1
|
Lloyd B, Miletić S, Bazin PL, Isherwood S, Tse DHY, Håberg AK, Forstmann B, Nieuwenhuis S. Subcortical nuclei of the human ascending arousal system encode anticipated reward but do not predict subsequent memory. Cereb Cortex 2025; 35:bhaf101. [PMID: 40346825 PMCID: PMC12064850 DOI: 10.1093/cercor/bhaf101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/27/2025] [Accepted: 04/04/2025] [Indexed: 05/12/2025] Open
Abstract
Subcortical nuclei of the ascending arousal system (AAS) play an important role in regulating brain and cognition. However, functional MRI (fMRI) of these nuclei in humans involves unique challenges due to their size and location deep within the brain. Here, we used ultra-high-field MRI and other methodological advances to investigate the activity of 6 subcortical nuclei during reward anticipation and memory encoding: the locus coeruleus (LC), basal forebrain, median and dorsal raphe nuclei, substantia nigra, and ventral tegmental area. Participants performed a monetary incentive delay task, which successfully induced a state of reward anticipation, and a 24-h delayed surprise memory test. Region-of-interest analyses revealed that activity in all subcortical nuclei increased in anticipation of potential rewards as opposed to neutral outcomes. In contrast, activity in none of the nuclei predicted memory performance 24 h later. These findings provide new insights into the cognitive functions that are supported by the human AAS.
Collapse
Affiliation(s)
- Beth Lloyd
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK, Leiden, the Netherlands
| | - Steven Miletić
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK, Leiden, the Netherlands
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Nieuwe Achtergracht 129B, 1001 NK, Amsterdam, the Netherlands
| | - Pierre-Louis Bazin
- Full Brain Picture Analytics, Lage Morsweg 73, 2332XB Leiden, The Netherlands
| | - Scott Isherwood
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Nieuwe Achtergracht 129B, 1001 NK, Amsterdam, the Netherlands
| | - Desmond H Y Tse
- Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gate 9, 7030, Trondheim, Norway
| | - Asta K Håberg
- Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gate 9, 7030, Trondheim, Norway
| | - Birte Forstmann
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Nieuwe Achtergracht 129B, 1001 NK, Amsterdam, the Netherlands
| | - Sander Nieuwenhuis
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK, Leiden, the Netherlands
| |
Collapse
|
2
|
Dutt S, Bachman SL, Dahl MJ, Li Y, Yew B, Jang JY, Ho JK, Nashiro K, Min J, Yoo HJ, Gaubert A, Nguyen A, Blanken AE, Sible IJ, Marshall AJ, Kapoor A, Alitin JPM, Hoang K, Rouanet J, Sordo L, Head E, Shao X, Wang DJJ, Mather M, Nation DA. Locus coeruleus MRI contrast, cerebral perfusion, and plasma Alzheimer's disease biomarkers in older adults. Neurobiol Aging 2025; 147:12-21. [PMID: 39637519 PMCID: PMC11781958 DOI: 10.1016/j.neurobiolaging.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
The locus coeruleus (LC) is among the first brain structures impacted by Alzheimer's disease (AD), and noradrenergic denervation may contribute to early neurovascular dysfunction in AD. Mechanistic links between the LC and cerebral perfusion have been demonstrated in rodents, but there have been no similar studies in aging humans. Community-dwelling older adults with no history of stroke or dementia (N=66) underwent structural (T1-MPRAGE; T1-FSE) and perfusion (resting pCASL) MRI. Plasma AD biomarkers levels were evaluated for Aβ42/40 ratio (n=56) and pTau181 (n=60). Higher rostral LC structural MRI contrast was associated with lower perfusion in entorhinal and limbic regions but higher perfusion in lateral and medial orbitofrontal cortices. Relationships between LC structure and regional cerebral perfusion were attenuated in older adults with higher plasma pTau levels and lower plasma Aβ42/40 ratios. Previously unstudied links between LC structure and cerebral perfusion are detectible in older adults using MRI and are attenuated in those showing greater AD pathophysiologic change, suggesting an uncoupling of LC-cerebral perfusion relationships in older adults with aggregating AD-related pathophysiology.
Collapse
Affiliation(s)
- Shubir Dutt
- Department of Psychology, University of Southern California, Los Angeles, CA, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Shelby L Bachman
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Martin J Dahl
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Yanrong Li
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Belinda Yew
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jung Yun Jang
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Jean K Ho
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Kaoru Nashiro
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Jungwon Min
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Hyun Joo Yoo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Aimée Gaubert
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Amy Nguyen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Anna E Blanken
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA; San Francisco Veterans Affairs Health Care System, CA, USA
| | - Isabel J Sible
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Anisa J Marshall
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Arunima Kapoor
- Department of Psychological Science, University of California, Irvine, CA, USA
| | - John Paul M Alitin
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kim Hoang
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Jeremy Rouanet
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, USA
| | - Lorena Sordo
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, USA
| | - Elizabeth Head
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, USA
| | - Xingfeng Shao
- Laboratory of FMRI Technology, Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, CA, Los Angeles, USA
| | - Danny J J Wang
- Laboratory of FMRI Technology, Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, CA, Los Angeles, USA
| | - Mara Mather
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Daniel A Nation
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, CA, Los Angeles, USA.
| |
Collapse
|
3
|
Hary AT, Chadha S, Mercaldo N, Smith EMC, van der Kouwe AJW, Fischl B, Mount C, Kozanno L, Frosch MP, Augustinack JC. Locus coeruleus tau validates and informs high-resolution MRI in aging and at earliest Alzheimer's pathology stages. Acta Neuropathol Commun 2025; 13:44. [PMID: 40022196 PMCID: PMC11871710 DOI: 10.1186/s40478-025-01957-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/13/2025] [Indexed: 03/03/2025] Open
Abstract
The locus coeruleus (LC) has been identified as a site that develops phosphorylated tau pathology earlier than cerebral cortex. We present data using high-resolution postmortem MRI and validated tau histopathology in controls and the earliest Braak and Braak (BB) stages (BBI-BBII) in LC. The high-resolution ex vivo MRI provides a 3D volume (quantitative), while the histology reveals tau specificity and severity burden (semi-quantitative). We mapped our highly regionally specific LC data onto high-resolution 3D MRI reconstructions of the same samples used in histology (n = 11). We noted significant structural subatrophy between BB 0 and II (30.0% smaller volumes, p = 0.0381), a trend which primarily affected the rostral-most LC (49.2% smaller average volume, p = 0.0381). We show histopathology data on both the LC and neighboring dorsal raphe caudal (DRc), which were assessed at multiple rostrocaudal levels and mapped with highly sensitive tau severity spatial matrices. We observed significant LC tau accumulation between BB I and II (37.6% increase, p < 0.0001), which may reflect pathology change prior to presumptive cognitive impairment at BB III. Tau pathology was most severe in the middle portion of the LC (11.3% greater compared to rostral LC, p = 0.0289) when including BB III. We noted a significant rostrocaudal gradient of DRc tau severity (58.2% decrease between rostral and caudal DRc, p < 0.0001), suggesting selective regional vulnerabilities of both nuclei. Our study represents a rigorous approach to investigating LC and DRc pathology, having multiple histology sections per sublevel and high-resolution MRI to measure the whole LC, without missing slices in a histological only approach. Taken together, our findings provide novel validated data that demonstrate the tau pathology occurring in the LC and DRc during preclinical AD stages, and alongside spatial reconstructions that will serve as valuable references for in vivo LC imaging.
Collapse
Affiliation(s)
- Alexander T Hary
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth St, Suite 2301, Charlestown, MA, 02129, USA
| | - Smriti Chadha
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth St, Suite 2301, Charlestown, MA, 02129, USA
| | - Nathaniel Mercaldo
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth St, Suite 2301, Charlestown, MA, 02129, USA
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Erin-Marie C Smith
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth St, Suite 2301, Charlestown, MA, 02129, USA
| | - André J W van der Kouwe
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth St, Suite 2301, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Bruce Fischl
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth St, Suite 2301, Charlestown, MA, 02129, USA
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Christopher Mount
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Liana Kozanno
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Matthew P Frosch
- Harvard Medical School, Boston, MA, 02115, USA
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jean C Augustinack
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth St, Suite 2301, Charlestown, MA, 02129, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
4
|
Odd H, Dore C, Eriksson SH, Heydrich L, Bargiotas P, Ashburner J, Lambert C. Lesion network mapping of REM Sleep Behaviour Disorder. Neuroimage Clin 2025; 45:103751. [PMID: 39954565 PMCID: PMC11872397 DOI: 10.1016/j.nicl.2025.103751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
REM Sleep Behaviour Disorder (RBD) is a parasomnia characterised by dream enactment behaviour due to loss of sleep atonia during REM sleep. It is of considerable interest as idiopathic RBD is strongly associated with a high risk of future α-synuclein disorders. Whilst candidate brainstem structures for sleep atonia have been identified in animal studies, the precise mechanisms underpinning RBD in humans remain unclear. Here, we set out to empirically define a candidate anatomical RBD network using lesion network mapping. Our objective was to test the hypothesis that RBD is either due to damage to canonical RBD nodes previously identified in the animal literature, or disruption to the white matter connections between these nodes, or as a consequence of damage to some other brains regions. All published cases of secondary RBD arising due to discrete brain lesions were reviewed and those providing sufficient detail to estimate the original lesion selected. This resulted in lesion masks for 25 unique RBD cases. These were combined to create a lesion probability map, demonstrating the area of maximal overlap. We also obtained MRI lesion masks for 15 pontine strokes that had undergone sleep polysomnography investigations confirming the absence of RBD. We subsequently used these as an exclusion mask and removed any intersecting voxels from the aforementioned region of maximal overlap, creating a single candidate region-of-interest (ROIs) within the pons. This remaining region overlapped directly with the locus coeruleus. As sleep atonia is unlikely to be lateralized, a contralateral ROI was created via a left-right flip, and both were warped to the 100 healthy adult Human Connectome dataset. Probabilistic tractography was run from each ROI to map and characterize the white-matter tracts and connectivity properties. All reported lesions were within the brainstem but there was significant variability in location. Only half of these intersected with at least one of the six a priori RBD anatomical nodes assessed, however 72 % directly intersected with the white matter tracts created from the region of maximum overlap pontine ROIs, and the remainder were within 3.05 mm (±1.51 mm) of these tracts. 92 % of lesions were either at the level of region of maximum overlap or caudal to it. These results suggest that RBD is a brainstem disconnection syndrome, where damage anywhere along the tract connecting the rostral locus coeruleus and medulla may result in failure of sleep atonia, in line with the animal literature. This implies idiopathic disease may emerge through different patterns of damage across this brainstem circuit. This observation may account for the both the paucity of brainstem neuroimaging results reported to date and the observed phenotypic variability seen in idiopathic RBD.
Collapse
Affiliation(s)
- H Odd
- Functional Imaging Laboratory, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, UK
| | - C Dore
- Functional Imaging Laboratory, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, UK
| | - S H Eriksson
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, UK
| | - L Heydrich
- CORE Lab, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - P Bargiotas
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Medical School, University of Cyprus, Nicosia, Cyprus
| | - J Ashburner
- Functional Imaging Laboratory, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, UK
| | - C Lambert
- Functional Imaging Laboratory, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, UK.
| |
Collapse
|
5
|
Železníková Ž, Nováková L, Vojtíšek L, Brabenec L, Mitterová K, Morávková I, Rektorová I. Early Changes in the Locus Coeruleus in Mild Cognitive Impairment with Lewy Bodies. Mov Disord 2025; 40:276-284. [PMID: 39535454 PMCID: PMC11832806 DOI: 10.1002/mds.30058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/12/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Although neuromelanin-sensitive magnetic resonance imaging (NM-MRI) has been used to evaluate early neurodegeneration in Parkinson's disease, studies concentrating on the locus coeruleus (LC) in pre-dementia stages of dementia with Lewy bodies (DLB) are lacking. OBJECTIVES The aims were to evaluate NM-MRI signal changes in the LC in patients with mild cognitive impairment with Lewy bodies (MCI-LB) compared to healthy controls (HC) and to identify the cognitive correlates of the changes. We also aimed to test the hypothesis of a caudal-rostral α-synuclein pathology spread using NM-MRI of the different LC subparts. METHODS A total of 38 MCI-LB patients and 59 HCs underwent clinical and cognitive testing and NM-MRI of the LC. We calculated the contrast ratio of NM-MRI signal (LC-CR) in the whole LC as well as in its caudal, middle, and rostral MRI slices, and we compared the LC-CR values between the MCI-LB and HC groups. Linear regression analyses were performed to assess the relationship between the LC-CR and cognitive outcomes. RESULTS The MCI-LB group exhibited a significant reduction in the right LC-CR compared to HCs (P = 0.021). The right LC-CR decrease was associated with impaired visuospatial memory in the MCI-LB group. Only the caudal part of the LC exhibited significant LC-CR decreases in MCI-LB patients compared to HCs on both sides (P < 0.0001). CONCLUSIONS This is the first study that focuses on LC-CRs in MCI-LB patients and analyzes the LC subparts, offering new insights into the LC integrity alterations in the initial stages of DLB and their clinical correlates. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Žaneta Železníková
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITECMasaryk UniversityBrnoCzech Republic
| | - L'ubomíra Nováková
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITECMasaryk UniversityBrnoCzech Republic
- International Clinical Research Center, ICRCFaculty of Medicine and St. Anne's University Hospital, Masaryk UniversityBrnoCzech Republic
| | - Lubomír Vojtíšek
- Multimodal and Functional Neuroimaging Research Group, Central European Institute of Technology, CEITECMasaryk UniversityBrnoCzech Republic
| | - Luboš Brabenec
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITECMasaryk UniversityBrnoCzech Republic
- International Clinical Research Center, ICRCFaculty of Medicine and St. Anne's University Hospital, Masaryk UniversityBrnoCzech Republic
| | - Kristína Mitterová
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITECMasaryk UniversityBrnoCzech Republic
- International Clinical Research Center, ICRCFaculty of Medicine and St. Anne's University Hospital, Masaryk UniversityBrnoCzech Republic
| | - Ivona Morávková
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITECMasaryk UniversityBrnoCzech Republic
- First Department of NeurologyFaculty of Medicine and St. Anne's University Hospital, Masaryk UniversityBrnoCzech Republic
| | - Irena Rektorová
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITECMasaryk UniversityBrnoCzech Republic
- International Clinical Research Center, ICRCFaculty of Medicine and St. Anne's University Hospital, Masaryk UniversityBrnoCzech Republic
- First Department of NeurologyFaculty of Medicine and St. Anne's University Hospital, Masaryk UniversityBrnoCzech Republic
| |
Collapse
|
6
|
Sönmez Ö, Holstein E, Puschmann S, Schmitt T, Witt K, Thiel CM. The impact of transcutaneous vagus nerve stimulation on anterior cingulate cortex activity in a cognitive control task. Psychophysiology 2025; 62:e14739. [PMID: 39780300 PMCID: PMC11711293 DOI: 10.1111/psyp.14739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
Transcutaneous vagus nerve stimulation (tVNS) offers a non-invasive method to enhance noradrenergic neurotransmission in the human brain, thereby increasing cognitive control. Here, we investigate if changes in cognitive control induced by tVNS are mediated through locus coeruleus-induced modifications of neural activity in the anterior cingulate cortex. Young healthy participants engaged in a simple cognitive control task focusing on response inhibition and a more complex task that involved both response inhibition and working memory, inside a magnetic resonance imaging scanner. The tasks were executed using a randomized within-subject design, with participants undergoing auricular tVNS and sham stimulation in separate sessions. tVNS significantly changed performance in the simple control task reflected in a greater propensity to respond. Furthermore, we observed a significant increase in neural activity in the anterior cingulate cortex during the simple cognitive control task under tVNS. Functional connectivity analyses revealed positive coupling between neural activity in the locus coeruleus and anterior cingulate cortex, however, this was not modulated by tVNS. The findings suggest that non-invasive stimulation of the vagus nerve can modulate neural activity in the anterior cingulate cortex. While these neural effects suggest an impact of tVNS in a key region involved in conflict monitoring and cognitive control, the behavioral effects are more indicative of a shift in response bias rather than enhanced cognitive control.
Collapse
Affiliation(s)
- Özde Sönmez
- Biological Psychology Lab, Department of Psychology, School of Medicine and Health SciencesCarl von Ossietzky University OldenburgOldenburgGermany
- Department of PsychiatryUniversity Medical Center GroningenGroningenThe Netherlands
| | - Elfriede Holstein
- Biological Psychology Lab, Department of Psychology, School of Medicine and Health SciencesCarl von Ossietzky University OldenburgOldenburgGermany
- DIPF | Leibniz Institute for Research and Information in EducationFrankfurt am MainGermany
| | - Sebastian Puschmann
- Biological Psychology Lab, Department of Psychology, School of Medicine and Health SciencesCarl von Ossietzky University OldenburgOldenburgGermany
| | - Tina Schmitt
- Neuroimaging Unit, School of Medicine and Health SciencesCarl von Ossietzky University OldenburgOldenburgGermany
| | - Karsten Witt
- Department of Neurology, School of Medicine and Health SciencesCarl von Ossietzky Universität OldenburgOldenburgGermany
- Cluster of Excellence “Hearing4all”Carl von Ossietzky University OldenburgOldenburgGermany
- Research Center Neurosensory ScienceCarl von Ossietzky University OldenburgOldenburgGermany
| | - Christiane M. Thiel
- Biological Psychology Lab, Department of Psychology, School of Medicine and Health SciencesCarl von Ossietzky University OldenburgOldenburgGermany
- Cluster of Excellence “Hearing4all”Carl von Ossietzky University OldenburgOldenburgGermany
- Research Center Neurosensory ScienceCarl von Ossietzky University OldenburgOldenburgGermany
| |
Collapse
|
7
|
Weber S, Jungilligens J, Aybek S, Popkirov S. Locus coeruleus co-activation patterns at rest show higher state persistence in patients with dissociative seizures: A Pilot Study. Epilepsia Open 2024; 9:2331-2341. [PMID: 39373074 PMCID: PMC11633765 DOI: 10.1002/epi4.13050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/04/2024] [Accepted: 09/12/2024] [Indexed: 10/08/2024] Open
Abstract
OBJECTIVE Dissociative seizures are paroxysmal disruptions of awareness and behavioral control in the context of affective arousal. Alterations in stress-related endocrine function have been demonstrated, but the timescale of dissociation suggests that the central locus coeruleus (LC) noradrenergic system is likely pivotal. Here, we investigate whether LC activation at rest is associated with altered brain network dynamics. METHODS A preliminary co-activation pattern (CAP) analysis of resting-state functional magnetic resonance imaging (fMRI) in 14 patients with dissociative seizures and 14 healthy controls was performed by using the LC as a seeding region. The red nucleus served as a control condition. Entry rates, durations, and state transition probabilities of identified CAPs were calculated. Analyses were corrected for demographic, technical, and clinical confounders including depression and anxiety. RESULTS Three LC-related CAPs were identified, with the dominant two showing inverse activations and deactivations of the default mode network and the attention networks, respectively. Analysis of transition probabilities between and within the three CAPs revealed higher state persistence in patients compared to healthy controls for both CAP2LC (Cohen's d = -0.55; p = 0.01) and CAP3LC (Cohen's d = -0.57; p = 0.01). The control analysis using the red nucleus as a seed yielded similar CAPs, but no significant between-group differences in transition probabilities. SIGNIFICANCE Higher state persistence of LC-CAPs in patients with dissociative seizures generates the novel hypothesis that arousal-related impairments of network switching might be a candidate neural mechanism of dissociation. PLAIN LANGUAGE SUMMARY Dissociative seizures often arise during high affective arousal. The locus coeruleus is a brain structure involved in managing such acute arousal states. We investigated whether the activity of the locus coeruleus correlates with activity in other regions of the brain (which we refer to as "brain states"), and whether those brain states were different between patients with dissociative seizures and healthy controls. We found that patients tended to stay in certain locus coeruleus-dependent brain states instead of switching between them. This might be related to the loss of awareness and disruptions of brain functions ("dissociation") that patients experience during seizures.
Collapse
Affiliation(s)
- Samantha Weber
- Department of Neurology, Psychosomatic Medicine UnitInselspital Bern University Hospital, University of BernBernSwitzerland
- Department of Psychiatry, Psychotherapy and PsychosomaticsUniversity of Zurich, Psychiatric University Hospital ZurichZurichSwitzerland
- Translational Imaging Center (TIC)Swiss Institute for Translational and Entrepreneurial MedicineBernSwitzerland
| | - Johannes Jungilligens
- Department of NeurologyUniversity Hospital Knappschaftskrankenhaus, Ruhr University BochumBochumGermany
| | - Selma Aybek
- Department of Neurology, Psychosomatic Medicine UnitInselspital Bern University Hospital, University of BernBernSwitzerland
- Faculty of Science and MedicineUniversity of FribourgFribourgSwitzerland
| | - Stoyan Popkirov
- Department of NeurologyUniversity Hospital EssenEssenGermany
| |
Collapse
|
8
|
Deng F, Dounavi ME, Plini ERG, Ritchie K, Muniz-Terrera G, Hutchinson S, Malhotra P, Ritchie CW, Lawlor B, Naci L. Cardiovascular risk of dementia is associated with brain-behaviour changes in cognitively healthy, middle-aged individuals. Neurobiol Aging 2024; 144:78-92. [PMID: 39293163 DOI: 10.1016/j.neurobiolaging.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Alzheimer's Disease (AD) neuropathology start decades before clinical manifestations, but whether risk factors are associated with early cognitive and brain changes in midlife remains poorly understood. We examined whether AD risk factors were associated with cognition and functional connectivity (FC) between the Locus Coeruleus (LC) and hippocampus - two key brain structures in AD neuropathology - cross-sectionally and longitudinally in cognitively healthy midlife individuals. Neuropsychological assessments and functional Magnetic Resonance Imaging were obtained at baseline (N=210), and two-years follow-up (N=188). Associations of cognition and FC with apolipoprotein ε4 (APOE ε4) genotype, family history of dementia, and the Cardiovascular Risk Factors, Aging, and Incidence of Dementia (CAIDE) score were investigated. Cross-sectionally, higher CAIDE scores were associated with worse cognition. Menopausal status interacted with the CAIDE risk on cognition. Furthermore, the CAIDE score significantly moderated the relationship between cognition and LC-Hippocampus FC. Longitudinally, the LC-Hippocampus FC decreased significantly over 2 years. These results suggest that cardiovascular risk of dementia is associated with brain-behaviour changes in cognitively healthy, middle-aged individuals.
Collapse
Affiliation(s)
- Feng Deng
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Maria-Eleni Dounavi
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK
| | - Emanuele R G Plini
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Karen Ritchie
- U1061 Neuropsychiatry, INSERM, University of Montpellier, Montpellier, France
| | - Graciela Muniz-Terrera
- Edinburgh Dementia Prevention, University of Edinburgh, Edinburgh, UK; Department of Social medicine, Ohio University, USA
| | | | - Paresh Malhotra
- Department of Brain Science, Imperial College Healthcare NHS Trust, UK
| | - Craig W Ritchie
- Edinburgh Dementia Prevention, University of Edinburgh, Edinburgh, UK
| | - Brian Lawlor
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
9
|
Ludwig M, Yi YJ, Lüsebrink F, Callaghan MF, Betts MJ, Yakupov R, Weiskopf N, Dolan RJ, Düzel E, Hämmerer D. Functional locus coeruleus imaging to investigate an ageing noradrenergic system. Commun Biol 2024; 7:777. [PMID: 38937535 PMCID: PMC11211439 DOI: 10.1038/s42003-024-06446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/12/2024] [Indexed: 06/29/2024] Open
Abstract
The locus coeruleus (LC), our main source of norepinephrine (NE) in the brain, declines with age and is a potential epicentre of protein pathologies in neurodegenerative diseases (ND). In vivo measurements of LC integrity and function are potentially important biomarkers for healthy ageing and early ND onset. In the present study, high-resolution functional MRI (fMRI), a reversal reinforcement learning task, and dedicated post-processing approaches were used to visualise age differences in LC function (N = 50). Increased LC responses were observed during emotionally and task-related salient events, with subsequent accelerations and decelerations in reaction times, respectively, indicating context-specific adaptive engagement of the LC. Moreover, older adults exhibited increased LC activation compared to younger adults, indicating possible compensatory overactivation of a structurally declining LC in ageing. Our study shows that assessment of LC function is a promising biomarker of cognitive aging.
Collapse
Affiliation(s)
- Mareike Ludwig
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.
| | - Yeo-Jin Yi
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Falk Lüsebrink
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Biomedical Magnetic Resonance, Faculty of Natural Sciences, Otto-von-Guericke University, Magdeburg, Germany
- NMR Methods Development Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Martina F Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square, Institute of Neurology, University College London, London, UK
| | - Matthew J Betts
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Nikolaus Weiskopf
- Wellcome Centre for Human Neuroimaging, UCL Queen Square, Institute of Neurology, University College London, London, UK
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Raymond J Dolan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square, Institute of Neurology, University College London, London, UK
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, UK
| | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Dorothea Hämmerer
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Wellcome Centre for Human Neuroimaging, UCL Queen Square, Institute of Neurology, University College London, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
- Department of Psychology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
10
|
Wearn A, Tremblay SA, Tardif CL, Leppert IR, Gauthier CJ, Baracchini G, Hughes C, Hewan P, Tremblay-Mercier J, Rosa-Neto P, Poirier J, Villeneuve S, Schmitz TW, Turner GR, Spreng RN. Neuromodulatory subcortical nucleus integrity is associated with white matter microstructure, tauopathy and APOE status. Nat Commun 2024; 15:4706. [PMID: 38830849 PMCID: PMC11148077 DOI: 10.1038/s41467-024-48490-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/01/2024] [Indexed: 06/05/2024] Open
Abstract
The neuromodulatory subcortical nuclei within the isodendritic core (IdC) are the earliest sites of tauopathy in Alzheimer's disease (AD). They project broadly throughout the brain's white matter. We investigated the relationship between IdC microstructure and whole-brain white matter microstructure to better understand early neuropathological changes in AD. Using multiparametric quantitative magnetic resonance imaging we observed two covariance patterns between IdC and white matter microstructure in 133 cognitively unimpaired older adults (age 67.9 ± 5.3 years) with familial risk for AD. IdC integrity related to 1) whole-brain neurite density, and 2) neurite orientation dispersion in white matter tracts known to be affected early in AD. Pattern 2 was associated with CSF concentration of phosphorylated-tau, indicating AD specificity. Apolipoprotein-E4 carriers expressed both patterns more strongly than non-carriers. IdC microstructure variation is reflected in white matter, particularly in AD-affected tracts, highlighting an early mechanism of pathological development.
Collapse
Affiliation(s)
- Alfie Wearn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada.
| | - Stéfanie A Tremblay
- Department of Physics, Concordia University, Montreal, H4B 1R6, QC, Canada
- Montreal Heart Institute, Montreal, H1T 1C8, QC, Canada
- School of Health, Concordia University, Montreal, H4B 1R6, QC, Canada
| | - Christine L Tardif
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, H3A 2B4, QC, Canada
- Department of Biomedical Engineering, McGill University, McGill, H3A 2B4, QC, Canada
| | - Ilana R Leppert
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, H3A 2B4, QC, Canada
| | - Claudine J Gauthier
- Department of Physics, Concordia University, Montreal, H4B 1R6, QC, Canada
- Montreal Heart Institute, Montreal, H1T 1C8, QC, Canada
- School of Health, Concordia University, Montreal, H4B 1R6, QC, Canada
| | - Giulia Baracchini
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada
| | - Colleen Hughes
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada
| | - Patrick Hewan
- Department of Psychology, York University, Toronto, M3J 1P3, ON, Canada
| | | | - Pedro Rosa-Neto
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, H3A 2B4, QC, Canada
- Douglas Mental Health University Institute-Research Center, Verdun, H4H 1R3, QC, Canada
| | - Judes Poirier
- Douglas Mental Health University Institute-Research Center, Verdun, H4H 1R3, QC, Canada
- Department of Psychiatry, McGill University, Montreal, H3A 1A1, QC, Canada
| | - Sylvia Villeneuve
- McConnell Brain Imaging Centre, McGill University, Montreal, H3A 2B4, QC, Canada
- Douglas Mental Health University Institute-Research Center, Verdun, H4H 1R3, QC, Canada
- Department of Psychiatry, McGill University, Montreal, H3A 1A1, QC, Canada
| | - Taylor W Schmitz
- Department of Physiology & Pharmacology, Western Institute for Neuroscience, Western University, London, N6A 5C1, ON, Canada
| | - Gary R Turner
- Department of Psychology, York University, Toronto, M3J 1P3, ON, Canada
| | - R Nathan Spreng
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada.
- McConnell Brain Imaging Centre, McGill University, Montreal, H3A 2B4, QC, Canada.
- Douglas Mental Health University Institute-Research Center, Verdun, H4H 1R3, QC, Canada.
- Department of Psychiatry, McGill University, Montreal, H3A 1A1, QC, Canada.
| |
Collapse
|
11
|
Aganj I, Mora J, Fischl B, Augustinack JC. Automatic geometry-based estimation of the locus coeruleus region on T 1-weighted magnetic resonance images. Front Neurosci 2024; 18:1375530. [PMID: 38774790 PMCID: PMC11106368 DOI: 10.3389/fnins.2024.1375530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/09/2024] [Indexed: 05/24/2024] Open
Abstract
The locus coeruleus (LC) is a key brain structure implicated in cognitive function and neurodegenerative disease. Automatic segmentation of the LC is a crucial step in quantitative non-invasive analysis of the LC in large MRI cohorts. Most publicly available imaging databases for training automatic LC segmentation models take advantage of specialized contrast-enhancing (e.g., neuromelanin-sensitive) MRI. Segmentation models developed with such image contrasts, however, are not readily applicable to existing datasets with conventional MRI sequences. In this work, we evaluate the feasibility of using non-contrast neuroanatomical information to geometrically approximate the LC region from standard 3-Tesla T1-weighted images of 20 subjects from the Human Connectome Project (HCP). We employ this dataset to train and internally/externally evaluate two automatic localization methods, the Expected Label Value and the U-Net. For out-of-sample segmentation, we compare the results with atlas-based segmentation, as well as test the hypothesis that using the phase image as input can improve the robustness. We then apply our trained models to a larger subset of HCP, while exploratorily correlating LC imaging variables and structural connectivity with demographic and clinical data. This report provides an evaluation of computational methods estimating neural structure.
Collapse
Affiliation(s)
- Iman Aganj
- Radiology Department, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Radiology Department, Harvard Medical School, Boston, MA, United States
| | - Jocelyn Mora
- Radiology Department, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Bruce Fischl
- Radiology Department, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Radiology Department, Harvard Medical School, Boston, MA, United States
| | - Jean C. Augustinack
- Radiology Department, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Radiology Department, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Lee TH, Kim SH, Neal J, Katz B, Kim IH. A collection of 157 individual neuromelanin-sensitive images accompanied by non-linear neuromelanin-sensitive atlas and a probabilistic locus coeruleus atlas. Data Brief 2024; 53:110140. [PMID: 38357452 PMCID: PMC10864836 DOI: 10.1016/j.dib.2024.110140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
The current dataset aims to support and enhance the research reliability of neuromelanin regions in the brainstem, such as locus coeruleus (LC), by offering raw neuromelanin-sensitive images. The dataset includes raw neuromelanin-sensitive images from 157 healthy individuals (8-64 years old). In addition, leveraging individual neuromelanin-sensitive images, a non-linear neuromelanin-sensitive atlas, generated through an iterative warping process, is included to tackle the common challenge of a limited field of view in neuromelanin-sensitive images. Finally, the dataset encompasses a probabilistic LC atlas generated through a majority voting approach with pre-existing multiple atlas-based segmentations. This process entails warping pre-existing atlases onto individual spaces and identifying voxels with a majority consensus of over 50 % across the atlases. This LC probabilistic atlas can minimize uncertainty variance associated with choosing a specific single atlas.
Collapse
Affiliation(s)
- Tae-Ho Lee
- Department of Psychology, Virginia Tech, USA
- School of Neuroscience, Virginia Tech, USA
| | - Sun Hyung Kim
- Department of Psychiatry, University of North Carolina, Chapel Hill, USA
| | - Joshua Neal
- Department of Psychology, Virginia Tech, USA
| | - Benjamin Katz
- Department of Human Development and Family Science, Virginia Tech, USA
- School of Neuroscience, Virginia Tech, USA
| | - Il Hwan Kim
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, USA
| |
Collapse
|
13
|
Maturana-Quijada P, Chavarría-Elizondo P, Del Cerro I, Martínez-Zalacaín I, Juaneda-Seguí A, Guinea-Izquierdo A, Gascón-Bayarri J, Reñé R, Urretavizcaya M, Menchón JM, Ferrer I, Soria V, Soriano-Mas C. Effective connectivity of the locus coeruleus in patients with late-life Major Depressive Disorder or mild cognitive impairment. SPANISH JOURNAL OF PSYCHIATRY AND MENTAL HEALTH 2024:S2950-2853(24)00015-2. [PMID: 38453029 DOI: 10.1016/j.sjpmh.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
INTRODUCTION We compared effective connectivity from the locus coeruleus (LC) during the resting-state in patients with late-life Major Depressive Disorder (MDD), individuals with amnestic Mild Cognitive Impairment (aMCI), and Healthy Controls (HCs). PARTICIPANTS 23 patients with late-life MDD, 22 patients with aMCI, and 28 HCs. MATERIAL AND METHODS Participants were assessed in two time-points, 2 years apart. They underwent a resting-state functional magnetic resonance imaging and a high-resolution anatomical acquisition, as well as clinical assessments. Functional imaging data were analyzed with dynamic causal modeling, and parametric empirical Bayes model was used to map effective connectivity between 7 distinct nodes: 4 from the locus coeruleus and 3 regions displaying gray matter decreases during the two-year follow-up period. RESULTS Longitudinal analysis of structural data identified three clusters of larger over-time gray matter volume reduction in patients (MDD+aMCI vs. HCs): the right precuneus, and the visual association and parahippocampal cortices. aMCI patients showed decreased effective connectivity from the left rostral to caudal portions of the LC, while connectivity from the left rostral LC to the parahippocampal cortex increased. In MDD, there was a decline in effective connectivity across LC caudal seeds, and increased connectivity from the left rostral to the left caudal LC seed over time. Connectivity alterations with cortical regions involved cross-hemisphere increases and same-hemisphere decreases. CONCLUSIONS Our discoveries provide insight into the dynamic changes in effective connectivity in individuals with late-life MDD and aMCI, also shedding light on the mechanisms potentially contributing to the onset of neurodegenerative disorders.
Collapse
Affiliation(s)
- Pablo Maturana-Quijada
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain
| | - Pamela Chavarría-Elizondo
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain; Network Center for Biomedical Research on Mental Health (CIBERSAM), Carlos III Health Institute (ISCIII), Barcelona, Spain
| | - Inés Del Cerro
- Department of Psychology, Medical School, Catholic University of Murcia, Murcia, Spain
| | - Ignacio Martínez-Zalacaín
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Radiology Department, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Asier Juaneda-Seguí
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Andrés Guinea-Izquierdo
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Jordi Gascón-Bayarri
- Dementia Diagnostic and Treatment Unit, Department of Neurology, Bellvitge University Hospital, Barcelona, Spain
| | - Ramón Reñé
- Dementia Diagnostic and Treatment Unit, Department of Neurology, Bellvitge University Hospital, Barcelona, Spain
| | - Mikel Urretavizcaya
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain; Network Center for Biomedical Research on Mental Health (CIBERSAM), Carlos III Health Institute (ISCIII), Barcelona, Spain
| | - José M Menchón
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain; Network Center for Biomedical Research on Mental Health (CIBERSAM), Carlos III Health Institute (ISCIII), Barcelona, Spain
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Bellvitge Biomedical Research Institute-IDIBELL, Department of Pathologic Anatomy, Bellvitge University Hospital, Barcelona, Spain; Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Virginia Soria
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Network Center for Biomedical Research on Mental Health (CIBERSAM), Carlos III Health Institute (ISCIII), Barcelona, Spain; Department of Mental Health, Parc Taulí Hospital Universitari, Sabadell, Barcelona, Spain
| | - Carles Soriano-Mas
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Network Center for Biomedical Research on Mental Health (CIBERSAM), Carlos III Health Institute (ISCIII), Barcelona, Spain; Department of Social Psychology and Quantitative Psychology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
14
|
Lin CP, Frigerio I, Bol JGJM, Bouwman MMA, Wesseling AJ, Dahl MJ, Rozemuller AJM, van der Werf YD, Pouwels PJW, van de Berg WDJ, Jonkman LE. Microstructural integrity of the locus coeruleus and its tracts reflect noradrenergic degeneration in Alzheimer's disease and Parkinson's disease. Transl Neurodegener 2024; 13:9. [PMID: 38336865 PMCID: PMC10854137 DOI: 10.1186/s40035-024-00400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Degeneration of the locus coeruleus (LC) noradrenergic system contributes to clinical symptoms in Alzheimer's disease (AD) and Parkinson's disease (PD). Diffusion magnetic resonance imaging (MRI) has the potential to evaluate the integrity of the LC noradrenergic system. The aim of the current study was to determine whether the diffusion MRI-measured integrity of the LC and its tracts are sensitive to noradrenergic degeneration in AD and PD. METHODS Post-mortem in situ T1-weighted and multi-shell diffusion MRI was performed for 9 AD, 14 PD, and 8 control brain donors. Fractional anisotropy (FA) and mean diffusivity were derived from the LC, and from tracts between the LC and the anterior cingulate cortex, the dorsolateral prefrontal cortex (DLPFC), the primary motor cortex (M1) or the hippocampus. Brain tissue sections of the LC and cortical regions were obtained and immunostained for dopamine-beta hydroxylase (DBH) to quantify noradrenergic cell density and fiber load. Group comparisons and correlations between outcome measures were performed using linear regression and partial correlations. RESULTS The AD and PD cases showed loss of LC noradrenergic cells and fibers. In the cortex, the AD cases showed increased DBH + immunoreactivity in the DLPFC compared to PD cases and controls, while PD cases showed reduced DBH + immunoreactivity in the M1 compared to controls. Higher FA within the LC was found for AD, which was correlated with loss of noradrenergic cells and fibers in the LC. Increased FA of the LC-DLPFC tract was correlated with LC noradrenergic fiber loss in the combined AD and control group, whereas the increased FA of the LC-M1 tract was correlated with LC noradrenergic neuronal loss in the combined PD and control group. The tract alterations were not correlated with cortical DBH + immunoreactivity. CONCLUSIONS In AD and PD, the diffusion MRI-detected alterations within the LC and its tracts to the DLPFC and the M1 were associated with local noradrenergic neuronal loss within the LC, rather than noradrenergic changes in the cortex.
Collapse
Affiliation(s)
- Chen-Pei Lin
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands.
| | - Irene Frigerio
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
| | - John G J M Bol
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Maud M A Bouwman
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
| | - Alex J Wesseling
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
| | - Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195, Berlin, Germany
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Annemieke J M Rozemuller
- Amsterdam UMC, Department of Pathology, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Ysbrand D van der Werf
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Compulsivity, Impulsivity and Attention Program, Amsterdam, The Netherlands
| | - Petra J W Pouwels
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
- Amsterdam UMC, Department of Radiology and Nuclear Medicine, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Wilma D J van de Berg
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Laura E Jonkman
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Trujillo P, Aumann MA, Claassen DO. Neuromelanin-sensitive MRI as a promising biomarker of catecholamine function. Brain 2024; 147:337-351. [PMID: 37669320 PMCID: PMC10834262 DOI: 10.1093/brain/awad300] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/17/2023] [Accepted: 08/20/2023] [Indexed: 09/07/2023] Open
Abstract
Disruptions to dopamine and noradrenergic neurotransmission are noted in several neurodegenerative and psychiatric disorders. Neuromelanin-sensitive (NM)-MRI offers a non-invasive approach to visualize and quantify the structural and functional integrity of the substantia nigra and locus coeruleus. This method may aid in the diagnosis and quantification of longitudinal changes of disease and could provide a stratification tool for predicting treatment success of pharmacological interventions targeting the dopaminergic and noradrenergic systems. Given the growing clinical interest in NM-MRI, understanding the contrast mechanisms that generate this signal is crucial for appropriate interpretation of NM-MRI outcomes and for the continued development of quantitative MRI biomarkers that assess disease severity and progression. To date, most studies associate NM-MRI measurements to the content of the neuromelanin pigment and/or density of neuromelanin-containing neurons, while recent studies suggest that the main source of the NM-MRI contrast is not the presence of neuromelanin but the high-water content in the dopaminergic and noradrenergic neurons. In this review, we consider the biological and physical basis for the NM-MRI contrast and discuss a wide range of interpretations of NM-MRI. We describe different acquisition and image processing approaches and discuss how these methods could be improved and standardized to facilitate large-scale multisite studies and translation into clinical use. We review the potential clinical applications in neurological and psychiatric disorders and the promise of NM-MRI as a biomarker of disease, and finally, we discuss the current limitations of NM-MRI that need to be addressed before this technique can be utilized as a biomarker and translated into clinical practice and offer suggestions for future research.
Collapse
Affiliation(s)
- Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Megan A Aumann
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| |
Collapse
|
16
|
Aganj I, Mora J, Fischl B, Augustinack JC. Automatic Geometry-based Estimation of the Locus Coeruleus Region on T 1-Weighted Magnetic Resonance Images. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576958. [PMID: 38328208 PMCID: PMC10849695 DOI: 10.1101/2024.01.23.576958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The locus coeruleus (LC) is a key brain structure implicated in cognitive function and neurodegenerative disease. Automatic segmentation of the LC is a crucial step in quantitative non-invasive analysis of the LC in large MRI cohorts. Most publicly available imaging databases for training automatic LC segmentation models take advantage of specialized contrast-enhancing (e.g., neuromelanin-sensitive) MRI. Segmentation models developed with such image contrasts, however, are not readily applicable to existing datasets with conventional MRI sequences. In this work, we evaluate the feasibility of using non-contrast neuroanatomical information to geometrically approximate the LC region from standard 3-Tesla T1-weighted images of 20 subjects from the Human Connectome Project (HCP). We employ this dataset to train and internally/externally evaluate two automatic localization methods, the Expected Label Value and the U-Net. We also test the hypothesis that using the phase image as input can improve the robustness of out-of-sample segmentation. We then apply our trained models to a larger subset of HCP, while exploratorily correlating LC imaging variables and structural connectivity with demographic and clinical data. This report contributes and provides an evaluation of two computational methods estimating neural structure.
Collapse
Affiliation(s)
- Iman Aganj
- Athinoula A. Martinos Center for Biomedical Imaging, Radiology Department, Massachusetts General Hospital, Boston, MA 02129, USA
- Radiology Department, Harvard Medical School, Boston, MA 02115, USA
| | - Jocelyn Mora
- Athinoula A. Martinos Center for Biomedical Imaging, Radiology Department, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Bruce Fischl
- Athinoula A. Martinos Center for Biomedical Imaging, Radiology Department, Massachusetts General Hospital, Boston, MA 02129, USA
- Radiology Department, Harvard Medical School, Boston, MA 02115, USA
| | - Jean C. Augustinack
- Athinoula A. Martinos Center for Biomedical Imaging, Radiology Department, Massachusetts General Hospital, Boston, MA 02129, USA
- Radiology Department, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
17
|
Kaduk K, Henry T, Guitton J, Meunier M, Thura D, Hadj-Bouziane F. Atomoxetine and reward size equally improve task engagement and perceptual decisions but differently affect movement execution. Neuropharmacology 2023; 241:109736. [PMID: 37774942 DOI: 10.1016/j.neuropharm.2023.109736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Our ability to engage and perform daily activities relies on balancing the associated benefits and costs. Rewards, as benefits, act as powerful motivators that help us stay focused for longer durations. The noradrenergic (NA) system is thought to play a significant role in optimizing our performance. Yet, the interplay between reward and the NA system in shaping performance remains unclear, particularly when actions are driven by external incentives (reward). To explore this interaction, we tested four female rhesus monkeys performing a sustained Go/NoGo task under two reward sizes (low/high) and three pharmacological conditions (saline and two doses of atomoxetine, a NA reuptake inhibitor: ATX-0.5 mg/kg and ATX-1 mg/kg). We found that increasing either reward or NA levels equally enhanced the animal's engagement in the task compared to low reward saline; the animals also responded faster and more consistently under these circumstances. Notably, we identified differences between reward size and ATX. When combined with ATX, high reward further reduced the occurrence of false alarms (i.e., incorrect go trials on distractors), implying that it helped further suppress impulsive responses. In addition, ATX (but not reward size) consistently increased movement duration dose-dependently, while high reward did not affect movement duration but decreased its variability. We conclude that noradrenaline and reward modulate performance, but their effects are not identical, suggesting differential underlying mechanisms. Reward might energize/invigorate decisions and action, while ATX might help regulate energy expenditure, depending on the context, through the NA system.
Collapse
Affiliation(s)
- Kristin Kaduk
- University UCBL Lyon 1, F-69000, France; INSERM, U1028, CNRS UMR5292, Lyon Neuroscience Research Center, ImpAct Team, Lyon, F-69000, France; Decision and Awareness Group, Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Goettingen, 37077, Germany.
| | - Tiphaine Henry
- University UCBL Lyon 1, F-69000, France; INSERM, U1028, CNRS UMR5292, Lyon Neuroscience Research Center, ImpAct Team, Lyon, F-69000, France
| | - Jerome Guitton
- Biochemistry and Pharmacology-Toxicology Laboratory, Lyon-Sud Hospital, Hospices Civils de Lyon, F-69495, Pierre Bénite, France
| | - Martine Meunier
- University UCBL Lyon 1, F-69000, France; INSERM, U1028, CNRS UMR5292, Lyon Neuroscience Research Center, ImpAct Team, Lyon, F-69000, France
| | - David Thura
- University UCBL Lyon 1, F-69000, France; INSERM, U1028, CNRS UMR5292, Lyon Neuroscience Research Center, ImpAct Team, Lyon, F-69000, France
| | - Fadila Hadj-Bouziane
- University UCBL Lyon 1, F-69000, France; INSERM, U1028, CNRS UMR5292, Lyon Neuroscience Research Center, ImpAct Team, Lyon, F-69000, France.
| |
Collapse
|
18
|
Welton T, Hartono S, Shih YC, Schwarz ST, Xing Y, Tan EK, Auer DP, Harel N, Chan LL. Ultra-high-field 7T MRI in Parkinson's disease: ready for clinical use?-a narrative review. Quant Imaging Med Surg 2023; 13:7607-7620. [PMID: 37969629 PMCID: PMC10644128 DOI: 10.21037/qims-23-509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/15/2023] [Indexed: 11/17/2023]
Abstract
Background and Objective The maturation of ultra-high-field magnetic resonance imaging (MRI) [≥7 Tesla (7T)] has improved our capability to depict and characterise brain structures efficiently, with better signal-to-noise ratio (SNR) and spatial resolution. We evaluated whether these improvements benefit the clinical detection and management of Parkinson's disease (PD). Methods We performed a literature search in March 2023 in PubMed (MEDLINE), EMBASE and Google Scholar for articles on "7T MRI" AND "Parkinson*", written in English, published between inception and 1st March, 2023, which we synthesised in narrative form. Key Content and Findings In deep-brain stimulation (DBS) surgical planning, early studies show that 7T MRI can distinguish anatomical substructures, and that this results in reduced adverse effects. In other areas, while there is strong evidence for improved accuracy and precision of 7T MRI-based measurements for PD, there is limited evidence for meaningful clinical translation. In particular, neuromelanin-iron complex quantification and visualisation in midbrain nuclei is enhanced, enabling depiction of nigrosomes 1-5, improved morphometry and vastly improved radiological assessments; however, studies on the related clinical outcomes, diagnosis, subtyping, differentiation of atypical parkinsonisms, and monitoring of treatment response using 7T MRI are lacking. Moreover, improvements in clinical utility must be great enough to justify the additional costs. Conclusions Together, current evidence supports feasible future clinical implementation of 7T MRI for PD. Future impacts to clinical decision making for diagnosis, differentiation, and monitoring of progression or treatment response are likely; however, to achieve this, further longitudinal studies using 7T MRI are needed in prodromal, early-stage PD and parkinsonism cohorts focusing on clinical translational potential.
Collapse
Affiliation(s)
- Thomas Welton
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Septian Hartono
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore, Singapore
| | - Yao-Chia Shih
- Duke-NUS Medical School, Singapore, Singapore
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore, Singapore
- Graduate Institute of Medicine, Yuan Ze University and National Taiwan University, Taipei
| | - Stefan T. Schwarz
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Radiology, Cardiff and Vale University Health Board, Cardiff, Wales, UK
| | - Yue Xing
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Eng-King Tan
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Dorothee P. Auer
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Noam Harel
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Ling-Ling Chan
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
19
|
Bachman SL, Cole S, Yoo HJ, Nashiro K, Min J, Mercer N, Nasseri P, Thayer JF, Lehrer P, Mather M. Daily heart rate variability biofeedback training decreases locus coeruleus MRI contrast in younger adults in a randomized clinical trial. Int J Psychophysiol 2023; 193:112241. [PMID: 37647944 PMCID: PMC10591988 DOI: 10.1016/j.ijpsycho.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
As an arousal hub region in the brain, the locus coeruleus (LC) has bidirectional connections with the autonomic nervous system. Magnetic resonance imaging (MRI)-based measures of LC structural integrity have been linked to cognition and arousal, but less is known about factors that influence LC structure and function across time. Here, we tested the effects of heart rate variability (HRV) biofeedback, an intervention targeting the autonomic nervous system, on LC MRI contrast and sympathetic activity. Younger and older participants completed daily HRV biofeedback training for five weeks. Those assigned to an experimental condition performed biofeedback involving slow, paced breathing designed to increase heart rate oscillations, whereas those assigned to a control condition performed biofeedback to decrease heart rate oscillations. At the pre- and post-training timepoints, LC contrast was assessed using turbo spin echo MRI scans, and RNA sequencing was used to assess cAMP-responsive element binding protein (CREB)-regulated gene expression in circulating blood cells, an index of sympathetic nervous system signaling. We found that left LC contrast decreased in younger participants in the experimental group, and across younger participants, decreases in left LC contrast were related to the extent to which participants increased their heart rate oscillations during training. Furthermore, decreases in left LC contrast were associated with decreased expression of CREB-associated gene transcripts. On the contrary, there were no effects of biofeedback on LC contrast among older participants in the experimental group. These findings provide novel evidence that in younger adults, HRV biofeedback involving slow, paced breathing can decrease both LC contrast and sympathetic nervous system signaling.
Collapse
Affiliation(s)
- Shelby L Bachman
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Steve Cole
- University of California Los Angeles, Los Angeles, CA 90095, United States of America
| | - Hyun Joo Yoo
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Kaoru Nashiro
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Jungwon Min
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Noah Mercer
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Padideh Nasseri
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Julian F Thayer
- University of California Irvine, Irvine, CA 92697, United States of America
| | - Paul Lehrer
- Rutgers University, Piscataway, NJ 08852, United States of America
| | - Mara Mather
- University of Southern California, Los Angeles, CA 90089, United States of America.
| |
Collapse
|
20
|
Ye R, Hezemans FH, O'Callaghan C, Tsvetanov KA, Rua C, Jones PS, Holland N, Malpetti M, Murley AG, Barker RA, Williams-Gray CH, Robbins TW, Passamonti L, Rowe JB. Locus Coeruleus Integrity Is Linked to Response Inhibition Deficits in Parkinson's Disease and Progressive Supranuclear Palsy. J Neurosci 2023; 43:7028-7040. [PMID: 37669861 PMCID: PMC10586538 DOI: 10.1523/jneurosci.0289-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 09/07/2023] Open
Abstract
Parkinson's disease (PD) and progressive supranuclear palsy (PSP) both impair response inhibition, exacerbating impulsivity. Inhibitory control deficits vary across individuals and are linked with worse prognosis, and lack improvement on dopaminergic therapy. Motor and cognitive control are associated with noradrenergic innervation of the cortex, arising from the locus coeruleus (LC) noradrenergic system. Here we test the hypothesis that structural variation of the LC explains response inhibition deficits in PSP and PD. Twenty-four people with idiopathic PD, 14 with PSP-Richardson's syndrome, and 24 age- and sex-matched controls undertook a stop-signal task and ultrahigh field 7T magnetization-transfer-weighted imaging of the LC. Parameters of "race models" of go- versus stop-decisions were estimated using hierarchical Bayesian methods to quantify the cognitive processes of response inhibition. We tested the multivariate relationship between LC integrity and model parameters using partial least squares. Both disorders impaired response inhibition at the group level. PSP caused a distinct pattern of abnormalities in inhibitory control with a paradoxically reduced threshold for go responses, but longer nondecision times, and more lapses of attention. The variation in response inhibition correlated with the variability of LC integrity across participants in both clinical groups. Structural imaging of the LC, coupled with behavioral modeling in parkinsonian disorders, confirms that LC integrity is associated with response inhibition and LC degeneration contributes to neurobehavioral changes. The noradrenergic system is therefore a promising target to treat impulsivity in these conditions. The optimization of noradrenergic treatment is likely to benefit from stratification according to LC integrity.SIGNIFICANCE STATEMENT Response inhibition deficits contribute to clinical symptoms and poor outcomes in people with Parkinson's disease and progressive supranuclear palsy. We used cognitive modeling of performance of a response inhibition task to identify disease-specific mechanisms of abnormal inhibitory control. Response inhibition in both patient groups was associated with the integrity of the noradrenergic locus coeruleus, which we measured in vivo using ultra-high field MRI. We propose that the imaging biomarker of locus coeruleus integrity provides a trans-diagnostic tool to explain individual differences in response inhibition ability beyond the classic nosological borders and diagnostic criteria. Our data suggest a potential new stratified treatment approach for Parkinson's disease and progressive supranuclear palsy.
Collapse
Affiliation(s)
- Rong Ye
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
| | - Frank H Hezemans
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, United Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 GD Nijmegen, The Netherlands
| | - Claire O'Callaghan
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, New South Wales, Australia
| | - Kamen A Tsvetanov
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, United Kingdom
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Catarina Rua
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
| | - P Simon Jones
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
| | - Negin Holland
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
| | - Maura Malpetti
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
| | - Alexander G Murley
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, United Kingdom
| | - Caroline H Williams-Gray
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Luca Passamonti
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
- Institute of Molecular Bioimaging and Physiology, National Research Council, 88100, Catanzaro, Italy
| | - James B Rowe
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| |
Collapse
|
21
|
Groot JM, Miletic S, Isherwood SJS, Tse DHY, Habli S, Håberg AK, Forstmann BU, Bazin PL, Mittner M. Echoes from Intrinsic Connectivity Networks in the Subcortex. J Neurosci 2023; 43:6609-6618. [PMID: 37562962 PMCID: PMC10538587 DOI: 10.1523/jneurosci.1020-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
Decades of research have greatly improved our understanding of intrinsic human brain organization in terms of functional networks and the transmodal hubs within the cortex at which they converge. However, substrates of multinetwork integration in the human subcortex are relatively uncharted. Here, we leveraged recent advances in subcortical atlasing and ultra-high field (7 T) imaging optimized for the subcortex to investigate the functional architecture of 14 individual structures in healthy adult males and females with a fully data-driven approach. We revealed that spontaneous neural activity in subcortical regions can be decomposed into multiple independent subsignals that correlate with, or "echo," the activity in functional networks across the cortex. Distinct subregions of the thalamus, striatum, claustrum, and hippocampus showed a varied pattern of echoes from attention, control, visual, somatomotor, and default mode networks, demonstrating evidence for a heterogeneous organization supportive of functional integration. Multiple network activity furthermore converged within the globus pallidus externa, substantia nigra, and ventral tegmental area but was specific to one subregion, while the amygdala and pedunculopontine nucleus preferentially affiliated with a single network, showing a more homogeneous topography. Subregional connectivity of the globus pallidus interna, subthalamic nucleus, red nucleus, periaqueductal gray, and locus coeruleus did not resemble patterns of cortical network activity. Together, these finding describe potential mechanisms through which the subcortex participates in integrated and segregated information processing and shapes the spontaneous cognitive dynamics during rest.SIGNIFICANCE STATEMENT Despite the impact of subcortical dysfunction on brain health and cognition, large-scale functional mapping of subcortical structures severely lags behind that of the cortex. Recent developments in subcortical atlasing and imaging at ultra-high field provide new avenues for studying the intricate functional architecture of the human subcortex. With a fully data-driven analysis, we reveal subregional connectivity profiles of a large set of noncortical structures, including those rarely studied in fMRI research. The results have implications for understanding how the functional organization of the subcortex facilitates integrative processing through cross-network information convergence, paving the way for future work aimed at improving our knowledge of subcortical contributions to intrinsic brain dynamics and spontaneous cognition.
Collapse
Affiliation(s)
- Josephine M Groot
- Department of Psychology, UiT-Arctic University of Norway, Tromsø, 9037, Norway
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, 1001 NK, The Netherlands
| | - Steven Miletic
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, 1001 NK, The Netherlands
| | - Scott J S Isherwood
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, 1001 NK, The Netherlands
| | - Desmond H Y Tse
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Sarah Habli
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, 8900, Norway
| | - Asta K Håberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, 8900, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim, 7006, Norway
| | - Birte U Forstmann
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, 1001 NK, The Netherlands
| | - Pierre-Louis Bazin
- Department of Psychology, UiT-Arctic University of Norway, Tromsø, 9037, Norway
- Departments of Neurophysics and Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04303, Germany
| | - Matthias Mittner
- Department of Psychology, UiT-Arctic University of Norway, Tromsø, 9037, Norway
| |
Collapse
|
22
|
Tang Y, Cao M, Li Y, Lin Y, Wu X, Chen M. Altered structural covariance of locus coeruleus in individuals with significant memory concern and patients with mild cognitive impairment. Cereb Cortex 2023; 33:8523-8533. [PMID: 37130822 PMCID: PMC10321106 DOI: 10.1093/cercor/bhad137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 05/04/2023] Open
Abstract
The locus coeruleus (LC) is the site where tau accumulation is preferentially observed pathologically in Alzheimer's disease (AD) patients, but the changes in gray matter co-alteration patterns between the LC and the whole brain in the predementia phase of AD remain unclear. In this study, we estimated and compared the gray matter volume of the LC and its structural covariance (SC) with the whole brain among 161 normal healthy controls (HCs), 99 individuals with significant memory concern (SMC) and 131 patients with mild cognitive impairment (MCI). We found that SC decreased in MCI groups, which mainly involved the salience network and default mode network. These results imply that seeding from LC, the gray matter network disruption and disconnection appears early in the MCI group. The altered SC network seeding from the LC can serve as an imaging biomarker for discriminating the patients in the potential predementia phase of AD from the normal subjects.
Collapse
Affiliation(s)
- Yingmei Tang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou 510120, Guangdong, China
| | - Minghui Cao
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou 510120, Guangdong, China
| | - Yunhua Li
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou 510120, Guangdong, China
| | - Yuting Lin
- School of Psychology, Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, No.55 Zhongshan Avenue West, Guangzhou 510631, Guangdong, China
| | - Xiaoyan Wu
- School of Psychology, Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, No.55 Zhongshan Avenue West, Guangzhou 510631, Guangdong, China
| | - Meiwei Chen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou 510120, Guangdong, China
| |
Collapse
|
23
|
Orlando IF, Shine JM, Robbins TW, Rowe JB, O'Callaghan C. Noradrenergic and cholinergic systems take centre stage in neuropsychiatric diseases of ageing. Neurosci Biobehav Rev 2023; 149:105167. [PMID: 37054802 DOI: 10.1016/j.neubiorev.2023.105167] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023]
Abstract
Noradrenergic and cholinergic systems are among the most vulnerable brain systems in neuropsychiatric diseases of ageing, including Alzheimer's disease, Parkinson's disease, Lewy body dementia, and progressive supranuclear palsy. As these systems fail, they contribute directly to many of the characteristic cognitive and psychiatric symptoms. However, their contribution to symptoms is not sufficiently understood, and pharmacological interventions targeting noradrenergic and cholinergic systems have met with mixed success. Part of the challenge is the complex neurobiology of these systems, operating across multiple timescales, and with non-linear changes across the adult lifespan and disease course. We address these challenges in a detailed review of the noradrenergic and cholinergic systems, outlining their roles in cognition and behaviour, and how they influence neuropsychiatric symptoms in disease. By bridging across levels of analysis, we highlight opportunities for improving drug therapies and for pursuing personalised medicine strategies.
Collapse
Affiliation(s)
- Isabella F Orlando
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia
| | - James M Shine
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia
| | - Trevor W Robbins
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, CB2 3EB, United Kingdom
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, CB2 0SZ, United Kingdom
| | - Claire O'Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia.
| |
Collapse
|
24
|
Sun J, Ma J, Gao L, Wang J, Zhang D, Chen L, Fang J, Feng T, Wu T. Disruption of locus coeruleus-related functional networks in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:81. [PMID: 37253752 DOI: 10.1038/s41531-023-00532-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 05/22/2023] [Indexed: 06/01/2023] Open
Abstract
Locus coeruleus (LC) is severely affected in Parkinson's Disease (PD). However, alterations in LC-related resting-state networks (RSNs) in PD remain unclear. We used resting-state functional MRI to investigate the alterations in functional connectivity (FC) of LC-related RSNs and the associations between RSNs changes and clinical features in idiopathic rapid eye movement sleep behavior disorder (iRBD) and PD patients with (PDRBD+) and without RBD (PDRBD-). There was a similarly disrupted FC pattern of LC-related RSNs in iRBD and PDRBD+ patients, whereas LC-related RSNs were less damaged in PDRBD- patients than that in patients with iRBD and PDRBD+. The FC of LC-related RSNs correlated with cognition and duration in iRBD, depression in PDRBD-, and cognition and severity of RBD in patients with PDRBD+. Our findings demonstrate that LC-related RSNs are significantly disrupted in the prodromal stage of α-synucleinopathies and proposed body-first PD (PDRBD+), but are less affected in brain-first PD (PDRBD-).
Collapse
Affiliation(s)
- Junyan Sun
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinghong Ma
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Linlin Gao
- Department of General Medicine, Tianjin Union Medical Center, Tianjin, China
| | - Junling Wang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dongling Zhang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lili Chen
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiliang Fang
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Tao Wu
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
25
|
Yi YJ, Lüsebrink F, Ludwig M, Maaß A, Ziegler G, Yakupov R, Kreißl MC, Betts M, Speck O, Düzel E, Hämmerer D. It is the locus coeruleus! Or… is it?: a proposition for analyses and reporting standards for structural and functional magnetic resonance imaging of the noradrenergic locus coeruleus. Neurobiol Aging 2023; 129:137-148. [PMID: 37329853 DOI: 10.1016/j.neurobiolaging.2023.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/16/2023] [Accepted: 04/20/2023] [Indexed: 06/19/2023]
Abstract
The noradrenergic locus coeruleus (LC) is one of the protein pathology epicenters in neurodegenerative diseases. In contrast to PET (positron emission tomography), MRI (magnetic resonance imaging) offers the spatial resolution necessary to investigate the 3-4 mm wide and 1.5 cm long LC. However, standard data postprocessing is often too spatially imprecise to allow investigating the structure and function of the LC at the group level. Our analysis pipeline uses a combination of existing toolboxes (SPM12, ANTs, FSL, FreeSurfer), and is tailored towards achieving suitable spatial precision in the brainstem area. Its effectiveness is demonstrated using 2 datasets comprising both younger and older adults. We also suggest quality assessment procedures which allow to quantify the spatial precision obtained. Spatial deviations below 2.5 mm in the LC area are achieved, which is superior to current standard approaches. Relevant for ageing and clinical researchers interested in brainstem imaging, we provide a tool for more reliable analyses of structural and functional LC imaging data which can be also adapted for investigating other nuclei of the brainstem.
Collapse
Affiliation(s)
- Yeo-Jin Yi
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.
| | - Falk Lüsebrink
- Biomedical Magnetic Resonance, Faculty of Natural Sciences, Otto-von-Guericke University, Magdeburg, Germany; Medicine and Digitalization, Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Mareike Ludwig
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Anne Maaß
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Gabriel Ziegler
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Renat Yakupov
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Michael C Kreißl
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Division of Nuclear Medicine, Department of Nuclear Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | - Matthew Betts
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Oliver Speck
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Biomedical Magnetic Resonance, Faculty of Natural Sciences, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, UK
| | - Dorothea Hämmerer
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, UK; Department of Psychology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
26
|
van der Thiel MM, Backes WH, Ramakers IHGB, Jansen JFA. Novel developments in non-contrast enhanced MRI of the perivascular clearance system: What are the possibilities for Alzheimer's disease research? Neurosci Biobehav Rev 2023; 144:104999. [PMID: 36529311 DOI: 10.1016/j.neubiorev.2022.104999] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/21/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
The cerebral waste clearance system (i.e, glymphatic or intramural periarterial drainage) works through a network of perivascular spaces (PVS). Dysfunction of this system likely contributes to aggregation of Amyloid-β and subsequent toxic plaques in Alzheimer's disease (AD). A promising, non-invasive technique to study this system is MRI, though applications in dementia are still scarce. This review focusses on recent non-contrast enhanced (non-CE) MRI techniques which determine and visualise physiological aspects of the clearance system at multiple levels, i.e., cerebrospinal fluid flow, PVS-flow and interstitial fluid movement. Furthermore, various MRI studies focussing on aspects of the clearance system which are relevant to AD are discussed, such as studies on ageing, sleep alterations, and cognitive decline. Additionally, the complementary function of non-CE to CE methods is elaborated upon. We conclude that non-CE studies have great potential to determine which parts of the waste clearance system are affected by AD and in which stages of cognitive impairment dysfunction of this system occurs, which could allow future clinical trials to target these specific mechanisms.
Collapse
Affiliation(s)
- Merel M van der Thiel
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Psychiatry &Neuropsychology, Maastricht University, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Walter H Backes
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands; School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
| | - Inez H G B Ramakers
- Department of Psychiatry &Neuropsychology, Maastricht University, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Jacobus F A Jansen
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
27
|
Engels-Domínguez N, Koops EA, Prokopiou PC, Van Egroo M, Schneider C, Riphagen JM, Singhal T, Jacobs HIL. State-of-the-art imaging of neuromodulatory subcortical systems in aging and Alzheimer's disease: Challenges and opportunities. Neurosci Biobehav Rev 2023; 144:104998. [PMID: 36526031 PMCID: PMC9805533 DOI: 10.1016/j.neubiorev.2022.104998] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/30/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022]
Abstract
Primary prevention trials have shifted their focus to the earliest stages of Alzheimer's disease (AD). Autopsy data indicates that the neuromodulatory subcortical systems' (NSS) nuclei are specifically vulnerable to initial tau pathology, indicating that these nuclei hold great promise for early detection of AD in the context of the aging brain. The increasing availability of new imaging methods, ultra-high field scanners, new radioligands, and routine deep brain stimulation implants has led to a growing number of NSS neuroimaging studies on aging and neurodegeneration. Here, we review findings of current state-of-the-art imaging studies assessing the structure, function, and molecular changes of these nuclei during aging and AD. Furthermore, we identify the challenges associated with these imaging methods, important pathophysiologic gaps to fill for the AD NSS neuroimaging field, and provide future directions to improve our assessment, understanding, and clinical use of in vivo imaging of the NSS.
Collapse
Affiliation(s)
- Nina Engels-Domínguez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands
| | - Elouise A Koops
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Prokopis C Prokopiou
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Maxime Van Egroo
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands
| | - Christoph Schneider
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joost M Riphagen
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tarun Singhal
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Heidi I L Jacobs
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
28
|
Davenport F, Gallacher J, Kourtzi Z, Koychev I, Matthews PM, Oxtoby NP, Parkes LM, Priesemann V, Rowe JB, Smye SW, Zetterberg H. Neurodegenerative disease of the brain: a survey of interdisciplinary approaches. J R Soc Interface 2023; 20:20220406. [PMID: 36651180 PMCID: PMC9846433 DOI: 10.1098/rsif.2022.0406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 12/16/2022] [Indexed: 01/19/2023] Open
Abstract
Neurodegenerative diseases of the brain pose a major and increasing global health challenge, with only limited progress made in developing effective therapies over the last decade. Interdisciplinary research is improving understanding of these diseases and this article reviews such approaches, with particular emphasis on tools and techniques drawn from physics, chemistry, artificial intelligence and psychology.
Collapse
Affiliation(s)
| | - John Gallacher
- Director of Dementias Platform, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Zoe Kourtzi
- Professor of Cognitive Computational Neuroscience, Department of Psychology, University of Cambridge, UK
| | - Ivan Koychev
- Senior Clinical Researcher, Department of Psychiatry, University of Oxford, Oxford, UK
- Consultant Neuropsychiatrist, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Paul M. Matthews
- Department of Brain Sciences and UK Dementia Research Institute Centre, Imperial College London, Oxford, UK
| | - Neil P. Oxtoby
- UCL Centre for Medical Image Computing and Department of Computer Science, University College London, Gower Street, London, UK
| | - Laura M. Parkes
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| | - Viola Priesemann
- Max Planck Group Leader and Fellow of the Schiemann Kolleg, Max Planck Institute for Dynamics and Self-Organization and Bernstein Center for Computational Neuroscience, Göttingen, Germany
| | - James B. Rowe
- Department of Clinical Neurosciences, MRC Cognition and Brain Sciences Unit and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | | | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, People's Republic of China
| |
Collapse
|
29
|
Gallant SN, Kennedy BL, Bachman SL, Huang R, Cho C, Lee TH, Mather M. Behavioral and fMRI evidence that arousal enhances bottom-up selectivity in young but not older adults. Neurobiol Aging 2022; 120:149-166. [PMID: 36198230 PMCID: PMC9805381 DOI: 10.1016/j.neurobiolaging.2022.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 01/03/2023]
Abstract
The locus coeruleus-noradrenergic system integrates signals about arousal states throughout the brain and helps coordinate cognitive selectivity. However, age-related changes in this system may impact how arousal coordinates selectivity in older adults. To examine this, we compared how increases in emotional arousal modulates cognitive selectivity for images differing in perceptual salience in young and older adults. Using functional magnetic resonance imaging, we found that relative to older adults, hearing an arousing sound enhanced young adults' bottom-up processing and incidental memory for high versus low salience category-selective body images. We also examined how arousing sounds impacted a top-down goal to detect dot-probes that appeared immediately after high or low salience images. We found that young adults were slower to detect probes appearing after high salience body images on arousing trials, whereas older adults showed this pattern on non-arousing trials. Taken together, our findings show that arousal's effect on selectivity changes with age and differs across bottom-up and top-down processing.
Collapse
Affiliation(s)
- Sara N. Gallant
- Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Briana L. Kennedy
- School of Psychological Science, University of Western Australia, Perth, Australia
| | - Shelby L. Bachman
- Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Ringo Huang
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA
| | - Christine Cho
- Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Tae-Ho Lee
- Department of Psychology, Virginia Tech, Blacksburg, VA, United States
| | - Mara Mather
- Davis School of Gerontology, University of Southern California, Los Angeles, CA
| |
Collapse
|
30
|
Bachman SL, Nashiro K, Yoo H, Wang D, Thayer JF, Mather M. Associations between locus coeruleus MRI contrast and physiological responses to acute stress in younger and older adults. Brain Res 2022; 1796:148070. [PMID: 36088961 PMCID: PMC9805382 DOI: 10.1016/j.brainres.2022.148070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 01/03/2023]
Abstract
Acute stress activates the brain's locus coeruleus (LC)-noradrenaline system. Recent studies indicate that a magnetic resonance imaging (MRI)-based measure of LC structure is associated with better cognitive outcomes in later life. Yet despite the LC's documented role in promoting physiological arousal during acute stress, no studies have examined whether MRI-assessed LC structure is related to arousal responses to acute stress. In this study, 102 younger and 51 older adults completed an acute stress induction task while we assessed multiple measures of physiological arousal (heart rate, breathing rate, systolic and diastolic blood pressure, sympathetic tone, and heart rate variability, HRV). We used turbo spin echo MRI scans to quantify LC MRI contrast as a measure of LC structure. We applied univariate and multivariate approaches to assess how LC MRI contrast was associated with arousal at rest and during acute stress reactivity and recovery. In older participants, having higher caudal LC MRI contrast was associated with greater stress-related increases in systolic blood pressure and decreases in HRV, as well as lower HRV during recovery from acute stress. These results suggest that having higher caudal LC MRI contrast in older adulthood is associated with more pronounced physiological responses to acute stress. Further work is needed to confirm these patterns in larger samples of older adults.
Collapse
|
31
|
Xu B, He T, Lu Y, Jia J, Sahakian BJ, Robbins TW, Jin L, Ye Z. Locus coeruleus integrity correlates with inhibitory functions of the fronto-subthalamic 'hyperdirect' pathway in Parkinson's disease. Neuroimage Clin 2022; 36:103276. [PMID: 36510410 PMCID: PMC9723406 DOI: 10.1016/j.nicl.2022.103276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
A long-running debate concerns whether dopamine or noradrenaline deficiency drives response disinhibition in Parkinson's disease (PD). This study aimed to investigate whether damage to the locus coeruleus (LC) or substantia nigra (SN) might impact inhibitory functions of the fronto-subthalamic hyperdirect or fronto-striatal indirect pathway. Patients with PD (n = 29, 13 women) and matched healthy controls (n = 29, 15 women) participated in this cross-sectional study. LC and SN integrity was assessed using neuromelanin-sensitive MRI. Response inhibition was measured using fMRI with a stop-signal task. In healthy controls, LC (but not SN) integrity correlated with the stopping-related activity of the right inferior frontal gyrus (IFG) and right subthalamic nucleus (STN), which further correlated with stop-signal reaction time (SSRT). PD patients showed reduced LC integrity, longer SSRT, and lower stopping-related activity over the right IFG, pre-supplementary motor area, and right caudate nucleus than healthy controls. In PD patients, the relationship between SSRT and the fronto-subthalamic pathway was preserved. However, LC integrity no longer correlated with the stopping-related right IFG or right STN activity. No contribution of SN integrity was found during stopping. In conclusion, LC (but not SN) might modulate inhibitory functions of the right IFG-STN pathway. Damage to the LC might impact the right IFG-STN pathway during stopping, leading to response disinhibition in PD.
Collapse
Affiliation(s)
- Biman Xu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China
- University of Chinese Academy of Sciences, Yuquan Road 19(A), Beijing 100049, China
| | - Tingting He
- Department of Neurology, Zhongshan Hospital, Fudan University, Fenglin Road 180, Shanghai 200032, China
| | - Yuan Lu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China
| | - Jia Jia
- Department of Neurology, Zhongshan Hospital, Fudan University, Fenglin Road 180, Shanghai 200032, China
| | - Barbara J. Sahakian
- Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain & Mind Sciences, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Handan Road 220, Shanghai 200433, China
| | - Trevor W. Robbins
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Handan Road 220, Shanghai 200433, China
- Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK
| | - Lirong Jin
- Department of Neurology, Zhongshan Hospital, Fudan University, Fenglin Road 180, Shanghai 200032, China
| | - Zheng Ye
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China
| |
Collapse
|
32
|
Calarco N, Cassidy CM, Selby B, Hawco C, Voineskos AN, Diniz BS, Nikolova YS. Associations between locus coeruleus integrity and diagnosis, age, and cognitive performance in older adults with and without late-life depression: An exploratory study. Neuroimage Clin 2022; 36:103182. [PMID: 36088841 PMCID: PMC9474922 DOI: 10.1016/j.nicl.2022.103182] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022]
Abstract
Late-life depression (LLD) is a risk factor for age-dependent cognitive deterioration. Norepinephrine-related degeneration in the locus coeruleus (LC) may explain this link. To examine the LC norepinephrine system in vivo, we acquired neuromelanin-sensitive MRI (NM-MRI) in a sample of 48 participants, including 25 with LLD (18 women, age 68.08 ± 5.41) and 23 never-depressed comparison participants (ND, 12 women, age 70 ± 8.02), matched on age and cognitive status. We employed a semi-automated procedure to segment the LC into three bilateral sections along its rostro-caudal extent, and calculated relative contrast as a proxy of integrity. Then, we examined associations between integrity and LLD diagnosis, age, and cognition, as measured via the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and the Delis-Kaplan Executive Function System (D-KEFS). We did not identify an effect of LLD diagnosis nor age on LC integrity, but exploratory canonical correlation analysis across the combined participant sample revealed a strong (Rc = 0.853) and significant multivariate relationship between integrity and cognition (Wilks' λ = 0.03, F(84, 162.44) = 1.66, p = <.01). The first and only significant variate explained 72.83% model variance, and linked better attention and delayed memory performance, faster processing speed, and lower verbal fluency performance with higher integrity in the right rostral but lower integrity in the left caudal LC. Our results complement prior evidence of LC involvement in cognition in healthy older adults, and extend this association to individuals with LLD.
Collapse
Affiliation(s)
- Navona Calarco
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Clifford M. Cassidy
- The University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, ON, Canada
| | - Ben Selby
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Colin Hawco
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Aristotle N. Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Breno S. Diniz
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA,Department of Psychiatry, School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Yuliya S. Nikolova
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada,Corresponding author at: Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), 250 College Street, Toronto, ON M5T 1L8, Canada.
| |
Collapse
|
33
|
Ye R, O'Callaghan C, Rua C, Hezemans FH, Holland N, Malpetti M, Jones PS, Barker RA, Williams‐Gray CH, Robbins TW, Passamonti L, Rowe J. Locus Coeruleus Integrity from 7 T MRI Relates to Apathy and Cognition in Parkinsonian Disorders. Mov Disord 2022; 37:1663-1672. [PMID: 35576973 PMCID: PMC9541468 DOI: 10.1002/mds.29072] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/15/2022] [Accepted: 03/27/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Neurodegeneration in the locus coeruleus (LC) contributes to neuropsychiatric symptoms in both Parkinson's disease (PD) and progressive supranuclear palsy (PSP). Spatial precision of LC imaging is improved with ultrahigh field 7 T magnetic resonance imaging. OBJECTIVES This study aimed to characterize the spatial patterns of LC pathological change in PD and PSP and the transdiagnostic relationship between LC signals and neuropsychiatric symptoms. METHODS Twenty-five people with idiopathic PD, 14 people with probable PSP-Richardson's syndrome, and 24 age-matched healthy controls were recruited. Participants underwent clinical assessments and high-resolution (0.08 mm3 ) 7 T-magnetization-transfer imaging to measure LC integrity in vivo. Spatial patterns of LC change were obtained using subregional mean contrast ratios and significant LC clusters; we further correlated the LC contrast with measures of apathy and cognition, using both mixed-effect models and voxelwise analyses. RESULTS PSP and PD groups showed significant LC degeneration in the caudal subregion relative to controls. Mixed-effect models revealed a significant interaction between disease-group and apathy-related correlations with LC degeneration (β = 0.46, SE [standard error] = 0.17, F(1, 35) = 7.46, P = 0.01), driven by a strong correlation in PSP (β = -0.58, SE = 0.21, t(35) = -2.76, P = 0.009). Across both disease groups, voxelwise analyses indicated that lower LC integrity was associated with worse cognition and higher apathy scores. CONCLUSIONS The relationship between LC and nonmotor symptoms highlights a role for noradrenergic dysfunction across both PD and PSP, confirming the potential for noradrenergic therapeutic strategies to address transdiagnostic cognitive and behavioral features in neurodegenerative disease. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Rong Ye
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS TrustUniversity of CambridgeCambridgeUnited Kingdom
| | - Claire O'Callaghan
- Brain and Mind Centre and School of Medical SciencesFaculty of Medicine and Health, University of SydneySydneyAustralia
- Department of PsychiatryUniversity of CambridgeCambridgeUnited Kingdom
| | - Catarina Rua
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS TrustUniversity of CambridgeCambridgeUnited Kingdom
| | - Frank H. Hezemans
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS TrustUniversity of CambridgeCambridgeUnited Kingdom
- MRC Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUnited Kingdom
| | - Negin Holland
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS TrustUniversity of CambridgeCambridgeUnited Kingdom
| | - Maura Malpetti
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS TrustUniversity of CambridgeCambridgeUnited Kingdom
| | - P. Simon Jones
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS TrustUniversity of CambridgeCambridgeUnited Kingdom
| | - Roger A. Barker
- Department of Clinical Neurosciences, John van Geest Centre for Brain RepairUniversity of CambridgeCambridgeUnited Kingdom
- Wellcome Trust—Medical Research Council Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Caroline H. Williams‐Gray
- Department of Clinical Neurosciences, John van Geest Centre for Brain RepairUniversity of CambridgeCambridgeUnited Kingdom
| | - Trevor W. Robbins
- Department of PsychologyUniversity of CambridgeCambridgeUnited Kingdom
- Behavioural and Clinical Neuroscience InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Luca Passamonti
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS TrustUniversity of CambridgeCambridgeUnited Kingdom
- Istituto di Bioimmagini e Fisiologia MolecolareConsiglio Nazionale delle RicercheCefalùItaly
| | - James Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS TrustUniversity of CambridgeCambridgeUnited Kingdom
- MRC Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
34
|
Taylor NL, D'Souza A, Munn BR, Lv J, Zaborszky L, Müller EJ, Wainstein G, Calamante F, Shine JM. Structural connections between the noradrenergic and cholinergic system shape the dynamics of functional brain networks. Neuroimage 2022; 260:119455. [PMID: 35809888 PMCID: PMC10114918 DOI: 10.1016/j.neuroimage.2022.119455] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022] Open
Abstract
Complex cognitive abilities are thought to arise from the ability of the brain to adaptively reconfigure its internal network structure as a function of task demands. Recent work has suggested that this inherent flexibility may in part be conferred by the widespread projections of the ascending arousal systems. While the different components of the ascending arousal system are often studied in isolation, there are anatomical connections between neuromodulatory hubs that we hypothesise are crucial for mediating key features of adaptive network dynamics, such as the balance between integration and segregation. To test this hypothesis, we estimated the strength of structural connectivity between key hubs of the noradrenergic and cholinergic arousal systems (the locus coeruleus [LC] and nucleus basalis of Meynert [nbM], respectively). We then asked whether the strength of structural LC and nbM inter-connectivity was related to individual differences in the emergent, dynamical signatures of functional integration measured from resting state fMRI data, such as network and attractor topography. We observed a significant positive relationship between the strength of white-matter connections between the LC and nbM and the extent of network-level integration following BOLD signal peaks in LC relative to nbM activity. In addition, individuals with denser white-matter streamlines interconnecting neuromodulatory hubs also demonstrated a heightened ability to shift to novel brain states. These results suggest that individuals with stronger structural connectivity between the noradrenergic and cholinergic systems have a greater capacity to mediate the flexible network dynamics required to support complex, adaptive behaviour. Furthermore, our results highlight the underlying static features of the neuromodulatory hubs can impose some constraints on the dynamic features of the brain.
Collapse
Affiliation(s)
- N L Taylor
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - A D'Souza
- Brain and Mind Centre, The University of Sydney, Sydney, Australia; Sydney School of Medicine, Central Clinical School, The University of Sydney, Australia
| | - B R Munn
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - J Lv
- Brain and Mind Centre, The University of Sydney, Sydney, Australia; School of Biomedical Engineering, The University of Sydney, Sydney, Australia
| | - L Zaborszky
- School of Arts and Sciences, Rutgers University, New Jersey, USA
| | - E J Müller
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - G Wainstein
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - F Calamante
- Brain and Mind Centre, The University of Sydney, Sydney, Australia; School of Biomedical Engineering, The University of Sydney, Sydney, Australia; Sydney Imaging, The University of Sydney, Sydney, Australia
| | - J M Shine
- Brain and Mind Centre, The University of Sydney, Sydney, Australia.
| |
Collapse
|
35
|
Hezemans FH, Wolpe N, O’Callaghan C, Ye R, Rua C, Jones PS, Murley AG, Holland N, Regenthal R, Tsvetanov KA, Barker RA, Williams-Gray CH, Robbins TW, Passamonti L, Rowe JB. Noradrenergic deficits contribute to apathy in Parkinson's disease through the precision of expected outcomes. PLoS Comput Biol 2022; 18:e1010079. [PMID: 35533200 PMCID: PMC9119485 DOI: 10.1371/journal.pcbi.1010079] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 05/19/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
Apathy is a debilitating feature of many neuropsychiatric diseases, that is typically described as a reduction of goal-directed behaviour. Despite its prevalence and prognostic importance, the mechanisms underlying apathy remain controversial. Degeneration of the locus coeruleus-noradrenaline system is known to contribute to motivational deficits, including apathy. In healthy people, noradrenaline has been implicated in signalling the uncertainty of expectations about the environment. We proposed that noradrenergic deficits contribute to apathy by modulating the relative weighting of prior beliefs about action outcomes. We tested this hypothesis in the clinical context of Parkinson's disease, given its associations with apathy and noradrenergic dysfunction. Participants with mild-to-moderate Parkinson's disease (N = 17) completed a randomised double-blind, placebo-controlled, crossover study with 40 mg of the noradrenaline reuptake inhibitor atomoxetine. Prior weighting was inferred from psychophysical analysis of performance in an effort-based visuomotor task, and was confirmed as negatively correlated with apathy. Locus coeruleus integrity was assessed in vivo using magnetisation transfer imaging at ultra-high field 7T. The effect of atomoxetine depended on locus coeruleus integrity: participants with a more degenerate locus coeruleus showed a greater increase in prior weighting on atomoxetine versus placebo. The results indicate a contribution of the noradrenergic system to apathy and potential benefit from noradrenergic treatment of people with Parkinson's disease, subject to stratification according to locus coeruleus integrity. More broadly, these results reconcile emerging predictive processing accounts of the role of noradrenaline in goal-directed behaviour with the clinical symptom of apathy and its potential pharmacological treatment.
Collapse
Affiliation(s)
- Frank H. Hezemans
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Noham Wolpe
- Department of Physical Therapy, The Stanley Steyer School of Health Professions, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Claire O’Callaghan
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Rong Ye
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
| | - Catarina Rua
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
| | - P. Simon Jones
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
| | - Alexander G. Murley
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
| | - Negin Holland
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
| | - Ralf Regenthal
- Division of Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Kamen A. Tsvetanov
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Roger A. Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Wellcome–MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Caroline H. Williams-Gray
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Trevor W. Robbins
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Luca Passamonti
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
- Istituto di Bioimmagini e Fisiologia Molecolare, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - James B. Rowe
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
36
|
Alkemade A, Bazin PL, Balesar R, Pine K, Kirilina E, Möller HE, Trampel R, Kros JM, Keuken MC, Bleys RLAW, Swaab DF, Herrler A, Weiskopf N, Forstmann BU. A unified 3D map of microscopic architecture and MRI of the human brain. SCIENCE ADVANCES 2022; 8:eabj7892. [PMID: 35476433 PMCID: PMC9045605 DOI: 10.1126/sciadv.abj7892] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We present the first three-dimensional (3D) concordance maps of cyto- and fiber architecture of the human brain, combining histology, immunohistochemistry, and 7-T quantitative magnetic resonance imaging (MRI), in two individual specimens. These 3D maps each integrate data from approximately 800 microscopy sections per brain, showing neuronal and glial cell bodies, nerve fibers, and interneuronal populations, as well as ultrahigh-field quantitative MRI, all coaligned at the 200-μm scale to the stacked blockface images obtained during sectioning. These unprecedented 3D multimodal datasets are shared without any restrictions and provide a unique resource for the joint study of cell and fiber architecture of the brain, detailed anatomical atlasing, or modeling of the microscopic underpinnings of MRI contrasts.
Collapse
Affiliation(s)
- Anneke Alkemade
- Integrative Model-Based Neuroscience Research Unit, University of Amsterdam, Amsterdam, Netherlands
- Corresponding author. (A.A.); (B.U.F.)
| | - Pierre-Louis Bazin
- Integrative Model-Based Neuroscience Research Unit, University of Amsterdam, Amsterdam, Netherlands
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Rawien Balesar
- Department of Neuropsychiatric disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Kerrin Pine
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Evgeniya Kirilina
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Neurocomputation and Neuroimaging Unit, Department of Psychology and Educational Science, Free University Berlin, Habelschwerdter Allee 45, Berlin 14195, Germany
| | - Harald E. Möller
- NMR Methods Development Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Robert Trampel
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Johan M. Kros
- Department of Pathology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Max C. Keuken
- Integrative Model-Based Neuroscience Research Unit, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald L. A. W. Bleys
- Department of Anatomy, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Dick F. Swaab
- Department of Neuropsychiatric disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Andreas Herrler
- Department of Anatomy and Embryology, Maastricht University, Maastricht, Netherlands
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Linnéstraße 5, Leipzig 04103, Germany
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3AR, UK
| | - Birte U. Forstmann
- Integrative Model-Based Neuroscience Research Unit, University of Amsterdam, Amsterdam, Netherlands
- Corresponding author. (A.A.); (B.U.F.)
| |
Collapse
|
37
|
Prefrontal Cortical Connectivity Mediates Locus Coeruleus Noradrenergic Regulation of Inhibitory Control in Older Adults. J Neurosci 2022; 42:3484-3493. [PMID: 35277392 PMCID: PMC9034774 DOI: 10.1523/jneurosci.1361-21.2022] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/07/2022] [Accepted: 02/07/2022] [Indexed: 02/02/2023] Open
Abstract
Response inhibition is a core executive function enabling adaptive behavior in dynamic environments. Human and animal models indicate that inhibitory control and control networks are modulated by noradrenaline, arising from the locus coeruleus. The integrity (i.e., cellular density) of the locus coeruleus noradrenergic system can be estimated from magnetization transfer (MT)-sensitive magnetic resonance imaging (MRI), in view of neuromelanin present in noradrenergic neurons of older adults. Noradrenergic psychopharmacological studies indicate noradrenergic modulation of prefrontal and frontostriatal stopping-circuits in association with behavioral change. Here, we test the noradrenergic hypothesis of inhibitory control, in healthy adults. We predicted that locus coeruleus integrity is associated with age-adjusted variance in response inhibition, mediated by changes in connectivity between frontal inhibitory control regions. In a preregistered analysis, we used MT MRI images from N = 63 healthy humans aged above 50 years (of either sex) who performed a Stop-Signal Task (SST), with atlas-based measurement of locus coeruleus contrast. We confirm that better response inhibition is correlated with locus coeruleus integrity and stronger connectivity between presupplementary motor area (preSMA) and right inferior frontal gyrus (rIFG), but not volumes of the prefrontal cortical regions. We confirmed a significant role of prefrontal connectivity in mediating the effect of individual differences in the locus coeruleus on behavior, where this effect was moderated by age, over and above adjustment for the mean effects of age. Our results support the hypothesis that in normal populations, as in clinical settings, the locus coeruleus noradrenergic system regulates inhibitory control.SIGNIFICANCE STATEMENT We show that the integrity of the locus coeruleus, the principal source of cortical noradrenaline, is related to the efficiency of response inhibition in healthy older adults. This effect is in part mediated by its effect on functional connectivity in a prefrontal cortical stopping-network. The behavioral effect, and its mediation by connectivity, are moderated by age. This supports the psychopharmacological and genetic evidence for the noradrenergic regulation of behavioral control, in a population-based normative cohort. Noradrenergic treatment strategies may be effective to improve behavioral control in impulsive clinical populations, but age, and locus coeruleus integrity, are likely to be important stratification factors.
Collapse
|
38
|
David M, Malhotra PA. New approaches for the quantification and targeting of noradrenergic dysfunction in Alzheimer's disease. Ann Clin Transl Neurol 2022; 9:582-596. [PMID: 35293158 PMCID: PMC8994981 DOI: 10.1002/acn3.51539] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
There is clear, early noradrenergic dysfunction in Alzheimer's disease. This is likely secondary to pathological tau deposition in the locus coeruleus, the pontine nucleus that produces and releases noradrenaline, prior to involvement of cortical brain regions. Disruption of noradrenergic pathways affects cognition, especially attention, impacting memory and broader functioning. Additionally, it leads to autonomic and neuropsychiatric symptoms. Despite the strong evidence of noradrenergic involvement in Alzheimer's, there are no clear trial data supporting the clinical use of any noradrenergic treatments. Several approaches have been tried, including proof-of-principle studies and (mostly small scale) randomised controlled trials. Treatments have included pharmacotherapies as well as stimulation. The lack of clear positive findings is likely secondary to limitations in gauging locus coeruleus integrity and dysfunction at an individual level. However, the recent development of several novel biomarkers holds potential and should allow quantification of dysfunction. This may then inform inclusion criteria and stratification for future trials. Imaging approaches have improved greatly following the development of neuromelanin-sensitive sequences, enabling the use of structural MRI to estimate locus coeruleus integrity. Additionally, functional MRI scanning has the potential to quantify network dysfunction. As well as neuroimaging, EEG, fluid biomarkers and pupillometry techniques may prove useful in assessing noradrenergic tone. Here, we review the development of these biomarkers and how they might augment clinical studies, particularly randomised trials, through identification of patients most likely to benefit from treatment. We outline the biomarkers with most potential, and how they may transform symptomatic therapy for people living with Alzheimer's disease.
Collapse
Affiliation(s)
- Michael David
- Imperial College London and the University of SurreyUK Dementia Research Institute Care Research and Technology CentreSir Michael Uren Hub, 86 Wood LaneLondonW12 0BZUK
- Imperial College London, Brain SciencesSouth KensingtonLondonSW7 2AZUK
- Imperial College Healthcare NHS Trust, Clinical NeurosciencesCharing Cross HospitalLondonW2 1NYUK
| | - Paresh A. Malhotra
- Imperial College London and the University of SurreyUK Dementia Research Institute Care Research and Technology CentreSir Michael Uren Hub, 86 Wood LaneLondonW12 0BZUK
- Imperial College London, Brain SciencesSouth KensingtonLondonSW7 2AZUK
- Imperial College Healthcare NHS Trust, Clinical NeurosciencesCharing Cross HospitalLondonW2 1NYUK
| |
Collapse
|
39
|
Dahl MJ, Mather M, Werkle-Bergner M, Kennedy BL, Guzman S, Hurth K, Miller CA, Qiao Y, Shi Y, Chui HC, Ringman JM. Locus coeruleus integrity is related to tau burden and memory loss in autosomal-dominant Alzheimer's disease. Neurobiol Aging 2022; 112:39-54. [PMID: 35045380 PMCID: PMC8976827 DOI: 10.1016/j.neurobiolaging.2021.11.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/17/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022]
Abstract
Abnormally phosphorylated tau, an indicator of Alzheimer's disease, accumulates in the first decades of life in the locus coeruleus (LC), the brain's main noradrenaline supply. However, technical challenges in in-vivo assessments have impeded research into the role of the LC in Alzheimer's disease. We studied participants with or known to be at-risk for mutations in genes causing autosomal-dominant Alzheimer's disease (ADAD) with early onset, providing a unique window into the pathogenesis of Alzheimer's largely disentangled from age-related factors. Using high-resolution MRI and tau PET, we found lower rostral LC integrity in symptomatic participants. LC integrity was associated with individual differences in tau burden and memory decline. Post-mortem analyses in a separate set of carriers of the same mutation confirmed substantial neuronal loss in the LC. Our findings link LC degeneration to tau burden and memory in Alzheimer's, and highlight a role of the noradrenergic system in this neurodegenerative disease.
Collapse
Affiliation(s)
- Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Mara Mather
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Briana L Kennedy
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; School of Psychological Science, University of Western Australia, Perth, Australia
| | - Samuel Guzman
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kyle Hurth
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carol A Miller
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yuchuan Qiao
- Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yonggang Shi
- Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Helena C Chui
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John M Ringman
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
40
|
Guardia T, Geerligs L, Tsvetanov KA, Ye R, Campbell KL. The role of the arousal system in age-related differences in cortical functional network architecture. Hum Brain Mapp 2022; 43:985-997. [PMID: 34713955 PMCID: PMC8764482 DOI: 10.1002/hbm.25701] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/04/2021] [Accepted: 10/17/2021] [Indexed: 01/10/2023] Open
Abstract
A common finding in the aging literature is that of the brain's decreased within- and increased between-network functional connectivity. However, it remains unclear what is causing this shift in network organization with age. Given the essential role of the ascending arousal system (ARAS) in cortical activation and previous findings of disrupted ARAS functioning with age, it is possible that age differences in ARAS functioning contribute to disrupted cortical connectivity. We test this possibility here using resting state fMRI data from over 500 individuals across the lifespan from the Cambridge Center for Aging and Neuroscience (Cam-CAN) population-based cohort. Our results show that ARAS-cortical connectivity declines with age and, consistent with our expectations, significantly mediates some age-related differences in connectivity within and between association networks (specifically, within the default mode and between the default mode and salience networks). Additionally, connectivity between the ARAS and association networks predicted cognitive performance across several tasks over and above the effects of age and connectivity within the cortical networks themselves. These findings suggest that age differences in cortical connectivity may be driven, at least in part, by altered arousal signals from the brainstem and that ARAS-cortical connectivity relates to cognitive performance with age.
Collapse
Affiliation(s)
- Tiago Guardia
- Department of PsychologyBrock UniversitySt. CatharinesOntarioCanada
| | - Linda Geerligs
- Donders Institute for Brain, Cognition, and BehaviourRadboud UniversityNijmegenThe Netherlands
| | | | - Rong Ye
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
41
|
Madelung CF, Meder D, Fuglsang SA, Marques MM, Boer VO, Madsen KH, Petersen ET, Hejl AM, Løkkegaard A, Siebner HR. Locus Coeruleus Shows a Spatial Pattern of Structural Disintegration in Parkinson's Disease. Mov Disord 2022; 37:479-489. [PMID: 35114035 PMCID: PMC9303353 DOI: 10.1002/mds.28945] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/30/2021] [Accepted: 12/27/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) causes a loss of neuromelanin-positive, noradrenergic neurons in the locus coeruleus (LC), which has been implicated in nonmotor dysfunction. OBJECTIVES We used "neuromelanin sensitive" magnetic resonance imaging (MRI) to localize structural disintegration in the LC and its association with nonmotor dysfunction in PD. METHODS A total of 42 patients with PD and 24 age-matched healthy volunteers underwent magnetization transfer weighted (MTw) MRI of the LC. The contrast-to-noise ratio of the MTw signal (CNRMTw ) was used as an index of structural LC integrity. We performed slicewise and voxelwise analyses to map spatial patterns of structural disintegration, complemented by principal component analysis (PCA). We also tested for correlations between regional CNRMTw and severity of nonmotor symptoms. RESULTS Mean CNRMTw of the right LC was reduced in patients relative to controls. Voxelwise and slicewise analyses showed that the attenuation of CNRMTw was confined to the right mid-caudal LC and linked regional CNRMTw to nonmotor symptoms. CNRMTw attenuation in the left mid-caudal LC was associated with the orthostatic drop in systolic blood pressure, whereas CNRMTw attenuation in the caudal most portion of right LC correlated with apathy ratings. PCA identified a bilateral component that was more weakly expressed in patients. This component was characterized by a gradient in CNRMTw along the rostro-caudal and dorso-ventral axes of the nucleus. The individual expression score of this component reflected the overall severity of nonmotor symptoms. CONCLUSION A spatially heterogeneous disintegration of LC in PD may determine the individual expression of specific nonmotor symptoms such as orthostatic dysregulation or apathy. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Christopher F Madelung
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - David Meder
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Søren A Fuglsang
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Marta M Marques
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Vincent O Boer
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Kristoffer H Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark.,Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Esben T Petersen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anne-Mette Hejl
- Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Annemette Løkkegaard
- Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
42
|
Ye R, Mazibuko N, Teichert J, Regenthal R, Kehagia AA, Mehta MA. Mapping the effects of atomoxetine during response inhibition across cortical territories and the locus coeruleus. Psychopharmacology (Berl) 2022; 239:365-376. [PMID: 34693457 DOI: 10.1007/s00213-021-05998-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
RATIONALE The effects of atomoxetine (ATO) on response inhibition have been typically examined using the stop signal task (SST) which is however confounded by attentional capture. The right inferior frontal cortex (rIFC) has been implicated in the modulation of ATO on inhibitory control, but a precise characterisation of its role is complicated by its functional inhomogeneity. OBJECTIVES The current study aimed to directly investigate the effect of ATO in the SST using the imaging contrast unconfounded by attentional capture, to test the specific drug actions in functionally dissociable rIFC subregions, and to explore the role of locus coeruleus (LC), the main source of cortical noradrenaline, in mediating the drug effects. METHODS This imaging study investigated the effect of ATO (40 mg) in 18 human participants during a modified SST that unconfounds attention from inhibition. Functional definitions for rIFC subdivisions were adopted in the analyses to isolate attention and inhibition during action cancellation. The LC integrity was measured in vivo using a neuromelanin-sensitive sequence. RESULTS We identified one mechanism of ATO modulation specific to inhibitory control: ATO enhanced activity in pre-supplementary area (pre-SMA) for motor inhibition, and the recruitment of temporoparietal junction (TPJ) and inferior frontal junction (IFJ) for functional integration during response inhibition. Moreover, drug-related behavioural and neural responses correlated with variations in LC integrity. CONCLUSIONS These findings provide a more nuanced and precise understanding of the effects of ATO on specific and domain general aspects of stopping.
Collapse
Affiliation(s)
- Rong Ye
- Department of Clinical Neurosciences and Cambridge University Hospital NHS Trust, University of Cambridge, Herchel Smith Building, Robinson Way, Cambridge, CB2 0SZ, UK. .,Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Ndabezinhle Mazibuko
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Jens Teichert
- Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Ralf Regenthal
- Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Angie A Kehagia
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,University College Hospital, University College London Hospitals NHS Foundation Trust, London, UK
| | - Mitul A Mehta
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
43
|
Miletić S, Bazin PL, Isherwood SJS, Keuken MC, Alkemade A, Forstmann BU. Charting human subcortical maturation across the adult lifespan with in vivo 7 T MRI. Neuroimage 2022; 249:118872. [PMID: 34999202 DOI: 10.1016/j.neuroimage.2022.118872] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/20/2021] [Accepted: 01/03/2022] [Indexed: 12/26/2022] Open
Abstract
The human subcortex comprises hundreds of unique structures. Subcortical functioning is crucial for behavior, and disrupted function is observed in common neurodegenerative diseases. Despite their importance, human subcortical structures continue to be difficult to study in vivo. Here we provide a detailed account of 17 prominent subcortical structures and ventricles, describing their approximate iron and myelin contents, morphometry, and their age-related changes across the normal adult lifespan. The results provide compelling insights into the heterogeneity and intricate age-related alterations of these structures. They also show that the locations of many structures shift across the lifespan, which is of direct relevance for the use of standard magnetic resonance imaging atlases. The results further our understanding of subcortical morphometry and neuroimaging properties, and of normal aging processes which ultimately can improve our understanding of neurodegeneration.
Collapse
Affiliation(s)
- Steven Miletić
- University of Amsterdam, Department of Psychology, Integrative Model-based Cognitive Neuroscience research unit (IMCN), Nieuwe Achtergracht 129B, Amsterdam 1001 NK, the Netherlands.
| | - Pierre-Louis Bazin
- University of Amsterdam, Department of Psychology, Integrative Model-based Cognitive Neuroscience research unit (IMCN), Nieuwe Achtergracht 129B, Amsterdam 1001 NK, the Netherlands; Max Planck Institute for Human Cognitive and Brain Sciences, Departments of Neurophysics and Neurology, Stephanstraße 1A, Leipzig, Germany
| | - Scott J S Isherwood
- University of Amsterdam, Department of Psychology, Integrative Model-based Cognitive Neuroscience research unit (IMCN), Nieuwe Achtergracht 129B, Amsterdam 1001 NK, the Netherlands
| | - Max C Keuken
- University of Amsterdam, Department of Psychology, Integrative Model-based Cognitive Neuroscience research unit (IMCN), Nieuwe Achtergracht 129B, Amsterdam 1001 NK, the Netherlands
| | - Anneke Alkemade
- University of Amsterdam, Department of Psychology, Integrative Model-based Cognitive Neuroscience research unit (IMCN), Nieuwe Achtergracht 129B, Amsterdam 1001 NK, the Netherlands
| | - Birte U Forstmann
- University of Amsterdam, Department of Psychology, Integrative Model-based Cognitive Neuroscience research unit (IMCN), Nieuwe Achtergracht 129B, Amsterdam 1001 NK, the Netherlands.
| |
Collapse
|
44
|
Song I, Neal J, Lee TH. Age-Related Intrinsic Functional Connectivity Changes of Locus Coeruleus from Childhood to Older Adults. Brain Sci 2021; 11:1485. [PMID: 34827484 PMCID: PMC8615904 DOI: 10.3390/brainsci11111485] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 11/16/2022] Open
Abstract
The locus coeruleus is critical for selective information processing by modulating the brain's connectivity configuration. Increasingly, studies have suggested that LC controls sensory inputs at the sensory gating stage. Furthermore, accumulating evidence has shown that young children and older adults are more prone to distraction and filter out irrelevant information less efficiently, possibly due to the unoptimized LC connectivity. However, the LC connectivity pattern across the life span is not fully examined yet, hampering our ability to understand the relationship between LC development and the distractibility. In this study, we examined the intrinsic network connectivity of the LC using a public fMRI dataset with wide-range age samples. Based on LC-seed functional connectivity maps, we examined the age-related variation in the LC connectivity with a quadratic model. The analyses revealed two connectivity patterns explicitly. The sensory-related brain regions showed a positive quadratic age effect (u-shape), and the frontal regions for the cognitive control showed a negative quadratic age effect (inverted u-shape). Our results imply that such age-related distractibility is possibly due to the impaired sensory gating by the LC and the insufficient top-down controls by the frontal regions. We discuss the underlying neural mechanisms and limitations of our study.
Collapse
Affiliation(s)
- Inuk Song
- Department of Psychology, Virginia Tech, Blacksburg, VA 24060, USA; (I.S.); (J.N.)
| | - Joshua Neal
- Department of Psychology, Virginia Tech, Blacksburg, VA 24060, USA; (I.S.); (J.N.)
| | - Tae-Ho Lee
- Department of Psychology, Virginia Tech, Blacksburg, VA 24060, USA; (I.S.); (J.N.)
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
45
|
O’Callaghan C, Hezemans FH, Ye R, Rua C, Jones PS, Murley AG, Holland N, Regenthal R, Tsvetanov KA, Wolpe N, Barker RA, Williams-Gray CH, Robbins TW, Passamonti L, Rowe JB. Locus coeruleus integrity and the effect of atomoxetine on response inhibition in Parkinson's disease. Brain 2021; 144:2513-2526. [PMID: 33783470 PMCID: PMC7611672 DOI: 10.1093/brain/awab142] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 11/23/2022] Open
Abstract
Cognitive decline is a common feature of Parkinson's disease, and many of these cognitive deficits fail to respond to dopaminergic therapy. Therefore, targeting other neuromodulatory systems represents an important therapeutic strategy. Among these, the locus coeruleus-noradrenaline system has been extensively implicated in response inhibition deficits. Restoring noradrenaline levels using the noradrenergic reuptake inhibitor atomoxetine can improve response inhibition in some patients with Parkinson's disease, but there is considerable heterogeneity in treatment response. Accurately predicting the patients who would benefit from therapies targeting this neurotransmitter system remains a critical goal, in order to design the necessary clinical trials with stratified patient selection to establish the therapeutic potential of atomoxetine. Here, we test the hypothesis that integrity of the noradrenergic locus coeruleus explains the variation in improvement of response inhibition following atomoxetine. In a double-blind placebo-controlled randomized crossover design, 19 patients with Parkinson's disease completed an acute psychopharmacological challenge with 40 mg of oral atomoxetine or placebo. A stop-signal task was used to measure response inhibition, with stop-signal reaction times obtained through hierarchical Bayesian estimation of an ex-Gaussian race model. Twenty-six control subjects completed the same task without undergoing the drug manipulation. In a separate session, patients and controls underwent ultra-high field 7 T imaging of the locus coeruleus using a neuromelanin-sensitive magnetization transfer sequence. The principal result was that atomoxetine improved stop-signal reaction times in those patients with lower locus coeruleus integrity. This was in the context of a general impairment in response inhibition, as patients on placebo had longer stop-signal reaction times compared to controls. We also found that the caudal portion of the locus coeruleus showed the largest neuromelanin signal decrease in the patients compared to controls. Our results highlight a link between the integrity of the noradrenergic locus coeruleus and response inhibition in patients with Parkinson's disease. Furthermore, they demonstrate the importance of baseline noradrenergic state in determining the response to atomoxetine. We suggest that locus coeruleus neuromelanin imaging offers a marker of noradrenergic capacity that could be used to stratify patients in trials of noradrenergic therapy and to ultimately inform personalized treatment approaches.
Collapse
Affiliation(s)
- Claire O’Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Frank H Hezemans
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Rong Ye
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Catarina Rua
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge 04107, UK
| | - P Simon Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Alexander G Murley
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Negin Holland
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Ralf Regenthal
- Division of Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig 69978, Germany
| | - Kamen A Tsvetanov
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Noham Wolpe
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
- Department of Physical Therapy, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Wellcome Trust—Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Caroline H Williams-Gray
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge CB2 3EA, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EA, UK
| | - Luca Passamonti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - James B Rowe
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Cambridge University Hospitals NHS Trust, Cambridge, CB2 0QQ, UK
| |
Collapse
|
46
|
Holland N, Robbins TW, Rowe JB. The role of noradrenaline in cognition and cognitive disorders. Brain 2021; 144:2243-2256. [PMID: 33725122 PMCID: PMC8418349 DOI: 10.1093/brain/awab111] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/08/2021] [Accepted: 01/23/2021] [Indexed: 01/09/2023] Open
Abstract
Many aspects of cognition and behaviour are regulated by noradrenergic projections to the forebrain originating from the locus coeruleus, acting through alpha and beta adrenoreceptors. Loss of these projections is common in neurodegenerative diseases and contributes to their cognitive and behavioural deficits. We review the evidence for a noradrenergic modulation of cognition in its contribution to Alzheimer's disease, Parkinson's disease and other cognitive disorders. We discuss the advances in human imaging and computational methods that quantify the locus coeruleus and its function in humans, and highlight the potential for new noradrenergic treatment strategies.
Collapse
Affiliation(s)
- Negin Holland
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| |
Collapse
|
47
|
Luppi AI, Cain J, Spindler LRB, Górska UJ, Toker D, Hudson AE, Brown EN, Diringer MN, Stevens RD, Massimini M, Monti MM, Stamatakis EA, Boly M. Mechanisms Underlying Disorders of Consciousness: Bridging Gaps to Move Toward an Integrated Translational Science. Neurocrit Care 2021; 35:37-54. [PMID: 34236622 PMCID: PMC8266690 DOI: 10.1007/s12028-021-01281-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/17/2021] [Indexed: 01/08/2023]
Abstract
AIM In order to successfully detect, classify, prognosticate, and develop targeted therapies for patients with disorders of consciousness (DOC), it is crucial to improve our mechanistic understanding of how severe brain injuries result in these disorders. METHODS To address this need, the Curing Coma Campaign convened a Mechanisms Sub-Group of the Coma Science Work Group (CSWG), aiming to identify the most pressing knowledge gaps and the most promising approaches to bridge them. RESULTS We identified a key conceptual gap in the need to differentiate the neural mechanisms of consciousness per se, from those underpinning connectedness to the environment and behavioral responsiveness. Further, we characterised three fundamental gaps in DOC research: (1) a lack of mechanistic integration between structural brain damage and abnormal brain function in DOC; (2) a lack of translational bridges between micro- and macro-scale neural phenomena; and (3) an incomplete exploration of possible synergies between data-driven and theory-driven approaches. CONCLUSION In this white paper, we discuss research priorities that would enable us to begin to close these knowledge gaps. We propose that a fundamental step towards this goal will be to combine translational, multi-scale, and multimodal data, with new biomarkers, theory-driven approaches, and computational models, to produce an integrated account of neural mechanisms in DOC. Importantly, we envision that reciprocal interaction between domains will establish a "virtuous cycle," leading towards a critical vantage point of integrated knowledge that will enable the advancement of the scientific understanding of DOC and consequently, an improvement of clinical practice.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Joshua Cain
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Lennart R B Spindler
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Urszula J Górska
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA.
| | - Daniel Toker
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andrew E Hudson
- Department of Anesthesia and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Emery N Brown
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Harvard University, Boston, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael N Diringer
- Department of Neurology and Neurosurgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Robert D Stevens
- Departments of Anesthesiology and Critical Care Medicine, Neurology and Neurosurgery, and Radiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università Degli Studi Di Milano, Milan, Italy
- Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Martin M Monti
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
- Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Melanie Boly
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
48
|
Doppler CEJ, Kinnerup MB, Brune C, Farrher E, Betts M, Fedorova TD, Schaldemose JL, Knudsen K, Ismail R, Seger AD, Hansen AK, Stær K, Fink GR, Brooks DJ, Nahimi A, Borghammer P, Sommerauer M. Regional locus coeruleus degeneration is uncoupled from noradrenergic terminal loss in Parkinson's disease. Brain 2021; 144:2732-2744. [PMID: 34196700 DOI: 10.1093/brain/awab236] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/18/2021] [Accepted: 06/06/2021] [Indexed: 11/13/2022] Open
Abstract
Previous studies have reported substantial involvement of the noradrenergic system in Parkinson's disease. Neuromelanin-sensitive MRI sequences and PET tracers have become available to visualize the cell bodies in the locus coeruleus and the density of noradrenergic terminal transporters. Combining these methods, we investigated the relationship of neurodegeneration in these distinct compartments in Parkinson's disease. We examined 93 subjects (40 healthy controls and 53 Parkinson's disease patients) with neuromelanin-sensitive turbo spin-echo MRI and calculated locus coeruleus-to-pons signal contrasts. Voxels with the highest intensities were extracted from published locus coeruleus coordinates transformed to individual MRI. To also investigate a potential spatial pattern of locus coeruleus degeneration, we extracted the highest signal intensities from the rostral, middle, and caudal third of the locus coeruleus. Additionally, a study-specific probabilistic map of the locus coeruleus was created and used to extract mean MRI contrast from the entire locus coeruleus and each rostro-caudal subdivision. Locus coeruleus volumes were measured using manual segmentations. A subset of 73 subjects had 11C-MeNER PET to determine noradrenaline transporter density, and distribution volume ratios of noradrenaline transporter-rich regions were computed. Parkinson's disease patients showed reduced locus coeruleus MRI contrast independently of the selected method (voxel approaches: p < 0.0001, p < 0.001; probabilistic map: p < 0.05), specifically on the clinically-defined most affected side (p < 0.05), and reduced locus coeruleus volume (p < 0.0001). Reduced MRI contrast was confined to the middle and caudal locus coeruleus (voxel approach-rostral: p = 0.48, middle: p < 0.0001, and caudal: p < 0.05; probabilistic map-rostral: p = 0.90, middle: p < 0.01, and caudal: p < 0.05). The noradrenaline transporter density was lower in Parkinson's disease patients in all examined regions (group effect p < 0.0001). No significant correlation was observed between locus coeruleus MRI contrast and noradrenaline transporter density. In contrast, the individual ratios of noradrenaline transporter density and locus coeruleus MRI contrast were lower in Parkinson's disease patients in all examined regions (group effect p < 0.001). Our multimodal imaging approach revealed pronounced noradrenergic terminal loss relative to cellular locus coeruleus degeneration in Parkinson's disease; the latter followed a distinct spatial pattern with the middle-caudal portion being more affected than the rostral part. The data shed first light on the interaction between the axonal and cell body compartments and their differential susceptibility to neurodegeneration in Parkinson's disease, which may eventually direct research toward potential novel treatment approaches.
Collapse
Affiliation(s)
- Christopher E J Doppler
- Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, D-52425 Jülich, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, D-50937 Köln, Germany
| | - Martin B Kinnerup
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Corinna Brune
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, D-50937 Köln, Germany
| | - Ezequiel Farrher
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Matthew Betts
- German Center for Neurodegenerative Diseases (DZNE), D-39120 Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany.,Center for Behavioral Brain Sciences, University of Magdeburg, D-39120 Magdeburg, Germany
| | - Tatyana D Fedorova
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Jeppe L Schaldemose
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Rola Ismail
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Aline D Seger
- Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, D-52425 Jülich, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, D-50937 Köln, Germany
| | - Allan K Hansen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Kristian Stær
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Gereon R Fink
- Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, D-52425 Jülich, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, D-50937 Köln, Germany
| | - David J Brooks
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark.,Division of Brain Sciences, Imperial College London, London SW7 2AZ, UK.,Institute of Translational and Clinical Research, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK
| | - Adjmal Nahimi
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Michael Sommerauer
- Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, D-52425 Jülich, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, D-50937 Köln, Germany.,Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| |
Collapse
|
49
|
Farmer AD, Strzelczyk A, Finisguerra A, Gourine AV, Gharabaghi A, Hasan A, Burger AM, Jaramillo AM, Mertens A, Majid A, Verkuil B, Badran BW, Ventura-Bort C, Gaul C, Beste C, Warren CM, Quintana DS, Hämmerer D, Freri E, Frangos E, Tobaldini E, Kaniusas E, Rosenow F, Capone F, Panetsos F, Ackland GL, Kaithwas G, O'Leary GH, Genheimer H, Jacobs HIL, Van Diest I, Schoenen J, Redgrave J, Fang J, Deuchars J, Széles JC, Thayer JF, More K, Vonck K, Steenbergen L, Vianna LC, McTeague LM, Ludwig M, Veldhuizen MG, De Couck M, Casazza M, Keute M, Bikson M, Andreatta M, D'Agostini M, Weymar M, Betts M, Prigge M, Kaess M, Roden M, Thai M, Schuster NM, Montano N, Hansen N, Kroemer NB, Rong P, Fischer R, Howland RH, Sclocco R, Sellaro R, Garcia RG, Bauer S, Gancheva S, Stavrakis S, Kampusch S, Deuchars SA, Wehner S, Laborde S, Usichenko T, Polak T, Zaehle T, Borges U, Teckentrup V, Jandackova VK, Napadow V, Koenig J. International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020). Front Hum Neurosci 2021; 14:568051. [PMID: 33854421 PMCID: PMC8040977 DOI: 10.3389/fnhum.2020.568051] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022] Open
Abstract
Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, referred to as transcutaneous auricular vagus nerve stimulation(VNS) and transcutaneous cervical VNS, respectively. In order to advance the field in a systematic manner, studies using these technologies need to adequately report sufficient methodological detail to enable comparison of results between studies, replication of studies, as well as enhancing study participant safety. We systematically reviewed the existing tVNS literature to evaluate current reporting practices. Based on this review, and consensus among participating authors, we propose a set of minimal reporting items to guide future tVNS studies. The suggested items address specific technical aspects of the device and stimulation parameters. We also cover general recommendations including inclusion and exclusion criteria for participants, outcome parameters and the detailed reporting of side effects. Furthermore, we review strategies used to identify the optimal stimulation parameters for a given research setting and summarize ongoing developments in animal research with potential implications for the application of tVNS in humans. Finally, we discuss the potential of tVNS in future research as well as the associated challenges across several disciplines in research and clinical practice.
Collapse
Affiliation(s)
- Adam D. Farmer
- Department of Gastroenterology, University Hospitals of North Midlands NHS Trust, Stoke on Trent, United Kingdom
| | - Adam Strzelczyk
- Department of Neurology, Epilepsy Center Frankfurt Rhine-Main, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | | | - Alexander V. Gourine
- Department of Neuroscience, Physiology and Pharmacology, Centre for Cardiovascular and Metabolic Neuroscience, University College London, London, United Kingdom
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen, Tuebingen, Germany
| | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, Augsburg, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Andreas M. Burger
- Laboratory for Biological Psychology, Faculty of Psychology and Educational Sciences, University of Leuven, Leuven, Belgium
| | | | - Ann Mertens
- Department of Neurology, Institute for Neuroscience, 4Brain, Ghent University Hospital, Gent, Belgium
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Bart Verkuil
- Clinical Psychology and the Leiden Institute of Brain and Cognition, Leiden University, Leiden, Netherlands
| | - Bashar W. Badran
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Carlos Ventura-Bort
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
| | - Charly Gaul
- Migraine and Headache Clinic Koenigstein, Königstein im Taunus, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | | | - Daniel S. Quintana
- NORMENT, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Dorothea Hämmerer
- Medical Faculty, Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
- Center for Behavioral Brain Sciences Magdeburg (CBBS), Otto-von-Guericke University, Magdeburg, Germany
| | - Elena Freri
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Eleni Frangos
- Pain and Integrative Neuroscience Branch, National Center for Complementary and Integrative Health, NIH, Bethesda, MD, United States
| | - Eleonora Tobaldini
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Eugenijus Kaniusas
- Institute of Electrodynamics, Microwave and Circuit Engineering, TU Wien, Vienna, Austria
- SzeleSTIM GmbH, Vienna, Austria
| | - Felix Rosenow
- Department of Neurology, Epilepsy Center Frankfurt Rhine-Main, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Fioravante Capone
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fivos Panetsos
- Faculty of Biology and Faculty of Optics, Complutense University of Madrid and Institute for Health Research, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Gareth L. Ackland
- Translational Medicine and Therapeutics, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Georgia H. O'Leary
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Hannah Genheimer
- Department of Biological Psychology, Clinical Psychology and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Heidi I. L. Jacobs
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, Netherlands
| | - Ilse Van Diest
- Research Group Health Psychology, Faculty of Psychology and Educational Sciences, University of Leuven, Leuven, Belgium
| | - Jean Schoenen
- Headache Research Unit, Department of Neurology-Citadelle Hospital, University of Liège, Liège, Belgium
| | - Jessica Redgrave
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Jiliang Fang
- Functional Imaging Lab, Department of Radiology, Guang An Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jim Deuchars
- School of Biomedical Science, Faculty of Biological Science, University of Leeds, Leeds, United Kingdom
| | - Jozsef C. Széles
- Division for Vascular Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Julian F. Thayer
- Department of Psychological Science, University of California, Irvine, Irvine, CA, United States
| | - Kaushik More
- Institute for Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Neuromodulatory Networks, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Kristl Vonck
- Department of Neurology, Institute for Neuroscience, 4Brain, Ghent University Hospital, Gent, Belgium
| | - Laura Steenbergen
- Clinical and Cognitive Psychology and the Leiden Institute of Brain and Cognition, Leiden University, Leiden, Netherlands
| | - Lauro C. Vianna
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasilia, Brasilia, Brazil
| | - Lisa M. McTeague
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Mareike Ludwig
- Department of Anatomy, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Maria G. Veldhuizen
- Mental Health and Wellbeing Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marijke De Couck
- Faculty of Health Care, University College Odisee, Aalst, Belgium
- Division of Epileptology, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Marina Casazza
- Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Marius Keute
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen, Tuebingen, Germany
| | - Marom Bikson
- Department of Biomedical Engineering, City College of New York, New York, NY, United States
| | - Marta Andreatta
- Department of Biological Psychology, Clinical Psychology and Psychotherapy, University of Würzburg, Würzburg, Germany
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Martina D'Agostini
- Research Group Health Psychology, Faculty of Psychology and Educational Sciences, University of Leuven, Leuven, Belgium
| | - Mathias Weymar
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
- Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, Germany
| | - Matthew Betts
- Department of Anatomy, Faculty of Medicine, Mersin University, Mersin, Turkey
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany
- Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany
| | - Matthias Prigge
- Neuromodulatory Networks, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Michael Kaess
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Section for Translational Psychobiology in Child and Adolescent Psychiatry, Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Michael Roden
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Munich, Germany
| | - Michelle Thai
- Department of Psychology, College of Liberal Arts, University of Minnesota, Minneapolis, MN, United States
| | - Nathaniel M. Schuster
- Department of Anesthesiology, Center for Pain Medicine, University of California, San Diego Health System, La Jolla, CA, United States
| | - Nicola Montano
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Niels Hansen
- Department of Psychiatry and Psychotherapy, University of Göttingen, Göttingen, Germany
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIPLab), University of Göttingen, Göttingen, Germany
| | - Nils B. Kroemer
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rico Fischer
- Department of Psychology, University of Greifswald, Greifswald, Germany
| | - Robert H. Howland
- Department of Psychiatry, University of Pittsburgh School of Medicine, UPMC Western Psychiatric Hospital, Pittsburgh, PA, United States
| | - Roberta Sclocco
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Radiology, Logan University, Chesterfield, MO, United States
| | - Roberta Sellaro
- Cognitive Psychology Unit, Institute of Psychology, Leiden University, Leiden, Netherlands
- Leiden Institute for Brain and Cognition, Leiden, Netherlands
- Department of Developmental Psychology and Socialisation, University of Padova, Padova, Italy
| | - Ronald G. Garcia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Sebastian Bauer
- Department of Neurology, Epilepsy Center Frankfurt Rhine-Main, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Sofiya Gancheva
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Stavros Stavrakis
- Faculty of Biological Science, School of Biomedical Science, University of Leeds, Leeds, United Kingdom
| | - Stefan Kampusch
- Institute of Electrodynamics, Microwave and Circuit Engineering, TU Wien, Vienna, Austria
- SzeleSTIM GmbH, Vienna, Austria
| | - Susan A. Deuchars
- School of Biomedical Science, Faculty of Biological Science, University of Leeds, Leeds, United Kingdom
| | - Sven Wehner
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | - Sylvain Laborde
- Department of Performance Psychology, Institute of Psychology, Deutsche Sporthochschule, Köln, Germany
| | - Taras Usichenko
- Department of Anesthesiology, University Medicine Greifswald, Greifswald, Germany
- Department of Anesthesia, McMaster University, Hamilton, ON, Canada
| | - Thomas Polak
- Laboratory of Functional Neurovascular Diagnostics, AG Early Diagnosis of Dementia, Department of Psychiatry, Psychosomatics and Psychotherapy, University Clinic Würzburg, Würzburg, Germany
| | - Tino Zaehle
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Uirassu Borges
- Department of Performance Psychology, Institute of Psychology, Deutsche Sporthochschule, Köln, Germany
- Department of Social and Health Psychology, Institute of Psychology, Deutsche Sporthochschule, Köln, Germany
| | - Vanessa Teckentrup
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Vera K. Jandackova
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
- Department of Human Movement Studies, Faculty of Education, University of Ostrava, Ostrava, Czechia
| | - Vitaly Napadow
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Radiology, Logan University, Chesterfield, MO, United States
| | - Julian Koenig
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Section for Experimental Child and Adolescent Psychiatry, Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|