1
|
Kim H, Karaman BK, Zhao Q, Wang AQ, Sabuncu MR. Learning-based inference of longitudinal image changes: Applications in embryo development, wound healing, and aging brain. Proc Natl Acad Sci U S A 2025; 122:e2411492122. [PMID: 39977323 PMCID: PMC11873959 DOI: 10.1073/pnas.2411492122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 01/05/2025] [Indexed: 02/22/2025] Open
Abstract
Longitudinal imaging data are routinely acquired for health studies and patient monitoring. A central goal in longitudinal studies is tracking relevant change over time. Traditional methods remove nuisance variation with custom pipelines to focus on significant changes. In this work, we present a machine learning-based method that automatically ignores irrelevant changes and extracts the time-varying signal of interest. Our method, called Learning-based Inference of Longitudinal imAge Changes (LILAC), performs a pairwise comparison of longitudinal images in order to make a temporal difference prediction. LILAC employs a convolutional Siamese architecture to extract feature pairs, followed by subtraction and a bias-free fully connected layer to learn meaningful temporal image differences. We first showcase LILAC's ability to capture key longitudinal changes by simply training it to predict the temporal ordering of images. In our experiments, temporal ordering accuracy exceeded 0.98, and predicted time differences were strongly correlated with actual changes in relevant variables (Pearson Correlation Coefficient r = 0.911 with embryo phase change, and r = 0.875 with time interval in wound healing). Next, we trained LILAC to explicitly predict specific targets, such as the change in clinical scores in patients with mild cognitive impairment. LILAC models achieved over a 40% reduction in root mean square error compared to baseline methods. Our empirical results demonstrate that LILAC effectively localizes and quantifies relevant individual-level changes in longitudinal imaging data, offering valuable insights for studying temporal mechanisms or guiding clinical decisions.
Collapse
Affiliation(s)
- Heejong Kim
- Artificial Intelligence in Radiology, Radiology, Weill Cornell Medical College, New York, NY10065
| | - Batuhan K. Karaman
- Artificial Intelligence in Radiology, Radiology, Weill Cornell Medical College, New York, NY10065
- School of Electrical and Computer Engineering, Cornell University and Cornell Tech, New York, NY10044
| | - Qingyu Zhao
- Artificial Intelligence in Radiology, Radiology, Weill Cornell Medical College, New York, NY10065
| | - Alan Q. Wang
- School of Electrical and Computer Engineering, Cornell University and Cornell Tech, New York, NY10044
- Computer Science, Stanford University, Stanford, CA94305
- Psychiatry and Behavioral Sciences, Stanford Medicine, Stanford, CA94305
| | - Mert R. Sabuncu
- Artificial Intelligence in Radiology, Radiology, Weill Cornell Medical College, New York, NY10065
- School of Electrical and Computer Engineering, Cornell University and Cornell Tech, New York, NY10044
| | | |
Collapse
|
2
|
Bazargani JS, Rahim N, Sadeghi-Niaraki A, Abuhmed T, Song H, Choi SM. Alzheimer's disease diagnosis in the metaverse. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 255:108348. [PMID: 39067138 DOI: 10.1016/j.cmpb.2024.108348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/29/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND AND OBJECTIVE The importance of early diagnosis of Alzheimer's Disease (AD) is by no means negligible because no cure has been recognized for it rather than some therapies only lowering the pace of progression. The research gap reveals information on the lack of an automatic non-invasive approach toward the diagnosis of AD, in particular with the help of Virtual Reality (VR) and Artificial Intelligence. Another perspective highlights that current VR studies fail to incorporate a comprehensive range of cognitive tests and consider design notes for elderlies, leading to unreliable results. METHODS This paper tried to design a VR environment suitable for older adults in which three cognitive assessments namely: ADAS-Cog, Montreal Cognitive Assessment (MoCA), and Mini Mental State Exam (MMSE), are implemented. Moreover, a 3DCNN-ML model was trained based on the corresponding cognitive tests and Magnetic Resonance Imaging (MRI) with different modalities using the Alzheimer's Disease Neuroimaging Initiative 2 (ADNI2) dataset and incorporated into the application to predict if the patient suffers from AD. RESULTS The model has undergone three experiments with different modalities (Cognitive Scores (CS), MRI images, and CS-MRI). As for the CS-MRI experiment, the trained model achieved 97%, 95%, 95%, 96%, and 94% in terms of precision, recall, F1-score, AUC, and accuracy respectively. The considered design notes were also assessed using a new proposed questionnaire based on existing ones in terms of user experience, user interface, mechanics, in-env assistance, and VR induced symptoms and effects. The designed VR system provided an acceptable level of user experience, with participants reporting an enjoyable and immersive experience. While there were areas for improvement, including graphics and sound quality, as well as comfort issues with prolonged HMD use, the user interface and mechanics of the system were generally well-received. CONCLUSIONS The reported results state that our method's comprehensive analysis of 3D brain volumes and incorporation of cognitive scores enabled earlier detection of AD progression, potentially allowing for timely interventions and improved patient outcomes. The proposed integrated system provided us with promising insights for improvements in the diagnosis of AD using technologies.
Collapse
Affiliation(s)
- Jalal Safari Bazargani
- Department of Computer Science and Engineering and Convergence Engineering for Intelligent Drone, XR Research Center, Sejong University, Seoul, Korea
| | - Nasir Rahim
- College of Computing and Informatics, Sungkyunkwan University, Suwon, Korea
| | - Abolghasem Sadeghi-Niaraki
- Department of Computer Science and Engineering and Convergence Engineering for Intelligent Drone, XR Research Center, Sejong University, Seoul, Korea
| | - Tamer Abuhmed
- College of Computing and Informatics, Sungkyunkwan University, Suwon, Korea
| | - Houbing Song
- Department of Information Systems, University of Maryland, Baltimore County (UMBC), Baltimore, MD, 21250, USA
| | - Soo-Mi Choi
- Department of Computer Science and Engineering and Convergence Engineering for Intelligent Drone, XR Research Center, Sejong University, Seoul, Korea.
| |
Collapse
|
3
|
Huang F, Qiu A. Ensemble Vision Transformer for Dementia Diagnosis. IEEE J Biomed Health Inform 2024; 28:5551-5561. [PMID: 38889030 DOI: 10.1109/jbhi.2024.3412812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
In recent years, deep learning has gained momentum in computer-aided Alzheimer's Disease (AD) diagnosis. This study introduces a novel approach, Monte Carlo Ensemble Vision Transformer (MC-ViT), which develops an ensemble approach with Vision transformer (ViT). Instead of using traditional ensemble methods that deploy multiple learners, our approach employs a single vision transformer learner. By harnessing Monte Carlo sampling, this method produces a broad spectrum of classification decisions, enhancing the MC-ViT performance. This novel technique adeptly overcomes the limitation of 3D patch convolutional neural networks that only characterize partial of the whole brain anatomy, paving the way for a neural network adept at discerning 3D inter-feature correlations. Evaluations using the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset with 7199 scans and Open Access Series of Imaging Studies-3 (OASIS-3) with 1992 scans showcased its performance. With minimal preprocessing, our approach achieved an impressive 90% accuracy in AD classification, surpassing both 2D-slice CNNs and 3D CNNs.
Collapse
|
4
|
Das SR, Ilesanmi A, Wolk DA, Gee JC. Beyond Macrostructure: Is There a Role for Radiomics Analysis in Neuroimaging ? Magn Reson Med Sci 2024; 23:367-376. [PMID: 38880615 PMCID: PMC11234947 DOI: 10.2463/mrms.rev.2024-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
The most commonly used neuroimaging biomarkers of brain structure, particularly in neurodegenerative diseases, have traditionally been summary measurements from ROIs derived from structural MRI, such as volume and thickness. Advances in MR acquisition techniques, including high-field imaging, and emergence of learning-based methods have opened up opportunities to interrogate brain structure in finer detail, allowing investigators to move beyond macrostructural measurements. On the one hand, superior signal contrast has the potential to make appearance-based metrics that directly analyze intensity patterns, such as texture analysis and radiomics features, more reliable. Quantitative MRI, particularly at high-field, can also provide a richer set of measures with greater interpretability. On the other hand, use of neural networks-based techniques has the potential to exploit subtle patterns in images that can now be mined with advanced imaging. Finally, there are opportunities for integration of multimodal data at different spatial scales that is enabled by developments in many of the above techniques-for example, by combining digital histopathology with high-resolution ex-vivo and in-vivo MRI. Some of these approaches are at early stages of development and present their own set of challenges. Nonetheless, they hold promise to drive the next generation of validation and biomarker studies. This article will survey recent developments in this area, with a particular focus on Alzheimer's disease and related disorders. However, most of the discussion is equally relevant to imaging of other neurological disorders, and even to other organ systems of interest. It is not meant to be an exhaustive review of the available literature, but rather presented as a summary of recent trends through the discussion of a collection of representative studies with an eye towards what the future may hold.
Collapse
Affiliation(s)
- Sandhitsu R. Das
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
- Penn Image Computing and Science Laboratory (PICSL), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Ademola Ilesanmi
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
- Penn Image Computing and Science Laboratory (PICSL), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - David A. Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA, USA
| | - James C. Gee
- Penn Image Computing and Science Laboratory (PICSL), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Hu Y, Zhu T, Zhang W. The characteristics of brain atrophy prior to the onset of Alzheimer's disease: a longitudinal study. Front Aging Neurosci 2024; 16:1344920. [PMID: 38863784 PMCID: PMC11165148 DOI: 10.3389/fnagi.2024.1344920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/02/2024] [Indexed: 06/13/2024] Open
Abstract
Objective We aimed to use the onset time of Alzheimer's disease (AD) as the reference time to longitudinally investigate the atrophic characteristics of brain structures prior to the onset of AD. Materials and methods A total of 328 participants from the ADNI database with clear onset of AD and structural imaging data were included in our study. The time before the onset of AD (abbreviated as BAD) was calculated. We investigated the longitudinal brain changes in 97 regions using multivariate linear mixed effects regression models. Results The average BAD was -28.15 months, with a range from -156 to 0 months. The 54 brain regions showed significant atrophy prior to the onset of AD, and these regions were mainly distributed in the frontal and temporal lobes. The parietal and occipital lobe exhibited relatively less atrophy than the other brain lobes. Sex, age, and magnetic field strength had greater direct impacts on structural indicators than APOE genotype and education. The analysis of interaction effects revealed that the APOE ε4 mutation carriers exhibited more severe structural changes in specific brain regions as the BAD increased. However, sex, age, and education had minimal regulatory influence on the structural changes associated with BAD. Conclusion Longitudinal analysis, with the onset time point of AD as the reference, can accurately describe the features of structural changes preceding the onset of AD and provide a comprehensive understanding of AD development.
Collapse
Affiliation(s)
- Ying Hu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Zhu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Zhang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Gao N, Chen H, Guo X, Hao X, Ma T. Geodesic shape regression based deep learning segmentation for assessing longitudinal hippocampal atrophy in dementia progression. Neuroimage Clin 2024; 43:103623. [PMID: 38821013 PMCID: PMC11179422 DOI: 10.1016/j.nicl.2024.103623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/12/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
Longitudinal hippocampal atrophy is commonly used as progressive marker assisting clinical diagnose of dementia. However, precise quantification of the atrophy is limited by longitudinal segmentation errors resulting from MRI artifacts across multiple independent scans. To accurately segment the hippocampal morphology from longitudinal 3T T1-weighted MR images, we propose a diffeomorphic geodesic guided deep learning method called the GeoLongSeg to mitigate the longitudinal variabilities that unrelated to diseases by enhancing intra-individual morphological consistency. Specifically, we integrate geodesic shape regression, an evolutional model that estimates smooth deformation process of anatomical shapes, into a two-stage segmentation network. We adopt a 3D U-Net in the first-stage network with an enhanced attention mechanism for independent segmentation. Then, a hippocampal shape evolutional trajectory is estimated by geodesic shape regression and fed into the second network to refine the independent segmentation. We verify that GeoLongSeg outperforms other four state-of-the-art segmentation pipelines in longitudinal morphological consistency evaluated by test-retest reliability, variance ratio and atrophy trajectories. When assessing hippocampal atrophy in longitudinal data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), results based on GeoLongSeg exhibit spatial and temporal local atrophy in bilateral hippocampi of dementia patients. These features derived from GeoLongSeg segmentation exhibit the greatest discriminatory capability compared to the outcomes of other methods in distinguishing between patients and normal controls. Overall, GeoLongSeg provides an accurate and efficient segmentation network for extracting hippocampal morphology from longitudinal MR images, which assist precise atrophy measurement of the hippocampus in early stage of dementia.
Collapse
Affiliation(s)
- Na Gao
- School of Electronic & Information Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Hantao Chen
- School of Electronic & Information Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Xutao Guo
- School of Electronic & Information Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China; Peng Cheng Laboratory, Shenzhen, China
| | - Xingyu Hao
- School of Electronic & Information Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Ting Ma
- School of Electronic & Information Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China; Peng Cheng Laboratory, Shenzhen, China; Guangdong Provincial Key Laboratory of Aerospace Communication and Networking Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China.
| |
Collapse
|
7
|
Gao X, Liu H, Shi F, Shen D, Liu M. Brain Status Transferring Generative Adversarial Network for Decoding Individualized Atrophy in Alzheimer's Disease. IEEE J Biomed Health Inform 2023; 27:4961-4970. [PMID: 37607152 DOI: 10.1109/jbhi.2023.3304388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Deep learning has been widely investigated in brain image computational analysis for diagnosing brain diseases such as Alzheimer's disease (AD). Most of the existing methods built end-to-end models to learn discriminative features by group-wise analysis. However, these methods cannot detect pathological changes in each subject, which is essential for the individualized interpretation of disease variances and precision medicine. In this article, we propose a brain status transferring generative adversarial network (BrainStatTrans-GAN) to generate corresponding healthy images of patients, which are further used to decode individualized brain atrophy. The BrainStatTrans-GAN consists of generator, discriminator, and status discriminator. First, a normative GAN is built to generate healthy brain images from normal controls. However, it cannot generate healthy images from diseased ones due to the lack of paired healthy and diseased images. To address this problem, a status discriminator with adversarial learning is designed in the training process to produce healthy brain images for patients. Then, the residual between the generated and input images can be computed to quantify pathological brain changes. Finally, a residual-based multi-level fusion network (RMFN) is built for more accurate disease diagnosis. Compared to the existing methods, our method can model individualized brain atrophy for facilitating disease diagnosis and interpretation. Experimental results on T1-weighted magnetic resonance imaging (MRI) data of 1,739 subjects from three datasets demonstrate the effectiveness of our method.
Collapse
|
8
|
Dong M, Xie L, Das SR, Wang J, Wisse LEM, deFlores R, Wolk DA, Yushkevich PA. Regional Deep Atrophy: a Self-Supervised Learning Method to Automatically Identify Regions Associated With Alzheimer's Disease Progression From Longitudinal MRI. ARXIV 2023:arXiv:2304.04673v1. [PMID: 37090239 PMCID: PMC10120742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Longitudinal assessment of brain atrophy, particularly in the hippocampus, is a well-studied biomarker for neurodegenerative diseases, such as Alzheimer's disease (AD). In clinical trials, estimation of brain progressive rates can be applied to track therapeutic efficacy of disease modifying treatments. However, most state-of-the-art measurements calculate changes directly by segmentation and/or deformable registration of MRI images, and may misreport head motion or MRI artifacts as neurodegeneration, impacting their accuracy. In our previous study, we developed a deep learning method DeepAtrophy that uses a convolutional neural network to quantify differences between longitudinal MRI scan pairs that are associated with time. DeepAtrophy has high accuracy in inferring temporal information from longitudinal MRI scans, such as temporal order or relative inter-scan interval. DeepAtrophy also provides an overall atrophy score that was shown to perform well as a potential biomarker of disease progression and treatment efficacy. However, DeepAtrophy is not interpretable, and it is unclear what changes in the MRI contribute to progression measurements. In this paper, we propose Regional Deep Atrophy (RDA), which combines the temporal inference approach from DeepAtrophy with a deformable registration neural network and attention mechanism that highlights regions in the MRI image where longitudinal changes are contributing to temporal inference. RDA has similar prediction accuracy as DeepAtrophy, but its additional interpretability makes it more acceptable for use in clinical settings, and may lead to more sensitive biomarkers for disease monitoring in clinical trials of early AD.
Collapse
Affiliation(s)
- Mengjin Dong
- Penn Image Computing and Science Laboratory (PICSL), Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Long Xie
- Penn Image Computing and Science Laboratory (PICSL), Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Sandhitsu R Das
- Penn Image Computing and Science Laboratory (PICSL), Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Penn Memory Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Jiancong Wang
- Penn Image Computing and Science Laboratory (PICSL), Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Laura E M Wisse
- Penn Image Computing and Science Laboratory (PICSL), Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Department of Diagnostic Radiology, Lund University, Lund, Sweden
| | - Robin deFlores
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Penn Memory Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Institut National de la Santé et de la Recherche Médicale (INSERM), Caen, France
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Penn Memory Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Paul A Yushkevich
- Penn Image Computing and Science Laboratory (PICSL), Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
9
|
Avberšek LK, Repovš G. Deep learning in neuroimaging data analysis: Applications, challenges, and solutions. FRONTIERS IN NEUROIMAGING 2022; 1:981642. [PMID: 37555142 PMCID: PMC10406264 DOI: 10.3389/fnimg.2022.981642] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/10/2022] [Indexed: 08/10/2023]
Abstract
Methods for the analysis of neuroimaging data have advanced significantly since the beginning of neuroscience as a scientific discipline. Today, sophisticated statistical procedures allow us to examine complex multivariate patterns, however most of them are still constrained by assuming inherent linearity of neural processes. Here, we discuss a group of machine learning methods, called deep learning, which have drawn much attention in and outside the field of neuroscience in recent years and hold the potential to surpass the mentioned limitations. Firstly, we describe and explain the essential concepts in deep learning: the structure and the computational operations that allow deep models to learn. After that, we move to the most common applications of deep learning in neuroimaging data analysis: prediction of outcome, interpretation of internal representations, generation of synthetic data and segmentation. In the next section we present issues that deep learning poses, which concerns multidimensionality and multimodality of data, overfitting and computational cost, and propose possible solutions. Lastly, we discuss the current reach of DL usage in all the common applications in neuroimaging data analysis, where we consider the promise of multimodality, capability of processing raw data, and advanced visualization strategies. We identify research gaps, such as focusing on a limited number of criterion variables and the lack of a well-defined strategy for choosing architecture and hyperparameters. Furthermore, we talk about the possibility of conducting research with constructs that have been ignored so far or/and moving toward frameworks, such as RDoC, the potential of transfer learning and generation of synthetic data.
Collapse
Affiliation(s)
- Lev Kiar Avberšek
- Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
10
|
Lin B, Zhang L, Yin X, Chen X, Ruan C, Wu T, Liu Z, Huang J. Modulation of entorhinal cortex–hippocampus connectivity and recognition memory following electroacupuncture on 3×Tg-AD model: Evidence from multimodal MRI and electrophysiological recordings. Front Neurosci 2022; 16:968767. [PMID: 35968386 PMCID: PMC9372370 DOI: 10.3389/fnins.2022.968767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Memory loss and aberrant neuronal network activity are part of the earliest hallmarks of Alzheimer’s disease (AD). Electroacupuncture (EA) has been recognized as a cognitive stimulation for its effects on memory disorder, but whether different brain regions or neural circuits contribute to memory recovery in AD remains unknown. Here, we found that memory deficit was ameliorated in 3×Tg-AD mice with EA-treatment, as shown by the increased number of exploring and time spent in the novel object. In addition, reduced locomotor activity was observed in 3×Tg-AD mice, but no significant alteration was seen in the EA-treated mice. Based on the functional magnetic resonance imaging, the regional spontaneous activity alterations of 3×Tg-AD were mainly concentrated in the accumbens nucleus, auditory cortex, caudate putamen, entorhinal cortex (EC), hippocampus, insular cortex, subiculum, temporal cortex, visual cortex, and so on. While EA-treatment prevented the chaos of brain activity in parts of the above regions, such as the auditory cortex, EC, hippocampus, subiculum, and temporal cortex. And then we used the whole-cell voltage-clamp recording to reveal the neurotransmission in the hippocampus, and found that EA-treatment reversed the synaptic spontaneous release. Since the hippocampus receives most of the projections of the EC, the hippocampus-EC circuit is one of the neural circuits related to memory impairment. We further applied diffusion tensor imaging (DTI) tracking and functional connectivity, and found that hypo-connected between the hippocampus and EC with EA-treatment. These data indicate that the hippocampus–EC connectivity is responsible for the recognition memory deficit in the AD mice with EA-treatment, and provide novel insight into potential therapies for memory loss in AD.
Collapse
Affiliation(s)
- Bingbing Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lanlan Zhang
- TCM Rehabilitation Research Center of State Administration of Traditional Chinese Medicine (SATCM), Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaolong Yin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaocheng Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Chendong Ruan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Tiecheng Wu
- Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation, Ministry of Education, Fuzhou, China
| | - Zhizhen Liu
- TCM Rehabilitation Research Center of State Administration of Traditional Chinese Medicine (SATCM), Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jia Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- *Correspondence: Jia Huang,
| |
Collapse
|