledge. These findings have important implications for early differential diagnosis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Sladjana Lukic
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.
| | - Valentina Borghesani
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Elizabeth Weis
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Ariane Welch
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Rian Bogley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - John Neuhaus
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Jessica Deleon
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Zachary A Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Nina F Dronkers
- University of California, Berkeley, CA, USA; University of California, Davis, CA, USA
| | - Maria L Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| |
Collapse
|
37
|
Lwi SJ, Herron TJ, Curran BC, Ivanova MV, Schendel K, Dronkers NF, Baldo JV. Auditory Comprehension Deficits in Post-stroke Aphasia: Neurologic and Demographic Correlates of Outcome and Recovery. Front Neurol 2021; 12:680248. [PMID: 34456845 PMCID: PMC8397517 DOI: 10.3389/fneur.2021.680248] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/09/2021] [Indexed: 11/30/2022] Open
Abstract
Introduction: One of the most challenging symptoms of aphasia is an impairment in auditory comprehension. The inability to understand others has a direct impact on a person's quality of life and ability to benefit from treatment. Despite its importance, limited research has examined the recovery pattern of auditory comprehension and instead has focused on aphasia recovery more generally. Thus, little is known about the time frame for auditory comprehension recovery following stroke, and whether specific neurologic and demographic variables contribute to recovery and outcome. Methods: This study included 168 left hemisphere chronic stroke patients stroke patients with auditory comprehension impairments ranging from mild to severe. Univariate and multivariate lesion-symptom mapping (LSM) was used to identify brain regions associated with auditory comprehension outcomes on three different tasks: Single-word comprehension, yes/no sentence comprehension, and comprehension of sequential commands. Demographic variables (age, gender, and education) were also examined for their role in these outcomes. In a subset of patients who completed language testing at two or more time points, we also analyzed the trajectory of recovery in auditory comprehension using survival curve-based time compression. Results: LSM analyses revealed that poor single-word auditory comprehension was associated with lesions involving the left mid- to posterior middle temporal gyrus, and portions of the angular and inferior-middle occipital gyri. Poor yes/no sentence comprehension was associated almost exclusively with the left mid-posterior middle temporal gyrus. Poor comprehension of sequential commands was associated with lesions in the left posterior middle temporal gyrus. There was a small region of convergence between the three comprehension tasks, in the very posterior portion of the left middle temporal gyrus. The recovery analysis revealed that auditory comprehension scores continued to improve beyond the first year post-stroke. Higher education was associated with better outcome on all auditory comprehension tasks. Age and gender were not associated with outcome or recovery slopes. Conclusions: The current findings suggest a critical role for the posterior left middle temporal gyrus in the recovery of auditory comprehension following stroke, and that spontaneous recovery of auditory comprehension can continue well beyond the first year post-stroke.
Collapse
Affiliation(s)
- Sandy J Lwi
- Veterans Affairs Northern California Health Care System, Martinez, CA, United States
| | - Timothy J Herron
- Veterans Affairs Northern California Health Care System, Martinez, CA, United States
| | - Brian C Curran
- Veterans Affairs Northern California Health Care System, Martinez, CA, United States
| | - Maria V Ivanova
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Krista Schendel
- Veterans Affairs Northern California Health Care System, Martinez, CA, United States
| | - Nina F Dronkers
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Juliana V Baldo
- Veterans Affairs Northern California Health Care System, Martinez, CA, United States
| |
Collapse
|