1
|
Fide E, Bora E, Yener G. Network Segregation and Integration Changes in Healthy Aging: Evidence From EEG Subbands During the Visual Short-Term Memory Binding Task. Eur J Neurosci 2025; 61:e70001. [PMID: 39906991 PMCID: PMC11795350 DOI: 10.1111/ejn.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/08/2024] [Accepted: 01/07/2025] [Indexed: 02/06/2025]
Abstract
Working memory, which tends to be the most vulnerable cognitive domain to aging, is thought to depend on a functional brain network for efficient communication. The dynamic communication within this network is represented by segregation and integration. This study aimed to investigate healthy aging by examining age effect on outcomes of graph theory analysis during the visual short-term memory binding (VSTMB) task. VSTMB tasks rely on the integration of visual features and are less sensitive to semantic and verbal strategies. Effects of age on neuropsychological test scores, along with the EEG graph-theoretical integration, segregation and global organization metrics in frequencies from delta to gamma band were investigated. Neuropsychological assessment showed low sensitivity as a measure of age-related changes. EEG results indicated that network architecture changed more effectively during middle age, while this effectiveness appears to vanish or show compensatory mechanisms in the elderly. These differences were further found to be related to cognitive domain scores. This study is the first to demonstrate differences in working memory network architecture across a broad age range.
Collapse
Affiliation(s)
- Ezgi Fide
- Department of Psychology, Faculty of HealthYork UniversityTorontoOntarioCanada
| | - Emre Bora
- Department of Neurosciences, Institute of Health SciencesDokuz Eylül UniversityIzmirTurkey
- Faculty of Medicine, Department of PsychiatryDokuz Eylül UniversityIzmirTurkey
| | - Görsev Yener
- Department of Neurosciences, Institute of Health SciencesDokuz Eylül UniversityIzmirTurkey
- Faculty of Medicine, Department of NeurologyDokuz Eylül UniversityIzmirTurkey
- Izmir International Biomedicine and Genome InstituteDokuz Eylül UniversityIzmirTurkey
| |
Collapse
|
2
|
Chen W, Zhan L, Jia T. Sex Differences in Hierarchical and Modular Organization of Functional Brain Networks: Insights from Hierarchical Entropy and Modularity Analysis. ENTROPY (BASEL, SWITZERLAND) 2024; 26:864. [PMID: 39451941 PMCID: PMC11507829 DOI: 10.3390/e26100864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Existing studies have demonstrated significant sex differences in the neural mechanisms of daily life and neuropsychiatric disorders. The hierarchical organization of the functional brain network is a critical feature for assessing these neural mechanisms. But the sex differences in hierarchical organization have not been fully investigated. Here, we explore whether the hierarchical structure of the brain network differs between females and males using resting-state fMRI data. We measure the hierarchical entropy and the maximum modularity of each individual, and identify a significant negative correlation between the complexity of hierarchy and modularity in brain networks. At the mean level, females show higher modularity, whereas males exhibit a more complex hierarchy. At the consensus level, we use a co-classification matrix to perform a detailed investigation of the differences in the hierarchical organization between sexes and observe that the female group and the male group exhibit different interaction patterns of brain regions in the dorsal attention network (DAN) and visual network (VIN). Our findings suggest that the brains of females and males employ different network topologies to carry out brain functions. In addition, the negative correlation between hierarchy and modularity implies a need to balance the complexity in the hierarchical organization of the brain network, which sheds light on future studies of brain functions.
Collapse
Affiliation(s)
| | | | - Tao Jia
- College of Computer and Information Science, Southwest University, Chongqing 400715, China; (W.C.); (L.Z.)
| |
Collapse
|
3
|
Farahani FV, Nebel MB, Wager TD, Lindquist MA. Effects of connectivity hyperalignment (CHA) on estimated brain network properties: from coarse-scale to fine-scale. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609817. [PMID: 39253413 PMCID: PMC11383013 DOI: 10.1101/2024.08.27.609817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Recent gains in functional magnetic resonance imaging (fMRI) studies have been driven by increasingly sophisticated statistical and computational techniques and the ability to capture brain data at finer spatial and temporal resolution. These advances allow researchers to develop population-level models of the functional brain representations underlying behavior, performance, clinical status, and prognosis. However, even following conventional preprocessing pipelines, considerable inter-individual disparities in functional localization persist, posing a hurdle to performing compelling population-level inference. Persistent misalignment in functional topography after registration and spatial normalization will reduce power in developing predictive models and biomarkers, reduce the specificity of estimated brain responses and patterns, and provide misleading results on local neural representations and individual differences. This study aims to determine how connectivity hyperalignment (CHA)-an analytic approach for handling functional misalignment-can change estimated functional brain network topologies at various spatial scales from the coarsest set of parcels down to the vertex-level scale. The findings highlight the role of CHA in improving inter-subject similarities, while retaining individual-specific information and idiosyncrasies at finer spatial granularities. This highlights the potential for fine-grained connectivity analysis using this approach to reveal previously unexplored facets of brain structure and function.
Collapse
Affiliation(s)
- Farzad V. Farahani
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | - Mary Beth Nebel
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tor D. Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | | |
Collapse
|
4
|
Smith NR, Ameen S, Miller SN, Kasper JM, Schwarz JM, Hommel JD, Borzou A. The neuroanatomical organization of the hypothalamus is driven by spatial and topological efficiency. Front Syst Neurosci 2024; 18:1417346. [PMID: 39165582 PMCID: PMC11334159 DOI: 10.3389/fnsys.2024.1417346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024] Open
Abstract
The hypothalamus in the mammalian brain is responsible for regulating functions associated with survival and reproduction representing a complex set of highly interconnected, yet anatomically and functionally distinct, sub-regions. It remains unclear what factors drive the spatial organization of sub-regions within the hypothalamus. One potential factor may be structural connectivity of the network that promotes efficient function with well-connected sub-regions placed closer together geometrically, i.e., the strongest axonal signal transferred through the shortest geometrical distance. To empirically test for such efficiency, we use hypothalamic data derived from the Allen Mouse Brain Connectivity Atlas, which provides a structural connectivity map of mouse brain regions derived from a series of viral tracing experiments. Using both cost function minimization and comparison with a weighted, sphere-packing ensemble, we demonstrate that the sum of the distances between hypothalamic sub-regions are not close to the minimum possible distance, consistent with prior whole brain studies. However, if such distances are weighted by the inverse of the magnitude of the connectivity, their sum is among the lowest possible values. Specifically, the hypothalamus appears within the top 94th percentile of neural efficiencies of randomly packed configurations and within one standard deviation of the median efficiency when packings are optimized for maximal neural efficiency. Our results, therefore, indicate that a combination of geometrical and topological constraints help govern the structure of the hypothalamus.
Collapse
Affiliation(s)
- Nathan R. Smith
- Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Shabeeb Ameen
- Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY, United States
| | - Sierra N. Miller
- Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - James M. Kasper
- Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jennifer M. Schwarz
- Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY, United States
- Indian Creek Farm, Ithaca, NY, United States
| | - Jonathan D. Hommel
- Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | | |
Collapse
|
5
|
Tanner J, Faskowitz J, Teixeira AS, Seguin C, Coletta L, Gozzi A, Mišić B, Betzel RF. A multi-modal, asymmetric, weighted, and signed description of anatomical connectivity. Nat Commun 2024; 15:5865. [PMID: 38997282 PMCID: PMC11245624 DOI: 10.1038/s41467-024-50248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
The macroscale connectome is the network of physical, white-matter tracts between brain areas. The connections are generally weighted and their values interpreted as measures of communication efficacy. In most applications, weights are either assigned based on imaging features-e.g. diffusion parameters-or inferred using statistical models. In reality, the ground-truth weights are unknown, motivating the exploration of alternative edge weighting schemes. Here, we explore a multi-modal, regression-based model that endows reconstructed fiber tracts with directed and signed weights. We find that the model fits observed data well, outperforming a suite of null models. The estimated weights are subject-specific and highly reliable, even when fit using relatively few training samples, and the networks maintain a number of desirable features. In summary, we offer a simple framework for weighting connectome data, demonstrating both its ease of implementation while benchmarking its utility for typical connectome analyses, including graph theoretic modeling and brain-behavior associations.
Collapse
Affiliation(s)
- Jacob Tanner
- Cognitive Science Program, Indiana University, Bloomington, IN, USA
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA
| | - Joshua Faskowitz
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Andreia Sofia Teixeira
- LASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Caio Seguin
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | | | - Alessandro Gozzi
- Functional Neuroimaging Lab, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, Italy
| | - Bratislav Mišić
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Richard F Betzel
- Cognitive Science Program, Indiana University, Bloomington, IN, USA.
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA.
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
6
|
Mamat M, Wang Z, Jin L, He K, Li L, Chen Y. Beyond nodes and edges: a bibliometric analysis on graph theory and neuroimaging modalities. Front Neurosci 2024; 18:1373264. [PMID: 38716254 PMCID: PMC11074400 DOI: 10.3389/fnins.2024.1373264] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/08/2024] [Indexed: 07/18/2024] Open
Abstract
Understanding the intricate architecture of the brain through the lens of graph theory and advanced neuroimaging techniques has become increasingly pivotal in unraveling the complexities of neural networks. This bibliometric analysis explores the evolving landscape of brain research by focusing on the intersection of graph theoretical approaches, neuroanatomy, and diverse neuroimaging modalities. A systematic search strategy was used that resulted in the retrieval of a comprehensive dataset of articles and reviews. Using CiteSpace and VOSviewer, a detailed scientometric analysis was conducted that revealed emerging trends, key research clusters, and influential contributions within this multidisciplinary domain. Our review highlights the growing synergy between graph theory methodologies and neuroimaging modalities, reflecting the evolving paradigms shaping our understanding of brain networks. This study offers comprehensive insight into brain network research, emphasizing growth patterns, pivotal contributions, and global collaborative networks, thus serving as a valuable resource for researchers and institutions navigating this interdisciplinary landscape.
Collapse
Affiliation(s)
- Makliya Mamat
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Ziyan Wang
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Ling Jin
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Kailong He
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Lin Li
- Department of Human Anatomy, Nanjing Medical University, Nanjing, China
| | - Yiyong Chen
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
7
|
Puxeddu MG, Faskowitz J, Seguin C, Yovel Y, Assaf Y, Betzel R, Sporns O. Relation of connectome topology to brain volume across 103 mammalian species. PLoS Biol 2024; 22:e3002489. [PMID: 38315722 PMCID: PMC10868790 DOI: 10.1371/journal.pbio.3002489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 02/15/2024] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
The brain connectome is an embedded network of anatomically interconnected brain regions, and the study of its topological organization in mammals has become of paramount importance due to its role in scaffolding brain function and behavior. Unlike many other observable networks, brain connections incur material and energetic cost, and their length and density are volumetrically constrained by the skull. Thus, an open question is how differences in brain volume impact connectome topology. We address this issue using the MaMI database, a diverse set of mammalian connectomes reconstructed from 201 animals, covering 103 species and 12 taxonomy orders, whose brain size varies over more than 4 orders of magnitude. Our analyses focus on relationships between volume and modular organization. After having identified modules through a multiresolution approach, we observed how connectivity features relate to the modular structure and how these relations vary across brain volume. We found that as the brain volume increases, modules become more spatially compact and dense, comprising more costly connections. Furthermore, we investigated how spatial embedding shapes network communication, finding that as brain volume increases, nodes' distance progressively impacts communication efficiency. We identified modes of variation in network communication policies, as smaller and bigger brains show higher efficiency in routing- and diffusion-based signaling, respectively. Finally, bridging network modularity and communication, we found that in larger brains, modular structure imposes stronger constraints on network signaling. Altogether, our results show that brain volume is systematically related to mammalian connectome topology and that spatial embedding imposes tighter restrictions on larger brains.
Collapse
Affiliation(s)
- Maria Grazia Puxeddu
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Joshua Faskowitz
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Caio Seguin
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Yossi Yovel
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Yaniv Assaf
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Richard Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- Program in Neuroscience, Indiana University, Bloomington, Indiana, United States of America
- Program in Cognitive Science, Indiana University, Bloomington, Indiana, United States of America
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- Program in Neuroscience, Indiana University, Bloomington, Indiana, United States of America
- Program in Cognitive Science, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
8
|
Ahmed MAO, Satar YA, Darwish EM, Zanaty EA. Synergistic integration of Multi-View Brain Networks and advanced machine learning techniques for auditory disorders diagnostics. Brain Inform 2024; 11:3. [PMID: 38219249 PMCID: PMC10788326 DOI: 10.1186/s40708-023-00214-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/06/2023] [Indexed: 01/16/2024] Open
Abstract
In the field of audiology, achieving accurate discrimination of auditory impairments remains a formidable challenge. Conditions such as deafness and tinnitus exert a substantial impact on patients' overall quality of life, emphasizing the urgent need for precise and efficient classification methods. This study introduces an innovative approach, utilizing Multi-View Brain Network data acquired from three distinct cohorts: 51 deaf patients, 54 with tinnitus, and 42 normal controls. Electroencephalogram (EEG) recording data were meticulously collected, focusing on 70 electrodes attached to an end-to-end key with 10 regions of interest (ROI). This data is synergistically integrated with machine learning algorithms. To tackle the inherently high-dimensional nature of brain connectivity data, principal component analysis (PCA) is employed for feature reduction, enhancing interpretability. The proposed approach undergoes evaluation using ensemble learning techniques, including Random Forest, Extra Trees, Gradient Boosting, and CatBoost. The performance of the proposed models is scrutinized across a comprehensive set of metrics, encompassing cross-validation accuracy (CVA), precision, recall, F1-score, Kappa, and Matthews correlation coefficient (MCC). The proposed models demonstrate statistical significance and effectively diagnose auditory disorders, contributing to early detection and personalized treatment, thereby enhancing patient outcomes and quality of life. Notably, they exhibit reliability and robustness, characterized by high Kappa and MCC values. This research represents a significant advancement in the intersection of audiology, neuroimaging, and machine learning, with transformative implications for clinical practice and care.
Collapse
Affiliation(s)
- Muhammad Atta Othman Ahmed
- Department of Computer Science, Faculty of Computers and Information, Luxor University, 85951, Luxor, Egypt.
| | - Yasser Abdel Satar
- Mathematics Department, Faculty of Science, Sohag University, 82511, Sohag, Egypt
| | - Eed M Darwish
- Physics Department, College of Science, Taibah University, Medina, 41411, Saudi Arabia
- Physics Department, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| | - Elnomery A Zanaty
- Department of Computer Science, Faculty of Computers and Artificial Intelligence, Sohag University, 82511, Sohag, Egypt
| |
Collapse
|
9
|
Wang H, Zhu R, Tian S, Shao J, Dai Z, Xue L, Sun Y, Chen Z, Yao Z, Lu Q. Classification of bipolar disorders using the multilayer modularity in dynamic minimum spanning tree from resting state fMRI. Cogn Neurodyn 2023; 17:1609-1619. [PMID: 37974586 PMCID: PMC10640554 DOI: 10.1007/s11571-022-09907-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 07/19/2022] [Accepted: 10/28/2022] [Indexed: 12/04/2022] Open
Abstract
The diagnosis of bipolar disorders (BD) mainly depends on the clinical history and behavior observation, while only using clinical tools often limits the diagnosis accuracy. The study aimed to create a novel BD diagnosis framework using multilayer modularity in the dynamic minimum spanning tree (MST). We collected 45 un-medicated BD patients and 47 healthy controls (HC). The sliding window approach was utilized to construct dynamic MST via resting-state functional magnetic resonance imaging (fMRI) data. Firstly, we used three null models to explore the effectiveness of multilayer modularity in dynamic MST. Furthermore, the module allegiance exacted from dynamic MST was applied to train a classifier to discriminate BD patients. Finally, we explored the influence of the FC estimator and MST scale on the performance of the model. The findings indicated that multilayer modularity in the dynamic MST was not a random process in the human brain. And the model achieved an accuracy of 83.70% for identifying BD patients. In addition, we found the default mode network, subcortical network (SubC), and attention network played a key role in the classification. These findings suggested that the multilayer modularity in dynamic MST could highlight the difference between HC and BD patients, which opened up a new diagnostic tool for BD patients. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09907-x.
Collapse
Affiliation(s)
- Huan Wang
- School of Biological Sciences & Medical Engineering, Southeast University, No.2 Sipailou, Nanjing, 210096 Jiangsu Province China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, China
| | - Rongxin Zhu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Shui Tian
- School of Biological Sciences & Medical Engineering, Southeast University, No.2 Sipailou, Nanjing, 210096 Jiangsu Province China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, China
| | - Junneng Shao
- School of Biological Sciences & Medical Engineering, Southeast University, No.2 Sipailou, Nanjing, 210096 Jiangsu Province China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, China
| | - Zhongpeng Dai
- School of Biological Sciences & Medical Engineering, Southeast University, No.2 Sipailou, Nanjing, 210096 Jiangsu Province China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, China
| | - Li Xue
- School of Biological Sciences & Medical Engineering, Southeast University, No.2 Sipailou, Nanjing, 210096 Jiangsu Province China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, China
| | - Yurong Sun
- School of Biological Sciences & Medical Engineering, Southeast University, No.2 Sipailou, Nanjing, 210096 Jiangsu Province China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, China
| | - Zhilu Chen
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Zhijian Yao
- School of Biological Sciences & Medical Engineering, Southeast University, No.2 Sipailou, Nanjing, 210096 Jiangsu Province China
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029 China
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, 210093 China
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, No.2 Sipailou, Nanjing, 210096 Jiangsu Province China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, China
| |
Collapse
|
10
|
Chappel-Farley MG, Adams JN, Betzel RF, Janecek JC, Sattari NS, Berisha DE, Meza NJ, Niknazar H, Kim S, Dave A, Chen IY, Lui KK, Neikrug AB, Benca RM, Yassa MA, Mander BA. Medial temporal lobe functional network architecture supports sleep-related emotional memory processing in older adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564260. [PMID: 37961192 PMCID: PMC10634911 DOI: 10.1101/2023.10.27.564260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Memory consolidation occurs via reactivation of a hippocampal index during non-rapid eye movement slow-wave sleep (NREM SWS) which binds attributes of an experience existing within cortical modules. For memories containing emotional content, hippocampal-amygdala dynamics facilitate consolidation over a sleep bout. This study tested if modularity and centrality-graph theoretical measures that index the level of segregation/integration in a system and the relative import of its nodes-map onto central tenets of memory consolidation theory and sleep-related processing. Findings indicate that greater network integration is tied to overnight emotional memory retention via NREM SWS expression. Greater hippocampal and amygdala influence over network organization supports emotional memory retention, and hippocampal or amygdala control over information flow are differentially associated with distinct stages of memory processing. These centrality measures are also tied to the local expression and coupling of key sleep oscillations tied to sleep-dependent memory consolidation. These findings suggest that measures of intrinsic network connectivity may predict the capacity of brain functional networks to acquire, consolidate, and retrieve emotional memories.
Collapse
Affiliation(s)
- Miranda G. Chappel-Farley
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Jenna N. Adams
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Richard F. Betzel
- Department of Psychological and Brain Sciences, University of Indiana Bloomington, Bloomington IN, 47405
| | - John C. Janecek
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Negin S. Sattari
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Destiny E. Berisha
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Novelle J. Meza
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Hamid Niknazar
- Department of Cognitive Sciences, University of California Irvine, Irvine CA, 92697, USA
| | - Soyun Kim
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Abhishek Dave
- Department of Cognitive Sciences, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Ivy Y. Chen
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Kitty K. Lui
- San Diego State University/University of California San Diego, Joint Doctoral Program in Clinical Psychology, San Diego, CA, 92093, USA
| | - Ariel B. Neikrug
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Ruth M. Benca
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, 53706, WI, USA
- Department of Psychiatry and Behavioral Medicine, Wake Forest University, Winston-Salem, NC, 27109, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine CA, 92697, USA
| | - Michael A. Yassa
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine CA, 92697, USA
- Department of Neurology, University of California Irvine, Irvine CA, 92697, USA
| | - Bryce A. Mander
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
- Department of Cognitive Sciences, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine CA, 92697, USA
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine CA, 92697, USA
| |
Collapse
|
11
|
Uehara K, Yasuhara M, Koguchi J, Oku T, Shiotani S, Morise M, Furuya S. Brain network flexibility as a predictor of skilled musical performance. Cereb Cortex 2023; 33:10492-10503. [PMID: 37566918 DOI: 10.1093/cercor/bhad298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Interactions between the body and the environment are dynamically modulated by upcoming sensory information and motor execution. To adapt to this behavioral state-shift, brain activity must also be flexible and possess a large repertoire of brain networks so as to switch them flexibly. Recently, flexible internal brain communications, i.e. brain network flexibility, have come to be recognized as playing a vital role in integrating various sensorimotor information. Therefore, brain network flexibility is one of the key factors that define sensorimotor skill. However, little is known about how flexible communications within the brain characterize the interindividual variation of sensorimotor skill and trial-by-trial variability within individuals. To address this, we recruited skilled musical performers and used a novel approach that combined multichannel-scalp electroencephalography, behavioral measurements of musical performance, and mathematical approaches to extract brain network flexibility. We found that brain network flexibility immediately before initiating the musical performance predicted interindividual differences in the precision of tone timbre when required for feedback control, but not for feedforward control. Furthermore, brain network flexibility in broad cortical regions predicted skilled musical performance. Our results provide novel evidence that brain network flexibility plays an important role in building skilled sensorimotor performance.
Collapse
Affiliation(s)
- Kazumasa Uehara
- Neural Information Dynamics Laboratory, Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Japan
- Sony Computer Science Laboratories Inc, Tokyo 1410022, Japan
| | - Masaki Yasuhara
- Sony Computer Science Laboratories Inc, Tokyo 1410022, Japan
- Neural Engineering Laboratory, Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Japan
| | - Junya Koguchi
- Sony Computer Science Laboratories Inc, Tokyo 1410022, Japan
- Graduate School of Advanced Mathematical Sciences, Meiji University, Tokyo, Japan
| | | | | | - Masanori Morise
- Sony Computer Science Laboratories Inc, Tokyo 1410022, Japan
- School of Interdisciplinary Mathematical Sciences, Meiji University, Tokyo, Japan
| | - Shinichi Furuya
- Sony Computer Science Laboratories Inc, Tokyo 1410022, Japan
- NeuroPiano Institute, Kyoto 6008086, Japan
| |
Collapse
|
12
|
Roland AV, Coelho CAO, Haun HL, Gianessi CA, Lopez MF, D'Ambrosio S, Machinski SN, Kroenke CD, Frankland PW, Becker HC, Kash TL. Alcohol Dependence Modifies Brain Networks Activated During Withdrawal and Reaccess: A c-Fos-Based Analysis in Mice. Biol Psychiatry 2023; 94:393-404. [PMID: 36736419 PMCID: PMC10517410 DOI: 10.1016/j.biopsych.2023.01.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/06/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND High-level alcohol consumption causes neuroplastic changes in the brain that promote pathological drinking behavior. Some of these changes have been characterized in defined brain circuits and cell types, but unbiased approaches are needed to explore broader patterns of adaptations. METHODS We used whole-brain c-Fos mapping and network analysis to assess patterns of neuronal activity during alcohol withdrawal and following reaccess in a well-characterized model of alcohol dependence. Mice underwent 4 cycles of chronic intermittent ethanol to increase voluntary alcohol consumption, and a subset underwent forced swim stress to further escalate consumption. Brains were collected either 24 hours (withdrawal) or immediately following a 1-hour period of alcohol reaccess. c-fos counts were obtained for 110 brain regions using iDISCO and ClearMap. Then, we classified mice as high or low drinkers and used graph theory to identify changes in network properties associated with high-drinking behavior. RESULTS During withdrawal, chronic intermittent ethanol mice displayed widespread increased c-Fos expression relative to air-exposed mice, independent of forced swim stress. Reaccess drinking reversed this increase. Network modularity, a measure of segregation into communities, was increased in high-drinking mice after alcohol reaccess relative to withdrawal. The cortical amygdala showed increased cross-community coactivation during withdrawal in high-drinking mice, and cortical amygdala silencing in chronic intermittent ethanol mice reduced voluntary drinking. CONCLUSIONS Alcohol withdrawal in dependent mice causes changes in brain network organization that are attenuated by reaccess drinking. Olfactory brain regions, including the cortical amygdala, drive some of these changes and may play an important but underappreciated role in alcohol dependence.
Collapse
Affiliation(s)
- Alison V Roland
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Cesar A O Coelho
- Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Harold L Haun
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Carol A Gianessi
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Marcelo F Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina; Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Shannon D'Ambrosio
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Samantha N Machinski
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Christopher D Kroenke
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon; Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon
| | - Paul W Frankland
- Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Psychology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina; Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina; Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina; Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, South Carolina
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina.
| |
Collapse
|
13
|
Puxeddu MG, Faskowitz J, Sporns O, Astolfi L, Betzel RF. Multi-modal and multi-subject modular organization of human brain networks. Neuroimage 2022; 264:119673. [PMID: 36257489 DOI: 10.1016/j.neuroimage.2022.119673] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/22/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
The human brain is a complex network of anatomically interconnected brain areas. Spontaneous neural activity is constrained by this architecture, giving rise to patterns of statistical dependencies between the activity of remote neural elements. The non-trivial relationship between structural and functional connectivity poses many unsolved challenges about cognition, disease, development, learning and aging. While numerous studies have focused on statistical relationships between edge weights in anatomical and functional networks, less is known about dependencies between their modules and communities. In this work, we investigate and characterize the relationship between anatomical and functional modular organization of the human brain, developing a novel multi-layer framework that expands the classical concept of multi-layer modularity. By simultaneously mapping anatomical and functional networks estimated from different subjects into communities, this approach allows us to carry out a multi-subject and multi-modal analysis of the brain's modular organization. Here, we investigate the relationship between anatomical and functional modules during resting state, finding unique and shared structures. The proposed framework constitutes a methodological advance in the context of multi-layer network analysis and paves the way to further investigate the relationship between structural and functional network organization in clinical cohorts, during cognitively demanding tasks, and in developmental or lifespan studies.
Collapse
Affiliation(s)
- Maria Grazia Puxeddu
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405
| | - Joshua Faskowitz
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405; Program in Neuroscience, Indiana University, Bloomington, IN 47405
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405; Cognitive Science Program, Indiana University, Bloomington, IN 47405; Program in Neuroscience, Indiana University, Bloomington, IN 47405; Network Science Institute, Indiana University, Bloomington, IN 47405
| | - Laura Astolfi
- Department of Computer, Control and Management Engineering, University of Rome La Sapienza, Rome, 00185, Italy; IRCCS, Fondazione Santa Lucia, Rome, 00142, Italy
| | - Richard F Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405; Cognitive Science Program, Indiana University, Bloomington, IN 47405; Program in Neuroscience, Indiana University, Bloomington, IN 47405; Network Science Institute, Indiana University, Bloomington, IN 47405.
| |
Collapse
|
14
|
Farahani FV, Karwowski W, D’Esposito M, Betzel RF, Douglas PK, Sobczak AM, Bohaterewicz B, Marek T, Fafrowicz M. Diurnal variations of resting-state fMRI data: A graph-based analysis. Neuroimage 2022; 256:119246. [PMID: 35477020 PMCID: PMC9799965 DOI: 10.1016/j.neuroimage.2022.119246] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 02/18/2022] [Accepted: 04/22/2022] [Indexed: 12/31/2022] Open
Abstract
Circadian rhythms (lasting approximately 24 h) control and entrain various physiological processes, ranging from neural activity and hormone secretion to sleep cycles and eating habits. Several studies have shown that time of day (TOD) is associated with human cognition and brain functions. In this study, utilizing a chronotype-based paradigm, we applied a graph theory approach on resting-state functional MRI (rs-fMRI) data to compare whole-brain functional network topology between morning and evening sessions and between morning-type (MT) and evening-type (ET) participants. Sixty-two individuals (31 MT and 31 ET) underwent two fMRI sessions, approximately 1 hour (morning) and 10 h (evening) after their wake-up time, according to their declared habitual sleep-wake pattern on a regular working day. In the global analysis, the findings revealed the effect of TOD on functional connectivity (FC) patterns, including increased small-worldness, assortativity, and synchronization across the day. However, we identified no significant differences based on chronotype categories. The study of the modular structure of the brain at mesoscale showed that functional networks tended to be more integrated with one another in the evening session than in the morning session. Local/regional changes were affected by both factors (i.e., TOD and chronotype), mostly in areas associated with somatomotor, attention, frontoparietal, and default networks. Furthermore, connectivity and hub analyses revealed that the somatomotor, ventral attention, and visual networks covered the most highly connected areas in the morning and evening sessions: the latter two were more active in the morning sessions, and the first was identified as being more active in the evening. Finally, we performed a correlation analysis to determine whether global and nodal measures were associated with subjective assessments across participants. Collectively, these findings contribute to an increased understanding of diurnal fluctuations in resting brain activity and highlight the role of TOD in future studies on brain function and the design of fMRI experiments.
Collapse
Affiliation(s)
- Farzad V. Farahani
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA,Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, USA,Corresponding author: Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA. (F.V. Farahani)
| | - Waldemar Karwowski
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, USA
| | - Mark D’Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA,Department of Psychology, University of California, Berkeley, CA, USA
| | - Richard F. Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Pamela K. Douglas
- Institute for Simulation and Training, University of Central Florida, Orlando, FL, USA,Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anna Maria Sobczak
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Bartosz Bohaterewicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland,Department of Psychology of Individual Differences, Psychological Diagnosis, and Psychometrics, Institute of Psychology, University of Social Sciences and Humanities, Warsaw, Poland
| | - Tadeusz Marek
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Magdalena Fafrowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland,Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland,Corresponding author. Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland. (M. Fafrowicz)
| |
Collapse
|
15
|
Abstract
Recent advances in imaging and tracing technology provide increasingly detailed reconstructions of brain connectomes. Concomitant analytic advances enable rigorous identification and quantification of functionally important features of brain network architecture. Null models are a flexible tool to statistically benchmark the presence or magnitude of features of interest, by selectively preserving specific architectural properties of brain networks while systematically randomizing others. Here we describe the logic, implementation and interpretation of null models of connectomes. We introduce randomization and generative approaches to constructing null networks, and outline a taxonomy of network methods for statistical inference. We highlight the spectrum of null models - from liberal models that control few network properties, to conservative models that recapitulate multiple properties of empirical networks - that allow us to operationalize and test detailed hypotheses about the structure and function of brain networks. We review emerging scenarios for the application of null models in network neuroscience, including for spatially embedded networks, annotated networks and correlation-derived networks. Finally, we consider the limits of null models, as well as outstanding questions for the field.
Collapse
|
16
|
Seguin C, Mansour L S, Sporns O, Zalesky A, Calamante F. Network communication models narrow the gap between the modular organization of structural and functional brain networks. Neuroimage 2022; 257:119323. [PMID: 35605765 DOI: 10.1016/j.neuroimage.2022.119323] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/25/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022] Open
Abstract
Structural and functional brain networks are modular. Canonical functional systems, such as the default mode network, are well-known modules of the human brain and have been implicated in a large number of cognitive, behavioral and clinical processes. However, modules delineated in structural brain networks inferred from tractography generally do not recapitulate canonical functional systems. Neuroimaging evidence suggests that functional connectivity between regions in the same systems is not always underpinned by anatomical connections. As such, direct structural connectivity alone would be insufficient to characterize the functional modular organization of the brain. Here, we demonstrate that augmenting structural brain networks with models of indirect (polysynaptic) communication unveils a modular network architecture that more closely resembles the brain's established functional systems. We find that diffusion models of polysynaptic connectivity, particularly communicability, narrow the gap between the modular organization of structural and functional brain networks by 20-60%, whereas routing models based on single efficient paths do not improve mesoscopic structure-function correspondence. This suggests that functional modules emerge from the constraints imposed by local network structure that facilitates diffusive neural communication. Our work establishes the importance of modeling polysynaptic communication to understand the structural basis of functional systems.
Collapse
Affiliation(s)
- Caio Seguin
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia; The University of Sydney, School of Biomedical Engineering, Sydney, NSW, Australia; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States.
| | - Sina Mansour L
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia; Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States; Cognitive Science Program, Indiana University, Bloomington, IN, United States; Program in Neuroscience, Indiana University, Bloomington, IN, United States; Network Science Institute, Indiana University, Bloomington, IN, United States
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia; Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Fernando Calamante
- The University of Sydney, School of Biomedical Engineering, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia; Sydney Imaging, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
17
|
The diversity and multiplexity of edge communities within and between brain systems. Cell Rep 2021; 37:110032. [PMID: 34788617 DOI: 10.1016/j.celrep.2021.110032] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/08/2021] [Accepted: 10/28/2021] [Indexed: 11/24/2022] Open
Abstract
The human brain is composed of functionally specialized systems that support cognition. Recently, we proposed an edge-centric model for detecting overlapping communities. It remains unclear how these communities and brain systems are related. Here, we address this question using data from the Midnight Scan Club and show that all brain systems are linked via at least two edge communities. We then examine the diversity of edge communities within each system, finding that heteromodal systems are more diverse than sensory systems. Next, we cluster the entire cortex to reveal it according to the regions' edge-community profiles. We find that regions in heteromodal systems are more likely to form their own clusters. Finally, we show that edge communities are personalized. Our work reveals the pervasive overlap of edge communities across the cortex and their relationship with brain systems. Our work provides pathways for future research using edge-centric brain networks.
Collapse
|