1
|
Tang T, Samaha J, Peters MAK. Behavioral and neural measures of confidence using a novel auditory pitch identification task. PLoS One 2024; 19:e0299784. [PMID: 38950011 PMCID: PMC11216601 DOI: 10.1371/journal.pone.0299784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/16/2024] [Indexed: 07/03/2024] Open
Abstract
Observers can discriminate between correct versus incorrect perceptual decisions with feelings of confidence. The centro-parietal positivity build-up rate (CPP slope) has been suggested as a likely neural signature of accumulated evidence, which may guide both perceptual performance and confidence. However, CPP slope also covaries with reaction time, which also covaries with confidence in previous studies, and performance and confidence typically covary; thus, CPP slope may index signatures of perceptual performance rather than confidence per se. Moreover, perceptual metacognition-including neural correlates-has largely been studied in vision, with few exceptions. Thus, we lack understanding of domain-general neural signatures of perceptual metacognition outside vision. Here we designed a novel auditory pitch identification task and collected behavior with simultaneous 32-channel EEG in healthy adults. Participants saw two tone labels which varied in tonal distance on each trial (e.g., C vs D, C vs F), then heard a single auditory tone; they identified which label was correct and rated confidence. We found that pitch identification confidence varied with tonal distance, but performance, metacognitive sensitivity (trial-by-trial covariation of confidence with accuracy), and reaction time did not. Interestingly, however, while CPP slope covaried with performance and reaction time, it did not significantly covary with confidence. We interpret these results to mean that CPP slope is likely a signature of first-order perceptual processing and not confidence-specific signals or computations in auditory tasks. Our novel pitch identification task offers a valuable method to examine the neural correlates of auditory and domain-general perceptual confidence.
Collapse
Affiliation(s)
- Tamara Tang
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States of America
| | - Jason Samaha
- Department of Psychology, University of California, Santa Cruz, Santa Cruz, CA, United States of America
| | - Megan A. K. Peters
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States of America
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, United States of America
- Program in Brain, Mind, & Consciousness, Canadian Institute for Advanced Research, Toronto, Canada
| |
Collapse
|
2
|
Dominik T, Mele A, Schurger A, Maoz U. Libet's legacy: A primer to the neuroscience of volition. Neurosci Biobehav Rev 2024; 157:105503. [PMID: 38072144 DOI: 10.1016/j.neubiorev.2023.105503] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
The neuroscience of volition is an emerging subfield of the brain sciences, with hundreds of papers on the role of consciousness in action formation published each year. This makes the state-of-the-art in the discipline poorly accessible to newcomers and difficult to follow even for experts in the field. Here we provide a comprehensive summary of research in this field since its inception that will be useful to both groups. We also discuss important ideas that have received little coverage in the literature so far. We systematically reviewed a set of 2220 publications, with detailed consideration of almost 500 of the most relevant papers. We provide a thorough introduction to the seminal work of Benjamin Libet from the 1960s to 1980s. We also discuss common criticisms of Libet's method, including temporal introspection, the interpretation of the assumed physiological correlates of volition, and various conceptual issues. We conclude with recent advances and potential future directions in the field, highlighting modern methodological approaches to volition, as well as important recent findings.
Collapse
Affiliation(s)
| | - Alfred Mele
- Department of Philosophy, Florida State University, FL, USA
| | | | - Uri Maoz
- Brain Institute, Chapman University, CA, USA
| |
Collapse
|
3
|
Nakuci J, Samaha J, Rahnev D. Brain signatures indexing variation in internal processing during perceptual decision-making. iScience 2023; 26:107750. [PMID: 37727738 PMCID: PMC10505979 DOI: 10.1016/j.isci.2023.107750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/29/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023] Open
Abstract
Brain activity is highly variable during a task. Discovering, characterizing, and linking variability in brain activity to internal processes has primarily relied on experimental manipulations. However, changes in internal processing could arise from many factors independent of experimental conditions. Here we utilize a data-driven clustering method based on modularity-maximation to identify consistent spatial-temporal EEG activity patterns across individual trials. Subjects (N = 25) performed a motion discrimination task with six interleaved levels of coherence. Clustering identified two discrete subtypes of trials with different patterns of activity. Surprisingly, Subtype 1 occurred more frequently in trials with lower motion coherence but was associated with faster response times. Computational modeling suggests that Subtype 1 was characterized by a lower threshold for reaching a decision. These results highlight across-trial variability in decision processes traditionally hidden to experimenters and provide a method for identifying endogenous brain state variability relevant to cognition and behavior.
Collapse
Affiliation(s)
- Johan Nakuci
- School of Psychology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jason Samaha
- Department of Psychology, The University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Dobromir Rahnev
- School of Psychology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
4
|
Delnatte C, Roze E, Pouget P, Galléa C, Welniarz Q. Can neuroscience enlighten the philosophical debate about free will? Neuropsychologia 2023; 188:108632. [PMID: 37385373 DOI: 10.1016/j.neuropsychologia.2023.108632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Free will has been at the heart of philosophical and scientific discussions for many years. However, recent advances in neuroscience have been perceived as a threat to the commonsense notion of free will as they challenge two core requirements for actions to be free. The first is the notion of determinism and free will, i.e., decisions and actions must not be entirely determined by antecedent causes. The second is the notion of mental causation, i.e., our mental state must have causal effects in the physical world, in other words, actions are caused by conscious intention. We present the classical philosophical positions related to determinism and mental causation, and discuss how neuroscience could shed a new light on the philosophical debate based on recent experimental findings. Overall, we conclude that the current evidence is insufficient to undermine free will.
Collapse
Affiliation(s)
| | - Emmanuel Roze
- Sorbonne Université, Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Paris Brain Institute Institut du Cerveau, F-75013, Paris, France; Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Neurologie, Paris, France
| | - Pierre Pouget
- Sorbonne Université, Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Paris Brain Institute Institut du Cerveau, F-75013, Paris, France
| | - Cécile Galléa
- Sorbonne Université, Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Paris Brain Institute Institut du Cerveau, F-75013, Paris, France
| | - Quentin Welniarz
- Sorbonne Université, Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Paris Brain Institute Institut du Cerveau, F-75013, Paris, France.
| |
Collapse
|
5
|
Lavazza A, Inglese S. The physiology of free will. J Physiol 2023; 601:3977-3982. [PMID: 37556507 DOI: 10.1113/jp284398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023] Open
Affiliation(s)
- Andrea Lavazza
- Centro Universitario Internazionale, Arezzo, Italy
- University of Pavia, Italy
| | - Silvia Inglese
- Fondazione Irccs Ca' Granda Ospedale Maggiore Policlinico, Geriatric Unit, Milan, Italy
| |
Collapse
|
6
|
Nakuci J, Samaha J, Rahnev D. Brain signatures indexing variation in internal processing during perceptual decision-making. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523502. [PMID: 36711566 PMCID: PMC9882071 DOI: 10.1101/2023.01.10.523502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Brain activity is highly variable even while performing the same cognitive task with consequences for performance. Discovering, characterizing, and linking variability in brain activity to internal processes has primarily relied on experimentally inducing changes (e.g., via attention manipulation) to identify neuronal and behavioral consequences or studying spontaneous changes in ongoing brain dynamics. However, changes in internal processing could arise from many factors, such as variation in strategy or arousal, that are independent of experimental conditions. Here we utilize a data-driven clustering method based on modularity-maximation to identify consistent spatial-temporal EEG activity patterns across individual trials and relate this activity to behavioral performance. Subjects (N = 25) performed a motion direction discrimination task with six interleaved levels of motion coherence. Modularity-maximization based clustering identified two discrete spatial-temporal clusters, or subtypes, of trials with different patterns of brain activity. Surprisingly, even though Subtype 1 occurred more frequently with lower motion coherence, it was nonetheless associated with faster response times. Computational modeling suggests that Subtype 1 was characterized by a lower threshold for reaching a decision. These results highlight trial-to-trial variability in decision processes usually masked to experimenters and provide a method for identifying endogenous brain state variability relevant to cognition and behavior.
Collapse
|
7
|
Snowden AW, Hancock AS, Buhusi CV, Warren CM. Event-related Correlates of Evolving Trust Evaluations. Soc Neurosci 2022; 17:154-169. [DOI: 10.1080/17470919.2022.2043935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|