1
|
Khalaf A, Lopez E, Li J, Horn A, Edlow BL, Blumenfeld H. Shared subcortical arousal systems across sensory modalities during transient modulation of attention. Neuroimage 2025; 312:121224. [PMID: 40250641 DOI: 10.1016/j.neuroimage.2025.121224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025] Open
Abstract
Subcortical arousal systems are known to play a key role in controlling sustained changes in attention and conscious awareness. Recent studies indicate that these systems have a major influence on short-term dynamic modulation of visual attention, but their role across sensory modalities is not fully understood. In this study, we investigated shared subcortical arousal systems across sensory modalities during transient changes in attention using block and event-related fMRI paradigms. We analyzed massive publicly available fMRI datasets collected while 1561 participants performed visual, auditory, tactile, and taste perception tasks. Our analyses revealed a shared circuit of subcortical arousal systems exhibiting early transient increases in activity in midbrain reticular formation and central thalamus across perceptual modalities, as well as less consistent increases in pons, hypothalamus, basal forebrain, and basal ganglia. Identifying these networks is critical for understanding mechanisms of normal attention and consciousness and may help facilitate subcortical targeting for therapeutic neuromodulation.
Collapse
Affiliation(s)
- Aya Khalaf
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Erick Lopez
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Jian Li
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Andreas Horn
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Center for Brain Circuit Therapeutics, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Movement Disorders & Neuromodulation Section, Department of Neurology, Charité - Universitätsmedizin, Berlin, Germany
| | - Brian L Edlow
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Hal Blumenfeld
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Ferrante O, Gorska-Klimowska U, Henin S, Hirschhorn R, Khalaf A, Lepauvre A, Liu L, Richter D, Vidal Y, Bonacchi N, Brown T, Sripad P, Armendariz M, Bendtz K, Ghafari T, Hetenyi D, Jeschke J, Kozma C, Mazumder DR, Montenegro S, Seedat A, Sharafeldin A, Yang S, Baillet S, Chalmers DJ, Cichy RM, Fallon F, Panagiotaropoulos TI, Blumenfeld H, de Lange FP, Devore S, Jensen O, Kreiman G, Luo H, Boly M, Dehaene S, Koch C, Tononi G, Pitts M, Mudrik L, Melloni L. Adversarial testing of global neuronal workspace and integrated information theories of consciousness. Nature 2025:10.1038/s41586-025-08888-1. [PMID: 40307561 DOI: 10.1038/s41586-025-08888-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 03/11/2025] [Indexed: 05/02/2025]
Abstract
Different theories explain how subjective experience arises from brain activity1,2. These theories have independently accrued evidence, but have not been directly compared3. Here we present an open science adversarial collaboration directly juxtaposing integrated information theory (IIT)4,5 and global neuronal workspace theory (GNWT)6-10 via a theory-neutral consortium11-13. The theory proponents and the consortium developed and preregistered the experimental design, divergent predictions, expected outcomes and interpretation thereof12. Human participants (n = 256) viewed suprathreshold stimuli for variable durations while neural activity was measured with functional magnetic resonance imaging, magnetoencephalography and intracranial electroencephalography. We found information about conscious content in visual, ventrotemporal and inferior frontal cortex, with sustained responses in occipital and lateral temporal cortex reflecting stimulus duration, and content-specific synchronization between frontal and early visual areas. These results align with some predictions of IIT and GNWT, while substantially challenging key tenets of both theories. For IIT, a lack of sustained synchronization within the posterior cortex contradicts the claim that network connectivity specifies consciousness. GNWT is challenged by the general lack of ignition at stimulus offset and limited representation of certain conscious dimensions in the prefrontal cortex. These challenges extend to other theories of consciousness that share some of the predictions tested here14-17. Beyond challenging the theories, we present an alternative approach to advance cognitive neuroscience through principled, theory-driven, collaborative research and highlight the need for a quantitative framework for systematic theory testing and building.
Collapse
Affiliation(s)
- Oscar Ferrante
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | | | - Simon Henin
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Rony Hirschhorn
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Aya Khalaf
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Alex Lepauvre
- Neural Circuits, Consciousness and Cognition Research Group, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Ling Liu
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- Cognitive Science and Allied Health School, Beijing Language and Culture University, Beijing, China
- Speech and Hearing Impairment and Brain Computer Interface LAB, Beijing Language and Culture University, Beijing, China
| | - David Richter
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Yamil Vidal
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Niccolò Bonacchi
- William James Center for Research, ISPA - Instituto Universitário, Lisbon, Portugal
- Champalimaud Research, Lisbon, Portugal
| | - Tanya Brown
- Neural Circuits, Consciousness and Cognition Research Group, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
| | - Praveen Sripad
- Neural Circuits, Consciousness and Cognition Research Group, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
| | - Marcelo Armendariz
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Brains, Minds and Machines, Cambridge, MA, USA
| | - Katarina Bendtz
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Brains, Minds and Machines, Cambridge, MA, USA
| | - Tara Ghafari
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
- Wellcome Centre for Integrative Neuroscience, Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Dorottya Hetenyi
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
- Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jay Jeschke
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Csaba Kozma
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
- CNNP Lab, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - David R Mazumder
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephanie Montenegro
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Alia Seedat
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Shujun Yang
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - David J Chalmers
- Department of Philosophy, New York University, New York, NY, USA
| | - Radoslaw M Cichy
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Faculty of Philosophy, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Francis Fallon
- Philosophy Department, Psychology Department, St John's University, Queens, NY, USA
| | - Theofanis I Panagiotaropoulos
- Department of Psychology, National and Kapodistrian University of Athens, Athens, Greece
- Centre for Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Hal Blumenfeld
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Floris P de Lange
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Sasha Devore
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ole Jensen
- Wellcome Centre for Integrative Neuroscience, Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Gabriel Kreiman
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Brains, Minds and Machines, Cambridge, MA, USA
| | - Huan Luo
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, China
| | - Melanie Boly
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, Commissariat à l'Energie Atomique (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
- Collège de France, Université Paris-Sciences-Lettres (PSL), Paris, France
| | - Christof Koch
- Allen Institute, Seattle, WA, USA
- Tiny Blue Dot Foundation, Santa Monica, CA, USA
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael Pitts
- Psychology Department, Reed College, Portland, OR, USA
| | - Liad Mudrik
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Lucia Melloni
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA.
- Neural Circuits, Consciousness and Cognition Research Group, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany.
- Predictive Brain Department, Research Center One Health Ruhr, University Alliance Ruhr, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
3
|
Christison-Lagay KL, Khalaf A, Freedman NC, Micek C, Kronemer SI, Gusso MM, Kim L, Forman S, Ding J, Aksen M, Abdel-Aty A, Kwon H, Markowitz N, Yeagle E, Espinal E, Herrero J, Bickel S, Young J, Mehta A, Wu K, Gerrard J, Damisah E, Spencer D, Blumenfeld H. The neural activity of auditory conscious perception. Neuroimage 2025; 308:121041. [PMID: 39832539 PMCID: PMC12020874 DOI: 10.1016/j.neuroimage.2025.121041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025] Open
Abstract
Although recent work has made headway in understanding the neural temporospatial dynamics of conscious perception, much of that work has focused on visual paradigms. To determine whether there are shared mechanisms for perceptual consciousness across sensory modalities, here we test within the auditory domain. Participants completed an auditory threshold task while undergoing intracranial electroencephalography. Recordings from >2,800 grey matter electrodes were analyzed for broadband gamma power (a range which reflects local neural activity). For perceived trials, we find nearly simultaneous activity in early auditory regions, the right caudal middle frontal gyrus, and the non-auditory thalamus; followed by a wave of activity that sweeps through auditory association regions into parietal and frontal cortices. For not perceived trials, significant activity is restricted to early auditory regions. These findings show the cortical and subcortical networks involved in auditory perception are similar to those observed with vision, suggesting shared mechanisms for conscious perception.
Collapse
Affiliation(s)
| | - Aya Khalaf
- Department of Neurology, Yale University, New Haven, CT 06520, USA
| | - Noah C Freedman
- Department of Neurology, Yale University, New Haven, CT 06520, USA
| | | | - Sharif I Kronemer
- Department of Neurology, Yale University, New Haven, CT 06520, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| | - Mariana M Gusso
- Department of Neurology, Yale University, New Haven, CT 06520, USA
| | - Lauren Kim
- Department of Neurology, Yale University, New Haven, CT 06520, USA
| | - Sarit Forman
- Department of Neurology, Yale University, New Haven, CT 06520, USA
| | - Julia Ding
- Department of Neurology, Yale University, New Haven, CT 06520, USA
| | - Mark Aksen
- Department of Neurology, Yale University, New Haven, CT 06520, USA
| | - Ahmad Abdel-Aty
- Department of Neurology, Yale University, New Haven, CT 06520, USA
| | - Hunki Kwon
- Department of Neurology, Yale University, New Haven, CT 06520, USA
| | - Noah Markowitz
- Feinstein Institute for Medical Research, Hofstra Northwell Sch. of Med., Manhasset, NY 11030, USA
| | - Erin Yeagle
- Feinstein Institute for Medical Research, Hofstra Northwell Sch. of Med., Manhasset, NY 11030, USA
| | - Elizabeth Espinal
- Feinstein Institute for Medical Research, Hofstra Northwell Sch. of Med., Manhasset, NY 11030, USA
| | - Jose Herrero
- Feinstein Institute for Medical Research, Hofstra Northwell Sch. of Med., Manhasset, NY 11030, USA
| | - Stephan Bickel
- Department of Neurology, Hofstra Northwell School of Medicine, Manhasset, NY 11030, USA; Department of Neurosurgery, Hofstra Northwell School of Medicine, Manhasset, NY 11030, USA
| | - James Young
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ashesh Mehta
- Department of Neurosurgery, Hofstra Northwell School of Medicine, Manhasset, NY 11030, USA
| | - Kun Wu
- Department of Neurosurgery, Yale University, New Haven CT 06520, USA
| | - Jason Gerrard
- Department of Neurosurgery, Yale University, New Haven CT 06520, USA
| | - Eyiyemisi Damisah
- Department of Neurosurgery, Yale University, New Haven CT 06520, USA
| | - Dennis Spencer
- Department of Neurosurgery, Yale University, New Haven CT 06520, USA
| | - Hal Blumenfeld
- Department of Neurology, Yale University, New Haven, CT 06520, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA; Department of Neurology, Hofstra Northwell School of Medicine, Manhasset, NY 11030, USA; Department of Neuroscience, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
4
|
Sieu LA, Singla S, Liu J, Zheng X, Sharafeldin A, Chandrasekaran G, Valcarce-Aspegren M, Niknahad A, Fu I, Doilicho N, Gummadavelli A, McCafferty C, Crouse RB, Perrenoud Q, Picciotto MR, Cardin JA, Blumenfeld H. Slow and fast cortical cholinergic arousal is reduced in a mouse model of focal seizures with impaired consciousness. Cell Rep 2024; 43:115012. [PMID: 39643969 PMCID: PMC11817788 DOI: 10.1016/j.celrep.2024.115012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/19/2024] [Accepted: 11/08/2024] [Indexed: 12/09/2024] Open
Abstract
Patients with focal temporal lobe seizures often experience loss of consciousness associated with cortical slow waves, like those in deep sleep. Previous work in rat models suggests that decreased subcortical arousal causes depressed cortical function during focal seizures. However, these studies were performed under light anesthesia, making it impossible to correlate conscious behavior with physiology. We show in an awake mouse model that electrically induced focal seizures in the hippocampus cause impaired behavioral responses to auditory stimuli, cortical slow waves, and reduced mean cortical high-frequency activity. Behavioral responses are related to cortical cholinergic release at two different timescales. Slow state-related decreases in acetylcholine correlate with overall impaired behavior during seizures. Fast phasic acetylcholine release is related to variable spared or impaired behavioral responses with each auditory stimulus. These findings establish a strong relationship between decreased cortical arousal and impaired consciousness in focal seizures, which may help guide future treatment.
Collapse
Affiliation(s)
- Lim-Anna Sieu
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shobhit Singla
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jiayang Liu
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xinyuan Zheng
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Ganesh Chandrasekaran
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Ava Niknahad
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ivory Fu
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Natnael Doilicho
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Abhijeet Gummadavelli
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Cian McCafferty
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anatomy and Neuroscience Program, University College Cork, Cork, Ireland
| | - Richard B Crouse
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Quentin Perrenoud
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Marina R Picciotto
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jessica A Cardin
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Hal Blumenfeld
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
5
|
Khalaf A, Lopez E, Li J, Horn A, Edlow BL, Blumenfeld H. Shared subcortical arousal systems across sensory modalities during transient modulation of attention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613316. [PMID: 39345640 PMCID: PMC11429725 DOI: 10.1101/2024.09.16.613316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Subcortical arousal systems are known to play a key role in controlling sustained changes in attention and conscious awareness. Recent studies indicate that these systems have a major influence on short-term dynamic modulation of visual attention, but their role across sensory modalities is not fully understood. In this study, we investigated shared subcortical arousal systems across sensory modalities during transient changes in attention using block and event-related fMRI paradigms. We analyzed massive publicly available fMRI datasets collected while 1,561 participants performed visual, auditory, tactile, and taste perception tasks. Our analyses revealed a shared circuit of subcortical arousal systems exhibiting early transient increases in activity in midbrain reticular formation and central thalamus across perceptual modalities, as well as less consistent increases in pons, hypothalamus, basal forebrain, and basal ganglia. Identifying these networks is critical for understanding mechanisms of normal attention and consciousness and may help facilitate subcortical targeting for therapeutic neuromodulation.
Collapse
Affiliation(s)
- Aya Khalaf
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Erick Lopez
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Jian Li
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Andreas Horn
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Movement Disorders & Neuromodulation Section, Department of Neurology, Charité – Universitätsmedizin, Berlin, Germany
| | - Brian L. Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Hal Blumenfeld
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
6
|
Lan C, Kou J, Liu Q, Qing P, Zhang X, Song X, Xu D, Zhang Y, Chen Y, Zhou X, Kendrick KM, Zhao W. Oral Oxytocin Blurs Sex Differences in Amygdala Responses to Emotional Scenes. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:1028-1038. [PMID: 38852918 DOI: 10.1016/j.bpsc.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Sex differences are shaped both by innate biological differences and the social environment and are frequently observed in human emotional neural responses. Oral administration of oxytocin (OXT), as an alternative and noninvasive intake method, has been shown to produce sex-dependent effects on emotional face processing. However, it is unclear whether oral OXT produces similar sex-dependent effects on processing continuous emotional scenes. METHODS The current randomized, double-blind, placebo-controlled neuropsychopharmacological functional magnetic resonance imaging experiment was conducted in 147 healthy participants (OXT = 74, men/women = 37/37; placebo = 73, men/women = 36/37) to examine the oral OXT effect on plasma OXT concentrations and neural response to emotional scenes in both sexes. RESULTS At the neuroendocrine level, women showed lower endogenous OXT concentrations than men, but oral OXT increased OXT concentrations equally in both sexes. Regarding neural activity, emotional scenes evoked opposite valence-independent effects on right amygdala activation (women > men) and its functional connectivity with the insula (men > women) in men and women in the placebo group. This sex difference was either attenuated (amygdala response) or even completely eliminated (amygdala-insula functional connectivity) in the OXT group. Multivariate pattern analysis confirmed these findings by developing an accurate sex-predictive neural pattern that included the amygdala and the insula under the placebo but not the OXT condition. CONCLUSIONS The results of the current study suggest a pronounced sex difference in neural responses to emotional scenes that was eliminated by oral OXT, with OXT having opposite modulatory effects in men and women. This may reflect oral OXT enhancing emotional regulation to continuous emotional stimuli in both sexes by facilitating appropriate changes in sex-specific amygdala-insula circuitry.
Collapse
Affiliation(s)
- Chunmei Lan
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Juan Kou
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Qi Liu
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng Qing
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaodong Zhang
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinwei Song
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Xu
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yingying Zhang
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Yuanshu Chen
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Xinqi Zhou
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Keith M Kendrick
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Weihua Zhao
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Institute of Electronic and Information Engineering of University of Electronic Science and Technology of China in Guangdong, Dongguan, China.
| |
Collapse
|
7
|
Zaky MH, Shoorangiz R, Poudel GR, Yang L, Innes CRH, Jones RD. Conscious but not thinking-Mind-blanks during visuomotor tracking: An fMRI study of endogenous attention lapses. Hum Brain Mapp 2024; 45:e26781. [PMID: 39023172 PMCID: PMC11256154 DOI: 10.1002/hbm.26781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/14/2024] [Accepted: 06/29/2024] [Indexed: 07/20/2024] Open
Abstract
Attention lapses (ALs) are complete lapses of responsiveness in which performance is briefly but completely disrupted and during which, as opposed to microsleeps, the eyes remain open. Although the phenomenon of ALs has been investigated by behavioural and physiological means, the underlying cause of an AL has largely remained elusive. This study aimed to investigate the underlying physiological substrates of behaviourally identified endogenous ALs during a continuous visuomotor task, primarily to answer the question: Were the ALs during this task due to extreme mind-wandering or mind-blanks? The data from two studies were combined, resulting in data from 40 healthy non-sleep-deprived subjects (20M/20F; mean age 27.1 years, 20-45). Only 17 of the 40 subjects were used in the analysis due to a need for a minimum of two ALs per subject. Subjects performed a random 2-D continuous visuomotor tracking task for 50 and 20 min in Studies 1 and 2, respectively. Tracking performance, eye-video, and functional magnetic resonance imaging (fMRI) were recorded simultaneously. A human expert visually inspected the tracking performance and eye-video recordings to identify and categorise lapses of responsiveness as microsleeps or ALs. Changes in neural activity during 85 ALs (17 subjects) relative to responsive tracking were estimated by whole-brain voxel-wise fMRI and by haemodynamic response (HR) analysis in regions of interest (ROIs) from seven key networks to reveal the neural signature of ALs. Changes in functional connectivity (FC) within and between the key ROIs were also estimated. Networks explored were the default mode network, dorsal attention network, frontoparietal network, sensorimotor network, salience network, visual network, and working memory network. Voxel-wise analysis revealed a significant increase in blood-oxygen-level-dependent activity in the overlapping dorsal anterior cingulate cortex and supplementary motor area region but no significant decreases in activity; the increased activity is considered to represent a recovery-of-responsiveness process following an AL. This increased activity was also seen in the HR of the corresponding ROI. Importantly, HR analysis revealed no trend of increased activity in the posterior cingulate of the default mode network, which has been repeatedly demonstrated to be a strong biomarker of mind-wandering. FC analysis showed decoupling of external attention, which supports the involuntary nature of ALs, in addition to the neural recovery processes. Other findings were a decrease in HR in the frontoparietal network before the onset of ALs, and a decrease in FC between default mode network and working memory network. These findings converge to our conclusion that the ALs observed during our task were involuntary mind-blanks. This is further supported behaviourally by the short duration of the ALs (mean 1.7 s), which is considered too brief to be instances of extreme mind-wandering. This is the first study to demonstrate that at least the majority of complete losses of responsiveness on a continuous visuomotor task are, if not due to microsleeps, due to involuntary mind-blanks.
Collapse
Affiliation(s)
- Mohamed H. Zaky
- Christchurch Neurotechnology Research ProgrammeNew Zealand Brain Research InstituteChristchurchNew Zealand
- Department of Electrical and Computer EngineeringUniversity of CanterburyChristchurchNew Zealand
- Department of Electronics and Communications EngineeringArab Academy for Science, Technology and Maritime TransportAlexandriaEgypt
- Wearables, Biosensing, and Biosignal Processing LaboratoryArab Academy for Science, Technology and Maritime TransportAlexandriaEgypt
| | - Reza Shoorangiz
- Christchurch Neurotechnology Research ProgrammeNew Zealand Brain Research InstituteChristchurchNew Zealand
- Department of Electrical and Computer EngineeringUniversity of CanterburyChristchurchNew Zealand
- Department of MedicineUniversity of OtagoChristchurchNew Zealand
| | - Govinda R. Poudel
- Christchurch Neurotechnology Research ProgrammeNew Zealand Brain Research InstituteChristchurchNew Zealand
- Mary Mackillop Institute for Health ResearchAustralian Catholic UniversityMelbourneAustralia
| | - Le Yang
- Christchurch Neurotechnology Research ProgrammeNew Zealand Brain Research InstituteChristchurchNew Zealand
- Department of Electrical and Computer EngineeringUniversity of CanterburyChristchurchNew Zealand
| | - Carrie R. H. Innes
- Christchurch Neurotechnology Research ProgrammeNew Zealand Brain Research InstituteChristchurchNew Zealand
| | - Richard D. Jones
- Christchurch Neurotechnology Research ProgrammeNew Zealand Brain Research InstituteChristchurchNew Zealand
- Department of Electrical and Computer EngineeringUniversity of CanterburyChristchurchNew Zealand
- Department of MedicineUniversity of OtagoChristchurchNew Zealand
- School of Psychology, Speech and HearingUniversity of CanterburyChristchurchNew Zealand
| |
Collapse
|
8
|
Abstract
Consciousness is a fascinating field of neuroscience research where questions often outnumber the answers. We advocate an open and optimistic approach where converging mechanisms in neuroscience may eventually provide a satisfactory understanding of consciousness. We first review several characteristics of conscious neural activity, including the involvement of dedicated systems for content and levels of consciousness, the distinction and overlap of mechanisms contributing to conscious states and conscious awareness of transient events, nonlinear transitions and involvement of large-scale networks, and finally the temporal nexus where conscious awareness of discrete events occurs when mechanisms of attention and memory meet. These considerations and recent new experimental findings lead us to propose an inclusive hypothesis involving four phases initiated shortly after an external sensory stimulus: (1) Detect-primary and higher cortical and subcortical circuits detect the stimulus and select it for conscious perception. (2) Pulse-a transient and massive neuromodulatory surge in subcortical-cortical arousal and salience networks amplifies signals enabling conscious perception to proceed. (3) Switch-networks that may interfere with conscious processing are switched off. (4) Wave-sequential processing through hierarchical lower to higher cortical regions produces a fully formed percept, encoded in frontoparietal working memory and medial temporal episodic memory systems for subsequent report of experience. The framework hypothesized here is intended to be nonexclusive and encourages the addition of other mechanisms with further progress. Ultimately, just as many mechanisms in biology together distinguish living from nonliving things, many mechanisms in neuroscience synergistically may separate conscious from nonconscious neural activity.
Collapse
Affiliation(s)
- Hal Blumenfeld
- Departments of Neurology, Neuroscience, and Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
9
|
Kronemer SI, Aksen M, Ding JZ, Ryu JH, Xin Q, Ding Z, Prince JS, Kwon H, Khalaf A, Forman S, Jin DS, Wang K, Chen K, Hu C, Agarwal A, Saberski E, Wafa SMA, Morgan OP, Wu J, Christison-Lagay KL, Hasulak N, Morrell M, Urban A, Todd Constable R, Pitts M, Mark Richardson R, Crowley MJ, Blumenfeld H. Human visual consciousness involves large scale cortical and subcortical networks independent of task report and eye movement activity. Nat Commun 2022; 13:7342. [PMID: 36446792 PMCID: PMC9707162 DOI: 10.1038/s41467-022-35117-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
Abstract
The full neural circuits of conscious perception remain unknown. Using a visual perception task, we directly recorded a subcortical thalamic awareness potential (TAP). We also developed a unique paradigm to classify perceived versus not perceived stimuli using eye measurements to remove confounding signals related to reporting on conscious experiences. Using fMRI, we discovered three major brain networks driving conscious visual perception independent of report: first, increases in signal detection regions in visual, fusiform cortex, and frontal eye fields; and in arousal/salience networks involving midbrain, thalamus, nucleus accumbens, anterior cingulate, and anterior insula; second, increases in frontoparietal attention and executive control networks and in the cerebellum; finally, decreases in the default mode network. These results were largely maintained after excluding eye movement-based fMRI changes. Our findings provide evidence that the neurophysiology of consciousness is complex even without overt report, involving multiple cortical and subcortical networks overlapping in space and time.
Collapse
Affiliation(s)
- Sharif I Kronemer
- Department of Neurology, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Mark Aksen
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Julia Z Ding
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Jun Hwan Ryu
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Qilong Xin
- Department of Neurology, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Zhaoxiong Ding
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Jacob S Prince
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Hunki Kwon
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Aya Khalaf
- Department of Neurology, Yale University, New Haven, CT, USA
- Biomedical Engineering and Systems, Faculty of Engineering, Cairo University, Giza, Egypt
| | - Sarit Forman
- Department of Neurology, Yale University, New Haven, CT, USA
| | - David S Jin
- Department of Neurology, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Kevin Wang
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Kaylie Chen
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Claire Hu
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Akshar Agarwal
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Erik Saberski
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Syed Mohammad Adil Wafa
- Department of Neurology, Yale University, New Haven, CT, USA
- Child Study Center, Yale University, New Haven, CT, USA
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Owen P Morgan
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Jia Wu
- Child Study Center, Yale University, New Haven, CT, USA
| | | | | | | | | | - R Todd Constable
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Neurosurgery, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | | | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Hal Blumenfeld
- Department of Neurology, Yale University, New Haven, CT, USA.
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA.
- Department of Neurosurgery, Yale University, New Haven, CT, USA.
- Department of Neuroscience, Yale University, New Haven, CT, USA.
| |
Collapse
|
10
|
Setzer B, Fultz NE, Gomez DEP, Williams SD, Bonmassar G, Polimeni JR, Lewis LD. A temporal sequence of thalamic activity unfolds at transitions in behavioral arousal state. Nat Commun 2022; 13:5442. [PMID: 36114170 PMCID: PMC9481532 DOI: 10.1038/s41467-022-33010-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Awakening from sleep reflects a profound transformation in neural activity and behavior. The thalamus is a key controller of arousal state, but whether its diverse nuclei exhibit coordinated or distinct activity at transitions in behavioral arousal state is unknown. Using fast fMRI at ultra-high field (7 Tesla), we measured sub-second activity across thalamocortical networks and within nine thalamic nuclei to delineate these dynamics during spontaneous transitions in behavioral arousal state. We discovered a stereotyped sequence of activity across thalamic nuclei and cingulate cortex that preceded behavioral arousal after a period of inactivity, followed by widespread deactivation. These thalamic dynamics were linked to whether participants subsequently fell back into unresponsiveness, with unified thalamic activation reflecting maintenance of behavior. These results provide an outline of the complex interactions across thalamocortical circuits that orchestrate behavioral arousal state transitions, and additionally, demonstrate that fast fMRI can resolve sub-second subcortical dynamics in the human brain.
Collapse
Affiliation(s)
- Beverly Setzer
- Graduate Program for Neuroscience, Boston University, Boston, MA, 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Nina E Fultz
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Daniel E P Gomez
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Giorgio Bonmassar
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laura D Lewis
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA.
| |
Collapse
|
11
|
Safron A, Klimaj V, Hipólito I. On the Importance of Being Flexible: Dynamic Brain Networks and Their Potential Functional Significances. Front Syst Neurosci 2022; 15:688424. [PMID: 35126062 PMCID: PMC8814434 DOI: 10.3389/fnsys.2021.688424] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
In this theoretical review, we begin by discussing brains and minds from a dynamical systems perspective, and then go on to describe methods for characterizing the flexibility of dynamic networks. We discuss how varying degrees and kinds of flexibility may be adaptive (or maladaptive) in different contexts, specifically focusing on measures related to either more disjoint or cohesive dynamics. While disjointed flexibility may be useful for assessing neural entropy, cohesive flexibility may potentially serve as a proxy for self-organized criticality as a fundamental property enabling adaptive behavior in complex systems. Particular attention is given to recent studies in which flexibility methods have been used to investigate neurological and cognitive maturation, as well as the breakdown of conscious processing under varying levels of anesthesia. We further discuss how these findings and methods might be contextualized within the Free Energy Principle with respect to the fundamentals of brain organization and biological functioning more generally, and describe potential methodological advances from this paradigm. Finally, with relevance to computational psychiatry, we propose a research program for obtaining a better understanding of ways that dynamic networks may relate to different forms of psychological flexibility, which may be the single most important factor for ensuring human flourishing.
Collapse
Affiliation(s)
- Adam Safron
- Center for Psychedelic and Consciousness Research, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Kinsey Institute, Indiana University, Bloomington, IN, United States
- Cognitive Science Program, Indiana University, Bloomington, IN, United States
| | - Victoria Klimaj
- Cognitive Science Program, Indiana University, Bloomington, IN, United States
- Complex Networks and Systems, Informatics Department, Indiana University, Bloomington, IN, United States
| | - Inês Hipólito
- Department of Philosophy, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| |
Collapse
|
12
|
Kwon H, Kronemer SI, Christison-Lagay KL, Khalaf A, Li J, Ding JZ, Freedman NC, Blumenfeld H. Early cortical signals in visual stimulus detection. Neuroimage 2021; 244:118608. [PMID: 34560270 DOI: 10.1016/j.neuroimage.2021.118608] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/19/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
During visual conscious perception, the earliest responses linked to signal detection are little known. The current study aims to reveal the cortical neural activity changes in the earliest stages of conscious perception using recordings from intracranial electrodes. Epilepsy patients (N=158) were recruited from a multi-center collaboration and completed a visual word recall task. Broadband gamma activity (40-115Hz) was extracted with a band-pass filter and gamma power was calculated across subjects on a common brain surface. Our results show early gamma power increases within 0-50ms after stimulus onset in bilateral visual processing cortex, right frontal cortex (frontal eye fields, ventral medial/frontopolar, orbital frontal) and bilateral medial temporal cortex regardless of whether the word was later recalled. At the same early times, decreases were seen in the left rostral middle frontal gyrus. At later times after stimulus onset, gamma power changes developed in multiple cortical regions. These included sustained changes in visual and other association cortical networks, and transient decreases in the default mode network most prominently at 300-650ms. In agreement with prior work in this verbal memory task, we also saw greater increases in visual and medial temporal regions as well as prominent later (> 300ms) increases in left hemisphere language areas for recalled versus not recalled stimuli. These results suggest an early signal detection network in the frontal, medial temporal, and visual cortex is engaged at the earliest stages of conscious visual perception.
Collapse
Affiliation(s)
- Hunki Kwon
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8018, USA
| | - Sharif I Kronemer
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8018, USA; Interdepartmental Neuroscience Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Kate L Christison-Lagay
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8018, USA
| | - Aya Khalaf
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8018, USA; Biomedical Engineering and Systems, Faculty of Engineering, Cairo University, Giza, Egypt
| | - Jiajia Li
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8018, USA; School of Information and Control Engineering, Xian University of Architecture and Technology, Xi'an 710055, China
| | - Julia Z Ding
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8018, USA
| | - Noah C Freedman
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8018, USA
| | - Hal Blumenfeld
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8018, USA; Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA.
| |
Collapse
|
13
|
The ascending arousal system shapes neural dynamics to mediate awareness of cognitive states. Nat Commun 2021; 12:6016. [PMID: 34650039 PMCID: PMC8516926 DOI: 10.1038/s41467-021-26268-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
Models of cognitive function typically focus on the cerebral cortex and hence overlook functional links to subcortical structures. This view does not consider the role of the highly-conserved ascending arousal system's role and the computational capacities it provides the brain. We test the hypothesis that the ascending arousal system modulates cortical neural gain to alter the low-dimensional energy landscape of cortical dynamics. Here we use spontaneous functional magnetic resonance imaging data to study phasic bursts in both locus coeruleus and basal forebrain, demonstrating precise time-locked relationships between brainstem activity, low-dimensional energy landscapes, network topology, and spatiotemporal travelling waves. We extend our analysis to a cohort of experienced meditators and demonstrate locus coeruleus-mediated network dynamics were associated with internal shifts in conscious awareness. Together, these results present a view of brain organization that highlights the ascending arousal system's role in shaping both the dynamics of the cerebral cortex and conscious awareness.
Collapse
|