1
|
Bouzigues A, Godefroy V, Le Du V, Russell LL, Houot M, Le Ber I, Batrancourt B, Levy R, Warren JD, Rohrer JD, Margulies DS, Migliaccio R. Disruption of macroscale functional network organisation in patients with frontotemporal dementia. Mol Psychiatry 2025; 30:2436-2447. [PMID: 39580607 PMCID: PMC12092252 DOI: 10.1038/s41380-024-02847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024]
Abstract
Neurodegenerative dementias have a profound impact on higher-order cognitive and behavioural functions. Investigating macroscale functional networks through cortical gradients provides valuable insights into the neurodegenerative dementia process and overall brain function. This approach allows for the exploration of unimodal-multimodal differentiation and the intricate interplay between functional brain networks. We applied cortical gradients mapping to resting-state functional MRI data of patients with frontotemporal dementia (FTD) (behavioural-bvFTD, non-fluent and semantic) and healthy controls. In healthy controls, the principal gradient maximally distinguished sensorimotor from default-mode network (DMN) and the secondary gradient visual from salience network (SN). In all FTD variants, the principal gradient's unimodal-multimodal differentiation was disrupted. The secondary gradient, however, showed widespread disruptions impacting the interactions among all networks specifically in bvFTD, while semantic and non-fluent variants exhibited more focal alterations in limbic and sensorimotor networks. Additionally, the visual network showed responsive and/or compensatory changes in all patients. Importantly, these disruptions extended beyond atrophy distribution and related to symptomatology in patients with bvFTD. In conclusion, optimal brain function requires networks to operate in a segregated yet collaborative manner. In FTD, our findings indicate a collapse and loss of differentiation between networks not solely explained by atrophy. These specific cortical gradients' fingerprints could serve as a functional signature for identifying early changes in neurodegenerative diseases or potential compensatory processes.
Collapse
Grants
- Wellcome Trust
- 866533-CORTIGRAD EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- Fondation Vaincre Alzheimer, 47 Rue de Paradis, 75010 Paris Fondation Recherche Alzheimer, Hôpital Universitaire Pitié, 83 Bd de l'Hôpital, 75013 Paris
- Alzheimer's Society
- Alzheimer's Research UK (ARUK)
- UCL/UCLH NIHR Biomedical Research Centre Royal National Institute for Deaf People National Brain Appeal (Frontotemporal Dementia Research Studentship in Memory of David Blechner)
- Miriam Marks Brain Research UK Senior Fellowship MRC Clinician Scientist Fellowship (MR/M008525/1) NIHR Rare Disease Translational Research Collaboration (BRC149/NS/MH) MRC UK GENFI grant (MR/M023664/1) Bluefield Project JPND GENFI-PROX grant (2019-02248)
- Wellcome Trust (Wellcome)
- NIHR Oxford BRC
- Fondation Recherche Alzheimer, Hôpital Universitaire Pitié, 83 Bd de l'Hôpital, 75013 Paris France Alzheimer, 11 rue Tronchet, 75008 Paris Fondation de France, 40 avenue Hoche, 75008 Paris
Collapse
Affiliation(s)
- A Bouzigues
- Paris Brain Institute - Institut du Cerveau (ICM), Sorbonne Université, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - V Godefroy
- Centre de Recherche en Neurosciences de Lyon (CRNL), Université Claude Bernard Lyon 1, Inserm U1028, CNRS UMR 5292, F-69500, Bron, France
| | - V Le Du
- Paris Brain Institute - Institut du Cerveau (ICM), Sorbonne Université, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - L L Russell
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - M Houot
- Paris Brain Institute - Institut du Cerveau (ICM), Sorbonne Université, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
- Department of Neurology, Institute of Memory and Alzheimer's Disease, Centre of Excellence of Neurodegenerative Disease, Hôpital Pitié-Salpêtrière, Paris, France
| | - I Le Ber
- Paris Brain Institute - Institut du Cerveau (ICM), Sorbonne Université, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
- Department of Neurology, Institute of Memory and Alzheimer's Disease, Centre of Excellence of Neurodegenerative Disease, Hôpital Pitié-Salpêtrière, Paris, France
| | - B Batrancourt
- Paris Brain Institute - Institut du Cerveau (ICM), Sorbonne Université, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - R Levy
- Paris Brain Institute - Institut du Cerveau (ICM), Sorbonne Université, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
- Department of Neurology, Institute of Memory and Alzheimer's Disease, Centre of Excellence of Neurodegenerative Disease, Hôpital Pitié-Salpêtrière, Paris, France
| | - J D Warren
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - J D Rohrer
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - D S Margulies
- Integrative Neuroscience and Cognition Center, Université de Paris Cité, CNRS, Paris, France
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - R Migliaccio
- Paris Brain Institute - Institut du Cerveau (ICM), Sorbonne Université, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.
- Department of Neurology, Institute of Memory and Alzheimer's Disease, Centre of Excellence of Neurodegenerative Disease, Hôpital Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
2
|
Xia J, Yang S, Li J, Meng Y, Niu J, Chen H, Zhang Z, Liao W. Normative structural connectome constrains spreading transient brain activity in generalized epilepsy. BMC Med 2025; 23:258. [PMID: 40317018 PMCID: PMC12046745 DOI: 10.1186/s12916-025-04099-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/24/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND Genetic generalized epilepsy is characterized by transient episodes of spontaneous abnormal neural activity in anatomically distributed brain regions that ultimately propagate to wider areas. However, the connectome-based mechanisms shaping these abnormalities remain largely unknown. We aimed to investigate how the normative structural connectome constrains abnormal brain activity spread in genetic generalized epilepsy with generalized tonic-clonic seizure (GGE-GTCS). METHODS Abnormal transient activity patterns between individuals with GGE-GTCS (n = 97) and healthy controls (n = 141) were estimated from the amplitude of low-frequency fluctuations measured by resting-state functional MRI. The normative structural connectome was derived from diffusion-weighted images acquired in an independent cohort of healthy adults (n = 326). Structural neighborhood analysis was applied to assess the degree of constraints between activity vulnerability and structural connectome. Dominance analysis was used to determine the potential molecular underpinnings of these constraints. Furthermore, a network-based diffusion model was utilized to simulate the spread of pathology and identify potential disease epicenters. RESULTS Brain activity abnormalities among patients with GGE-GTCS were primarily located in the temporal, cingulate, prefrontal, and parietal cortices. The collective abnormality of structurally connected neighbors significantly predicted regional activity abnormality, indicating that white matter network architecture constrains aberrant activity patterns. Molecular fingerprints, particularly laminar differentiation and neurotransmitter receptor profiles, constituted key predictors of these connectome-constrained activity abnormalities. Network-based diffusion modeling effectively replicated transient pathological activity spreading patterns, identifying the limbic-temporal, dorsolateral prefrontal, and occipital cortices as putative disease epicenters. These results were robust across different clinical factors and individual patients. CONCLUSIONS Our findings suggest that the structural connectome shapes the spatial patterning of brain activity abnormalities, advancing our understanding of the network-level mechanisms underlying vulnerability to abnormal brain activity onset and propagation in GGE-GTCS.
Collapse
Affiliation(s)
- Jie Xia
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Siqi Yang
- School of Cybersecurity, Chengdu University of Information Technology, Chengdu, 610225, People's Republic of China
| | - Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Yao Meng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Jinpeng Niu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, People's Republic of China
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China.
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China.
| |
Collapse
|
3
|
Wu G, Song L, Xu Y, Zhang G, Fang J, Xiong S, Yang W, Jiang L. Functional gradient characteristics analysis of preschool-aged children with autism spectrum disorder. Cereb Cortex 2025; 35:bhaf098. [PMID: 40298445 DOI: 10.1093/cercor/bhaf098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition marked by social and behavioral impairments, emerging in early childhood with unclear causes. The primary aim of this study is to investigate shifts in the functional gradients underlying hierarchical brain network organization in ASD and to assess their potential contribution to clinical symptom severity. Resting-state functional magnetic resonance imaging was used to examine changes in functional gradients across seven major brain networks in a cohort of 52 individuals with ASD and 40 healthy controls. In the somatomotor network, neither the first nor third gradient showed significant group differences; however, two regions-right paracentral lobule and right postcentral gyrus-exhibited significant differences in the second gradient. In the frontoparietal network, only the left middle frontal gyrus in the second gradient showed a significant group difference. For the ventral attention network, only the primary gradient exhibited significant differences in the left insula, the right insula, and the right median cingulate and paracingulate gyri. In the default mode network, all three gradients showed statistically significant differences. These results suggest potential neuroimaging biomarkers for assessing the severity of ASD in preschool-aged children.
Collapse
Affiliation(s)
- Guangrong Wu
- Department of Radiology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuangbei Street 98 #, Zunyi 563000, Guizhou, China
| | - Linfeng Song
- Department of Radiology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuangbei Street 98 #, Zunyi 563000, Guizhou, China
| | - Yuanyuan Xu
- Department of Radiology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuangbei Street 98 #, Zunyi 563000, Guizhou, China
| | - Guomin Zhang
- Department of Radiology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuangbei Street 98 #, Zunyi 563000, Guizhou, China
| | - Jie Fang
- Department of Radiology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuangbei Street 98 #, Zunyi 563000, Guizhou, China
| | - Siyan Xiong
- Department of Radiology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuangbei Street 98 #, Zunyi 563000, Guizhou, China
| | - Wei Yang
- Department of Radiology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuangbei Street 98 #, Zunyi 563000, Guizhou, China
| | - Lin Jiang
- Department of Radiology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuangbei Street 98 #, Zunyi 563000, Guizhou, China
| |
Collapse
|
4
|
Guo T, Zhou C, Wen J, Wu J, Yan Y, Qin J, Xuan M, Wu H, Wu C, Chen J, Tan S, Duanmu X, Zhang B, Xu X, Zhang M, Guan X. Aberrant functional connectome gradient and its neurotransmitter basis in Parkinson's disease. Neurobiol Dis 2025; 206:106821. [PMID: 39889857 DOI: 10.1016/j.nbd.2025.106821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/24/2024] [Accepted: 01/28/2025] [Indexed: 02/03/2025] Open
Abstract
Patients with Parkinson's disease (PD) exhibit heterogenous clinical deficits not only in motor function, other deficits in both sensory and higher-order cognitive processing are also involved. Connectome studies have suggested a primary-to-transmodal gradient and a primary-to-primary gradient in functional brain networks, supporting the spectrum from sensation to cognition. However, whether these gradients are altered in PD patients and how these alterations associate with neurotransmitter profiles remain unknown. By constructing functional network and calculating its gradient in 134 PD patients and 172 normal controls, we compared functional connectivity gradients between groups and performed spearman correlation to explore the association between neurotransmitter expression and functional network gradient-based alternations in PD. Decreased first gradients were detected mainly in association cortex, including frontal cortex, insula, cingulate, and parietal cortex, corresponding to the decrement of frontoparietal/ventral attention network observed in network-level analyses. Decreased second gradients were observed in primary motor and somatosensory cortex, meeting the decrement of somatomotor network at the network level. Besides, network-level comparisons revealed the increment of visual network in the first gradient and increment of ventral attention network in the second gradient. Transcription-neuroimaging association analyses showed that changes of the first gradient were mainly negatively correlated with nondopaminergic system, while alterations of the second gradient were positively correlated with both dopaminergic and nondopaminergic systems. These results highlight the connectome gradient dysfunction in PD and its linkage with neurotransmitter expression profiles, providing insight into the molecular mechanisms for functional alterations underlying PD.
Collapse
Affiliation(s)
- Tao Guo
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng Zhou
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiaqi Wen
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingjing Wu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yaping Yan
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianmei Qin
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Min Xuan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haoting Wu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chenqing Wu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingwen Chen
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sijia Tan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaojie Duanmu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Baorong Zhang
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaojun Xu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Minming Zhang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaojun Guan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Bu S, Li X, Pang H, Zhao M, Wang J, Liu Y, Yu H, Jiang Y, Fan G. Motor Functional Hierarchical Organization of Cerebrum and Its Underlying Genetic Architecture in Parkinson's Disease. J Neurosci 2025; 45:e1492242024. [PMID: 39824632 PMCID: PMC11823334 DOI: 10.1523/jneurosci.1492-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/02/2024] [Accepted: 12/05/2024] [Indexed: 01/20/2025] Open
Abstract
Hierarchy has been identified as a principle underlying the organization of human brain networks. However, it remains unclear how the network hierarchy is disrupted in Parkinson's disease (PD) motor symptoms and how it is modulated by the underlying genetic architecture. The aim of this study was to explore alterations in the motor functional hierarchical organization of the cerebrum and their underlying genetic mechanism. In this study, the brain network hierarchy of each group was described through a connectome gradient analysis among 68 healthy controls (HC), 70 postural instability and gait difficulty (PIGD) subtype, and 69 tremor-dominant (TD) subtype, including both male and female participants, according to its motor symptoms. Furthermore, transcription-neuroimaging association analyses using gene expression data from Allen Human Brain Atlas and case-control gradient differences were performed to identify genes associated with gradient alterations. Different PD motor subtypes exhibited contracted principal and secondary functional gradients relative to HC. The identified genes in different PD motor subtypes enriched for shared biological processes like metal ion transport and inorganic ion transmembrane transport. In addition, these genes were overexpressed in Ntsr+ neurons cell, enriched in extensive cortical regions and wide developmental time windows. Aberrant cerebral functional gradients in PD-related motor symptoms have been detected, and the motor-disturbed genes have shared biological functions. The present findings may contribute to a more comprehensive understanding of the molecular mechanisms underlying hierarchical alterations in PD.
Collapse
Affiliation(s)
- Shuting Bu
- Departments of Radiology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaolu Li
- Departments of Radiology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Huize Pang
- Departments of Radiology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Mengwan Zhao
- Departments of Radiology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Juzhou Wang
- Departments of Radiology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yu Liu
- Departments of Radiology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Hongmei Yu
- Neurology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yueluan Jiang
- MR Research Collaboration, Siemens Healthineers, Beijing 100102, China
| | - Guoguang Fan
- Departments of Radiology, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
6
|
Zhang Q, Zhang A, Zhao Z, Li Q, Hu Y, Huang X, Kuang W, Zhao Y, Gong Q. Cognition-related connectome gradient dysfunctions of thalamus and basal ganglia in drug-naïve first-episode major depressive disorder. J Affect Disord 2025; 370:249-259. [PMID: 39500466 DOI: 10.1016/j.jad.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/14/2024]
Abstract
BACKGROUND Subcortical functional abnormalities are believed to contribute to clinical symptoms and cognitive impairments in major depressive disorder (MDD). By introducing functional gradient mapping, the present study evaluated subcortical gradients in MDD patients and their association with cognitive features. METHODS Organization patterns and between-group differences in the principal subcortical gradient were investigated in 145 never-treated first-episode MDD patients and 145 healthy controls (HCs) across limbic, thalamic, and basal ganglia (BG) systems and their structural and functional subregions. We also assessed the associations between significant gradient alterations and clinical characteristics and neuropsychological functioning. RESULTS Overall, MDD patients showed a relatively compressed and disturbed gradient organization than HCs, with limbic and BG regions located at the two extreme ends of the principal gradient. Specifically, MDD patients had lower principal gradient values in thalamus and limbic system but higher values in BG than HCs. These gradient alterations, associated with intrinsic Euclidian distance and functional connectivity patterns, manifested as spatial rearrangements of gradient values within each respective subregion. Lower gradient values in thalamic subregion projecting to default mode network were associated with higher principal gradient values in BG subregion projecting to ventral attention network, and these gradient alterations were correlated with poorer episodic memory performance in MDD patients. LIMITATIONS The specific neuropathological mechanisms driving the gradient alterations still require further investigation. CONCLUSIONS Opposing gradient alterations in the thalamic and BG regions synergistically impact episodic memory performance in MDD, revealing an internally differentiated and cognition related pattern of subcortical gradient dysfunction in MDD.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Aoxiang Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Ziyuan Zhao
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qian Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Yongbo Hu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Xiaoqi Huang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Weihong Kuang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, China
| | - Youjin Zhao
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China.
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; Xiamen Key Laboratory of Psychoradiology and Neuromodulation, Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
| |
Collapse
|
7
|
Li W, Chen J, Qin Y, Jiang S, Li X, Zhang H, Luo C, Gong Q, Zhou D, An D. Limited cerebellar gradient extension in temporal lobe epilepsy with dystonic posturing. Epilepsia Open 2024; 9:2251-2262. [PMID: 39325042 PMCID: PMC11633717 DOI: 10.1002/epi4.13056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024] Open
Abstract
OBJECTIVE Dystonic posturing (DP) is a common semiology in temporal lobe epilepsy (TLE). We aimed to explore cerebellar gradient alterations in functional connectivity in TLE patients with and without DP. METHODS Resting-state functional MRI data were obtained in 60 TLE patients and 32 matched healthy controls. Patients were further divided into two groups: TLE with DP (TLE + DP, 31 patients) and TLE without DP (TLP-DP, 29 patients). We explored functional gradient alterations in the cerebellum based on cerebellar-cerebral functional connectivity and combined with independent component analysis to evaluate cerebellar-cerebral functional integration and reveal the contribution of the motor components to the gradient. RESULTS There were no obvious differences in clinical features and postoperative seizure outcomes between TLE + DP and TLE-DP patients. Patients and controls all showed a clear unimodal-to-transmodal gradient transition in the cerebellum, while TLE patients demonstrated an extended principal gradient in functional connectivity compared to healthy controls, which was more limited in TLE + DP patients. Gradient alterations were more widespread in TLE-DP patients, involving bilateral cerebellum, while gradient alterations in TLE + DP patients were limited in the cerebellum ipsilateral to the seizure focus. In addition, more cerebellar motor components contributed to the gradient alterations in TLE + DP patients, mainly in ipsilateral cerebellum. SIGNIFICANCE Extended cerebellar principal gradients in functional connectivity revealed excessive functional segregation between unimodal and transmodal systems in TLE. The functional connectivity gradients were more limited in TLE + DP patients. Functional connectivity in TLE patients with dystonic posturing involved more contribution of cerebellar motor function to ipsilateral cerebellar gradient. PLAIN LANGUAGE SUMMARY Dystonic posturing contralateral to epileptic focus is a common symptom in temporal lobe epilepsy, and the cerebellum may be involved in its generation. In this study, we found cerebellar gradients alterations in functional connectivity in temporal lobe epilepsy patients with and without contralateral dystonic posturing. In particular, we found that TLE patients with dystonic posturing may have more limited cerebellar gradient in functional connectivity, involving more contribution of cerebellar motor function to ipsilateral cerebellar gradient. Our study suggests a close relationship between ipsilateral cerebellum and contralateral dystonic posturing.
Collapse
Affiliation(s)
- Wei Li
- Department of NeurologyWest China Hospital, Sichuan UniversityChengduSichuanChina
- Department of GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Junxia Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Yingjie Qin
- Department of NeurologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Sisi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Xiuli Li
- Huaxi MR Research Center, Department of RadiologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Heng Zhang
- Department of NeurosurgeryWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Qiyong Gong
- Huaxi MR Research Center, Department of RadiologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Dong Zhou
- Department of NeurologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Dongmei An
- Department of NeurologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| |
Collapse
|
8
|
Wei W, Benn RA, Scholz R, Shevchenko V, Klatzmann U, Alberti F, Chiou R, Wassermann D, Vanderwal T, Smallwood J, Margulies DS. A function-based mapping of sensory integration along the cortical hierarchy. Commun Biol 2024; 7:1593. [PMID: 39613829 PMCID: PMC11607388 DOI: 10.1038/s42003-024-07224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 11/06/2024] [Indexed: 12/01/2024] Open
Abstract
Sensory information mainly travels along a hierarchy spanning unimodal to transmodal regions, forming multisensory integrative representations crucial for higher-order cognitive functions. Here, we develop an fMRI based two-dimensional framework to characterize sensory integration based on the anchoring role of the primary cortex in the organization of sensory processing. Sensory magnitude captures the percentage of variance explained by three primary sensory signals and decreases as the hierarchy ascends, exhibiting strong similarity to the known hierarchy and high stability across different conditions. Sensory angle converts associations with three primary sensory signals to an angle representing the proportional contributions of different sensory modalities. This dimension identifies differences between brain states and emphasizes how sensory integration changes flexibly in response to varying cognitive demands. Furthermore, meta-analytic functional decoding with our model highlights the close relationship between cognitive functions and sensory integration, showing its potential for future research of human cognition through sensory information processing.
Collapse
Affiliation(s)
- Wei Wei
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France.
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| | - R Austin Benn
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Robert Scholz
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Max Planck School of Cognition, Leipzig, Germany
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
| | - Victoria Shevchenko
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Ulysse Klatzmann
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Francesco Alberti
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Rocco Chiou
- School of Psychology, University of Surrey, Surrey, United Kingdom
| | | | - Tamara Vanderwal
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
| | | | - Daniel S Margulies
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France.
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
9
|
Royer J, Paquola C, Valk SL, Kirschner M, Hong SJ, Park BY, Bethlehem RAI, Leech R, Yeo BTT, Jefferies E, Smallwood J, Margulies D, Bernhardt BC. Gradients of Brain Organization: Smooth Sailing from Methods Development to User Community. Neuroinformatics 2024; 22:623-634. [PMID: 38568476 DOI: 10.1007/s12021-024-09660-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 11/21/2024]
Abstract
Multimodal neuroimaging grants a powerful in vivo window into the structure and function of the human brain. Recent methodological and conceptual advances have enabled investigations of the interplay between large-scale spatial trends - or gradients - in brain structure and function, offering a framework to unify principles of brain organization across multiple scales. Strong community enthusiasm for these techniques has been instrumental in their widespread adoption and implementation to answer key questions in neuroscience. Following a brief review of current literature on this framework, this perspective paper will highlight how pragmatic steps aiming to make gradient methods more accessible to the community propelled these techniques to the forefront of neuroscientific inquiry. More specifically, we will emphasize how interest for gradient methods was catalyzed by data sharing, open-source software development, as well as the organization of dedicated workshops led by a diverse team of early career researchers. To this end, we argue that the growing excitement for brain gradients is the result of coordinated and consistent efforts to build an inclusive community and can serve as a case in point for future innovations and conceptual advances in neuroinformatics. We close this perspective paper by discussing challenges for the continuous refinement of neuroscientific theory, methodological innovation, and real-world translation to maintain our collective progress towards integrated models of brain organization.
Collapse
Affiliation(s)
- Jessica Royer
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.
| | - Casey Paquola
- Institute for Neuroscience and Medicine (INM-7), Forschungszentrum Jülich, Jülich, Germany
| | - Sofie L Valk
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Matthias Kirschner
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Thonex, Switzerland
| | - Seok-Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Center for the Developing Brain, Child Mind Institute, New York, USA
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Bo-Yong Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Data Science, Inha University, Incheon, South Korea
- Department of Statistics and Data Science, Inha University, Incheon, South Korea
| | | | - Robert Leech
- Centre for Neuroimaging Science, King's College London, London, UK
| | - B T Thomas Yeo
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | | | | | - Daniel Margulies
- Integrative Neuroscience and Cognition Center (UMR 8002), Centre National de la Recherche Scientifique (CNRS), Université de Paris, Paris, France
| | - Boris C Bernhardt
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
10
|
Meng Y, Xiao J, Yang S, Li J, Xu Q, Zhang Q, Lu G, Chen H, Zhang Z, Liao W. Chemoarchitectural signatures of subcortical shape alterations in generalized epilepsy. Commun Biol 2024; 7:1019. [PMID: 39164447 PMCID: PMC11335893 DOI: 10.1038/s42003-024-06726-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
Genetic generalized epilepsies (GGE) exhibit widespread morphometric alterations in the subcortical structures. Subcortical structures are essential for understanding GGE pathophysiology, but their fine-grained morphological diversity has yet to be comprehensively investigated. Furthermore, the relationships between macroscale morphological disturbances and microscale molecular chemoarchitectures are unclear. High-resolution structural images were acquired from patients with GGE (n = 97) and sex- and age-matched healthy controls (HCs, n = 184). Individual measurements of surface shape features (thickness and surface area) of seven bilateral subcortical structures were quantified. The patients and HCs were then compared vertex-wise, and shape anomalies were co-located with brain neurotransmitter profiles. We found widespread morphological alterations in GGE and prominent disruptions in the thalamus, putamen, and hippocampus. Shape area dilations were observed in the bilateral ventral, medial, and right dorsal thalamus, as well as the bilateral lateral putamen. We found that the shape area deviation pattern was spatially correlated with the norepinephrine transporter and nicotinic acetylcholine (Ach) receptor (α4β2) profiles, but a distinct association was seen in the muscarinic Ach receptor (M1). The findings provided a comprehensive picture of subcortical morphological disruptions in GGE, and further characterized the associated molecular mechanisms. This information may increase our understanding of the pathophysiology of GGE.
Collapse
Affiliation(s)
- Yao Meng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinming Xiao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Siqi Yang
- School of Cybersecurity, Chengdu University of Information Technology, Chengdu, China
| | - Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiang Xu
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Qirui Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
11
|
Hu J, Chen G, Zeng Z, Ran H, Zhang R, Yu Q, Xie Y, He Y, Wang F, Li X, Huang K, Liu H, Zhang T. Systematically altered connectome gradient in benign childhood epilepsy with centrotemporal spikes: Potential effect on cognitive function. Neuroimage Clin 2024; 43:103628. [PMID: 38850833 PMCID: PMC11201345 DOI: 10.1016/j.nicl.2024.103628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/06/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
OBJECTIVE Benign childhood epilepsy with centrotemporal spikes (BECTS) affects brain network hierarchy and cognitive function; however, itremainsunclearhowhierarchical changeaffectscognition in patients with BECTS. A major aim of this study was to examine changes in the macro-network function hierarchy in BECTS and its potential contribution to cognitive function. METHODS Overall, the study included 50 children with BECTS and 69 healthy controls. Connectome gradient analysis was used to determine the brain network hierarchy of each group. By comparing gradient scores at each voxel level and network between groups, we assessed changes in whole-brain voxel-level and network hierarchy. Functional connectivity was used to detect the functional reorganization of epilepsy caused by these abnormal brain regions based on these aberrant gradients. Lastly, we explored the relationships between the change gradient and functional connectivity values and clinical variables and further predicted the cognitive function associated with BECTS gradient changes. RESULTS In children with BECTS, the gradient was extended at different network and voxel levels. The gradient scores frontoparietal network was increased in the principal gradient of patients with BECTS. The left precentral gyrus (PCG) and right angular gyrus gradient scores were significantly increased in the principal gradient of children with BECTS. Moreover, in regions of the brain with abnormal principal gradients, functional connectivity was disrupted. The left PCG gradient score of children with BECTS was correlated with the verbal intelligence quotient (VIQ), and the disruption of functional connectivity in brain regions with abnormal principal gradients was closely related to cognitive function. VIQ was significantly predicted by the principal gradient map of patients. SIGNIFICANCE The results indicate connectome gradient disruption in children with BECTS and its relationship to cognitive function, thereby increasing our understanding of the functional connectome hierarchy and providing potential biomarkers for cognitive function of children with BECTS.
Collapse
Affiliation(s)
- Jie Hu
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China; Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guiqin Chen
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China; Department of Radiology, The Second Affiliated Hospital of Guizhou University of TCM, Guiyang 550001, China
| | - Zhen Zeng
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Haifeng Ran
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Ruoxi Zhang
- Department of Radiology, The Second Affiliated Hospital of Guizhou University of TCM, Guiyang 550001, China
| | - Qiane Yu
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Yuxin Xie
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Yulun He
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Fuqin Wang
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Xuhong Li
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Kexing Huang
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Heng Liu
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China.
| | - Tijiang Zhang
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China.
| |
Collapse
|
12
|
Xie K, Royer J, Larivière S, Rodriguez-Cruces R, Frässle S, Cabalo DG, Ngo A, DeKraker J, Auer H, Tavakol S, Weng Y, Abdallah C, Arafat T, Horwood L, Frauscher B, Caciagli L, Bernasconi A, Bernasconi N, Zhang Z, Concha L, Bernhardt BC. Atypical connectome topography and signal flow in temporal lobe epilepsy. Prog Neurobiol 2024; 236:102604. [PMID: 38604584 DOI: 10.1016/j.pneurobio.2024.102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/18/2023] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Temporal lobe epilepsy (TLE) is the most common pharmaco-resistant epilepsy in adults. While primarily associated with mesiotemporal pathology, recent evidence suggests that brain alterations in TLE extend beyond the paralimbic epicenter and impact macroscale function and cognitive functions, particularly memory. Using connectome-wide manifold learning and generative models of effective connectivity, we examined functional topography and directional signal flow patterns between large-scale neural circuits in TLE at rest. Studying a multisite cohort of 95 patients with TLE and 95 healthy controls, we observed atypical functional topographies in the former group, characterized by reduced differentiation between sensory and transmodal association cortices, with most marked effects in bilateral temporo-limbic and ventromedial prefrontal cortices. These findings were consistent across all study sites, present in left and right lateralized patients, and validated in a subgroup of patients with histopathological validation of mesiotemporal sclerosis and post-surgical seizure freedom. Moreover, they were replicated in an independent cohort of 30 TLE patients and 40 healthy controls. Further analyses demonstrated that reduced differentiation related to decreased functional signal flow into and out of temporolimbic cortical systems and other brain networks. Parallel analyses of structural and diffusion-weighted MRI data revealed that topographic alterations were independent of TLE-related cortical thinning but partially mediated by white matter microstructural changes that radiated away from paralimbic circuits. Finally, we found a strong association between the degree of functional alterations and behavioral markers of memory dysfunction. Our work illustrates the complex landscape of macroscale functional imbalances in TLE, which can serve as intermediate markers bridging microstructural changes and cognitive impairment.
Collapse
Affiliation(s)
- Ke Xie
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada; Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Raul Rodriguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Stefan Frässle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Donna Gift Cabalo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jordan DeKraker
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Hans Auer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Chifaou Abdallah
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Thaera Arafat
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Linda Horwood
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada; Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Birgit Frauscher
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada; Department of Neurology, Duke University School of Medicine and Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, NC 27705, USA
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3 BG, United Kingdom
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Luis Concha
- Institute of Neurobiology, Universidad Nacional Autónoma de Mexico (UNAM), Queretaro, Mexico
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
13
|
Chen Z, Xu T, Liu X, Becker B, Li W, Xia L, Zhao W, Zhang R, Huo Z, Hu B, Tang Y, Xiao Z, Feng Z, Chen J, Feng T. Cortical gradient perturbation in attention deficit hyperactivity disorder correlates with neurotransmitter-, cell type-specific and chromosome- transcriptomic signatures. Psychiatry Clin Neurosci 2024; 78:309-321. [PMID: 38334172 DOI: 10.1111/pcn.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
AIMS This study aimed to illuminate the neuropathological landscape of attention deficit hyperactivity disorder (ADHD) by a multiscale macro-micro-molecular perspective from in vivo neuroimaging data. METHODS The "ADHD-200 initiative" repository provided multi-site high-quality resting-state functional connectivity (rsfc-) neuroimaging for ADHD children and matched typically developing (TD) cohort. Diffusion mapping embedding model to derive the functional connectome gradient detecting biologically plausible neural pattern was built, and the multivariate partial least square method to uncover the enrichment of neurotransmitomic, cellular and chromosomal gradient-transcriptional signatures of AHBA enrichment and meta-analytic decoding. RESULTS Compared to TD, ADHD children presented connectopic cortical gradient perturbations in almost all the cognition-involved brain macroscale networks (all pBH <0.001), but not in the brain global topology. As an intermediate phenotypic variant, such gradient perturbation was spatially enriched into distributions of GABAA/BZ and 5-HT2A receptors (all pBH <0.01) and co-varied with genetic transcriptional expressions (e.g. DYDC2, ATOH7, all pBH <0.01), associated with phenotypic variants in episodic memory and emotional regulations. Enrichment models demonstrated such gradient-transcriptional variants indicated the risk of both cell-specific and chromosome- dysfunctions, especially in enriched expression of oligodendrocyte precursors and endothelial cells (all pperm <0.05) as well enrichment into chromosome 18, 19 and X (pperm <0.05). CONCLUSIONS Our findings bridged brain macroscale neuropathological patterns to microscale/cellular biological architectures for ADHD children, demonstrating the neurobiologically pathological mechanism of ADHD into the genetic and molecular variants in GABA and 5-HT systems as well brain-derived enrichment of specific cellular/chromosomal expressions.
Collapse
Affiliation(s)
- Zhiyi Chen
- Experimental Research Center of Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Ting Xu
- Department of Psychology, The University of Hong Kong, Hong Kong, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuerong Liu
- Experimental Research Center of Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, China
| | - Benjamin Becker
- Department of Psychology, The University of Hong Kong, Hong Kong, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Li
- Experimental Research Center of Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, China
| | - Lei Xia
- Experimental Research Center of Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, China
| | - Wenqi Zhao
- Experimental Research Center of Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, China
| | - Rong Zhang
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Zhenzhen Huo
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Bowen Hu
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Yancheng Tang
- School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Zhibing Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Zhengzhi Feng
- Experimental Research Center of Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
- Department of Psychiatry, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Tingyong Feng
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
14
|
Yang Y, Zhen Y, Wang X, Liu L, Zheng Y, Zheng Z, Zheng H, Tang S. Altered asymmetry of functional connectome gradients in major depressive disorder. Front Neurosci 2024; 18:1385920. [PMID: 38745933 PMCID: PMC11092381 DOI: 10.3389/fnins.2024.1385920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Major depressive disorder (MDD) is a debilitating disease involving sensory and higher-order cognitive dysfunction. Previous work has shown altered asymmetry in MDD, including abnormal lateralized activation and disrupted hemispheric connectivity. However, it remains unclear whether and how MDD affects functional asymmetries in the context of intrinsic hierarchical organization. Methods Here, we evaluate intra- and inter-hemispheric asymmetries of the first three functional gradients, characterizing unimodal-transmodal, visual-somatosensory, and somatomotor/default mode-multiple demand hierarchies, to study MDD-related alterations in overarching system-level architecture. Results We find that, relative to the healthy controls, MDD patients exhibit alterations in both primary sensory regions (e.g., visual areas) and transmodal association regions (e.g., default mode areas). We further find these abnormalities are woven in heterogeneous alterations along multiple functional gradients, associated with cognitive terms involving mind, memory, and visual processing. Moreover, through an elastic net model, we observe that both intra- and inter-asymmetric features are predictive of depressive traits measured by BDI-II scores. Discussion Altogether, these findings highlight a broad and mixed effect of MDD on functional gradient asymmetry, contributing to a richer understanding of the neurobiological underpinnings in MDD.
Collapse
Affiliation(s)
- Yaqian Yang
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
| | - Yi Zhen
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
| | - Xin Wang
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
| | - Longzhao Liu
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
| | - Yi Zheng
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
| | - Zhiming Zheng
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
- State Key Lab of Software Development Environment, Beihang University, Beijing, China
| | - Hongwei Zheng
- Beijing Academy of Blockchain and Edge Computing, Beijing, China
| | - Shaoting Tang
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
- State Key Lab of Software Development Environment, Beihang University, Beijing, China
| |
Collapse
|
15
|
De Rosa AP, d'Ambrosio A, Bisecco A, Altieri M, Cirillo M, Gallo A, Esposito F. Functional gradients reveal cortical hierarchy changes in multiple sclerosis. Hum Brain Mapp 2024; 45:e26678. [PMID: 38647001 PMCID: PMC11033924 DOI: 10.1002/hbm.26678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/26/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Functional gradient (FG) analysis represents an increasingly popular methodological perspective for investigating brain hierarchical organization but whether and how network hierarchy changes concomitant with functional connectivity alterations in multiple sclerosis (MS) has remained elusive. Here, we analyzed FG components to uncover possible alterations in cortical hierarchy using resting-state functional MRI (rs-fMRI) data acquired in 122 MS patients and 97 healthy control (HC) subjects. Cortical hierarchy was assessed by deriving regional FG scores from rs-fMRI connectivity matrices using a functional parcellation of the cerebral cortex. The FG analysis identified a primary (visual-to-sensorimotor) and a secondary (sensory-to-transmodal) component. Results showed a significant alteration in cortical hierarchy as indexed by regional changes in FG scores in MS patients within the sensorimotor network and a compression (i.e., a reduced standard deviation across all cortical parcels) of the sensory-transmodal gradient axis, suggesting disrupted segregation between sensory and cognitive processing. Moreover, FG scores within limbic and default mode networks were significantly correlated (ρ = 0.30 $$ \rho =0.30 $$ , p < .005 after Bonferroni correction for both) with the symbol digit modality test (SDMT) score, a measure of information processing speed commonly used in MS neuropsychological assessments. Finally, leveraging supervised machine learning, we tested the predictive value of network-level FG features, highlighting the prominent role of the FG scores within the default mode network in the accurate prediction of SDMT scores in MS patients (average mean absolute error of 1.22 ± 0.07 points on a hold-out set of 24 patients). Our work provides a comprehensive evaluation of FG alterations in MS, shedding light on the hierarchical organization of the MS brain and suggesting that FG connectivity analysis can be regarded as a valuable approach in rs-fMRI studies across different MS populations.
Collapse
Affiliation(s)
- Alessandro Pasquale De Rosa
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical SciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Alessandro d'Ambrosio
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical SciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Alvino Bisecco
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical SciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Manuela Altieri
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical SciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Mario Cirillo
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical SciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Antonio Gallo
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical SciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Fabrizio Esposito
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical SciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| |
Collapse
|
16
|
Liu X, Guo J, Jiang Z, Liu X, Chen H, Zhang Y, Wang J, Liu C, Gao Q, Chen H. Compressed cerebellar functional connectome hierarchy in spinocerebellar ataxia type 3. Hum Brain Mapp 2024; 45:e26624. [PMID: 38376240 PMCID: PMC10878347 DOI: 10.1002/hbm.26624] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is an inherited movement disorder characterized by a progressive decline in motor coordination. Despite the extensive functional connectivity (FC) alterations reported in previous SCA3 studies in the cerebellum and cerebellar-cerebral pathways, the influence of these FC disturbances on the hierarchical organization of cerebellar functional regions remains unclear. Here, we compared 35 SCA3 patients with 48 age- and sex-matched healthy controls using a combination of voxel-based morphometry and resting-state functional magnetic resonance imaging to investigate whether cerebellar hierarchical organization is altered in SCA3. Utilizing connectome gradients, we identified the gradient axis of cerebellar hierarchical organization, spanning sensorimotor to transmodal (task-unfocused) regions. Compared to healthy controls, SCA3 patients showed a compressed hierarchical organization in the cerebellum at both voxel-level (p < .05, TFCE corrected) and network-level (p < .05, FDR corrected). This pattern was observed in both intra-cerebellar and cerebellar-cerebral gradients. We observed that decreased intra-cerebellar gradient scores in bilateral Crus I/II both negatively correlated with SARA scores (left/right Crus I/II: r = -.48/-.50, p = .04/.04, FDR corrected), while increased cerebellar-cerebral gradients scores in the vermis showed a positive correlation with disease duration (r = .48, p = .04, FDR corrected). Control analyses of cerebellar gray matter atrophy revealed that gradient alterations were associated with cerebellar volume loss. Further FC analysis showed increased functional connectivity in both unimodal and transmodal areas, potentially supporting the disrupted cerebellar functional hierarchy uncovered by the gradients. Our findings provide novel evidence regarding alterations in the cerebellar functional hierarchy in SCA3.
Collapse
Affiliation(s)
- Xinyuan Liu
- Department of Radiology, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jing Guo
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Zhouyu Jiang
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xingli Liu
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Hui Chen
- Department of Radiology, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Yuhan Zhang
- Department of Radiology, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Jian Wang
- Department of Radiology, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Chen Liu
- Department of Radiology, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Qing Gao
- MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
- School of Mathematical SciencesUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Huafu Chen
- Department of Radiology, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
17
|
Yang S, Zhou Y, Peng C, Meng Y, Chen H, Zhang S, Kong X, Kong R, Yeo BTT, Liao W, Zhang Z. Macroscale intrinsic dynamics are associated with microcircuit function in focal and generalized epilepsies. Commun Biol 2024; 7:145. [PMID: 38302632 PMCID: PMC10834476 DOI: 10.1038/s42003-024-05819-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Epilepsies are a group of neurological disorders characterized by abnormal spontaneous brain activity, involving multiscale changes in brain functional organizations. However, it is not clear to what extent the epilepsy-related perturbations of spontaneous brain activity affect macroscale intrinsic dynamics and microcircuit organizations, that supports their pathological relevance. We collect a sample of patients with temporal lobe epilepsy (TLE) and genetic generalized epilepsy with tonic-clonic seizure (GTCS), as well as healthy controls. We extract massive temporal features of fMRI BOLD time-series to characterize macroscale intrinsic dynamics, and simulate microcircuit neuronal dynamics used a large-scale biological model. Here we show whether macroscale intrinsic dynamics and microcircuit dysfunction are differed in epilepsies, and how these changes are linked. Differences in macroscale gradient of time-series features are prominent in the primary network and default mode network in TLE and GTCS. Biophysical simulations indicate reduced recurrent connection within somatomotor microcircuits in both subtypes, and even more reduced in GTCS. We further demonstrate strong spatial correlations between differences in the gradient of macroscale intrinsic dynamics and microcircuit dysfunction in epilepsies. These results emphasize the impact of abnormal neuronal activity on primary network and high-order networks, suggesting a systematic abnormality of brain hierarchical organization.
Collapse
Affiliation(s)
- Siqi Yang
- School of Cybersecurity (Xin Gu Industrial College), Chengdu University of Information Technology, Chengdu, 610225, PR China.
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China.
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Yimin Zhou
- School of Cybersecurity (Xin Gu Industrial College), Chengdu University of Information Technology, Chengdu, 610225, PR China
| | - Chengzong Peng
- School of Cybersecurity (Xin Gu Industrial College), Chengdu University of Information Technology, Chengdu, 610225, PR China
| | - Yao Meng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Shaoshi Zhang
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiaolu Kong
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ru Kong
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - B T Thomas Yeo
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China.
| | - Zhiqiang Zhang
- Laboratory of Neuroimaging, Department of Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, PR China.
| |
Collapse
|
18
|
Xu T, Wu Y, Zhang Y, Zuo XN, Chen F, Zhou C. Reshaping the Cortical Connectivity Gradient by Long-Term Cognitive Training During Development. Neurosci Bull 2024; 40:50-64. [PMID: 37715923 PMCID: PMC10774512 DOI: 10.1007/s12264-023-01108-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/01/2023] [Indexed: 09/18/2023] Open
Abstract
The organization of the brain follows a topological hierarchy that changes dynamically during development. However, it remains unknown whether and how cognitive training administered over multiple years during development can modify this hierarchical topology. By measuring the brain and behavior of school children who had carried out abacus-based mental calculation (AMC) training for five years (starting from 7 years to 12 years old) in pre-training and post-training, we revealed the reshaping effect of long-term AMC intervention during development on the brain hierarchical topology. We observed the development-induced emergence of the default network, AMC training-promoted shifting, and regional changes in cortical gradients. Moreover, the training-induced gradient changes were located in visual and somatomotor areas in association with the visuospatial/motor-imagery strategy. We found that gradient-based features can predict the math ability within groups. Our findings provide novel insights into the dynamic nature of network recruitment impacted by long-term cognitive training during development.
Collapse
Affiliation(s)
- Tianyong Xu
- Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, 310027, China
| | - Yunying Wu
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, 310027, China
| | - Yi Zhang
- Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xi-Nian Zuo
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Feiyan Chen
- Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, 310027, China.
- Zhejiang Province Key Laboratory of Quantum Technology and Devices, Zhejiang University, Hangzhou, 310027, China.
| | - Changsong Zhou
- Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, 310027, China.
- Zhejiang Province Key Laboratory of Quantum Technology and Devices, Zhejiang University, Hangzhou, 310027, China.
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong, 999077, China.
| |
Collapse
|
19
|
Knodt AR, Elliott ML, Whitman ET, Winn A, Addae A, Ireland D, Poulton R, Ramrakha S, Caspi A, Moffitt TE, Hariri AR. Test-retest reliability and predictive utility of a macroscale principal functional connectivity gradient. Hum Brain Mapp 2023; 44:6399-6417. [PMID: 37851700 PMCID: PMC10681655 DOI: 10.1002/hbm.26517] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/23/2023] [Accepted: 09/30/2023] [Indexed: 10/20/2023] Open
Abstract
Mapping individual differences in brain function has been hampered by poor reliability as well as limited interpretability. Leveraging patterns of brain-wide functional connectivity (FC) offers some promise in this endeavor. In particular, a macroscale principal FC gradient that recapitulates a hierarchical organization spanning molecular, cellular, and circuit level features along a sensory-to-association cortical axis has emerged as both a parsimonious and interpretable measure of individual differences in behavior. However, the measurement reliabilities of this FC gradient have not been fully evaluated. Here, we assess the reliabilities of both global and regional principal FC gradient measures using test-retest data from the young adult Human Connectome Project (HCP-YA) and the Dunedin Study. Analyses revealed that the reliabilities of principal FC gradient measures were (1) consistently higher than those for traditional edge-wise FC measures, (2) higher for FC measures derived from general FC (GFC) in comparison with resting-state FC, and (3) higher for longer scan lengths. We additionally examined the relative utility of these principal FC gradient measures in predicting cognition and aging in both datasets as well as the HCP-aging dataset. These analyses revealed that regional FC gradient measures and global gradient range were significantly associated with aging in all three datasets, and moderately associated with cognition in the HCP-YA and Dunedin Study datasets, reflecting contractions and expansions of the cortical hierarchy, respectively. Collectively, these results demonstrate that measures of the principal FC gradient, especially derived using GFC, effectively capture a reliable feature of the human brain subject to interpretable and biologically meaningful individual variation, offering some advantages over traditional edge-wise FC measures in the search for brain-behavior associations.
Collapse
Affiliation(s)
- Annchen R. Knodt
- Department of Psychology and NeuroscienceDuke UniversityDurhamNorth CarolinaUSA
| | - Maxwell L. Elliott
- Department of Psychology, Center for Brain ScienceHarvard UniversityCambridgeMassachusettsUSA
| | - Ethan T. Whitman
- Department of Psychology and NeuroscienceDuke UniversityDurhamNorth CarolinaUSA
| | - Alex Winn
- Department of Psychology and NeuroscienceDuke UniversityDurhamNorth CarolinaUSA
| | - Angela Addae
- Department of Psychology and NeuroscienceDuke UniversityDurhamNorth CarolinaUSA
| | - David Ireland
- Dunedin Multidisciplinary Health and Development Research Unit, Department of PsychologyUniversity of OtagoDunedinNew Zealand
| | - Richie Poulton
- Dunedin Multidisciplinary Health and Development Research Unit, Department of PsychologyUniversity of OtagoDunedinNew Zealand
| | - Sandhya Ramrakha
- Dunedin Multidisciplinary Health and Development Research Unit, Department of PsychologyUniversity of OtagoDunedinNew Zealand
| | - Avshalom Caspi
- Department of Psychology and NeuroscienceDuke UniversityDurhamNorth CarolinaUSA
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNorth CarolinaUSA
- Institute of Psychiatry, Psychology, and NeuroscienceKing's College LondonLondonUK
| | - Terrie E. Moffitt
- Department of Psychology and NeuroscienceDuke UniversityDurhamNorth CarolinaUSA
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNorth CarolinaUSA
- Institute of Psychiatry, Psychology, and NeuroscienceKing's College LondonLondonUK
| | - Ahmad R. Hariri
- Department of Psychology and NeuroscienceDuke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
20
|
Tong Z, Zhang J, Xing C, Xu X, Wu Y, Salvi R, Yin X, Zhao F, Chen YC, Cai Y. Reorganization of the cortical connectome functional gradient in age-related hearing loss. Neuroimage 2023; 284:120475. [PMID: 38013009 DOI: 10.1016/j.neuroimage.2023.120475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
Age-related hearing loss (ARHL), one of the most common sensory deficits in elderly individuals, is a risk factor for dementia; however, it is unclear how ARHL affects the decline in cognitive function. To address this issue, a connectome gradient framework was used to identify critical features of information integration between sensory and cognitive processing centers using resting-state functional magnetic resonance imaging (rs-fMRI) data from 40 individuals with ARHL and 36 healthy controls (HCs). The first three functional gradient alterations associated with ARHL were investigated at the global, network and regional levels. Using a support vector machine (SVM) model, our analysis distinguished individuals with ARHL with normal cognitive function from those with cognitive decline. Compared to HCs, individuals with ARHL had a contracted principal primary-to-transmodal gradient axis, especially in the visual and default mode networks, with an altered gradient explained ratio and variance. Among individuals with ARHL, cognitive decline was detected in the visual network in the principal gradient as well as in the limbic, salience and default mode networks in the third gradient (salience to frontoparietal/default mode). These results suggest that ARHL is associated with disrupted information processing from the primary sensory networks to higher-order cognitive networks and highlight the key nodes closely associated with cognitive decline during cognitive processing in ARHL, providing new insights into the mechanism of cognitive impairment and suggesting potential treatments related to ARHL.
Collapse
Affiliation(s)
- Zhaopeng Tong
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Juan Zhang
- Department of Neurology, Nanjing Yuhua Hospital, Yuhua Branch of Nanjing First Hospital, Nanjing, China
| | - Chunhua Xing
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing 210006, China
| | - Xiaomin Xu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing 210006, China
| | - Yuanqing Wu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, The State University of New York, Buffalo, United States
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing 210006, China
| | - Fei Zhao
- Department of Speech and Language Therapy and Hearing Science, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing 210006, China.
| | - Yuexin Cai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
21
|
Lin J, Kang X, Lu H, Zhang D, Bian X, Zhou J, Hu J, Zhang D, Sepulcre J, Pan L, Lou X. Magnetic Resonance-Guided Focused Ultrasound Thalamotomy Rebalances Atypical Functional Hierarchy in Patients with Essential Tremor. Neurotherapeutics 2023; 20:1755-1766. [PMID: 37843768 PMCID: PMC10684443 DOI: 10.1007/s13311-023-01442-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Magnetic resonance-guided focused ultrasound (MRgFUS) has brought thalamotomy back to the frontline for essential tremor (ET). As functional organization of human brain strictly follows hierarchical principles which are frequently deficient in neurological diseases, whether additional damage from MRgFUS thalamotomy induces further disruptions of ET functional scaffolds are still controversial. This study was to examine the alteration features of brain functional frameworks following MRgFUS thalamotomy in patients with ET. We retrospectively obtained preoperative (ETpre) and postoperative 6-month (ET6m) data of 30 ET patients underwent MRgFUS thalamotomy from 2018 to 2020. Their archived functional MR images were used to functional gradient comparison. Both supervised pattern learning and stepwise linear regression were conducted to associate gradient features to tremor symptoms with additional neuropathophysiological analysis. MRgFUS thalamotomy relieved 78.19% of hand tremor symptoms and induced vast global framework alteration (ET6m vs. ETpre: Cohen d = - 0.80, P < 0.001). Multiple robust alterations were identified especially in posterior cingulate cortex ([Formula: see text] ET6m vs. [Formula: see text] ETpre: Cohen d = 0.87, P = 0.048). Compared with matched health controls (HCs), its gradient distances to primary communities were significantly increased in [Formula: see text] ETpre patients with anomalous stepwise connectivity (P < 0.05 in ETpre vs. HCs), which were restored after MRgFUS thalamotomy. Both global and regional gradient features could be used for tremor symptom prediction and were linked to neuropathophysiological features of Parkinson disease and oxidative phosphorylation. MRgFUS thalamotomy not only suppress tremor symptoms but also rebalances atypical functional hierarchical architecture of ET patients.
Collapse
Affiliation(s)
- Jiaji Lin
- Department of Radiology, Chinese PLA General Hospital/Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, China
| | - Xiaopeng Kang
- School of Artificial Intelligence, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100876, China
| | - Haoxuan Lu
- Department of Radiology, Chinese PLA General Hospital/Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, China
| | - Dekang Zhang
- Department of Radiology, Chinese PLA General Hospital/Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, China
| | - Xianbing Bian
- Department of Radiology, Chinese PLA General Hospital/Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, China
| | - Jiayou Zhou
- Department of Neurosurgery, Chinese PLA General Hospital/Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, China
| | - Jianxing Hu
- Department of Radiology, Chinese PLA General Hospital/Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, China
| | - Dong Zhang
- Department of Radiology, Chinese PLA General Hospital/Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, China
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Harvard Medical School, No.55 Fruit Street, Boston, 02114, USA
| | - Longsheng Pan
- Department of Neurosurgery, Chinese PLA General Hospital/Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, China.
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital/Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
22
|
Fan YS, Xu Y, Bayrak Ş, Shine JM, Wan B, Li H, Li L, Yang S, Meng Y, Valk SL, Chen H. Macroscale Thalamic Functional Organization Disturbances and Underlying Core Cytoarchitecture in Early-Onset Schizophrenia. Schizophr Bull 2023; 49:1375-1386. [PMID: 37078906 PMCID: PMC10483446 DOI: 10.1093/schbul/sbad048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia is a polygenetic mental disorder with heterogeneous positive and negative symptom constellations, and is associated with abnormal cortical connectivity. The thalamus has a coordinative role in cortical function and is key to the development of the cerebral cortex. Conversely, altered functional organization of the thalamus might relate to overarching cortical disruptions in schizophrenia, anchored in development. STUDY DESIGN Here, we contrasted resting-state fMRI in 86 antipsychotic-naive first-episode early-onset schizophrenia (EOS) patients and 91 typically developing controls to study whether macroscale thalamic organization is altered in EOS. Employing dimensional reduction techniques on thalamocortical functional connectome (FC), we derived lateral-medial and anterior-posterior thalamic functional axes. STUDY RESULTS We observed increased segregation of macroscale thalamic functional organization in EOS patients, which was related to altered thalamocortical interactions both in unimodal and transmodal networks. Using an ex vivo approximation of core-matrix cell distribution, we found that core cells particularly underlie the macroscale abnormalities in EOS patients. Moreover, the disruptions were associated with schizophrenia-related gene expression maps. Behavioral and disorder decoding analyses indicated that the macroscale hierarchy disturbances might perturb both perceptual and abstract cognitive functions and contribute to negative syndromes in patients. CONCLUSIONS These findings provide mechanistic evidence for disrupted thalamocortical system in schizophrenia, suggesting a unitary pathophysiological framework.
Collapse
Affiliation(s)
- Yun-Shuang Fan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Şeyma Bayrak
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - James M Shine
- Brain and Mind Center, The University of Sydney, Sydney, Australia
| | - Bin Wan
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre Jülich, Jülich, Germany
- International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity (IMPRS NeuroCom), Leipzig, Germany
| | - Haoru Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Liang Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Siqi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yao Meng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Sofie L Valk
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre Jülich, Jülich, Germany
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
23
|
Li J, Wu GR, Shi M, Xia J, Meng Y, Yang S, Chen H, Liao W. Spatiotemporal topological correspondence between blood oxygenation and glucose metabolism revealed by simultaneous fPET-fMRI in brain's white matter. Cereb Cortex 2023; 33:9291-9302. [PMID: 37280768 DOI: 10.1093/cercor/bhad201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023] Open
Abstract
White matter (WM) makes up half of the human brain. Compelling functional MRI evidence indicates that white matter exhibits neural activation and synchronization via a hemodynamic window. However, the neurometabolic underpinnings of white matter temporal synchronization and spatial topology remain unknown. By leveraging concurrent [18F]FDG-fPET and blood-oxygenation-level-dependent-fMRI, we demonstrated the temporal and spatial correspondences between blood oxygenation and glucose metabolism in the human brain white matter. In the temporal scale, we found that blood-oxygenation-level-dependent signals shared mutual information with FDG signals in the default-mode, visual, and sensorimotor-auditory networks. For spatial distribution, the blood-oxygenation-level-dependent functional networks in white matter were accompanied by substantial correspondence of FDG functional connectivity at different topological scales, including degree centrality and global gradients. Furthermore, the content of blood-oxygenation-level-dependent fluctuations in the white matter default-mode network was aligned and liberal with the FDG graph, suggesting the freedom of default-mode network neuro-dynamics, but the constraint by metabolic dynamics. Moreover, the dissociation of the functional gradient between blood-oxygenation-level-dependent and FDG connectivity specific to the white matter default-mode network revealed functional heterogeneities. Together, the results showed that brain energy metabolism was closely coupled with blood oxygenation in white matter. Comprehensive and complementary information from fMRI and fPET might therefore help decode brain white matter functions.
Collapse
Affiliation(s)
- Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Guo-Rong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing 400715, PR China
| | - Mengyuan Shi
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Jie Xia
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Yao Meng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Siqi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| |
Collapse
|
24
|
Xie K, Royer J, Larivière S, Rodriguez-Cruces R, Frässle S, Cabalo DG, Ngo A, DeKraker J, Auer H, Tavakol S, Weng Y, Abdallah C, Horwood L, Frauscher B, Caciagli L, Bernasconi A, Bernasconi N, Zhang Z, Concha L, Bernhardt BC. Atypical connectome topography and signal flow in temporal lobe epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541934. [PMID: 37292996 PMCID: PMC10245853 DOI: 10.1101/2023.05.23.541934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Temporal lobe epilepsy (TLE) is one of the most common pharmaco-resistant epilepsies in adults. While hippocampal pathology is the hallmark of this condition, emerging evidence indicates that brain alterations extend beyond the mesiotemporal epicenter and affect macroscale brain function and cognition. We studied macroscale functional reorganization in TLE, explored structural substrates, and examined cognitive associations. We investigated a multisite cohort of 95 patients with pharmaco-resistant TLE and 95 healthy controls using state-of-the-art multimodal 3T magnetic resonance imaging (MRI). We quantified macroscale functional topographic organization using connectome dimensionality reduction techniques and estimated directional functional flow using generative models of effective connectivity. We observed atypical functional topographies in patients with TLE relative to controls, manifesting as reduced functional differentiation between sensory/motor networks and transmodal systems such as the default mode network, with peak alterations in bilateral temporal and ventromedial prefrontal cortices. TLE-related topographic changes were consistent in all three included sites and reflected reductions in hierarchical flow patterns between cortical systems. Integration of parallel multimodal MRI data indicated that these findings were independent of TLE-related cortical grey matter atrophy, but mediated by microstructural alterations in the superficial white matter immediately beneath the cortex. The magnitude of functional perturbations was robustly associated with behavioral markers of memory function. Overall, this work provides converging evidence for macroscale functional imbalances, contributing microstructural alterations, and their associations with cognitive dysfunction in TLE.
Collapse
Affiliation(s)
- Ke Xie
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Raul Rodriguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Stefan Frässle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Donna Gift Cabalo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jordan DeKraker
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Hans Auer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Chifaou Abdallah
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Linda Horwood
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Birgit Frauscher
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Lorenzo Caciagli
- Department of Biomedical Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Luis Concha
- Brain Connectivity Laboratory, Institute of Neurobiology, Universidad Nacional Autónoma de Mexico (UNAM), Mexico
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
25
|
Ruan X, Huang X, Li Y, Kuang Z, Li M, Wei X. Dysfunction of human brain network hierarchy in Parkinson's disease patients with freezing of gait. Parkinsonism Relat Disord 2023; 112:105446. [PMID: 37245278 DOI: 10.1016/j.parkreldis.2023.105446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 05/30/2023]
Abstract
INTRODUCTION Hierarchy has been identified as a principle underlying the organization of human brain networks. In Parkinson's disease with freezing of gait (PD-FOG), it remains unclear whether and how the network hierarchy is disrupted. Additionally, the associations between changes in the brain network hierarchy of PD patients with FOG and clinical scales remain unclear. The aim of this study was to explore alterations in the network hierarchy of PD-FOG and their clinical relevance. METHODS In this study, the brain network hierarchy of each group was described through a connectome gradient analysis among 31 PD-FOG, 50 PD patients without FOG (PD-NFOG), and 38 healthy controls (HC). Changes in the network hierarchy were assessed by comparing different gradient values of each network between the PD-FOG, PD-NFOG and HC groups. We further examined the relationship between dynamically changing network gradient values and clinical scales. RESULTS For the second gradient, Salience/ventral attention network-A (SalVentAttnA) network gradient of PD-FOG group was significantly lower than that of PD-NFOG, while both PD subgroups had a Default mode network-C gradient that was significantly lower than that of the HC group. In the third gradient, somatomotor network-A gradient of PD-FOG patients was significantly lower than the PD-NFOG group. Moreover, reduced SalVentAttnA network gradient values were associated with more severe gaits, fall risk, and frozen gait in PD-FOG patients. CONCLUSIONS The brain network hierarchy in PD-FOG is disturbed, this dysfunction is related to the severity of frozen gait. This study provides novel evidence for the neural mechanisms of FOG.
Collapse
Affiliation(s)
- Xiuhang Ruan
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xiaofei Huang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yuting Li
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Zhanyu Kuang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Mengyan Li
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| | - Xinhua Wei
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
26
|
Lucas A, Mouchtaris S, Cornblath EJ, Sinha N, Caciagli L, Hadar P, Gugger JJ, Das S, Stein JM, Davis KA. Subcortical functional connectivity gradients in temporal lobe epilepsy. Neuroimage Clin 2023; 38:103418. [PMID: 37187042 PMCID: PMC10196948 DOI: 10.1016/j.nicl.2023.103418] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND AND MOTIVATION Functional gradients have been used to study differences in connectivity between healthy and diseased brain states, however this work has largely focused on the cortex. Because the subcortex plays a key role in seizure initiation in temporal lobe epilepsy (TLE), subcortical functional-connectivity gradients may help further elucidate differences between healthy brains and TLE, as well as differences between left (L)-TLE and right (R)-TLE. METHODS In this work, we calculated subcortical functional-connectivity gradients (SFGs) from resting-state functional MRI (rs-fMRI) by measuring the similarity in connectivity profiles of subcortical voxels to cortical gray matter voxels. We performed this analysis in 24 R-TLE patients and 31 L-TLE patients (who were otherwise matched for age, gender, disease specific characteristics, and other clinical variables), and 16 controls. To measure differences in SFGs between L-TLE and R-TLE, we quantified deviations in the average functional gradient distributions, as well as their variance, across subcortical structures. RESULTS We found an expansion, measured by increased variance, in the principal SFG of TLE relative to controls. When comparing the gradient across subcortical structures between L-TLE and R-TLE, we found that abnormalities in the ipsilateral hippocampal gradient distributions were significantly different between L-TLE and R-TLE. CONCLUSION Our results suggest that expansion of the SFG is characteristic of TLE. Subcortical functional gradient differences exist between left and right TLE and are driven by connectivity changes in the hippocampus ipsilateral to the seizure onset zone.
Collapse
Affiliation(s)
- Alfredo Lucas
- Perelman School of Medicine, University of Pennsylvania, United States; Department of Bioengineering, University of Pennsylvania, United States.
| | - Sofia Mouchtaris
- Department of Bioengineering, University of Pennsylvania, United States
| | - Eli J Cornblath
- Department of Neurology, University of Pennsylvania, United States
| | - Nishant Sinha
- Department of Neurology, University of Pennsylvania, United States
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, United States
| | - Peter Hadar
- Department of Neurology, Massachusetts General Hospital, United States
| | - James J Gugger
- Department of Neurology, University of Pennsylvania, United States
| | - Sandhitsu Das
- Department of Neurology, University of Pennsylvania, United States
| | - Joel M Stein
- Department of Radiology, University of Pennsylvania, United States
| | - Kathryn A Davis
- Department of Neurology, University of Pennsylvania, United States
| |
Collapse
|
27
|
Ratcliffe C, Adan G, Marson A, Solomon T, Saini J, Sinha S, Keller SS. Neurocysticercosis-related Seizures: Imaging Biomarkers. Seizure 2023; 108:13-23. [PMID: 37060627 DOI: 10.1016/j.seizure.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Neurocysticercosis (NCC)-a parasitic CNS infection endemic to developing nations-has been called the leading global cause of acquired epilepsy yet remains understudied. It is currently unknown why a large proportion of patients develop recurrent seizures, often following the presentation of acute seizures. Furthermore, the presentation of NCC is heterogenous and the features that predispose to the development of an epileptogenic state remain uncertain. Perilesional factors (such as oedema and gliosis) have been implicated in NCC-related ictogenesis, but the effects of cystic factors, including lesion load and location, seem not to play a role in the development of habitual epilepsy. In addition, the cytotoxic consequences of the cyst's degenerative stages are varied and the majority of research, relying on retrospective data, lacks the necessary specificity to distinguish between acute symptomatic and unprovoked seizures. Previous research has established that epileptogenesis can be the consequence of abnormal network connectivity, and some imaging studies have suggested that a causative link may exist between NCC and aberrant network organisation. In wider epilepsy research, network approaches have been widely adopted; studies benefiting predominantly from the rich, multimodal data provided by advanced MRI methods are at the forefront of the field. Quantitative MRI approaches have the potential to elucidate the lesser-understood epileptogenic mechanisms of NCC. This review will summarise the current understanding of the relationship between NCC and epilepsy, with a focus on MRI methodologies. In addition, network neuroscience approaches with putative value will be highlighted, drawing from current imaging trends in epilepsy research.
Collapse
Affiliation(s)
- Corey Ratcliffe
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK; Department of Neuro Imaging and Interventional Radiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India.
| | - Guleed Adan
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Anthony Marson
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Tom Solomon
- The Walton Centre NHS Foundation Trust, Liverpool, UK; Veterinary and Ecological Sciences, National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, University of Liverpool, Liverpool, UK; Tropical and Infectious Diseases Unit, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK
| | - Jitender Saini
- Department of Neuro Imaging and Interventional Radiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Sanjib Sinha
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Simon S Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
28
|
Yang C, Zhang W, Liu J, Yao L, Bishop JR, Lencer R, Gong Q, Yang Z, Lui S. Disrupted subcortical functional connectome gradient in drug-naïve first-episode schizophrenia and the normalization effects after antipsychotic treatment. Neuropsychopharmacology 2023; 48:789-796. [PMID: 36496508 PMCID: PMC10066388 DOI: 10.1038/s41386-022-01512-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
Antipsychotics are thought to improve schizophrenia symptoms through the antagonism of dopamine D2 receptors, which are abundant mainly in subcortical regions. By introducing functional gradient, a novel approach to identify hierarchy alterations by capturing the similarity of whole brain fucntional connectivity (FC) profiles between two voxels, the present study aimed to characterize how the subcortical gradient is associated with treatment effects and response in first-episode schizophrenia in vivo. Two independent samples of first-episode schizophrenia (FES) patients with matched healthy controls (HC) were obtained: the discovery dataset included 71 patients (FES0W) and 64 HC at baseline, and patients were re-scanned after either 6 weeks (FES6W, N = 33) or 12 months (FES12M, N = 57) of antipsychotic treatment, of which 19 patients finished both 6-week and 12-month evaluation. The validation dataset included 22 patients and 24 HC at baseline and patients were re-scanned after 6 weeks. Gradient metrics were calculated using BrainSpace Toolbox. Voxel-based gradient values were generated and group-averaged gradient values were further extracted across all voxels (global), three systems (thalamus, limbic and striatum) and their subcortical subfields. The comparisons were conducted separately between FES0W and HC for investigating illness effects, and between FES6W/FES12M and FES0W for treatment effects. Correlational analyses were then conducted between the longitudinal gradient alterations and the improvement of clinical ratings. Before treatment, schizophrenia patients exhibited an expanded range of global gradient scores compared to HC which indicated functional segregation within subcortical systems. The increased gradient in limbic system and decreased gradient in thalamic and striatal system contributed to the baseline abnormalities and led to the disruption of the subcortical functional integration. After treatment, these disruptions were normalized and the longitudinal changes of gradient scores in limbic system were significantly associated with symptom improvement. Similar illness and treatment effects were also observed in the validation dataset. By measuring functional hierarchy of subcortical organization, our findings provide a novel imaging marker that is sensitive to treatment effects and may make a promising indicator of treatment response in schizophrenia.
Collapse
Affiliation(s)
- Chengmin Yang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Wenjing Zhang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Jiajun Liu
- College of Electronic Engineering, Chengdu University of Information Technology, Chengdu, China
| | - Li Yao
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Rebekka Lencer
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Zhipeng Yang
- College of Electronic Engineering, Chengdu University of Information Technology, Chengdu, China.
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
29
|
Nenning KH, Xu T, Franco AR, Swallow K, Tambini A, Margulies DS, Smallwood J, Colcombe SJ, Milham MP. Omnipresence of the sensorimotor-association axis topography in the human connectome. Neuroimage 2023; 272:120059. [PMID: 37001835 DOI: 10.1016/j.neuroimage.2023.120059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/04/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Low-dimensional representations are increasingly used to study meaningful organizational principles within the human brain. Most notably, the sensorimotor-association axis consistently explains the most variance in the human connectome as its so-called principal gradient, suggesting that it represents a fundamental organizational principle. While recent work indicates these low dimensional representations are relatively robust, they are limited by modeling only certain aspects of the functional connectivity structure. To date, the majority of studies have restricted these approaches to the strongest connections in the brain, treating weaker or negative connections as noise despite evidence of meaningful structure among them. The present work examines connectivity gradients of the human connectome across a full range of connectivity strengths and explores the implications for outcomes of individual differences, identifying potential dependencies on thresholds and opportunities to improve prediction tasks. Interestingly, the sensorimotor-association axis emerged as the principal gradient of the human connectome across the entire range of connectivity levels. Moreover, the principal gradient of connections at intermediate strengths encoded individual differences, better followed individual-specific anatomical features, and was also more predictive of intelligence. Taken together, our results add to evidence of the sensorimotor-association axis as a fundamental principle of the brain's functional organization, since it is evident even in the connectivity structure of more lenient connectivity thresholds. These more loosely coupled connections further appear to contain valuable and potentially important information that could be used to improve our understanding of individual differences, diagnosis, and the prediction of treatment outcomes.
Collapse
|
30
|
Li J, Keller SS, Seidlitz J, Chen H, Li B, Weng Y, Meng Y, Yang S, Xu Q, Zhang Q, Yang F, Lu G, Bernhardt BC, Zhang Z, Liao W. Cortical morphometric vulnerability to generalised epilepsy reflects chromosome- and cell type-specific transcriptomic signatures. Neuropathol Appl Neurobiol 2023; 49:e12857. [PMID: 36278258 DOI: 10.1111/nan.12857] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022]
Abstract
AIMS Generalised epilepsy is thought to involve distributed brain networks. However, the molecular and cellular factors that render different brain regions more vulnerable to epileptogenesis remain largely unknown. We aimed to investigate epilepsy-related morphometric similarity network (MSN) abnormalities at the macroscale level and their relationships with microscale gene expressions at the microscale level. METHODS We compared the MSN of genetic generalised epilepsy with generalised tonic-clonic seizure patients (GGE-GTCS, n = 101) to demographically matched healthy controls (HC, n = 150). Cortical MSNs were estimated by combining seven morphometric features derived from structural magnetic resonance imaging for each individual. Regional gene expression profiles were derived from brain-wide microarray measurements provided by the Allen Human Brain Atlas. RESULTS GGE-GTCS patients exhibited decreased regional MSNs in primary motor, prefrontal and temporal regions and increases in occipital, insular and posterior cingulate cortices, when compared with the HC. These case-control neuroimaging differences were validated using split-half analyses and were not affected by medication or drug response effects. When assessing associations with gene expression, genes associated with GGE-GTCS-related MSN differences were enriched in several biological processes, including 'synapse organisation', 'neurotransmitter transport' pathways and excitatory/inhibitory neuronal cell types. Collectively, the GGE-GTCS-related cortical vulnerabilities were associated with chromosomes 4, 5, 11 and 16 and were dispersed bottom-up at the cellular, pathway and disease levels, which contributed to epileptogenesis, suggesting diverse neurobiologically relevant enrichments in GGE-GTCS. CONCLUSIONS By bridging the gaps between transcriptional signatures and in vivo neuroimaging, we highlighted the importance of using MSN abnormalities of the human brain in GGE-GTCS patients to investigate disease-relevant genes and biological processes.
Collapse
Affiliation(s)
- Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Simon S Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Jakob Seidlitz
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Bing Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,Department of Radiology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yao Meng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Siqi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiang Xu
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Qirui Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Fang Yang
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
31
|
Lucas A, Mouchtaris S, Cornblath EJ, Sinha N, Caciagli L, Hadar P, Gugger JJ, Das S, Stein JM, Davis KA. Subcortical Functional Connectivity Gradients in Temporal Lobe Epilepsy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.08.23284313. [PMID: 36711498 PMCID: PMC9882434 DOI: 10.1101/2023.01.08.23284313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background and Motivation Functional gradients have been used to study differences in connectivity between healthy and diseased brain states, however this work has largely focused on the cortex. Because the subcortex plays a key role in seizure initiation in temporal lobe epilepsy (TLE), subcortical functional-connectivity gradients may help further elucidate differences between healthy brains and TLE, as well as differences between left (L)-TLE and right (R)-TLE. Methods In this work, we calculated subcortical functional-connectivity gradients (SFGs) from resting-state functional MRI (rs-fMRI) by measuring the similarity in connectivity profiles of subcortical voxels to cortical gray matter voxels. We performed this analysis in 23 R-TLE patients and 32 L-TLE patients (who were otherwise matched for age, gender, disease specific characteristics, and other clinical variables), and 16 controls. To measure differences in SFGs between L-TLE and R-TLE, we quantified deviations in the average functional gradient distributions, as well as their variance, across subcortical structures. Results We found an expansion, measured by increased variance, in the principal SFG of TLE relative to controls. When comparing the gradient across subcortical structures between L-TLE and R-TLE, we found that abnormalities in the ipsilateral hippocampal gradient distributions were significantly different between L-TLE and R-TLE. Conclusion Our results suggest that expansion of the SFG is characteristic of TLE. Subcortical functional gradient differences exist between left and right TLE and are driven by connectivity changes in the hippocampus ipsilateral to the seizure onset zone.
Collapse
Affiliation(s)
- Alfredo Lucas
- Perelman School of Medicine, University of Pennsylvania
- Department of Bioengineering, University of Pennsylvania
| | | | | | | | | | - Peter Hadar
- Department of Neurology, Massachusetts General Hospital
| | | | | | - Joel M Stein
- Department of Radiology, University of Pennsylvania
| | - Kathryn A Davis
- Perelman School of Medicine, University of Pennsylvania
- Department of Bioengineering, University of Pennsylvania
- Department of Neurology, University of Pennsylvania
- Department of Neurology, Massachusetts General Hospital
- Department of Radiology, University of Pennsylvania
| |
Collapse
|
32
|
Huang Z, Mashour GA, Hudetz AG. Functional geometry of the cortex encodes dimensions of consciousness. Nat Commun 2023; 14:72. [PMID: 36604428 PMCID: PMC9814511 DOI: 10.1038/s41467-022-35764-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Consciousness is a multidimensional phenomenon, but key dimensions such as awareness and wakefulness have been described conceptually rather than neurobiologically. We hypothesize that dimensions of consciousness are encoded in multiple neurofunctional dimensions of the brain. We analyze cortical gradients, which are continua of the brain's overarching functional geometry, to characterize these neurofunctional dimensions. We demonstrate that disruptions of human consciousness - due to pharmacological, neuropathological, or psychiatric causes - are associated with a degradation of one or more of the major cortical gradients depending on the state. Network-specific reconfigurations within the multidimensional cortical gradient space are associated with behavioral unresponsiveness of various etiologies, and these spatial reconfigurations correlate with a temporal disruption of structured transitions of dynamic brain states. In this work, we therefore provide a unifying neurofunctional framework for multiple dimensions of human consciousness in both health and disease.
Collapse
Affiliation(s)
- Zirui Huang
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA. .,Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - George A Mashour
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.,Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Anthony G Hudetz
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.,Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
33
|
Lin J, You N, Li X, Huang J, Wu H, Lu H, Hu J, Zhang J, Lou X. Atypical functional hierarchy contributed to the tinnitus symptoms in patients with vestibular schwannoma. Front Neurosci 2023; 17:1084270. [PMID: 36875656 PMCID: PMC9982843 DOI: 10.3389/fnins.2023.1084270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/03/2023] [Indexed: 02/22/2023] Open
Abstract
Objective Tinnitus is frequently found in patients with vestibular schwannoma (VS), but its underlying mechanisms are currently unclear. Methods Both preoperative (VS pre ) and postoperative (VS post ) functional MR images were collected from 32 patients with unilateral VS and matched healthy controls (HCs). Connectome gradients were generated for the identification of altered regions and perturbed gradient distances. Tinnitus measurements were conducted for predictive analysis with neuroimaging-genetic integration analysis. Results There were 56.25% of preoperative patients and 65.63% of postoperative patients suffering from ipsilateral tinnitus, respectively. No relevant factors were identified including basic demographics info, hearing performances, tumor features, and surgical approaches. Functional gradient analysis confirmed atypical functional features of visual areas in VS pre were rescued after tumor resection, while the gradient performance in the postcentral gyrus continues to maintain (VS post vs. HC : P = 0.016). The gradient features of the postcentral gyrus were not only significantly decreased in patients with tinnitus (P FDR = 0.022), but also significantly correlated with tinnitus handicap inventory (THI) score (r = -0.30, P = 0.013), THI level (r = -0.31, P = 0.010), and visual analog scale (VAS) rating (r = -0.31, P = 0.0093), which could be used to predict VAS rating in the linear model. Neuropathophysiological features linked to the tinnitus gradient framework were linked to Ribosome dysfunction and oxidative phosphorylation. Conclusion Altered functional plasticity in the central nervous system is involved in the maintenance of VS tinnitus.
Collapse
Affiliation(s)
- Jiaji Lin
- Department of Radiology, Chinese People's Liberation Army General Hospital/Medical School of Chinese People's Liberation Army, Beijing, China
| | - Na You
- Department of Neurosurgery, Chinese People's Liberation Army General Hospital/Medical School of Chinese People's Liberation Army, Beijing, China
| | - Xiaolong Li
- Department of Radiology, Chinese People's Liberation Army General Hospital/Medical School of Chinese People's Liberation Army, Beijing, China
| | - Jiayu Huang
- Department of Radiology, Chinese People's Liberation Army General Hospital/Medical School of Chinese People's Liberation Army, Beijing, China
| | - Haoyang Wu
- Basic Medicine School, Air Force Military Medical University, Xi'an, China
| | - Haoxuan Lu
- Department of Radiology, Chinese People's Liberation Army General Hospital/Medical School of Chinese People's Liberation Army, Beijing, China
| | - Jianxing Hu
- Department of Radiology, Chinese People's Liberation Army General Hospital/Medical School of Chinese People's Liberation Army, Beijing, China
| | - Jun Zhang
- Department of Neurosurgery, Chinese People's Liberation Army General Hospital/Medical School of Chinese People's Liberation Army, Beijing, China
| | - Xin Lou
- Department of Radiology, Chinese People's Liberation Army General Hospital/Medical School of Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
34
|
Chen Z, Fan B, Pang L, Wei M, Lv C, Zheng J. Longitudinal alterations of cortical structural-functional coupling in temporal lobe epilepsy. J Neuroimaging 2023; 33:156-166. [PMID: 36085558 DOI: 10.1111/jon.13046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND AND PURPOSE To investigate the longitudinal alterations of cortical structural-functional coupling (SF coupling) in patients with temporal lobe epilepsy (TLE) over a 2-year follow-up, thereby exploring the neuropathophysiological mechanisms of TLE. METHODS Twenty-eight TLE patients and 42 age- and gender-matched healthy controls (HCs) were recruited. We used resting-state functional MRI and diffusion-weighted imaging to estimate and compare SF coupling at the multiscale network level (whole-brain, modular, and regional levels). Then, we analyzed the relationships between the spatial patterns of SF coupling, the principal functional connectivity (FC) gradient, and the functional participation coefficient (PC). Finally, we related regional SF coupling changes between baseline and follow-up to the expression of regional TLE-specific genes. RESULTS Compared with HCs, TLE patients showed higher baseline SF couplings within the whole-brain, limbic, and default-mode modules. SF couplings within visual and dorsal attention modules were increased at follow-up compared to baseline. In all three groups, the spatial patterns of SF coupling aligned with the principal FC gradient and the functional PC. The longitudinal change in regional SF coupling in TLE patients was significantly positively correlated with the expression of the CUX2 gene. CONCLUSIONS Aberrant SF coupling was revealed in TLE and related to macroscale cortical hierarchies, functional segregation, and TLE-specific gene expression; these data help increase our understanding of the neuropathophysiological mechanisms underlying TLE.
Collapse
Affiliation(s)
- Zexiang Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Binglin Fan
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Linlin Pang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Minda Wei
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Caitiao Lv
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinou Zheng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
35
|
He X, Caciagli L, Parkes L, Stiso J, Karrer TM, Kim JZ, Lu Z, Menara T, Pasqualetti F, Sperling MR, Tracy JI, Bassett DS. Uncovering the biological basis of control energy: Structural and metabolic correlates of energy inefficiency in temporal lobe epilepsy. SCIENCE ADVANCES 2022; 8:eabn2293. [PMID: 36351015 PMCID: PMC9645718 DOI: 10.1126/sciadv.abn2293] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 09/22/2022] [Indexed: 05/11/2023]
Abstract
Network control theory is increasingly used to profile the brain's energy landscape via simulations of neural dynamics. This approach estimates the control energy required to simulate the activation of brain circuits based on structural connectome measured using diffusion magnetic resonance imaging, thereby quantifying those circuits' energetic efficiency. The biological basis of control energy, however, remains unknown, hampering its further application. To fill this gap, investigating temporal lobe epilepsy as a lesion model, we show that patients require higher control energy to activate the limbic network than healthy volunteers, especially ipsilateral to the seizure focus. The energetic imbalance between ipsilateral and contralateral temporolimbic regions is tracked by asymmetric patterns of glucose metabolism measured using positron emission tomography, which, in turn, may be selectively explained by asymmetric gray matter loss as evidenced in the hippocampus. Our investigation provides the first theoretical framework unifying gray matter integrity, metabolism, and energetic generation of neural dynamics.
Collapse
Affiliation(s)
- Xiaosong He
- Department of Psychology, School of Humanities and Social Sciences, University of Science and Technology of China, Hefei, Anhui, China
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- UCL Queen Square Institute of Neurology, Queen Square, London, UK
- MRI Unit, Epilepsy Society, Chesham Lane, Chalfont St Peter, Buckinghamshire, UK
| | - Linden Parkes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer Stiso
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Teresa M. Karrer
- Personalized Health Care, Product Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jason Z. Kim
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhixin Lu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Tommaso Menara
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, San Diego, CA, USA
| | - Fabio Pasqualetti
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, USA
| | | | - Joseph I. Tracy
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Dani S. Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Electrical and Systems Engineering, Physics and Astronomy, Psychiatry, and Neurology, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
36
|
Meng Y, Yang S, Xiao J, Lu Y, Li J, Chen H, Liao W. Cortical gradient of a human functional similarity network captured by the geometry of cytoarchitectonic organization. Commun Biol 2022; 5:1152. [PMID: 36310240 PMCID: PMC9618576 DOI: 10.1038/s42003-022-04148-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
Mapping the functional topology from a multifaceted perspective and relating it to underlying cross-scale structural principles is crucial for understanding the structural-functional relationships of the cerebral cortex. Previous works have described a sensory-association gradient axis in terms of coupling relationships between structure and function, but largely based on single specific feature, and the mesoscopic underpinnings are rarely determined. Here we show a gradient pattern encoded in a functional similarity network based on data from Human Connectome Project and further link it to cytoarchitectonic organizing principles. The spatial distribution of the primary gradient follows an inferior-anterior to superior-posterior axis. The primary gradient demonstrates converging relationships with layer-specific microscopic gene expression and mesoscopic cortical layer thickness, and is captured by the geometric representation of a myelo- and cyto-architecture based laminar differentiation theorem, involving a dual origin theory. Together, these findings provide a gradient, which describes the functional topology, and more importantly, linking the macroscale functional landscape with mesoscale laminar differentiation principles.
Collapse
Affiliation(s)
- Yao Meng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Siqi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Jinming Xiao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Yaxin Lu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| |
Collapse
|
37
|
Multiscale neural gradients reflect transdiagnostic effects of major psychiatric conditions on cortical morphology. Commun Biol 2022; 5:1024. [PMID: 36168040 PMCID: PMC9515219 DOI: 10.1038/s42003-022-03963-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/07/2022] [Indexed: 02/06/2023] Open
Abstract
It is increasingly recognized that multiple psychiatric conditions are underpinned by shared neural pathways, affecting similar brain systems. Here, we carried out a multiscale neural contextualization of shared alterations of cortical morphology across six major psychiatric conditions (autism spectrum disorder, attention deficit/hyperactivity disorder, major depression disorder, obsessive-compulsive disorder, bipolar disorder, and schizophrenia). Our framework cross-referenced shared morphological anomalies with respect to cortical myeloarchitecture and cytoarchitecture, as well as connectome and neurotransmitter organization. Pooling disease-related effects on MRI-based cortical thickness measures across six ENIGMA working groups, including a total of 28,546 participants (12,876 patients and 15,670 controls), we identified a cortex-wide dimension of morphological changes that described a sensory-fugal pattern, with paralimbic regions showing the most consistent alterations across conditions. The shared disease dimension was closely related to cortical gradients of microstructure as well as neurotransmitter axes, specifically cortex-wide variations in serotonin and dopamine. Multiple sensitivity analyses confirmed robustness with respect to slight variations in analytical choices. Our findings embed shared effects of common psychiatric conditions on brain structure in multiple scales of brain organization, and may provide insights into neural mechanisms of transdiagnostic vulnerability.
Collapse
|
38
|
Xiao Y, Wang D, Tan Z, Luo H, Wang Y, Pan C, Lan Z, Kuai C, Xue SW. Charting the dorsal-medial functional gradient of the default mode network in major depressive disorder. J Psychiatr Res 2022; 153:1-10. [PMID: 35792340 DOI: 10.1016/j.jpsychires.2022.06.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
Abstract
Major depressive disorder (MDD) is a common and disabling psychiatric condition associated with aberrant functional activity of the default mode network (DMN). However, it is unclear how the DMN dysfunction in MDD patients is characterized by functional connectivity diversity or gradient and whether antidepressant therapy causes the abnormal functional gradient of the DMN to change toward normalization. In current work, we estimated the functional gradient of the DMN derived from resting state functional magnetic resonance imaging in MDD patients (n = 70) and matching healthy controls (n = 43) and identified MDD-related functional connectivity diversity of the DMN. The longitudinal changes of the DMN functional gradient in 36 MDD patients were assessed before and after 12-week antidepressant treatment. Compared to the healthy controls, the functional gradient of the DMN exhibited relatively relative compression along the dorsal-medial axis in MDD patients at baseline and antidepressant treatment could normalize these DMN gradient abnormalities. A regularized least-squares regression model based on DMN gradient features at baseline significantly predicted the change of Hamilton Depression Rating (HAMD) Scale scores after antidepressant treatment. The medial prefrontal cortex gradient had a more contribution to prediction of antidepressant efficacy. Our findings provided a novel insight into the neurobiological mechanism underlying MDD from the perspective of the DMN functional gradient.
Collapse
Affiliation(s)
- Yang Xiao
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China; Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China
| | - Donglin Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China.
| | - Zhonglin Tan
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Hong Luo
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Yan Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Chenyuan Pan
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China; Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China
| | - Zhihui Lan
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China; Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China
| | - Changxiao Kuai
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China; Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China
| | - Shao-Wei Xue
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China.
| |
Collapse
|
39
|
Li Y, Qin B, Chen Q, Chen J. Altered dynamic functional network connectivity within default mode network of epileptic children with generalized tonic-clonic seizures. Epilepsy Res 2022; 184:106969. [PMID: 35738202 DOI: 10.1016/j.eplepsyres.2022.106969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/13/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Generalized tonic-clonic seizures (GTCS) is a group of epileptic disorders characterized by widespread generalized spike-and-waves discharges along with unresponsiveness and convulsions. Abnormal connectivity in the DMN is the common findings in children with generalized epilepsy. However, the neural mechanisms underlying the altered brain connectivity of DMN in children with GTCS remain unclear. The aim of the current study was to explore the temporal properties of functional connectivity states by dynamic functional connectivity (dFC) within the DMN of GTCS children. METHODS We collected resting-state functional MRI data from 22 GTCS children and 29 age-matched healthy controls. Sliding window approach and k-mean clustering analysis were applied to analyze the dFC and identify transient states of the DMN. Furthermore, the relationship between the dynamic properties and clinical features was assessed. RESULTS The dFC analyses identified two reoccurring states: a more frequent and weak connected state (State 1) and a less frequent and strong connected state (State 2). Relative to the normal control, GTCS children spent more time in State 1 showing weak connections and spent less time in State 2 showing strong connections. Dynamic functional network connectivity strength within the DMN showed both increase and decrease in patient group. In addition, the changes of dynamic metric were found to be correlated with epilepsy duration. SIGNIFICANT Our findings imply abnormal interactions and the state dynamics in DMN of the children with GTCS. These disruptions of temporal dynamic in DMN may provide significance for understanding the neural mechanism underlying the GTCS in children and suggest that dFC method can be considered as a valuable tool in children with epilepsy.
Collapse
Affiliation(s)
- Yongxin Li
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Bing Qin
- Epilepsy Center and Department of Neurosurgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Qian Chen
- Department of Pediatric Neurosurgery, Shenzhen Children's Hospital, Shenzhen, China
| | - Jiaxu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
40
|
Wang X, Zhang R, Chen Z, Zhou F, Feng T. Neural basis underlying the relation between boredom proneness and procrastination: The role of functional coupling between precuneus/cuneus and posterior cingulate cortex. Neuropsychologia 2021; 161:107994. [PMID: 34416237 DOI: 10.1016/j.neuropsychologia.2021.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
Procrastination refers to voluntarily delaying an important task despite the fact that this decision will take a heavy toll on daily life. Previous researches have shown that boredom proneness is a robust predictor of procrastination and the default mode network (DMN) could be the neural substrate for the connection between the two variables mentioned above. However, how boredom proneness links to procrastination at the neural level remains unclear. To address this question, we adopted the voxel-based morphometry (VBM) and resting-state functional connectivity (RSFC) methods to identify the neural basis of the relation between boredom proneness and procrastination. Behavioral results indicated that boredom proneness was significantly positively correlated with procrastination. VBM results revealed that boredom proneness was negatively correlated with grey matter volumes in the precuneus/cuneus. Furthermore, the RSFC analyses showed that the functional connectivity between precuneus/cuneus and posterior cingulate cortex (PCC) was positively correlated with boredom proneness. More importantly, a mediation analysis found that boredom proneness played a fully mediating role in improving the relationship between precuneus/cuneus-PCC functional connectivity and procrastination. These findings suggest that the brain functional connectivity engages in attention control may account for the association between boredom proneness and procrastination, and highlight the important role of sustaining concentration on mitigating procrastination.
Collapse
Affiliation(s)
- Xu Wang
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Rong Zhang
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Zhiyi Chen
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Feng Zhou
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Tingyong Feng
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Ministry of Education, China.
| |
Collapse
|
41
|
Yang S, Wagstyl K, Meng Y, Zhao X, Li J, Zhong P, Li B, Fan YS, Chen H, Liao W. Cortical patterning of morphometric similarity gradient reveals diverged hierarchical organization in sensory-motor cortices. Cell Rep 2021; 36:109582. [PMID: 34433023 DOI: 10.1016/j.celrep.2021.109582] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/28/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022] Open
Abstract
The topological organization of the cerebral cortex provides hierarchical axes, namely gradients, which reveal systematic variations of brain structure and function. However, the hierarchical organization of macroscopic brain morphology and how it constrains cortical function along the organizing axes remains unclear. We map the gradient of cortical morphometric similarity (MS) connectome, combining multiple features conceptualized as a "fingerprint" of an individual's brain. The principal MS gradient is anchored by motor and sensory cortices at two extreme ends, which are reliable and reproducible. Notably, divergences between motor and sensory hierarchies are consistent with the laminar histological thickness gradient but contrary to the canonical functional connectivity (FC) gradient. Moreover, the MS dissociates with FC gradients in the higher-order association cortices. The MS gradient recapitulates fundamental properties of cortical organization, from gene expression and cyto- and myeloarchitecture to evolutionary expansion. Collectively, our findings provide a heuristic hierarchical organization of cortical morphological neuromarkers.
Collapse
Affiliation(s)
- Siqi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China
| | - Konrad Wagstyl
- Wellcome Trust Centre for Neuroimaging, University College London, London, UK
| | - Yao Meng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China
| | - Xiaopeng Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China
| | - Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China
| | - Peng Zhong
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China
| | - Bing Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China
| | - Yun-Shuang Fan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China.
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China.
| |
Collapse
|