1
|
James TM, Burgess AP. Estimating Chronological Age From the Electrical Activity of the Brain: How EEG-Age Can Be Used as a Marker of General Brain Functioning. Psychophysiology 2025; 62:e70033. [PMID: 40090876 PMCID: PMC11911306 DOI: 10.1111/psyp.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 07/30/2024] [Accepted: 02/20/2025] [Indexed: 03/18/2025]
Abstract
With an aging global population, the number of older adults with age-related changes in the brain, including dementia, will continue to increase unless we can make progress in the early detection and treatment of such conditions. There is extensive literature on the effects of aging on the EEG, particularly a decline in the Peak Alpha Frequency (PAF), but here, in a reversal of convention, we used the EEG power-frequency spectrum to estimate chronological age. The motivation for this approach was that an individual's brain age might act as a proxy for their general brain functioning, whereby a discrepancy between chronological age and EEG age could prove clinically informative by implicating deleterious conditions. With a sample of sixty healthy adults, whose ages ranged from 20 to 78 years, and using multivariate methods to analyze the broad EEG spectrum (0.1-45 Hz), strong positive correlations between chronological age and EEG age emerged. Furthermore, EEG age was a more accurate estimate and accounted for more variance in chronological age than well-established PAF-based estimates of age, indicating that EEG age could be a more comprehensive measure of general brain functioning. We conclude that EEG age could become a biomarker for neural and cognitive integrity.
Collapse
Affiliation(s)
- Thomas M. James
- Aston Research Centre for Health in Ageing (ARCHA) and Aston Institute of Health and Neurodevelopment (IHN), College of Health and Life Sciences (HLS), School of PsychologyAston UniversityBirminghamUK
| | | |
Collapse
|
2
|
Haltmar H, Janura M, Kolářová B. Muscle activity and lower body kinematics change when performing motor imagery of gait. Sci Rep 2025; 15:191. [PMID: 39748042 PMCID: PMC11697421 DOI: 10.1038/s41598-024-84081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Motor imagery (MI) is a mental simulation of a movement without its actual execution. Our study aimed to assess how MI of two modalities of gait (normal gait and much more posturally challenging slackline gait) affects muscle activity and lower body kinematics. Electromyography (biceps femoris, gastrocnemius medialis, rectus femoris and tibialis anterior muscles) as well as acceleration and angular velocity (shank, thigh and pelvis segments) data were collected in three tasks for both MI modalities of gait (rest, gait imagery before and after the real execution of gait) in quiet bipedal stance in 26 healthy young adults. No significant change was observed in electromyography activity and lower body kinematics when comparing MI tasks of normal gait. A significantly higher acceleration for the lower limb segments in the vertical direction and for the pelvis in the mediolateral and anteroposterior direction and angular velocity for pelvis in the frontal plane were found during MI of slackline gait after its real execution compared to rest. The results show that MI of normal gait does not lead to any significant changes, while MI of slackline gait affects lower body kinematics parameters.
Collapse
Affiliation(s)
- Hana Haltmar
- Department of Natural Sciences in Kinanthropology, Faculty of Physical Culture, Palacký University Olomouc, Olomouc, Czech Republic.
- Department of Rehabilitation, University Hospital Olomouc, Olomouc, Czech Republic.
- Department of Clinical Rehabilitation, Faculty of Health Sciences, Palacký University Olomouc, Olomouc, Czech Republic.
| | - Miroslav Janura
- Department of Natural Sciences in Kinanthropology, Faculty of Physical Culture, Palacký University Olomouc, Olomouc, Czech Republic
| | - Barbora Kolářová
- Department of Rehabilitation, University Hospital Olomouc, Olomouc, Czech Republic
- Department of Clinical Rehabilitation, Faculty of Health Sciences, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
3
|
Luo TJ, Li J, Li R, Zhang X, Wu SR, Peng H. Motion Cognitive Decoding of Cross-Subject Motor Imagery Guided on Different Visual Stimulus Materials. J Integr Neurosci 2024; 23:218. [PMID: 39735964 DOI: 10.31083/j.jin2312218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 12/31/2024] Open
Abstract
BACKGROUND Motor imagery (MI) plays an important role in brain-computer interfaces, especially in evoking event-related desynchronization and synchronization (ERD/S) rhythms in electroencephalogram (EEG) signals. However, the procedure for performing a MI task for a single subject is subjective, making it difficult to determine the actual situation of an individual's MI task and resulting in significant individual EEG response variations during motion cognitive decoding. METHODS To explore this issue, we designed three visual stimuli (arrow, human, and robot), each of which was used to present three MI tasks (left arm, right arm, and feet), and evaluated differences in brain response in terms of ERD/S rhythms. To compare subject-specific variations of different visual stimuli, a novel cross-subject MI-EEG classification method was proposed for the three visual stimuli. The proposed method employed a covariance matrix centroid alignment for preprocessing of EEG samples, followed by a model agnostic meta-learning method for cross-subject MI-EEG classification. RESULTS AND CONCLUSION The experimental results showed that robot stimulus materials were better than arrow or human stimulus materials, with an optimal cross-subject motion cognitive decoding accuracy of 79.04%. Moreover, the proposed method produced robust classification of cross-subject MI-EEG signal decoding, showing superior results to conventional methods on collected EEG signals.
Collapse
Affiliation(s)
- Tian-Jian Luo
- College of Computer and Cyber Security, Fujian Normal University, 350117 Fuzhou, Fujian, China
| | - Jing Li
- Academy of Arts, Shaoxing University, 312000 Shaoxing, Zhejiang, China
| | - Rui Li
- National Engineering Laboratory for Educational Big Data, Central China Normal University, 430079 Wuhan, Hubei, China
| | - Xiang Zhang
- Department of Computer Science and Engineering, Shaoxing University, 312000 Shaoxing, Zhejiang, China
| | - Shen-Rui Wu
- Department of Computer Science and Engineering, Shaoxing University, 312000 Shaoxing, Zhejiang, China
| | - Hua Peng
- Department of Computer Science and Engineering, Shaoxing University, 312000 Shaoxing, Zhejiang, China
| |
Collapse
|
4
|
Zhou Z, Xu H, Sun Y, Liu G. The Electroencephalogram (EEG) Study for Estimating Endurance Sports Performance Base on Eigenvalues Extraction Method. Brain Sci 2024; 14:1135. [PMID: 39595898 PMCID: PMC11591843 DOI: 10.3390/brainsci14111135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
OBJECTIVES Brain-behavior connections are a new means to evaluate sports performance. This electroencephalogram (EEG) study aims to estimate endurance exercise performance by investigating eigenvalue trends and comparing their sensitivity and linearity. METHODS Twenty-three cross-country skiers completed endurance cycling tasks. Twenty-four-channel full-brain EEG signals were recorded in the motor phase and recovery phase continuously. Eighteen EEG eigenvalues calculation methods were collected, commonly used in previous research. Time-frequency, band power, and nonlinear analyses were used to calculate the EEG eigenvalues. Their regression coefficients and correlation coefficients were calculated and compared, with the linear regression method. RESULTS The time-frequency eigenvalues shift slightly throughout the test. The power eigenvalues changed significantly before and after motor and recovery, but the linearity was not satisfactory. The sensitivity and linearity of the nonlinear eigenvalues were stronger than the other eigenvalues. Of all eigenvalues, Shannon entropy showed completely non-overlapping distribution intervals in the regression coefficients of the two phases, which were -0.1474 ± 0.0806 s-1 in the motor phase and 0.2560 ± 0.1365 s-1 in the recovery phase. Shannon entropy amplitude decreased more in the F region of the brain than in the other regions. Additionally, the higher the level of sport, the slower the decline in Shannon entropy of the athlete. CONCLUSIONS The Shannon entropy method provided more accurate estimations for endurance exercise performance compared to other eigenvalues.
Collapse
Affiliation(s)
- Zijian Zhou
- Research Field of Medical Instruments and Bioinformation Processing, College of Instrumentation and Electrical Engineering, Jilin University, No. 938 West Democracy Street, Changchun 130061, China; (Z.Z.); (Y.S.)
| | - Hongqi Xu
- Research Center of Exercise Capacity Assessment and Promotion, School of Sports Science and Physical Education, Northeast Normal University, Changchun 130024, China;
| | - Yubing Sun
- Research Field of Medical Instruments and Bioinformation Processing, College of Instrumentation and Electrical Engineering, Jilin University, No. 938 West Democracy Street, Changchun 130061, China; (Z.Z.); (Y.S.)
| | - Guangda Liu
- Research Field of Medical Instruments and Bioinformation Processing, College of Instrumentation and Electrical Engineering, Jilin University, No. 938 West Democracy Street, Changchun 130061, China; (Z.Z.); (Y.S.)
| |
Collapse
|
5
|
Eaves DL, Hodges NJ, Buckingham G, Buccino G, Vogt S. Enhancing motor imagery practice using synchronous action observation. PSYCHOLOGICAL RESEARCH 2024; 88:1891-1907. [PMID: 36574019 PMCID: PMC11315722 DOI: 10.1007/s00426-022-01768-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 11/07/2022] [Indexed: 12/28/2022]
Abstract
In this paper, we discuss a variety of ways in which practising motor actions by means of motor imagery (MI) can be enhanced via synchronous action observation (AO), that is, by AO + MI. We review the available research on the (mostly facilitatory) behavioural effects of AO + MI practice in the early stages of skill acquisition, discuss possible theoretical explanations, and consider several issues related to the choice and presentation schedules of suitable models. We then discuss considerations related to AO + MI practice at advanced skill levels, including expertise effects, practical recommendations such as focussing attention on specific aspects of the observed action, using just-ahead models, and possible effects of the perspective in which the observed action is presented. In section "Coordinative AO + MI", we consider scenarios where the observer imagines performing an action that complements or responds to the observed action, as a promising and yet under-researched application of AO + MI training. In section "The dual action simulation hypothesis of AO + MI", we review the neurocognitive hypothesis that AO + MI practice involves two parallel action simulations, and we consider opportunities for future research based on recent neuroimaging work on parallel motor representations. In section "AO + MI training in motor rehabilitation", we review applications of AO, MI, and AO + MI training in the field of neurorehabilitation. Taken together, this evidence-based, exploratory review opens a variety of avenues for future research and applications of AO + MI practice, highlighting several clear advantages over the approaches of purely AO- or MI-based practice.
Collapse
Affiliation(s)
- Daniel L Eaves
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Nicola J Hodges
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Gavin Buckingham
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Giovanni Buccino
- Division of Neuroscience, IRCCS San Raffaele and Vita Salute San Raffaele University, Milan, Italy
| | - Stefan Vogt
- Department of Psychology, Lancaster University, Lancaster, UK.
| |
Collapse
|
6
|
Li M, Qi E, Xu G, Jin J, Zhao Q, Guo M, Liao W. A delayed matching task-based study on action sequence of motor imagery. Cogn Neurodyn 2024; 18:1593-1607. [PMID: 39104677 PMCID: PMC11297855 DOI: 10.1007/s11571-023-10030-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/28/2023] [Accepted: 10/23/2023] [Indexed: 08/07/2024] Open
Abstract
The way people imagine greatly affects performance of brain-computer interface (BCI) based on motion imagery (MI). Action sequence is a basic unit of imitation, learning, and memory for motor behavior. Whether it influences the MI-BCI is unknown, and how to manifest this influence is difficult since the MI is a spontaneous brain activity. To investigate the influence of the action sequence, this study proposes a novel paradigm named action sequences observing and delayed matching task to use images and videos to guide people to observe, match and reinforce the memory of sequence. Seven subjects' ERPs and MI performance are analyzed under four different levels of complexities or orders of the sequence. Results demonstrated that the action sequence in terms of complexity and sequence order significantly affects the MI. The complex action in positive order obtains stronger ERD/ERS and more pronounced MI feature distributions, and yields an MI classification accuracy that is 12.3% higher than complex action in negative order (p < 0.05). In addition, the ERP amplitudes derived from the supplementary motor area show a positive correlation to the MI. This study demonstrates a new perspective of improving imagery in the MI-BCI by considering the complexity and order of the action sequences, and provides a novel index for manifesting the MI performance by ERP.
Collapse
Affiliation(s)
- Mengfan Li
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132 China
- Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, Tianjin, 300132 China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin, 300132 China
| | - Enming Qi
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132 China
- Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, Tianjin, 300132 China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin, 300132 China
| | - Guizhi Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132 China
- Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, Tianjin, 300132 China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin, 300132 China
| | - Jing Jin
- Key Laboratory of Advanced Control and Optimization for Chemical Processes, East China, University of Science and Technology, Shanghai, 518063 China
- Shenzhen Research Institute of East China, University of Science and Technology, Shenzhen, 518063 China
| | - Qi Zhao
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132 China
- Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, Tianjin, 300132 China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin, 300132 China
| | - Miaomiao Guo
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132 China
- Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, Tianjin, 300132 China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin, 300132 China
| | - Wenzhe Liao
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, 300132 China
| |
Collapse
|
7
|
Roeder L, Breakspear M, Kerr GK, Boonstra TW. Dynamics of brain-muscle networks reveal effects of age and somatosensory function on gait. iScience 2024; 27:109162. [PMID: 38414847 PMCID: PMC10897916 DOI: 10.1016/j.isci.2024.109162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/16/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024] Open
Abstract
Walking is a complex motor activity that requires coordinated interactions between the sensory and motor systems. We used mobile EEG and EMG to investigate the brain-muscle networks involved in gait control during overground walking in young people, older people, and individuals with Parkinson's disease. Dynamic interactions between the sensorimotor cortices and eight leg muscles within a gait cycle were assessed using multivariate analysis. We identified three distinct brain-muscle networks during a gait cycle. These networks include a bilateral network, a left-lateralized network activated during the left swing phase, and a right-lateralized network active during the right swing. The trajectories of these networks are contracted in older adults, indicating a reduction in neuromuscular connectivity with age. Individuals with the impaired tactile sensitivity of the foot showed a selective enhancement of the bilateral network, possibly reflecting a compensation strategy to maintain gait stability. These findings provide a parsimonious description of interindividual differences in neuromuscular connectivity during gait.
Collapse
Affiliation(s)
- Luisa Roeder
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- School of Information Systems, Faculty of Science, Queensland University of Technology, Brisbane, QLD, Australia
- Chair of Human Movement Science, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Michael Breakspear
- College of Engineering Science and Environment, College of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Graham K Kerr
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Tjeerd W Boonstra
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
8
|
Temporiti F, Galbiati E, Bianchi F, Bianchi AM, Galli M, Gatti R. Early sleep after action observation plus motor imagery improves gait and balance abilities in older adults. Sci Rep 2024; 14:3179. [PMID: 38326504 PMCID: PMC10850554 DOI: 10.1038/s41598-024-53664-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 02/03/2024] [Indexed: 02/09/2024] Open
Abstract
Action observation plus motor imagery (AOMI) is a rehabilitative approach to improve gait and balance performance. However, limited benefits have been reported in older adults. Early sleep after motor practice represents a strategy to enhance the consolidation of trained skills. Here, we investigated the effects of AOMI followed by early sleep on gait and balance performance in older adults. Forty-five older adults (mean age: 70.4 ± 5.2 years) were randomized into three groups performing a 3-week training. Specifically, AOMI-sleep and AOMI-control groups underwent observation and motor imagery of gait and balance tasks between 8:00 and 10:00 p.m. or between 8:00 and 10:00 a.m. respectively, whereas Control group observed landscape video-clips. Participants were assessed for gait performance, static and dynamic balance and fear of falling before and after training and at 1-month follow-up. The results revealed that early sleep after AOMI training sessions improved gait and balance abilities in older adults compared to AOMI-control and Control groups. Furthermore, these benefits were retained at 1-month after the training end. These findings suggested that early sleep after AOMI may represent a safe and easy-applicable intervention to minimize the functional decay in older adults.
Collapse
Affiliation(s)
- Federico Temporiti
- Physiotherapy Unit, Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, Rozzano, Milan, Italy.
- Department of Electronic, Information and Bioengineering, Politecnico Di Milano, via Ponzio 34, Milano, Milan, Italy.
| | - Elena Galbiati
- Physiotherapy Unit, Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, Rozzano, Milan, Italy
| | - Francesco Bianchi
- Physiotherapy Unit, Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, Rozzano, Milan, Italy
| | - Anna Maria Bianchi
- Department of Electronic, Information and Bioengineering, Politecnico Di Milano, via Ponzio 34, Milano, Milan, Italy
| | - Manuela Galli
- Department of Electronic, Information and Bioengineering, Politecnico Di Milano, via Ponzio 34, Milano, Milan, Italy
| | - Roberto Gatti
- Physiotherapy Unit, Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, Pieve Emanuele, Milan, Italy
| |
Collapse
|
9
|
Kaneko N, Wada M, Nakajima S, Takano M, Taniguchi K, Honda S, Mimura M, Noda Y. Neuroplasticity of the left dorsolateral prefrontal cortex in patients with treatment-resistant depression as indexed with paired associative stimulation: a TMS-EEG study. Cereb Cortex 2024; 34:bhad515. [PMID: 38204301 PMCID: PMC10839839 DOI: 10.1093/cercor/bhad515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Major depressive disorder affects over 300 million people globally, with approximately 30% experiencing treatment-resistant depression (TRD). Given that impaired neuroplasticity underlies depression, the present study focused on neuroplasticity in the dorsolateral prefrontal cortex (DLPFC). Here, we aimed to investigate the differences in neuroplasticity between 60 individuals with TRD and 30 age- and sex-matched healthy controls (HCs). To induce neuroplasticity, participants underwent a paired associative stimulation (PAS) paradigm involving peripheral median nerve stimulation and transcranial magnetic stimulation (TMS) targeting the left DLPFC. Neuroplasticity was assessed by using measurements combining TMS with EEG before and after PAS. Both groups exhibited significant increases in the early component of TMS-evoked potentials (TEP) after PAS (P < 0.05, paired t-tests with the bootstrapping method). However, the HC group demonstrated a greater increase in TEPs than the TRD group (P = 0.045, paired t-tests). Additionally, event-related spectral perturbation analysis highlighted that the gamma power significantly increased after PAS in the HC group, whereas it was decreased in the TRD group (P < 0.05, paired t-tests with the bootstrapping method). This gamma power modulation revealed a significant group difference (P = 0.006, paired t-tests), indicating an inverse relationship for gamma power modulation. Our findings underscore the impaired neuroplasticity of the DLPFC in individuals with TRD.
Collapse
Affiliation(s)
- Naotsugu Kaneko
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Masataka Wada
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Mayuko Takano
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
- Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino, Tokyo 191-8512, Japan
| | - Keita Taniguchi
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Shiori Honda
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| |
Collapse
|
10
|
Khajuria A, Sharma R, Joshi D. EEG Dynamics of Locomotion and Balancing: Solution to Neuro-Rehabilitation. Clin EEG Neurosci 2024; 55:143-163. [PMID: 36052404 DOI: 10.1177/15500594221123690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The past decade has witnessed tremendous growth in analyzing the cortical representation of human locomotion and balance using Electroencephalography (EEG). With the advanced developments in miniaturized electronics, wireless brain recording systems have been developed for mobile recordings, such as in locomotion. In this review, the cortical dynamics during locomotion are presented with extensive focus on motor imagery, and employing the treadmill as a tool for performing different locomotion tasks. Further, the studies that examine the cortical dynamics during balancing, focusing on two types of balancing tasks, ie, static and dynamic, with the challenges in sensory inputs and cognition (dual-task), are presented. Moreover, the current literature demonstrates the advancements in signal processing methods to detect and remove the artifacts from EEG signals. Prior studies show the electrocortical sources in the anterior cingulate, posterior parietal, and sensorimotor cortex was found to be activated during locomotion. The event-related potential has been observed to increase in the fronto-central region for a wide range of balance tasks. The advanced knowledge of cortical dynamics during mobility can benefit various application areas such as neuroprosthetics and gait/balance rehabilitation. This review will be beneficial for the development of neuroprostheses, and rehabilitation devices for patients suffering from movement or neurological disorders.
Collapse
Affiliation(s)
- Aayushi Khajuria
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Richa Sharma
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Deepak Joshi
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
- Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
11
|
Isakova EV, Kotov SV, Guts ES, Zenina VA. [Possibilities of mirror therapy in cognitive rehabilitation after stroke]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:64-71. [PMID: 39166936 DOI: 10.17116/jnevro202412408264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The review provides a brief overview of the history of the development of mirror therapy. Current data on the putative mechanisms of mirror therapy as well as the theory of mirror neurons are presented. The authors describe the implementation of the effects of mirror therapy in motor rehabilitation after stroke, including motor imagination or mental simulation of actions, strengthening of spatial attention and self-perception, activation of the ipsilateral corticospinal tract, reorganization of neuronal networks that influence the state of structurally intact but functionally inactive neurons. The authors reflected the prerequisites for the use of mirror therapy in the rehabilitation of cognitive impairment in poststroke patients. The results of current clinical studies and case reports of the use of mirror therapy for the rehabilitation of speech and non-speech cognitive disorders, and neglect syndrome after stroke are presented.
Collapse
Affiliation(s)
- E V Isakova
- Vladimirskiy Moscow Regional Research Clinical Institute, Moscow, Russia
| | - S V Kotov
- Vladimirskiy Moscow Regional Research Clinical Institute, Moscow, Russia
| | - E S Guts
- Vladimirskiy Moscow Regional Research Clinical Institute, Moscow, Russia
| | - V A Zenina
- Vladimirskiy Moscow Regional Research Clinical Institute, Moscow, Russia
| |
Collapse
|
12
|
Li Y, Lyu Y, Song R. Phase-Dependent Modulation of Muscle Activity and Intermuscular Coupling During Walking in Patients After Stroke. IEEE Trans Neural Syst Rehabil Eng 2023; 31:1119-1127. [PMID: 37022070 DOI: 10.1109/tnsre.2023.3238758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Many patients experience motor and sensory impairments after stroke, leading to gait disturbances. Analysis of muscle modulation mode during walking can provide evidence for neurological changes after stroke, while how stroke affects individual muscle activity and muscular coordination in certain gait sub-phases remains unclear. The purpose of the present study is to comprehensively investigate phase-dependent ankle muscle activity and intermuscular coupling patterns in post-stroke patients. In this experiment, 10 post-stroke patients, 10 young healthy subjects and 10 elderly healthy subjects were recruited. All subjects were asked to walk at their preferred speeds on the ground, and surface electromyography (sEMG) and marker trajectory data were collected simultaneously. The gait cycle of each subject was divided into four substages according to the labeled trajectory data. On this basis, fuzzy approximate entropy (fApEn) was used to analyze the complexity of ankle muscle activity during walking. And the transfer entropy (TE) was applied to reflect directed information transmission between ankle muscles. Results found that complexity of ankle muscles activities in patients after stroke showed similar trends to that in healthy subjects. Different from healthy subjects, the complexity of ankle muscle activity in patients with stroke tends to increase in most of the gait sub-phases. While TE values between the ankle muscles in patients with stroke tend to decrease throughout the gait cycle, especially in the second double support stage. Compared with age-matched healthy subjects, patients recruit more motor units throughout their gait while increasing muscle coupling to achieve gait function. The combined application of fApEn and TE provide a more comprehensive understanding of phase-dependent muscle modulation mechanisms in post-stroke patients.
Collapse
|
13
|
Psychophysiological mechanisms underlying the effects of outdoor green and virtual green exercise during self-paced walking. Int J Psychophysiol 2023; 184:39-50. [PMID: 36572348 DOI: 10.1016/j.ijpsycho.2022.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/03/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Physical activity in the presence of nature can lead to additional, more distinct mental health benefits such as lower stress and anxiety levels and an overall better psychological state when compared to indoor physical activity. Interestingly, the brain mechanisms underlying the effects of green exercise (GE) and virtual green exercise (VGE) on psychological responses are hitherto under-researched. The present study sought to deepen our understanding of the brain mechanisms underlying the effects of GE and VGE during self-paced walking. Thirty individuals took part in the present study. Two experimental (i.e., GE and VGE) and a control condition (CO) were administered in a randomized and counterbalanced order. Participants were asked to walk for ¼ mile at a pace of their choosing and self-report their psychological states at various timepoints during the exercise trials. Heart rate variability and the brain's electrical activity were monitored continuously throughout the experimental protocol. An accelerometer was used to identify the beginning and end of each step. The results indicate that both experimental manipulations were sufficient to influence the majority of psychological and psychophysiological parameters. The most pronounced effects were identified for GE when compared to CO and VGE. VGE was also sufficient to evoke positive emotions and partially reallocate attention externally, although such effects were less pronounced than those observed for GE. The brain mechanisms underlying the abovementioned psychophysiological responses may be associated with significant changes in theta activity throughout the cerebral cortex as well as increased connectivity in the frontal and parietal areas.
Collapse
|
14
|
Li M, Zuo H, Zhou H, Xu G, Qi E. A study of action difference on motor imagery based on delayed matching posture task. J Neural Eng 2023; 20. [PMID: 36645915 DOI: 10.1088/1741-2552/acb386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
Objective. Motor imagery (MI)-based brain-computer interfaces (BCIs) provide an additional control pathway for people by decoding the intention of action imagination. The way people imagine greatly affects MI-BCI performance. Action itself is one of the factors that influence the way people imagine. Whether the different actions cause a difference in the MI performance is unknown. What is more important is how to manifest this action difference in the process of imagery, which has the potential to guide people to use their individualized actions to imagine more effectively.Approach.To explore action differences, this study proposes a novel paradigm named as action observation based delayed matching posture task. Ten subjects are required to observe, memorize, match, and imagine three types of actions (cutting, grasping and writing) given by visual images or videos, to accomplish the phases of encoding, retrieval and reinforcement of MI. Event-related potential (ERP), MI features, and classification accuracy of the left or the right hand are used to evaluate the effect of the action difference on the MI difference.Main results.Action differences cause different feature distributions, resulting in that the accuracy with high event-related (de)synchronization (ERD/ERS) is 27.75% higher than the ones with low ERD/ERS (p< 0.05), which indicates that the action difference has impact on the MI difference and the BCI performance. In addition, significant differences in the ERP amplitudes exists among the three actions: the amplitude of P300-N200 potential reaches 9.28μV of grasping, 5.64μV and 5.25μV higher than the cutting and the writing, respectively (p< 0.05).Significance.The ERP amplitudes derived from the supplementary motor area shows positive correlation to the MI classification accuracy, implying that the ERP might be an index of the MI performance when the people is faced with action selection. This study demonstrates that the MI difference is related to the action difference, and can be manifested by the ERP, which is important for improving MI training by selecting suitable action; the relationship between the ERP and the MI provides a novel index to find the suitable action to set up an individualized BCI and improve the performance further.
Collapse
Affiliation(s)
- Mengfan Li
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Science and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, People's Republic of China.,Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, People's Republic of China.,Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, 300132 Tianjin, People's Republic of China
| | - Haoxin Zuo
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Science and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, People's Republic of China.,Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, People's Republic of China.,Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, 300132 Tianjin, People's Republic of China
| | - Huihui Zhou
- Peng Cheng Laboratory, 518000 Guangdong, People's Republic of China
| | - Guizhi Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Science and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, People's Republic of China.,Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, People's Republic of China.,Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, 300132 Tianjin, People's Republic of China
| | - Enming Qi
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Science and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, People's Republic of China.,Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, People's Republic of China.,Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, 300132 Tianjin, People's Republic of China
| |
Collapse
|
15
|
Lin CF, Lin HC. IMF-Based MF and HS Energy Feature Information of F5, and F6 Movement and Motor Imagery EEG Signals in Delta Rhythms Using HHT. SENSORS (BASEL, SWITZERLAND) 2023; 23:1078. [PMID: 36772115 PMCID: PMC9920123 DOI: 10.3390/s23031078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
This study aims to extract the energy feature distributions in the form of marginal frequency (MF) and Hilbert spectrum (HS) in the intrinsic mode functions (IMF) domain for actual movement (AM)-based and motor imagery (MI)-based electroencephalogram (EEG) signals using the Hilbert-Huang transformation (HHT) time frequency (TF) analysis method. Accordingly, F5 and F6 EEG signal TF energy feature distributions in delta (0.5-4 Hz) rhythm are explored. We propose IMF-based and residue function (RF)-based MF and HS feature information extraction methods with IMFRFERDD (IMFRF energy refereed distribution density), IMFRFMFERDD (IMFRF MF energy refereed distribution density), and IMFRFHSERDD (IMFRF HS energy refereed distribution density) parameters using HHT with application to AM, MI EEG F5, and F6 signals in delta rhythm. The AM and MI tasks involve simultaneously opening fists and feet, as well as simultaneously closing fists and feet. Eight samples (32 in total) with a time duration of 1000 ms are extracted for analyzing F5AM, F5MI, F6AM, and F6MI EEG signals, which are decomposed into five IMFs and one RF. The maximum average IMFRFERDD values of IMF4 are 3.70, 3.43, 3.65, and 3.69 for F5AM, F5MI, F6 AM, and F6MI, respectively. The maximum average IMFRFMFERDD values of IMF4 in the delta rhythm are 21.50, 20.15, 21.02, and 17.30, for F5AM, F5MI, F6AM, and F6MI, respectively. Additionally, the maximum average IMFRFHSERDD values of IMF4 in delta rhythm are 39,21, 39.14, 36.29, and 33.06 with time intervals of 500-600, 800-900, 800-900, and 500-600 ms, for F5AM, F5MI, F6AM, and F6MI, respectively. The results of this study, advance our understanding of meaningful feature information of F5MM, F5MI, F6MM, and F6MI, enabling the design of MI-based brain-computer interface assistive devices for disabled persons.
Collapse
Affiliation(s)
- Chin-Feng Lin
- Correspondence: ; Tel.: +886-2-2462-2192 (ext. 6270)
| | | |
Collapse
|
16
|
Ao M, Ren S, Yu Y, Huang H, Miao X, Ao Y, Wang W. The effects of blurred visual inputs with different levels on the cerebral activity during free level walking. Front Neurosci 2023; 17:1151799. [PMID: 37139527 PMCID: PMC10149992 DOI: 10.3389/fnins.2023.1151799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/20/2023] [Indexed: 05/05/2023] Open
Abstract
Objective The aim of this study was to evaluate the effects of blurred vision on electrocortical activities at different levels during walking. Materials and methods A total of 22 healthy volunteers (all men; mean age: 24.4 ± 3.9 years) underwent an electroencephalography (EEG) test synchronous with free level walking. Visual status was simulated by goggles covered by the occlusion foil targeted at a Snellen visual acuity of 20/60 (V0.3), 20/200 (V0.1), and light perception (V0). At each of these conditions, the participants completed barefoot walking for five blocks of 10 m. The EEG signals were recorded by a wireless EEG system with electrodes of interest, namely, Cz, Pz, Oz, O1, and O2. The gait performances were assessed by the Vicon system. Results During walking with normal vision (V1.0), there were cerebral activities related to visual processing, characterized as higher spectral power of delta (Oz and O2 vs. Cz, Pz, and O1, p ≤ 0.033) and theta (Oz vs. Cz and O1, p = 0.044) bands in occipital regions. Moderately blurred vision (V0.3) would attenuate the predominance of delta- and theta-band activities at Oz and O2, respectively. At the statuses of V0.1 and V0, the higher power of delta (at V0.1 and V0, Oz, and O2 vs. Cz, Pz, and O1, p ≤ 0.047) and theta bands (at V0.1, Oz vs. Cz, p = 0.010; at V0, Oz vs. Cz, Pz, and O1, p ≤ 0.016) emerged again. The cautious gait pattern, characterized by a decrease in gait speed (p < 0.001), a greater amplitude of deviation from the right ahead (p < 0.001), a prolonged stance time (p = 0.001), a restricted range of motion in the hip on the right side (p ≤ 0.010), and an increased knee flexion during stance on the left side (p = 0.014), was only detected at the status of V0. The power of the alpha band at the status of V0 was higher than that at V1.0, V0.3, and V0.1 (p ≤ 0.011). Conclusion Mildly blurred visual inputs would elicit generalization of low-frequency band activity during walking. In circumstance to no effective visual input, locomotor navigation would rely on cerebral activity related to visual working memory. The threshold to trigger the shift might be the visual status that is as blurred as the level of Snellen visual acuity of 20/200.
Collapse
Affiliation(s)
- Mingxin Ao
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Shuang Ren
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Yuanyuan Yu
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Hongshi Huang
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Xin Miao
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Yingfang Ao
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- *Correspondence: Yingfang Ao
| | - Wei Wang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| |
Collapse
|
17
|
O’Shea H. Mapping relational links between motor imagery, action observation, action-related language, and action execution. Front Hum Neurosci 2022; 16:984053. [DOI: 10.3389/fnhum.2022.984053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Actions can be physically executed, observed, imagined, or simply thought about. Unifying mental processes, such as simulation, emulation, or predictive processing, are thought to underlie different action types, whether they are mental states, as in the case of motor imagery and action observation, or involve physical execution. While overlapping brain activity is typically observed across different actions which indicates commonalities, research interest is also concerned with investigating the distinct functional components of these action types. Unfortunately, untangling subtleties associated with the neurocognitive bases of different action types is a complex endeavour due to the high dimensional nature of their neural substrate (e.g., any action process is likely to activate multiple brain regions thereby having multiple dimensions to consider when comparing across them). This has impeded progress in action-related theorising and application. The present study addresses this challenge by using the novel approach of multidimensional modeling to reduce the high-dimensional neural substrate of four action-related behaviours (motor imagery, action observation, action-related language, and action execution), find the least number of dimensions that distinguish or relate these action types, and characterise their neurocognitive relational links. Data for the model comprised brain activations for action types from whole-brain analyses reported in 53 published articles. Eighty-two dimensions (i.e., 82 brain regions) for the action types were reduced to a three-dimensional model, that mapped action types in ordination space where the greater the distance between the action types, the more dissimilar they are. A series of one-way ANOVAs and post-hoc comparisons performed on the mean coordinates for each action type in the model showed that across all action types, action execution and concurrent action observation (AO)-motor imagery (MI) were most neurocognitively similar, while action execution and AO were most dissimilar. Most action types were similar on at least one neurocognitive dimension, the exception to this being action-related language. The import of the findings are discussed in terms of future research and implications for application.
Collapse
|
18
|
Kaneko N, Sasaki A, Yokoyama H, Masugi Y, Nakazawa K. Changes in corticospinal and spinal reflex excitability through functional electrical stimulation with and without observation and imagination of walking. Front Hum Neurosci 2022; 16:994138. [PMID: 36237950 PMCID: PMC9552297 DOI: 10.3389/fnhum.2022.994138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Functional electrical stimulation (FES), a method for inducing muscle contraction, has been successfully used in gait rehabilitation for patients with deficits after neurological disorders and several clinical studies have found that it can improve gait function after stroke and spinal cord injury. However, FES gait training is not suitable for patients with walking difficulty, such as those with severe motor paralysis of the lower limbs. We have previously shown that action observation combined with motor imagery (AO + MI) of walking induces walking-related cortical activity. Therefore, we combined FES, which alternately generates dorsiflexion and plantar flexion, with AO + MI as an alternative to gait training. The present study investigates the transient effects of 20-min of FES simultaneously with and without AO + MI of walking on corticospinal and spinal reflex excitability in able-bodied participants. We measured motor evoked potentials and Hoffmann-reflexes to assess corticospinal and spinal reflex excitability at rest before and after the 20-min FES with and without the AO + MI. Our results show that FES without AO + MI did not change excitability (p > 0.05), while FES with AO + MI facilitated corticospinal excitability (p < 0.05). This facilitation likely occurred due to the synchronization of sensory inputs from FES and cortical activity during AO + MI. Facilitation was observed only in the dorsiflexor but not the plantar flexor muscle (p < 0.05), suggesting muscle specificity of the facilitation. These results demonstrate the effectiveness of combining FES with AO + MI and pave the way for novel neurorehabilitation strategies for patients with neurological gait deficits.
Collapse
Affiliation(s)
- Naotsugu Kaneko
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Atsushi Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hikaru Yokoyama
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yohei Masugi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- School of Health Sciences, Tokyo International University, Saitama, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- *Correspondence: Kimitaka Nakazawa,
| |
Collapse
|
19
|
Neural Research on Depth Perception and Stereoscopic Visual Fatigue in Virtual Reality. Brain Sci 2022; 12:brainsci12091231. [PMID: 36138967 PMCID: PMC9497221 DOI: 10.3390/brainsci12091231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Virtual reality (VR) technology provides highly immersive depth perception experiences; nevertheless, stereoscopic visual fatigue (SVF) has become an important factor currently hindering the development of VR applications. However, there is scant research on the underlying neural mechanism of SVF, especially those induced by VR displays, which need further research. In this paper, a Go/NoGo paradigm based on disparity variations is proposed to induce SVF associated with depth perception, and the underlying neural mechanism of SVF in a VR environment was investigated. The effects of disparity variations as well as SVF on the temporal characteristics of visual evoked potentials (VEPs) were explored. Point-by-point permutation statistical with repeated measures ANOVA results revealed that the amplitudes and latencies of the posterior VEP component P2 were modulated by disparities, and posterior P2 amplitudes were modulated differently by SVF in different depth perception situations. Cortical source localization analysis was performed to explore the original cortex areas related to certain fatigue levels and disparities, and the results showed that posterior P2 generated from the precuneus could represent depth perception in binocular vision, and therefore could be performed to distinguish SVF induced by disparity variations. Our findings could help to extend an understanding of the neural mechanisms underlying depth perception and SVF as well as providing beneficial information for improving the visual experience in VR applications.
Collapse
|
20
|
Mustile M, Kourtis D, Edwards MG, Donaldson DI, Ietswaart M. The neural response is heightened when watching a person approaching compared to walking away: Evidence for dynamic social neuroscience. Neuropsychologia 2022; 175:108352. [PMID: 36007672 DOI: 10.1016/j.neuropsychologia.2022.108352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/30/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022]
Abstract
The action observation network has been proposed to play a key role in predicting the action intentions (or goals) of others, thereby facilitating social interaction. Key information when interacting with others is whether someone (an agent) is moving towards or away from us, indicating whether we are likely to interact with the person. In addition, to determine the nature of a social interaction, we also need to take into consideration the distance of the agent relative to us as the observer. How this kind of information is processed within the brain is unknown, at least in part because prior studies have not involved live whole-body motion. Consequently, here we recorded mobile EEG in 18 healthy participants, assessing the neural response to the modulation of direction (walking towards or away) and distance (near vs. far distance) during the observation of an agent walking. We evaluated whether cortical alpha and beta oscillations were modulated differently by direction and distance during action observation. We found that alpha was only modulated by distance, with a stronger decrease of power when the agent was further away from the observer, regardless of direction. Critically, by contrast, beta was found to be modulated by both distance and direction, with a stronger decrease of power when the agent was near and facing the participant (walking towards) compared to when they were near but viewed from the back (walking away). Analysis revealed differences in both the timing and distribution of alpha and beta oscillations. We argue that these data suggest a full understanding of action observation requires a new dynamic neuroscience, investigating actual interactions between real people, in real world environments.
Collapse
Affiliation(s)
- Magda Mustile
- Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, UK.
| | - Dimitrios Kourtis
- Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Martin G Edwards
- Institute of Research in the Psychological Sciences, Université Catholique de Louvain, Louvain- la- Neuve, Belgium
| | - David I Donaldson
- School of Psychology and Neuroscience, University of St Andrews, St. Andrews, UK
| | - Magdalena Ietswaart
- Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| |
Collapse
|
21
|
Kaneko N, Sasaki A, Yokoyama H, Masugi Y, Nakazawa K. Effects of action observation and motor imagery of walking on the corticospinal and spinal motoneuron excitability and motor imagery ability in healthy participants. PLoS One 2022; 17:e0266000. [PMID: 35436303 PMCID: PMC9015126 DOI: 10.1371/journal.pone.0266000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/14/2022] [Indexed: 11/19/2022] Open
Abstract
Action observation (AO) and motor imagery (MI) are used for the rehabilitation of patients who face difficulty walking. Rehabilitation involving AO, MI, and AO combined with MI (AO+MI) facilitates gait recovery after neurological disorders. However, the mechanism by which it positively affects gait function is unclear. We previously examined the neural mechanisms underlying AO and MI of walking, focusing on AO+MI and corticospinal and spinal motor neuron excitability, which play important roles in gait function. Herein, we investigated the effects of a short intervention using AO+MI of walking on the corticospinal and spinal motor neuron excitability and MI ability of participants. Twelve healthy individuals participated in this study, which consisted of a 20 min intervention. Before the experiment, we measured MI ability using the Vividness of Movement Imagery Questionnaire-2 (VMIQ-2). We used motor evoked potential and F-wave measurements to evaluate the corticospinal and spinal motor neuron excitability at rest, pre-intervention, 0 min, and 15 min post-intervention. We also measured corticospinal excitability during MI of walking and the participant’s ability to perform MI using a visual analog scale (VAS). There were no significant changes in corticospinal and spinal motor neuron excitability during and after the intervention using AO+MI (p>0.05). The intervention temporarily increased VAS scores, thus indicating clearer MI (p<0.05); however, it did not influence corticospinal excitability during MI of walking (p>0.05). Furthermore, there was no significant correlation between the VMIQ-2 and VAS scores and changes in corticospinal and spinal motor neuron excitability. Therefore, one short intervention using AO+MI increased MI ability in healthy individuals; however, it was insufficient to induce plastic changes at the cortical and spinal levels. Moreover, the effects of intervention using AO+MI were not associated with MI ability. Our findings provide information about intervention using AO+MI in healthy individuals and might be helpful in planning neurorehabilitation strategies.
Collapse
Affiliation(s)
- Naotsugu Kaneko
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Atsushi Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hikaru Yokoyama
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Yohei Masugi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- School of Health Sciences, Tokyo International University, Saitama, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
22
|
Tosserams A, Weerdesteyn V, Bal T, Bloem BR, Solis‐Escalante T, Nonnekes J. Cortical correlates of gait compensation strategies in Parkinson's disease. Ann Neurol 2022; 91:329-341. [PMID: 35067999 PMCID: PMC9306676 DOI: 10.1002/ana.26306] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/07/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022]
Abstract
Objective Gait impairment in persons with Parkinson disease is common and debilitating. Compensation strategies (eg, external cues) are an essential part of rehabilitation, but their underlying mechanisms remain unclear. Using electroencephalography (EEG), we explored the cortical correlates of 3 categories of strategies: external cueing, internal cueing, and action observation. Methods Eighteen participants with Parkinson disease and gait impairment were included. We recorded 126‐channel EEG during both stance and gait on a treadmill under 4 conditions: (1) uncued, (2) external cueing (listening to a metronome), (3) internal cueing (silent rhythmic counting), and (4) action observation (observing another person walking). To control for the effects of sensory processing of the cues, we computed relative power changes as the difference in power spectral density between walking and standing for each condition. Results Relative to uncued gait, the use of all 3 compensation strategies induced a decrease of beta band activity in sensorimotor areas, indicative of increased cortical activation. Parieto‐occipital alpha band activity decreased with external and internal cueing, and increased with action observation. Only internal cueing induced a change in frontal cortical activation, showing a decrease of beta band activity compared to uncued gait. Interpretation The application of compensation strategies resulted in changed cortical activity compared to uncued gait, which could not be solely attributed to sensory processing of the cueing modality. Our findings suggest there are multiple routes to control gait, and different compensation strategies seem to rely on different cortical mechanisms to achieve enhanced central motor activation in persons with Parkinson disease. ANN NEUROL 2022;91:329–341
Collapse
Affiliation(s)
- Anouk Tosserams
- Department of Neurology Radboud University Medical Centre, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour; Center of Expertise for Parkinson & Movement Disorders
- Department of Rehabilitation Radboud University Medical Centre, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour; Center of Expertise for Parkinson & Movement Disorders
| | - Vivian Weerdesteyn
- Department of Rehabilitation Radboud University Medical Centre, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour; Center of Expertise for Parkinson & Movement Disorders
| | - Tess Bal
- Department of Rehabilitation Radboud University Medical Centre, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour; Center of Expertise for Parkinson & Movement Disorders
| | - Bastiaan R. Bloem
- Department of Neurology Radboud University Medical Centre, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour; Center of Expertise for Parkinson & Movement Disorders
| | - Teodoro Solis‐Escalante
- Department of Rehabilitation Radboud University Medical Centre, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour; Center of Expertise for Parkinson & Movement Disorders
| | - Jorik Nonnekes
- Department of Rehabilitation Radboud University Medical Centre, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour; Center of Expertise for Parkinson & Movement Disorders
- Department of Rehabilitation Sint Maartenskliniek, Nijmegen The Netherlands
| |
Collapse
|
23
|
Grazia A, Wimmer M, Müller-Putz GR, Wriessnegger SC. Neural Suppression Elicited During Motor Imagery Following the Observation of Biological Motion From Point-Light Walker Stimuli. Front Hum Neurosci 2022; 15:788036. [PMID: 35069155 PMCID: PMC8779203 DOI: 10.3389/fnhum.2021.788036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/10/2021] [Indexed: 11/26/2022] Open
Abstract
Introduction: Advantageous effects of biological motion (BM) detection, a low-perceptual mechanism that allows the rapid recognition and understanding of spatiotemporal characteristics of movement via salient kinematics information, can be amplified when combined with motor imagery (MI), i.e., the mental simulation of motor acts. According to Jeannerod's neurostimulation theory, asynchronous firing and reduction of mu and beta rhythm oscillations, referred to as suppression over the sensorimotor area, are sensitive to both MI and action observation (AO) of BM. Yet, not many studies investigated the use of BM stimuli using combined AO-MI tasks. In this study, we assessed the neural response in the form of event-related synchronization and desynchronization (ERD/S) patterns following the observation of point-light-walkers and concordant MI, as compared to MI alone. Methods: Twenty right-handed healthy participants accomplished the experimental task by observing BM stimuli and subsequently performing the same movement using kinesthetic MI (walking, cycling, and jumping conditions). We recorded an electroencephalogram (EEG) with 32 channels and performed time-frequency analysis on alpha (8-13 Hz) and beta (18-24 Hz) frequency bands during the MI task. A two-way repeated-measures ANOVA was performed to test statistical significance among conditions and electrodes of interest. Results: The results revealed significant ERD/S patterns in the alpha frequency band between conditions and electrode positions. Post hoc comparisons showed significant differences between condition 1 (walking) and condition 3 (jumping) over the left primary motor cortex. For the beta band, a significantly less difference in ERD patterns (p < 0.01) was detected only between condition 3 (jumping) and condition 4 (reference). Discussion: Our results confirmed that the observation of BM combined with MI elicits a neural suppression, although just in the case of jumping. This is in line with previous findings of AO and MI (AOMI) eliciting a neural suppression for simulated whole-body movements. In the last years, increasing evidence started to support the integration of AOMI training as an adjuvant neurorehabilitation tool in Parkinson's disease (PD). Conclusion: We concluded that using BM stimuli in AOMI training could be promising, as it promotes attention to kinematic features and imitative motor learning.
Collapse
Affiliation(s)
- Alice Grazia
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Rostock-Greifswald, Rostock, Germany
- Department of General Psychology, University of Padova, Padua, Italy
| | - Michael Wimmer
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| | - Gernot R. Müller-Putz
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Selina C. Wriessnegger
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
24
|
Zhou L, Zhu Q, Wu B, Qin B, Hu H, Qian Z. A comparison of directed functional connectivity among fist-related brain activities during movement imagery, movement execution, and movement observation. Brain Res 2021; 1777:147769. [PMID: 34971597 DOI: 10.1016/j.brainres.2021.147769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/03/2021] [Accepted: 12/24/2021] [Indexed: 12/22/2022]
Abstract
Brain-computer interface (BCI) has been widely used in sports training and rehabilitation training. It is primarily based on action simulation, including movement imagery (MI) and movement observation (MO). However, the development of BCI technology is limited due to the challenge of getting an in-depth understanding of brain networks involved in MI, MO, and movement execution (ME). To better understand the brain activity changes and the communications across various brain regions under MO, ME, and MI, this study conducted the fist experiment under MO, ME, and MI. We recorded 64-channel electroencephalography (EEG) from 39 healthy subjects (25 males, 14 females, all right-handed) during fist tasks, obtained intensities and locations of sources using EEG source imaging (ESI), computed source activation modes, and finally investigated the brain networks using spectral Granger causality (GC). The brain regions involved in the three motor conditions are similar, but the degree of participation of each brain region and the network connections among the brain regions are different. MO, ME, and MI did not recruit shared brain connectivity networks. In addition, both source activation modes and brain network connectivity had lateralization advantages.
Collapse
Affiliation(s)
- Lu Zhou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Qiaoqiao Zhu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Biao Wu
- Electronic Information Department, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Bing Qin
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Haixu Hu
- Sports Training Academy, Nanjing Sport Institute, Nanjing, China
| | - Zhiyu Qian
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| |
Collapse
|
25
|
Yokoyama H, Kaneko N, Watanabe K, Nakazawa K. Neural decoding of gait phases during motor imagery and improvement of the decoding accuracy by concurrent action observation. J Neural Eng 2021; 18. [PMID: 34082405 DOI: 10.1088/1741-2552/ac07bd] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022]
Abstract
Objective. Brain decoding of motor imagery (MI) not only is crucial for the control of neuroprosthesis but also provides insights into the underlying neural mechanisms. Walking consists of stance and swing phases, which are associated with different biomechanical and neural control features. However, previous knowledge on decoding the MI of gait is limited to simple information (e.g. the classification of 'walking' and 'rest').Approach. Here, we investigated the feasibility of electroencephalogram (EEG) decoding of the two gait phases during the MI of walking and whether the combined use of MI and action observation (AO) would improve decoding accuracy.Main results. We demonstrated that the stance and swing phases could be decoded from EEGs during MI or AO alone. We also demonstrated the decoding accuracy during MI was improved by concurrent AO. The decoding models indicated that the improved decoding accuracy following the combined use of MI and AO was facilitated by the additional information resulting from the concurrent cortical activations related to sensorimotor, visual, and action understanding systems associated with MI and AO.Significance. This study is the first to show that decoding the stance versus swing phases during MI is feasible. The current findings provide fundamental knowledge for neuroprosthetic design and gait rehabilitation, and they expand our understanding of the neural activity underlying AO, MI, and AO + MI of walking.Novelty and significanceBrain decoding of detailed gait-related information during motor imagery (MI) is important for brain-computer interfaces (BCIs) for gait rehabilitation. This study is the first to show the feasibility of EEG decoding of the stance versus swing phases during MI. We also demonstrated that the combined use of MI and action observation (AO) improves decoding accuracy, which is facilitated by the concurrent and synergistic involvement of the cortical activations for MI and AO. These findings extend the current understanding of neural activity and the combined effects of AO and MI and provide a basis for effective techniques for walking rehabilitation.
Collapse
Affiliation(s)
- Hikaru Yokoyama
- Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Japan Society for the Promotion of Science, Tokyo 102-0083, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Naotsugu Kaneko
- Japan Society for the Promotion of Science, Tokyo 102-0083, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Katsumi Watanabe
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan.,Faculty of Arts, Design, and Architecture, University of New South Wales, Sydney, NSW 2021, Australia
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|