1
|
Calixto C, Dorigatti Soldatelli M, Jaimes C, Pierotich L, Warfield SK, Gholipour A, Karimi D. A detailed spatiotemporal atlas of the white matter tracts for the fetal brain. Proc Natl Acad Sci U S A 2025; 122:e2410341121. [PMID: 39793058 PMCID: PMC11725871 DOI: 10.1073/pnas.2410341121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/19/2024] [Indexed: 01/12/2025] Open
Abstract
This study presents the construction of a comprehensive spatiotemporal atlas of white matter tracts in the fetal brain for every gestational week between 23 and 36 wk using diffusion MRI (dMRI). Our research leverages data collected from fetal MRI scans, capturing the dynamic changes in the brain's architecture and microstructure during this critical period. The atlas includes 60 distinct white matter tracts, including commissural, projection, and association fibers. We employed advanced fetal dMRI processing techniques and tractography to map and characterize the developmental trajectories of these tracts. Our findings reveal that the development of these tracts is characterized by complex patterns of fractional anisotropy (FA) and mean diffusivity (MD), coinciding with the intensity of histogenic processes such as axonal growth, involution of the radial-glial scaffolding, and synaptic pruning. This atlas can serve as a useful resource for neuroscience research and clinical practice, improving our understanding of the fetal brain and potentially aiding in the early diagnosis of neurodevelopmental disorders. By detailing the normal progression of white matter tract development, the atlas can be used as a benchmark for identifying deviations that may indicate neurological anomalies or predispositions to disorders.
Collapse
Affiliation(s)
- Camilo Calixto
- Computational Radiology Laboratory, Boston Children’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
| | - Matheus Dorigatti Soldatelli
- Computational Radiology Laboratory, Boston Children’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
| | - Camilo Jaimes
- Harvard Medical School, Boston, MA02115
- Massachusetts General Hospital, Boston, MA02114
| | - Lana Pierotich
- Computational Radiology Laboratory, Boston Children’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
| | - Simon K. Warfield
- Computational Radiology Laboratory, Boston Children’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
| | - Ali Gholipour
- Computational Radiology Laboratory, Boston Children’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
- Department of Radiological Sciences, University of California Irvine, Irvine, CA92868
| | - Davood Karimi
- Computational Radiology Laboratory, Boston Children’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
| |
Collapse
|
2
|
Calixto C, Soldatelli MD, Li B, Vasung L, Jaimes C, Gholipour A, Warfield SK, Karimi D. White Matter Tract Crossing and Bottleneck Regions in the Fetal Brain. Hum Brain Mapp 2025; 46:e70132. [PMID: 39812160 PMCID: PMC11733681 DOI: 10.1002/hbm.70132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/26/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025] Open
Abstract
There is a growing interest in using diffusion MRI to study the white matter tracts and structural connectivity of the fetal brain. Recent progress in data acquisition and processing suggests that this imaging modality has a unique role in elucidating the normal and abnormal patterns of neurodevelopment in utero. However, there have been no efforts to quantify the prevalence of crossing tracts and bottleneck regions, important issues that have been investigated for adult brains. In this work, we determined the brain regions with crossing tracts and bottlenecks between 23 and 36 gestational weeks. We performed probabilistic tractography on 62 fetal brain scans and extracted a set of 51 distinct white matter tracts, which we grouped into 10 major tract bundle groups. We analyzed the results to determine the patterns of tract crossings and bottlenecks. Our results showed that 20%-25% of the white matter voxels included two or three crossing tracts. Bottlenecks were more prevalent. Between 75% and 80% of the voxels were characterized as bottlenecks, with more than 40% of the voxels involving four or more tracts. These results highlight the relevance of these regions to key developmental processes, specifically, the dispersion of projection fibers, the protracted growth of commissural pathways, and the emergence of association tracts that contribute to the formation of complex intersection regions. These developmental interactions lead to a high prevalence of crossing fibers and bottleneck areas, reflecting the intricate organization required for establishing structural and functional connectivity. Additionally, our results highlight the challenge of fetal brain tractography and structural connectivity assessment and call for innovative image acquisition and analysis methods to mitigate these problems.
Collapse
Affiliation(s)
- Camilo Calixto
- Computational Radiology Laboratory, Department of RadiologyBoston Children's Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
| | - Matheus D. Soldatelli
- Computational Radiology Laboratory, Department of RadiologyBoston Children's Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
| | - Bo Li
- Computational Radiology Laboratory, Department of RadiologyBoston Children's Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
| | - Lana Vasung
- Department of Pediatrics at Boston Children's Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
| | - Camilo Jaimes
- Massachusetts General HospitalBostonMassachusettsUSA
| | - Ali Gholipour
- Computational Radiology Laboratory, Department of RadiologyBoston Children's Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Radiological SciencesUniversity of California IrvineIrvineCaliforniaUSA
| | - Simon K. Warfield
- Computational Radiology Laboratory, Department of RadiologyBoston Children's Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
| | - Davood Karimi
- Computational Radiology Laboratory, Department of RadiologyBoston Children's Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
3
|
Karimi D, Warfield SK. Diffusion MRI with Machine Learning. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:10.1162/imag_a_00353. [PMID: 40206511 PMCID: PMC11981007 DOI: 10.1162/imag_a_00353] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Diffusion-weighted magnetic resonance imaging (dMRI) of the brain offers unique capabilities including noninvasive probing of tissue microstructure and structural connectivity. It is widely used for clinical assessment of disease and injury, and for neuroscience research. Analyzing the dMRI data to extract useful information for medical and scientific purposes can be challenging. The dMRI measurements may suffer from strong noise and artifacts, and may exhibit high inter-session and inter-scanner variability in the data, as well as inter-subject heterogeneity in brain structure. Moreover, the relationship between measurements and the phenomena of interest can be highly complex. Recent years have witnessed increasing use of machine learning methods for dMRI analysis. This manuscript aims to assess these efforts, with a focus on methods that have addressed data preprocessing and harmonization, microstructure mapping, tractography, and white matter tract analysis. We study the main findings, strengths, and weaknesses of the existing methods and suggest topics for future research. We find that machine learning may be exceptionally suited to tackle some of the difficult tasks in dMRI analysis. However, for this to happen, several shortcomings of existing methods and critical unresolved issues need to be addressed. There is a pressing need to improve evaluation practices, to increase the availability of rich training datasets and validation benchmarks, as well as model generalizability, reliability, and explainability concerns.
Collapse
Affiliation(s)
- Davood Karimi
- Harvard Medical School and Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Simon K. Warfield
- Harvard Medical School and Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Calixto C, Soldatelli MD, Li B, Pierotich L, Gholipour A, Warfield SK, Karimi D. White matter tract crossing and bottleneck regions in the fetal brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.20.603804. [PMID: 39091823 PMCID: PMC11291018 DOI: 10.1101/2024.07.20.603804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
There is a growing interest in using diffusion MRI to study the white matter tracts and structural connectivity of the fetal brain. Recent progress in data acquisition and processing suggests that this imaging modality has a unique role in elucidating the normal and abnormal patterns of neurodevelopment in utero. However, there have been no efforts to quantify the prevalence of crossing tracts and bottleneck regions, important issues that have been extensively researched for adult brains. In this work, we determined the brain regions with crossing tracts and bottlenecks between 23 and 36 gestational weeks. We performed probabilistic tractography on 59 fetal brain scans and extracted a set of 51 distinct white tracts, which we grouped into 10 major tract bundle groups. We analyzed the results to determine the patterns of tract crossings and bottlenecks. Our results showed that 20-25% of the white matter voxels included two or three crossing tracts. Bottlenecks were more prevalent. Between 75-80% of the voxels were characterized as bottlenecks, with more than 40% of the voxels involving four or more tracts. The results of this study highlight the challenge of fetal brain tractography and structural connectivity assessment and call for innovative image acquisition and analysis methods to mitigate these problems.
Collapse
Affiliation(s)
- Camilo Calixto
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Matheus D Soldatelli
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Bo Li
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lana Pierotich
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ali Gholipour
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Simon K Warfield
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Davood Karimi
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Kebiri H, Gholipour A, Lin R, Vasung L, Calixto C, Krsnik Ž, Karimi D, Bach Cuadra M. Deep learning microstructure estimation of developing brains from diffusion MRI: A newborn and fetal study. Med Image Anal 2024; 95:103186. [PMID: 38701657 DOI: 10.1016/j.media.2024.103186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/06/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
Diffusion-weighted magnetic resonance imaging (dMRI) is widely used to assess the brain white matter. Fiber orientation distribution functions (FODs) are a common way of representing the orientation and density of white matter fibers. However, with standard FOD computation methods, accurate estimation requires a large number of measurements that usually cannot be acquired for newborns and fetuses. We propose to overcome this limitation by using a deep learning method to map as few as six diffusion-weighted measurements to the target FOD. To train the model, we use the FODs computed using multi-shell high angular resolution measurements as target. Extensive quantitative evaluations show that the new deep learning method, using significantly fewer measurements, achieves comparable or superior results than standard methods such as Constrained Spherical Deconvolution and two state-of-the-art deep learning methods. For voxels with one and two fibers, respectively, our method shows an agreement rate in terms of the number of fibers of 77.5% and 22.2%, which is 3% and 5.4% higher than other deep learning methods, and an angular error of 10° and 20°, which is 6° and 5° lower than other deep learning methods. To determine baselines for assessing the performance of our method, we compute agreement metrics using densely sampled newborn data. Moreover, we demonstrate the generalizability of the new deep learning method across scanners, acquisition protocols, and anatomy on two clinical external datasets of newborns and fetuses. We validate fetal FODs, successfully estimated for the first time with deep learning, using post-mortem histological data. Our results show the advantage of deep learning in computing the fiber orientation density for the developing brain from in-vivo dMRI measurements that are often very limited due to constrained acquisition times. Our findings also highlight the intrinsic limitations of dMRI for probing the developing brain microstructure.
Collapse
Affiliation(s)
- Hamza Kebiri
- CIBM Center for Biomedical Imaging, Switzerland; Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Ali Gholipour
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rizhong Lin
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; Signal Processing Laboratory 5 (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lana Vasung
- Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Camilo Calixto
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Željka Krsnik
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Davood Karimi
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Meritxell Bach Cuadra
- CIBM Center for Biomedical Imaging, Switzerland; Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
6
|
Snoussi H, Karimi D, Afacan O, Utkur M, Gholipour A. HAITCH: A Framework for Distortion and Motion Correction in Fetal Multi-Shell Diffusion-Weighted MRI. ARXIV 2024:arXiv:2406.20042v1. [PMID: 38979484 PMCID: PMC11230346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Diffusion magnetic resonance imaging (dMRI) is pivotal for probing the microstructure of the rapidly-developing fetal brain. However, fetal motion during scans and its interaction with magnetic field inhomogeneities result in artifacts and data scattering across spatial and angular domains. The effects of those artifacts are more pronounced in high-angular resolution fetal dMRI, where signal-to-noise ratio is very low. Those effects lead to biased estimates and compromise the consistency and reliability of dMRI analysis. This work presents HAITCH, the first and the only publicly available tool to correct and reconstruct multi-shell high-angular resolution fetal dMRI data. HAITCH offers several technical advances that include a blip-reversed dual-echo acquisition for dynamic distortion correction, advanced motion correction for model-free and robust reconstruction, optimized multi-shell design for enhanced information capture and increased tolerance to motion, and outlier detection for improved reconstruction fidelity. The framework is open-source, flexible, and can be used to process any type of fetal dMRI data including single-echo or single-shell acquisitions, but is most effective when used with multi-shell multi-echo fetal dMRI data that cannot be processed with any of the existing tools. Validation experiments on real fetal dMRI scans demonstrate significant improvements and accurate correction across diverse fetal ages and motion levels. HAITCH successfully removes artifacts and reconstructs high-fidelity fetal dMRI data suitable for advanced diffusion modeling, including fiber orientation distribution function estimation. These advancements pave the way for more reliable analysis of the fetal brain microstructure and tractography under challenging imaging conditions.
Collapse
Affiliation(s)
- Haykel Snoussi
- Boston Children's Hospital, and Harvard Medical School, Boston, MA 02115 USA
| | - Davood Karimi
- Boston Children's Hospital, and Harvard Medical School, Boston, MA 02115 USA
| | - Onur Afacan
- Boston Children's Hospital, and Harvard Medical School, Boston, MA 02115 USA
| | - Mustafa Utkur
- Boston Children's Hospital, and Harvard Medical School, Boston, MA 02115 USA
| | - Ali Gholipour
- Boston Children's Hospital, and Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
7
|
Li Z, Li Z, Bilgic B, Lee H, Ying K, Huang SY, Liao H, Tian Q. DIMOND: DIffusion Model OptimizatioN with Deep Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307965. [PMID: 38634608 PMCID: PMC11200022 DOI: 10.1002/advs.202307965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/09/2024] [Indexed: 04/19/2024]
Abstract
Diffusion magnetic resonance imaging is an important tool for mapping tissue microstructure and structural connectivity non-invasively in the in vivo human brain. Numerous diffusion signal models are proposed to quantify microstructural properties. Nonetheless, accurate estimation of model parameters is computationally expensive and impeded by image noise. Supervised deep learning-based estimation approaches exhibit efficiency and superior performance but require additional training data and may be not generalizable. A new DIffusion Model OptimizatioN framework using physics-informed and self-supervised Deep learning entitled "DIMOND" is proposed to address this problem. DIMOND employs a neural network to map input image data to model parameters and optimizes the network by minimizing the difference between the input acquired data and synthetic data generated via the diffusion model parametrized by network outputs. DIMOND produces accurate diffusion tensor imaging results and is generalizable across subjects and datasets. Moreover, DIMOND outperforms conventional methods for fitting sophisticated microstructural models including the kurtosis and NODDI model. Importantly, DIMOND reduces NODDI model fitting time from hours to minutes, or seconds by leveraging transfer learning. In summary, the self-supervised manner, high efficacy, and efficiency of DIMOND increase the practical feasibility and adoption of microstructure and connectivity mapping in clinical and neuroscientific applications.
Collapse
Affiliation(s)
- Zihan Li
- School of Biomedical EngineeringTsinghua UniversityBeijing100084P. R. China
| | - Ziyu Li
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordOX3 9DUUK
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMA02129USA
- Harvard Medical SchoolBostonMA02129USA
| | - Hong‐Hsi Lee
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMA02129USA
- Harvard Medical SchoolBostonMA02129USA
| | - Kui Ying
- Department of Engineering PhysicsTsinghua UniversityBeijing100084P. R. China
| | - Susie Y. Huang
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMA02129USA
- Harvard Medical SchoolBostonMA02129USA
| | - Hongen Liao
- School of Biomedical EngineeringTsinghua UniversityBeijing100084P. R. China
| | - Qiyuan Tian
- School of Biomedical EngineeringTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
8
|
Calixto C, Soldatelli MD, Jaimes C, Warfield SK, Gholipour A, Karimi D. A detailed spatio-temporal atlas of the white matter tracts for the fetal brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.590815. [PMID: 38712296 PMCID: PMC11071632 DOI: 10.1101/2024.04.26.590815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
This study presents the construction of a comprehensive spatiotemporal atlas detailing the development of white matter tracts in the fetal brain using diffusion magnetic resonance imaging (dMRI). Our research leverages data collected from fetal MRI scans conducted between 22 and 37 weeks of gestation, capturing the dynamic changes in the brain's microstructure during this critical period. The atlas includes 60 distinct white matter tracts, including commissural, projection, and association fibers. We employed advanced fetal dMRI processing techniques and tractography to map and characterize the developmental trajectories of these tracts. Our findings reveal that the development of these tracts is characterized by complex patterns of fractional anisotropy (FA) and mean diffusivity (MD), reflecting key neurodevelopmental processes such as axonal growth, involution of the radial-glial scaffolding, and synaptic pruning. This atlas can serve as a useful resource for neuroscience research and clinical practice, improving our understanding of the fetal brain and potentially aiding in the early diagnosis of neurodevelopmental disorders. By detailing the normal progression of white matter tract development, the atlas can be used as a benchmark for identifying deviations that may indicate neurological anomalies or predispositions to disorders.
Collapse
Affiliation(s)
- Camilo Calixto
- Computational Radiology Laboratory (CRL), Boston Children's Hospital, Harvard Medical School
| | | | - Camilo Jaimes
- Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114, USA
| | - Simon K Warfield
- Computational Radiology Laboratory (CRL), Boston Children's Hospital, Harvard Medical School
| | - Ali Gholipour
- Computational Radiology Laboratory (CRL), Boston Children's Hospital, Harvard Medical School
| | - Davood Karimi
- Computational Radiology Laboratory (CRL), Boston Children's Hospital, Harvard Medical School
| |
Collapse
|
9
|
Ciceri T, Casartelli L, Montano F, Conte S, Squarcina L, Bertoldo A, Agarwal N, Brambilla P, Peruzzo D. Fetal brain MRI atlases and datasets: A review. Neuroimage 2024; 292:120603. [PMID: 38588833 DOI: 10.1016/j.neuroimage.2024.120603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024] Open
Abstract
Fetal brain development is a complex process involving different stages of growth and organization which are crucial for the development of brain circuits and neural connections. Fetal atlases and labeled datasets are promising tools to investigate prenatal brain development. They support the identification of atypical brain patterns, providing insights into potential early signs of clinical conditions. In a nutshell, prenatal brain imaging and post-processing via modern tools are a cutting-edge field that will significantly contribute to the advancement of our understanding of fetal development. In this work, we first provide terminological clarification for specific terms (i.e., "brain template" and "brain atlas"), highlighting potentially misleading interpretations related to inconsistent use of terms in the literature. We discuss the major structures and neurodevelopmental milestones characterizing fetal brain ontogenesis. Our main contribution is the systematic review of 18 prenatal brain atlases and 3 datasets. We also tangentially focus on clinical, research, and ethical implications of prenatal neuroimaging.
Collapse
Affiliation(s)
- Tommaso Ciceri
- NeuroImaging Lab, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy; Department of Information Engineering, University of Padua, Padua, Italy
| | - Luca Casartelli
- Theoretical and Cognitive Neuroscience Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Florian Montano
- Diagnostic Imaging and Neuroradiology Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Stefania Conte
- Psychology Department, State University of New York at Binghamton, New York, USA
| | - Letizia Squarcina
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Alessandra Bertoldo
- Department of Information Engineering, University of Padua, Padua, Italy; Padova Neuroscience Center, University of Padua, Padua, Italy
| | - Nivedita Agarwal
- Diagnostic Imaging and Neuroradiology Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Denis Peruzzo
- NeuroImaging Lab, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| |
Collapse
|
10
|
Tarui T, Gimovsky AC, Madan N. Fetal neuroimaging applications for diagnosis and counseling of brain anomalies: Current practice and future diagnostic strategies. Semin Fetal Neonatal Med 2024; 29:101525. [PMID: 38632010 PMCID: PMC11156536 DOI: 10.1016/j.siny.2024.101525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Advances in fetal brain neuroimaging, especially fetal neurosonography and brain magnetic resonance imaging (MRI), allow safe and accurate anatomical assessments of fetal brain structures that serve as a foundation for prenatal diagnosis and counseling regarding fetal brain anomalies. Fetal neurosonography strategically assesses fetal brain anomalies suspected by screening ultrasound. Fetal brain MRI has unique technological features that overcome the anatomical limits of smaller fetal brain size and the unpredictable variable of intrauterine motion artifact. Recent studies of fetal brain MRI provide evidence of improved diagnostic and prognostic accuracy, beginning with prenatal diagnosis. Despite technological advances over the last several decades, the combined use of different qualitative structural biomarkers has limitations in providing an accurate prognosis. Quantitative analyses of fetal brain MRIs offer measurable imaging biomarkers that will more accurately associate with clinical outcomes. First-trimester ultrasound opens new opportunities for risk assessment and fetal brain anomaly diagnosis at the earliest time in pregnancy. This review includes a case vignette to illustrate how fetal brain MRI results interpreted by the fetal neurologist can improve diagnostic perspectives. The strength and limitations of conventional ultrasound and fetal brain MRI will be compared with recent research advances in quantitative methods to better correlate fetal neuroimaging biomarkers of neuropathology to predict functional childhood deficits. Discussion of these fetal sonogram and brain MRI advances will highlight the need for further interdisciplinary collaboration using complementary skills to continue improving clinical decision-making following precision medicine principles.
Collapse
Affiliation(s)
- Tomo Tarui
- Pediatric Neurology, Pediatrics, Hasbro Children's Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA.
| | - Alexis C Gimovsky
- Maternal Fetal Medicine, Obstetrics and Gynecology, Women & Infants Hospital of Rhode Island, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Neel Madan
- Neuroradiology, Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Calixto C, Machado-Rivas F, Cortes-Albornoz MC, Karimi D, Velasco-Annis C, Afacan O, Warfield SK, Gholipour A, Jaimes C. Characterizing microstructural development in the fetal brain using diffusion MRI from 23 to 36 weeks of gestation. Cereb Cortex 2024; 34:bhad409. [PMID: 37948665 PMCID: PMC10793585 DOI: 10.1093/cercor/bhad409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023] Open
Abstract
We utilized motion-corrected diffusion tensor imaging (DTI) to evaluate microstructural changes in healthy fetal brains during the late second and third trimesters. Data were derived from fetal magnetic resonance imaging scans conducted as part of a prospective study spanning from 2013 March to 2019 May. The study included 44 fetuses between the gestational ages (GAs) of 23 and 36 weeks. We reconstructed fetal brain DTI using a motion-tracked slice-to-volume registration framework. Images were segmented into 14 regions of interest (ROIs) through label propagation using a fetal DTI atlas, with expert refinement. Statistical analysis involved assessing changes in fractional anisotropy (FA) and mean diffusivity (MD) throughout gestation using mixed-effects models, and identifying points of change in trajectory for ROIs with nonlinear trends. Results showed significant GA-related changes in FA and MD in all ROIs except in the thalamus' FA and corpus callosum's MD. Hemispheric asymmetries were found in the FA of the periventricular white matter (pvWM), intermediate zone, and subplate and in the MD of the ganglionic eminence and pvWM. This study provides valuable insight into the normal patterns of development of MD and FA in the fetal brain. These changes are closely linked with cytoarchitectonic changes and display indications of early functional specialization.
Collapse
Affiliation(s)
- Camilo Calixto
- Computational Radiology Laboratory, Department of Radiology, Boston Children’s Hospital, Boston, MA 02115, United States
- Department of Radiology, Harvard Medical School, Boston, MA 02115, United States
| | - Fedel Machado-Rivas
- Department of Radiology, Harvard Medical School, Boston, MA 02115, United States
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Maria C Cortes-Albornoz
- Department of Radiology, Harvard Medical School, Boston, MA 02115, United States
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Davood Karimi
- Computational Radiology Laboratory, Department of Radiology, Boston Children’s Hospital, Boston, MA 02115, United States
- Department of Radiology, Harvard Medical School, Boston, MA 02115, United States
| | - Clemente Velasco-Annis
- Computational Radiology Laboratory, Department of Radiology, Boston Children’s Hospital, Boston, MA 02115, United States
- Department of Radiology, Harvard Medical School, Boston, MA 02115, United States
| | - Onur Afacan
- Computational Radiology Laboratory, Department of Radiology, Boston Children’s Hospital, Boston, MA 02115, United States
- Department of Radiology, Harvard Medical School, Boston, MA 02115, United States
| | - Simon K Warfield
- Computational Radiology Laboratory, Department of Radiology, Boston Children’s Hospital, Boston, MA 02115, United States
- Department of Radiology, Harvard Medical School, Boston, MA 02115, United States
| | - Ali Gholipour
- Computational Radiology Laboratory, Department of Radiology, Boston Children’s Hospital, Boston, MA 02115, United States
- Department of Radiology, Harvard Medical School, Boston, MA 02115, United States
| | - Camilo Jaimes
- Department of Radiology, Harvard Medical School, Boston, MA 02115, United States
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States
| |
Collapse
|
12
|
Kebiri H, Gholipour A, Vasung L, Krsnik Ž, Karimi D, Cuadra MB. Deep learning microstructure estimation of developing brains from diffusion MRI: a newborn and fetal study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.01.547351. [PMID: 37425859 PMCID: PMC10327173 DOI: 10.1101/2023.07.01.547351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Diffusion-weighted magnetic resonance imaging (dMRI) is widely used to assess the brain white matter. Fiber orientation distribution functions (FODs) are a common way of representing the orientation and density of white matter fibers. However, with standard FOD computation methods, accurate estimation of FODs requires a large number of measurements that usually cannot be acquired for newborns and fetuses. We propose to overcome this limitation by using a deep learning method to map as few as six diffusion-weighted measurements to the target FOD. To train the model, we use the FODs computed using multi-shell high angular resolution measurements as target. Extensive quantitative evaluations show that the new deep learning method, using significantly fewer measurements, achieves comparable or superior results to standard methods such as Constrained Spherical Deconvolution. We demonstrate the generalizability of the new deep learning method across scanners, acquisition protocols, and anatomy on two clinical datasets of newborns and fetuses. Additionally, we compute agreement metrics within the HARDI newborn dataset, and validate fetal FODs with post-mortem histological data. The results of this study show the advantage of deep learning in inferring the microstructure of the developing brain from in-vivo dMRI measurements that are often very limited due to subject motion and limited acquisition times, but also highlight the intrinsic limitations of dMRI in the analysis of the developing brain microstructure. These findings, therefore, advocate for the need for improved methods that are tailored to studying the early development of human brain.
Collapse
Affiliation(s)
- Hamza Kebiri
- CIBM Center for Biomedical Imaging, Switzerland
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ali Gholipour
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lana Vasung
- Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Željka Krsnik
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Davood Karimi
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Meritxell Bach Cuadra
- CIBM Center for Biomedical Imaging, Switzerland
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
13
|
Meshaka R, Gaunt T, Shelmerdine SC. Artificial intelligence applied to fetal MRI: A scoping review of current research. Br J Radiol 2023; 96:20211205. [PMID: 35286139 PMCID: PMC10321262 DOI: 10.1259/bjr.20211205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/02/2022] [Accepted: 03/04/2022] [Indexed: 12/17/2022] Open
Abstract
Artificial intelligence (AI) is defined as the development of computer systems to perform tasks normally requiring human intelligence. A subset of AI, known as machine learning (ML), takes this further by drawing inferences from patterns in data to 'learn' and 'adapt' without explicit instructions meaning that computer systems can 'evolve' and hopefully improve without necessarily requiring external human influences. The potential for this novel technology has resulted in great interest from the medical community regarding how it can be applied in healthcare. Within radiology, the focus has mostly been for applications in oncological imaging, although new roles in other subspecialty fields are slowly emerging.In this scoping review, we performed a literature search of the current state-of-the-art and emerging trends for the use of artificial intelligence as applied to fetal magnetic resonance imaging (MRI). Our search yielded several publications covering AI tools for anatomical organ segmentation, improved imaging sequences and aiding in diagnostic applications such as automated biometric fetal measurements and the detection of congenital and acquired abnormalities. We highlight our own perceived gaps in this literature and suggest future avenues for further research. It is our hope that the information presented highlights the varied ways and potential that novel digital technology could make an impact to future clinical practice with regards to fetal MRI.
Collapse
Affiliation(s)
- Riwa Meshaka
- Department of Clinical Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, UK
| | - Trevor Gaunt
- Department of Radiology, University College London Hospitals NHS Foundation Trust, London, UK
| | | |
Collapse
|
14
|
Jin R, Cai Y, Zhang S, Yang T, Feng H, Jiang H, Zhang X, Hu Y, Liu J. Computational approaches for the reconstruction of optic nerve fibers along the visual pathway from medical images: a comprehensive review. Front Neurosci 2023; 17:1191999. [PMID: 37304011 PMCID: PMC10250625 DOI: 10.3389/fnins.2023.1191999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Optic never fibers in the visual pathway play significant roles in vision formation. Damages of optic nerve fibers are biomarkers for the diagnosis of various ophthalmological and neurological diseases; also, there is a need to prevent the optic nerve fibers from getting damaged in neurosurgery and radiation therapy. Reconstruction of optic nerve fibers from medical images can facilitate all these clinical applications. Although many computational methods are developed for the reconstruction of optic nerve fibers, a comprehensive review of these methods is still lacking. This paper described both the two strategies for optic nerve fiber reconstruction applied in existing studies, i.e., image segmentation and fiber tracking. In comparison to image segmentation, fiber tracking can delineate more detailed structures of optic nerve fibers. For each strategy, both conventional and AI-based approaches were introduced, and the latter usually demonstrates better performance than the former. From the review, we concluded that AI-based methods are the trend for optic nerve fiber reconstruction and some new techniques like generative AI can help address the current challenges in optic nerve fiber reconstruction.
Collapse
Affiliation(s)
- Richu Jin
- Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, China
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yongning Cai
- Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, China
| | - Shiyang Zhang
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Ting Yang
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Haibo Feng
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Hongyang Jiang
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Xiaoqing Zhang
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yan Hu
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jiang Liu
- Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, China
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
15
|
Faiyaz A, Doyley MM, Schifitto G, Uddin MN. Artificial intelligence for diffusion MRI-based tissue microstructure estimation in the human brain: an overview. Front Neurol 2023; 14:1168833. [PMID: 37153663 PMCID: PMC10160660 DOI: 10.3389/fneur.2023.1168833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/27/2023] [Indexed: 05/10/2023] Open
Abstract
Artificial intelligence (AI) has made significant advances in the field of diffusion magnetic resonance imaging (dMRI) and other neuroimaging modalities. These techniques have been applied to various areas such as image reconstruction, denoising, detecting and removing artifacts, segmentation, tissue microstructure modeling, brain connectivity analysis, and diagnosis support. State-of-the-art AI algorithms have the potential to leverage optimization techniques in dMRI to advance sensitivity and inference through biophysical models. While the use of AI in brain microstructures has the potential to revolutionize the way we study the brain and understand brain disorders, we need to be aware of the pitfalls and emerging best practices that can further advance this field. Additionally, since dMRI scans rely on sampling of the q-space geometry, it leaves room for creativity in data engineering in such a way that it maximizes the prior inference. Utilization of the inherent geometry has been shown to improve general inference quality and might be more reliable in identifying pathological differences. We acknowledge and classify AI-based approaches for dMRI using these unifying characteristics. This article also highlighted and reviewed general practices and pitfalls involving tissue microstructure estimation through data-driven techniques and provided directions for building on them.
Collapse
Affiliation(s)
- Abrar Faiyaz
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States
| | - Marvin M. Doyley
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States
- Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Giovanni Schifitto
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States
- Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Md Nasir Uddin
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Neurology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
16
|
Jha RR, Kumar BVR, Pathak SK, Schneider W, Bhavsar A, Nigam A. Undersampled single-shell to MSMT fODF reconstruction using CNN-based ODE solver. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 230:107339. [PMID: 36682110 DOI: 10.1016/j.cmpb.2023.107339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/27/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND OBJECTIVE Diffusion MRI (dMRI) has been considered one of the most popular non-invasive techniques for studying the human brain's white matter (WM). dMRI is used to delineate the brain's microstructure by approximating the WM region's fiber tracts. The achieved fiber tracts can be utilized to assess mental diseases like Multiple sclerosis, ADHD, Seizures, Intellectual disability, and others. New techniques such as high angular resolution diffusion-weighted imaging (HARDI) have been developed, providing precise fiber directions, and overcoming the limitation of traditional DTI. Unlike Single-shell, Multi-shell HARDI provides tissue fractions for white matter, gray matter, and cerebrospinal fluid, resulting in a Multi-shell Multi-tissue fiber orientation distribution function (MSMT fODF). This MSMT fODF comes up with more precise fiber directions than a Single-shell, which helps to get correct fiber tracts. In addition, various multi-compartment diffusion models, including as CHARMED and NODDI, have been developed to describe the brain tissue microstructural information. This type of model requires multi-shell data to obtain more specific tissue microstructural information. However, a major concern with multi-shell is that it takes a longer scanning time restricting its use in clinical applications. In addition, most of the existing dMRI scanners with low gradient strengths commonly acquire a single b-value (shell) upto b=1000s/mm2 due to SNR (Signal-to-noise ratio) reasons and severe imaging artifacts. METHODS To address this issue, we propose a CNN-based ordinary differential equations solver for the reconstruction of MSMT fODF from under-sampled and fully sampled Single-shell (b=1000s/mm2) dMRI. The proposed architecture consists of CNN-based Adams-Bash-forth and Runge-Kutta modules along with two loss functions, including L1 and total variation. RESULTS We have shown quantitative results and visualization of fODF, fiber tracts, and structural connectivity for several brain regions on the publicly available HCP dataset. In addition, the obtained angular correlation coefficients for white matter and full brain are high, showing the proposed network's utility.Finally, we have also demonstrated the effect of noise by adjusting SNR from 5 to 50 and observed the network robustness. CONCLUSION We can conclude that our model can accurately predict MSMT fODF from under-sampled or fully sampled Single-shell dMRI volumes.
Collapse
Affiliation(s)
- Ranjeet Ranjan Jha
- MANAS Lab, School of Computing and Electrical Engineering (SCEE), Indian Institute of Technology (IIT) Mandi, India.
| | - B V Rathish Kumar
- Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, India
| | - Sudhir K Pathak
- Learning Research and Development Center, University of Pittsburgh, USA
| | - Walter Schneider
- Learning Research and Development Center, University of Pittsburgh, USA
| | - Arnav Bhavsar
- MANAS Lab, School of Computing and Electrical Engineering (SCEE), Indian Institute of Technology (IIT) Mandi, India
| | - Aditya Nigam
- MANAS Lab, School of Computing and Electrical Engineering (SCEE), Indian Institute of Technology (IIT) Mandi, India
| |
Collapse
|
17
|
Zheng T, Yan G, Li H, Zheng W, Shi W, Zhang Y, Ye C, Wu D. A microstructure estimation Transformer inspired by sparse representation for diffusion MRI. Med Image Anal 2023; 86:102788. [PMID: 36921485 DOI: 10.1016/j.media.2023.102788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 02/09/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
Diffusion magnetic resonance imaging (dMRI) is an important tool in characterizing tissue microstructure based on biophysical models, which are typically multi-compartmental models with mathematically complex and highly non-linear forms. Resolving microstructures from these models with conventional optimization techniques is prone to estimation errors and requires dense sampling in the q-space with a long scan time. Deep learning based approaches have been proposed to overcome these limitations. Motivated by the superior performance of the Transformer in feature extraction than the convolutional structure, in this work, we present a learning-based framework based on Transformer, namely, a Microstructure Estimation Transformer with Sparse Coding (METSC) for dMRI-based microstructural parameter estimation. To take advantage of the Transformer while addressing its limitation in large training data requirement, we explicitly introduce an inductive bias-model bias into the Transformer using a sparse coding technique to facilitate the training process. Thus, the METSC is composed with three stages, an embedding stage, a sparse representation stage, and a mapping stage. The embedding stage is a Transformer-based structure that encodes the signal in a high-level space to ensure the core voxel of a patch is represented effectively. In the sparse representation stage, a dictionary is constructed by solving a sparse reconstruction problem that unfolds the Iterative Hard Thresholding (IHT) process. The mapping stage is essentially a decoder that computes the microstructural parameters from the output of the second stage, based on the weighted sum of normalized dictionary coefficients where the weights are also learned. We tested our framework on two dMRI models with downsampled q-space data, including the intravoxel incoherent motion (IVIM) model and the neurite orientation dispersion and density imaging (NODDI) model. The proposed method achieved up to 11.25 folds of acceleration while retaining high fitting accuracy for NODDI fitting, reducing the mean squared error (MSE) up to 70% compared with the previous q-space learning approach. METSC outperformed the other state-of-the-art learning-based methods, including the model-free and model-based methods. The network also showed robustness against noise and generalizability across different datasets. The superior performance of METSC indicates its potential to improve dMRI acquisition and model fitting in clinical applications.
Collapse
Affiliation(s)
- Tianshu Zheng
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guohui Yan
- Department of Radiology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haotian Li
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weihao Zheng
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Wen Shi
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Zhang
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chuyang Ye
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, China
| | - Dan Wu
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
18
|
Hu M, Nardi C, Zhang H, Ang KK. Applications of Deep Learning to Neurodevelopment in Pediatric Imaging: Achievements and Challenges. APPLIED SCIENCES 2023; 13:2302. [DOI: 10.3390/app13042302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Deep learning has achieved remarkable progress, particularly in neuroimaging analysis. Deep learning applications have also been extended from adult to pediatric medical images, and thus, this paper aims to present a systematic review of this recent research. We first introduce the commonly used deep learning methods and architectures in neuroimaging, such as convolutional neural networks, auto-encoders, and generative adversarial networks. A non-exhaustive list of commonly used publicly available pediatric neuroimaging datasets and repositories are included, followed by a categorical review of recent works in pediatric MRI-based deep learning studies in the past five years. These works are categorized into recognizing neurodevelopmental disorders, identifying brain and tissue structures, estimating brain age/maturity, predicting neurodevelopment outcomes, and optimizing MRI brain imaging and analysis. Finally, we also discuss the recent achievements and challenges on these applications of deep learning to pediatric neuroimaging.
Collapse
Affiliation(s)
- Mengjiao Hu
- Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore
| | - Cosimo Nardi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence—Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| | - Haihong Zhang
- Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore
| | - Kai-Keng Ang
- Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore
- School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
19
|
Shi W, Xu H, Sun C, Sun J, Li Y, Xu X, Zheng T, Zhang Y, Wang G, Wu D. AFFIRM: Affinity Fusion-Based Framework for Iteratively Random Motion Correction of Multi-Slice Fetal Brain MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:209-219. [PMID: 36129858 DOI: 10.1109/tmi.2022.3208277] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Multi-slice magnetic resonance images of the fetal brain are usually contaminated by severe and arbitrary fetal and maternal motion. Hence, stable and robust motion correction is necessary to reconstruct high-resolution 3D fetal brain volume for clinical diagnosis and quantitative analysis. However, the conventional registration-based correction has a limited capture range and is insufficient for detecting relatively large motions. Here, we present a novel Affinity Fusion-based Framework for Iteratively Random Motion (AFFIRM) correction of the multi-slice fetal brain MRI. It learns the sequential motion from multiple stacks of slices and integrates the features between 2D slices and reconstructed 3D volume using affinity fusion, which resembles the iterations between slice-to-volume registration and volumetric reconstruction in the regular pipeline. The method accurately estimates the motion regardless of brain orientations and outperforms other state-of-the-art learning-based methods on the simulated motion-corrupted data, with a 48.4% reduction of mean absolute error for rotation and 61.3% for displacement. We then incorporated AFFIRM into the multi-resolution slice-to-volume registration and tested it on the real-world fetal MRI scans at different gestation stages. The results indicated that adding AFFIRM to the conventional pipeline improved the success rate of fetal brain super-resolution reconstruction from 77.2% to 91.9%.
Collapse
|
20
|
De Asis-Cruz J, Limperopoulos C. Harnessing the Power of Advanced Fetal Neuroimaging to Understand In Utero Footprints for Later Neuropsychiatric Disorders. Biol Psychiatry 2022; 93:867-879. [PMID: 36804195 DOI: 10.1016/j.biopsych.2022.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Adverse intrauterine events may profoundly impact fetal risk for future adult diseases. The mechanisms underlying this increased vulnerability are complex and remain poorly understood. Contemporary advances in fetal magnetic resonance imaging (MRI) have provided clinicians and scientists with unprecedented access to in vivo human fetal brain development to begin to identify emerging endophenotypes of neuropsychiatric disorders such as autism spectrum disorder, attention-deficit/hyperactivity disorder, and schizophrenia. In this review, we discuss salient findings of normal fetal neurodevelopment from studies using advanced, multimodal MRI that have provided unparalleled characterization of in utero prenatal brain morphology, metabolism, microstructure, and functional connectivity. We appraise the clinical utility of these normative data in identifying high-risk fetuses before birth. We highlight available studies that have investigated the predictive validity of advanced prenatal brain MRI findings and long-term neurodevelopmental outcomes. We then discuss how ex utero quantitative MRI findings can inform in utero investigations toward the pursuit of early biomarkers of risk. Lastly, we explore future opportunities to advance our understanding of the prenatal origins of neuropsychiatric disorders using precision fetal imaging.
Collapse
|
21
|
Karimi D, Gholipour A. Diffusion tensor estimation with transformer neural networks. Artif Intell Med 2022; 130:102330. [PMID: 35809969 PMCID: PMC9675900 DOI: 10.1016/j.artmed.2022.102330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/23/2022] [Accepted: 05/29/2022] [Indexed: 11/02/2022]
Abstract
Diffusion tensor imaging (DTI) is a widely used method for studying brain white matter development and degeneration. However, standard DTI estimation methods depend on a large number of high-quality measurements. This would require long scan times and can be particularly difficult to achieve with certain patient populations such as neonates. Here, we propose a method that can accurately estimate the diffusion tensor from only six diffusion-weighted measurements. Our method achieves this by learning to exploit the relationships between the diffusion signals and tensors in neighboring voxels. Our model is based on transformer networks, which represent the state of the art in modeling the relationship between signals in a sequence. In particular, our model consists of two such networks. The first network estimates the diffusion tensor based on the diffusion signals in a neighborhood of voxels. The second network provides more accurate tensor estimations by learning the relationships between the diffusion signals as well as the tensors estimated by the first network in neighboring voxels. Our experiments with three datasets show that our proposed method achieves highly accurate estimations of the diffusion tensor and is significantly superior to three competing methods. Estimations produced by our method with six diffusion-weighted measurements are comparable with those of standard estimation methods with 30-88 diffusion-weighted measurements. Hence, our method promises shorter scan times and more reliable assessment of brain white matter, particularly in non-cooperative patients such as neonates and infants.
Collapse
Affiliation(s)
- Davood Karimi
- Department of Radiology at Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA.
| | - Ali Gholipour
- Department of Radiology at Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Kebiri H, Canales-Rodríguez EJ, Lajous H, de Dumast P, Girard G, Alemán-Gómez Y, Koob M, Jakab A, Bach Cuadra M. Through-Plane Super-Resolution With Autoencoders in Diffusion Magnetic Resonance Imaging of the Developing Human Brain. Front Neurol 2022; 13:827816. [PMID: 35585848 PMCID: PMC9109939 DOI: 10.3389/fneur.2022.827816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Fetal brain diffusion magnetic resonance images (MRI) are often acquired with a lower through-plane than in-plane resolution. This anisotropy is often overcome by classical upsampling methods such as linear or cubic interpolation. In this work, we employ an unsupervised learning algorithm using an autoencoder neural network for single-image through-plane super-resolution by leveraging a large amount of data. Our framework, which can also be used for slice outliers replacement, overperformed conventional interpolations quantitatively and qualitatively on pre-term newborns of the developing Human Connectome Project. The evaluation was performed on both the original diffusion-weighted signal and the estimated diffusion tensor maps. A byproduct of our autoencoder was its ability to act as a denoiser. The network was able to generalize fetal data with different levels of motions and we qualitatively showed its consistency, hence supporting the relevance of pre-term datasets to improve the processing of fetal brain images.
Collapse
Affiliation(s)
- Hamza Kebiri
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Erick J. Canales-Rodríguez
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Hélène Lajous
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Priscille de Dumast
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Gabriel Girard
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Yasser Alemán-Gómez
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Mériam Koob
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - András Jakab
- Center for MR Research University Children's Hospital Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Meritxell Bach Cuadra
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
23
|
Jha RR, Pathak SK, Nath V, Schneider W, Kumar BVR, Bhavsar A, Nigam A. VRfRNet: Volumetric ROI fODF reconstruction network for estimation of multi-tissue constrained spherical deconvolution with only single shell dMRI. Magn Reson Imaging 2022; 90:1-16. [PMID: 35341904 DOI: 10.1016/j.mri.2022.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 02/19/2022] [Accepted: 03/19/2022] [Indexed: 10/18/2022]
Abstract
Diffusion MRI (dMRI) is one of the most popular techniques for studying the brain structure, mainly the white matter region. Among several sampling methods in dMRI, the high angular resolution diffusion imaging (HARDI) technique has attracted researchers due to its more accurate fiber orientation estimation. However, the current single-shell HARDI makes the intravoxel structure challenging to estimate accurately. While multi-shell acquisition can address this problem, it takes a longer scanning time, restricting its use in clinical applications. In addition, most existing dMRI scanners with low gradient-strengths often acquire single-shell up to b=1000s/mm2 because of signal-to-noise ratio issues and severe image artefacts. Hence, we propose a novel generative adversarial network, VRfRNet, for the reconstruction of multi-shell multi-tissue fiber orientation distribution function from single-shell HARDI volumes. Such a transformation learning is performed in the spherical harmonics (SH) space, as raw input HARDI volume is transformed to SH coefficients to soften gradient directions. The proposed VRfRNet consists of several modules, such as multi-context feature enrichment module, feature level attention, and softmax level attention. In addition, three loss functions have been used to optimize network learning, including L1, adversarial, and total variation. The network is trained and tested using standard qualitative and quantitative performance metrics on the publicly available HCP data-set.
Collapse
Affiliation(s)
- Ranjeet Ranjan Jha
- MANAS Lab, School of Computing and Electrical Engineering (SCEE), Indian Institute of Technology (IIT) Mandi, India.
| | - Sudhir K Pathak
- Learning Research and Development Center, University of Pittsburgh, USA
| | - Vishwesh Nath
- Vanderbilt Institute for Surgery and Engineering, Nashville, Tennessee, USA
| | - Walter Schneider
- Learning Research and Development Center, University of Pittsburgh, USA
| | - B V Rathish Kumar
- Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, India
| | - Arnav Bhavsar
- MANAS Lab, School of Computing and Electrical Engineering (SCEE), Indian Institute of Technology (IIT) Mandi, India
| | - Aditya Nigam
- MANAS Lab, School of Computing and Electrical Engineering (SCEE), Indian Institute of Technology (IIT) Mandi, India
| |
Collapse
|
24
|
Single-shell to multi-shell dMRI transformation using spatial and volumetric multilevel hierarchical reconstruction framework. Magn Reson Imaging 2022; 87:133-156. [PMID: 35017034 DOI: 10.1016/j.mri.2021.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022]
Abstract
Single or Multi-shell high angular resolution diffusion imaging (HARDI) has become an important dMRI acquisition technique for studying brain white matter fibers. Existing single-shell HARDI makes it challenging to estimate the intravoxel structure up to the desired resolution. However, multi-shell acquisition (with multiple b-values) can provide higher resolution for the intravoxel structure, which further helps in getting accurate fiber tracts; But, this comes at the cost of larger acquisition time and larger setup. Hence, we propose a novel deep learning architecture for the reconstruction of diffusion MRI volumes for different b-values (degree of diffusion weighting) using acquisitions at a fixed b-value (termed as single-shell) acquisition. This reconstruction has been performed in the spherical harmonics space to better manage varying gradient directions. In this work, we have demonstrated such a reconstruction for b = 3000 s/mm2 and b = 2000 s/mm2 from b = 1000 s/mm2. The proposed Multilevel Hierarchical Spherical Harmonics Coefficients Reconstruction (MHSH) framework takes advantage of contextual information within each slice as well as across the slices by involving Slice Level ReconNet (SLRNet) network and a Volumetric ROI Level ReconNet (VPLRNet) network, respectively. Three-loss functions have been used to optimize network learning, i.e., L1, Adversarial, and Total Variation Loss. Finally, the network is trained and validated on the publicly available HCP data-set with standard qualitative and quantitative performance measures and achieves promising results.
Collapse
|