1
|
Fukuda Y, Uehara K. Frontal midline theta power accounts for inter-individual differences in motor learning ability. Exp Brain Res 2025; 243:147. [PMID: 40372531 DOI: 10.1007/s00221-025-07096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/26/2025] [Indexed: 05/16/2025]
Abstract
Recent neurophysiological studies have demonstrated that frontal midline theta (FMT) activity plays a significant role in motor learning. One of the key challenges in motor learning is to understand the interindividual variability in learning proficiency rates, yet the underlying neural mechanisms remain unclear. To address this open question, this study recorded electroencephalogram activity from twenty-one healthy participants during a visuomotor tracking task to investigate whether modulation of FMT power and the theta phase synchronization across trials (theta phase consistency) during motor preparation could explain individual differences in learning proficiency. We found a significant positive correlation between increased FMT power during motor preparation and learning proficiency rates. Specifically, individuals with greater FMT power exhibited faster learning rates. In contrast, no significant correlation was observed between the consistency of the theta phase during motor preparation and learning proficiency. Together, these findings highlight that the FMT power, rather than phase synchrony, is closely associated with motor learning efficiency. This study provides a novel perspective for understanding the causes of individual differences in motor learning and further corroborates the previous evidence showing FMT power contributes to motor learning processes.
Collapse
Affiliation(s)
- Yuya Fukuda
- Neural Information Dynamics Laboratory, Department of Computer Science and Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, Japan
| | - Kazumasa Uehara
- Neural Information Dynamics Laboratory, Department of Computer Science and Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, Japan.
| |
Collapse
|
2
|
Kitai K, Nishigaya K, Mizomoto Y, Ito H, Yamauchi R, Katayama O, Morita K, Murata S, Kodama T. Enhancing Hand Sensorimotor Function in Individuals with Cervical Spinal Cord Injury: A Novel Tactile Discrimination Feedback Approach Using a Multiple-Baseline Design. Brain Sci 2025; 15:352. [PMID: 40309804 PMCID: PMC12026407 DOI: 10.3390/brainsci15040352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 05/02/2025] Open
Abstract
Background/Objectives: This study evaluated the effects of a tactile-discrimination compensatory real-time feedback device on hand sensorimotor function in cervical spinal cord injury patients. The study assessed changes in hand numbness, dexterity, and electroencephalogram (EEG) activity, particularly γ-wave power in the sensorimotor area during skilled finger movements. Methods: Three patients with cervical spinal cord injury who presented with hand sensorimotor dysfunction underwent treatment with this device. All cases underwent the intervention using an AB design; A is the exercise task without the system device, and B is the exercise task under the system device. To confirm the reproducibility and minimize the influence of confounding factors, a multiple-baseline design, in which the intervention period was staggered for each subject, was applied. To determine efficacy, the hand numbness numerical rating scale, peg test, and EEG were measured daily, and Tau-U calculations were performed. Results: In two of three cases, moderate or very large changes were observed in numbness in B. In all cases, there was a large or very large change in the peg test results in the B. Regarding EEG activity, the non-skilled participants showed amplification of γ-wave power in the sensorimotor area during the B. Conversely, in the skilled participants, the γ-wave power of the sensorimotor area was attenuated during skillful movements. Conclusions: These findings indicate that the ability of the brain to compare and align predictive control with sensory feedback might be compromised in patients with damage to the afferent pathways of the central nervous system. Moreover, the use of this device appears to have played a role in supporting functional recovery.
Collapse
Affiliation(s)
- Ken Kitai
- Rehabilitation Department, Maizuru Red Cross Hospital, Maizuru City 624-0906, Kyoto, Japan
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto City 607-8175, Kyoto, Japan; (H.I.); (R.Y.); (S.M.); (T.K.)
| | - Kaichi Nishigaya
- Rehabilitation Department, Zenjokai Rehabilitation Hospital, Nagoya City 457-0046, Aichi, Japan;
| | - Yasuhisa Mizomoto
- Rehabilitation Department, Watanabe Hospital, Chita 470-3235, Aichi, Japan;
| | - Hiroki Ito
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto City 607-8175, Kyoto, Japan; (H.I.); (R.Y.); (S.M.); (T.K.)
| | - Ryosuke Yamauchi
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto City 607-8175, Kyoto, Japan; (H.I.); (R.Y.); (S.M.); (T.K.)
| | - Osamu Katayama
- Department of Preventive Gerontology, Center for Gerontology and Social Science, Research Institute, National Center for Geriatrics and Gerontology, Obu City 474-8511, Aichi, Japan;
| | - Kiichiro Morita
- Cognitive and Molecular Research Institute of Brain Diseases, Kurume University, Kurume 830-0011, Fukuoka, Japan;
| | - Shin Murata
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto City 607-8175, Kyoto, Japan; (H.I.); (R.Y.); (S.M.); (T.K.)
| | - Takayuki Kodama
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto City 607-8175, Kyoto, Japan; (H.I.); (R.Y.); (S.M.); (T.K.)
| |
Collapse
|
3
|
Marzulli M, Bleuzé A, Saad J, Martel F, Ciuciu P, Aksenova T, Struber L. Classifying mental motor tasks from chronic ECoG-BCI recordings using phase-amplitude coupling features. Front Hum Neurosci 2025; 19:1521491. [PMID: 40144587 PMCID: PMC11936922 DOI: 10.3389/fnhum.2025.1521491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Introduction Phase-amplitude coupling (PAC), the modulation of high-frequency neural oscillations by the phase of slower oscillations, is increasingly recognized as a marker of goal-directed motor behavior. Despite this interest, its specific role and potential value in decoding attempted motor movements remain unclear. Methods This study investigates whether PAC-derived features can be leveraged to classify different motor behaviors from ECoG signals within Brain-Computer Interface (BCI) systems. ECoG data were collected using the WIMAGINE implant during BCI experiments with a tetraplegic patient performing mental motor tasks. The data underwent preprocessing to extract complex neural oscillation features (amplitude, phase) through spectral decomposition techniques. These features were then used to quantify PAC by calculating different coupling indices. PAC metrics served as input features in a machine learning pipeline to evaluate their effectiveness in predicting mental tasks (idle state, right-hand movement, left-hand movement) in both offline and pseudo-online modes. Results The PAC features demonstrated high accuracy in distinguishing among motor tasks, with key classification features highlighting the coupling of theta/low-gamma and beta/high-gamma frequency bands. Discussion These preliminary findings hold significant potential for advancing our understanding of motor behavior and for developing optimized BCI systems.
Collapse
Affiliation(s)
- Morgane Marzulli
- Clinatec, CEA, LETI, University Grenoble Alpes, Grenoble, France
| | - Alexandre Bleuzé
- Clinatec, CEA, LETI, University Grenoble Alpes, Grenoble, France
| | - Joe Saad
- CEA, LIST, University Grenoble Alpes, Grenoble, France
| | - Felix Martel
- Clinatec, CEA, LETI, University Grenoble Alpes, Grenoble, France
| | - Philippe Ciuciu
- CEA, Joliot, NeuroSpin, Université Paris-Saclay, Gif-sur-Yvette, France
- MIND Team, Inria, Université Paris-Saclay, Palaiseau, France
| | - Tetiana Aksenova
- Clinatec, CEA, LETI, University Grenoble Alpes, Grenoble, France
| | - Lucas Struber
- Clinatec, CEA, LETI, University Grenoble Alpes, Grenoble, France
| |
Collapse
|
4
|
Malone LA, Hill NM, Tripp H, Zipunnikov V, Wolpert DM, Bastian AJ. The control of movement gradually transitions from feedback control to feedforward adaptation throughout childhood. NPJ SCIENCE OF LEARNING 2025; 10:13. [PMID: 40069149 PMCID: PMC11897242 DOI: 10.1038/s41539-025-00304-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/18/2025] [Indexed: 03/15/2025]
Abstract
The ability to adjust movements in response to perturbations is key for an efficient and mature nervous system, which relies on two complementary mechanisms - feedforward adaptation and feedback control. We examined the developmental trajectory of how children employ these two mechanisms using a previously validated visuomotor rotation task, conducted remotely in a large cross-sectional cohort of children aged 3-17 years and adults (n = 656; 353 males & 303 females). Results revealed a protracted developmental trajectory, with children up to ~13-14 years showing immature adaptation. Younger children relied more on feedback control to succeed. When adaptation was the only option, they struggled to succeed, highlighting a limited ability to adapt. Our results show a gradual shift from feedback control to adaptation learning throughout childhood. We also generated percentile curves for adaptation and overall performance, providing a reference for understanding the development of motor adaptation and its trade-off with feedback control.
Collapse
Affiliation(s)
- Laura A Malone
- Kennedy Krieger Institute, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Nayo M Hill
- Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Haley Tripp
- Kennedy Krieger Institute, Baltimore, MD, USA
| | - Vadim Zipunnikov
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Daniel M Wolpert
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Amy J Bastian
- Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Iwane F, Sobolewski A, Chavarriaga R, Millán JDR. EEG error-related potentials encode magnitude of errors and individual perceptual thresholds. iScience 2023; 26:107524. [PMID: 37636067 PMCID: PMC10448161 DOI: 10.1016/j.isci.2023.107524] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/15/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
Error-related potentials (ErrPs) are a prominent electroencephalogram (EEG) correlate of performance monitoring, and so crucial for learning and adapting our behavior. It is poorly understood whether ErrPs encode further information beyond error awareness. We report an experiment with sixteen participants over three sessions in which occasional visual rotations of varying magnitude occurred during a cursor reaching task. We designed a brain-computer interface (BCI) to detect ErrPs that provided real-time feedback. The individual ErrP-BCI decoders exhibited good transfer across sessions and scalability over the magnitude of errors. A non-linear relationship between the ErrP-BCI output and the magnitude of errors predicts individual perceptual thresholds to detect errors. We also reveal theta-gamma oscillatory coupling that co-varied with the magnitude of the required adjustment. Our findings open new avenues to probe and extend current theories of performance monitoring by incorporating continuous human interaction tasks and analysis of the ErrP complex rather than individual peaks.
Collapse
Affiliation(s)
- Fumiaki Iwane
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Neurology, The University of Texas at Austin, Austin, TX 78712, USA
- Learning Algorithms and Systems Laboratory (LASA), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Aleksander Sobolewski
- Wyss Center for Bio and Neuroengineering, Campus Biotech, 1202 Genève, Switzerland
- École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, 1202 Genève, Switzerland
| | - Ricardo Chavarriaga
- École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, 1202 Genève, Switzerland
- Centre for Artificial Intelligence, Zurich University of Applied Sciences (ZHAW), 8401 Winterthur, Switzerland
| | - José del R. Millán
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Neurology, The University of Texas at Austin, Austin, TX 78712, USA
- École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, 1202 Genève, Switzerland
- Mulva Clinic for the Neurosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
6
|
Malone LA, Hill NM, Tripp H, Wolpert DM, Bastian AJ. A novel video game for remote studies of motor adaptation in children. Physiol Rep 2023; 11:e15764. [PMID: 37434268 PMCID: PMC10336020 DOI: 10.14814/phy2.15764] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
Here we designed a motor adaptation video game that could be played remotely (at home) through a web browser. This required the child to adapt to a visuomotor rotation between their hand movement and a ball displayed in the game. The task had several novel features, specifically designed to allow the study of the developmental trajectory of adaptation across a wide range of ages. We test the concurrent validity by comparing children's performance on our remote task to the same task performed in the laboratory. All participants remained engaged and completed the task. We quantified feedforward and feedback control during this task. Feedforward control, a key measure of adaptation, was similar at home and in the laboratory. All children could successfully use feedback control to guide the ball to a target. Traditionally, motor learning studies are performed in a laboratory to obtain high quality kinematic data. However, here we demonstrate concurrent validity of kinematic behavior when conducted at home. Our online platform provides the flexibility and ease of collecting data that will enable future studies with large sample sizes, longitudinal experiments, and the study of children with rare diseases.
Collapse
Affiliation(s)
- Laura A. Malone
- Kennedy Krieger InstituteBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins School of MedicineBaltimoreMarylandUSA
- Department of Physical Medicine and RehabilitationJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Nayo M. Hill
- Kennedy Krieger InstituteBaltimoreMarylandUSA
- Department of NeuroscienceJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Haley Tripp
- Kennedy Krieger InstituteBaltimoreMarylandUSA
| | - Daniel M. Wolpert
- Mortimer B. Zuckerman Mind Brain Behavior InstituteColumbia UniversityNew YorkNew YorkUSA
- Department of NeuroscienceColumbia UniversityNew YorkNew YorkUSA
| | - Amy J. Bastian
- Kennedy Krieger InstituteBaltimoreMarylandUSA
- Department of NeuroscienceJohns Hopkins School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
7
|
Augière T, Simoneau M, Brun C, Pinard AM, Blouin J, Mouchnino L, Mercier C. Behavioral and Electrocortical Response to a Sensorimotor Conflict in Individuals with Fibromyalgia. Brain Sci 2023; 13:931. [PMID: 37371409 DOI: 10.3390/brainsci13060931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
People with fibromyalgia have been shown to experience more somatosensory disturbances than pain-free controls during sensorimotor conflicts (i.e., incongruence between visual and somatosensory feedback). Sensorimotor conflicts are known to disturb the integration of sensory information. This study aimed to assess the cerebral response and motor performance during a sensorimotor conflict in people with fibromyalgia. Twenty participants with fibromyalgia and twenty-three pain-free controls performed a drawing task including visual feedback that was either congruent with actual movement (and thus with somatosensory information) or incongruent with actual movement (i.e., conflict). Motor performance was measured according to tracing error, and electrocortical activity was recorded using electroencephalography. Motor performance was degraded during conflict for all participants but did not differ between groups. Time-frequency analysis showed that the conflict was associated with an increase in theta power (4-8 Hz) at conflict onset over the left posterior parietal cortex in participants with fibromyalgia but not in controls. This increase in theta suggests a stronger detection of conflict in participants with fibromyalgia, which was not accompanied by differences in motor performance in comparison to controls. This points to dissociation in individuals with fibromyalgia between an altered perception of action and a seemingly unaltered control of action.
Collapse
Affiliation(s)
- Tania Augière
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Quebec City, QC G1M 2S8, Canada
- Department of Rehabilitation, Faculty of Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Martin Simoneau
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Quebec City, QC G1M 2S8, Canada
- Department of Kinesiology, Faculty of Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Clémentine Brun
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Quebec City, QC G1M 2S8, Canada
| | - Anne Marie Pinard
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Quebec City, QC G1M 2S8, Canada
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Jean Blouin
- Laboratoire de Neurosciences Cognitives, Aix-Marseille University, National Center for Scientific Research (CNRS), 13331 Marseille, France
| | - Laurence Mouchnino
- Laboratoire de Neurosciences Cognitives, Aix-Marseille University, National Center for Scientific Research (CNRS), 13331 Marseille, France
- Institut Universitaire de France, 75005 Paris, France
| | - Catherine Mercier
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Quebec City, QC G1M 2S8, Canada
- Department of Rehabilitation, Faculty of Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
8
|
Baker A, Schranz C, Seo NJ. Associating Functional Neural Connectivity and Specific Aspects of Sensorimotor Control in Chronic Stroke. SENSORS (BASEL, SWITZERLAND) 2023; 23:5398. [PMID: 37420566 DOI: 10.3390/s23125398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 07/09/2023]
Abstract
Hand sensorimotor deficits often result from stroke, limiting the ability to perform daily living activities. Sensorimotor deficits are heterogeneous among stroke survivors. Previous work suggests a cause of hand deficits is altered neural connectivity. However, the relationships between neural connectivity and specific aspects of sensorimotor control have seldom been explored. Understanding these relationships is important for developing personalized rehabilitation strategies to improve individual patients' specific sensorimotor deficits and, thus, rehabilitation outcomes. Here, we investigated the hypothesis that specific aspects of sensorimotor control will be associated with distinct neural connectivity in chronic stroke survivors. Twelve chronic stroke survivors performed a paretic hand grip-and-relax task while EEG was collected. Four aspects of hand sensorimotor grip control were extracted, including reaction time, relaxation time, force magnitude control, and force direction control. EEG source connectivity in the bilateral sensorimotor regions was calculated in α and β frequency bands during grip preparation and execution. Each of the four hand grip measures was significantly associated with a distinct connectivity measure. These results support further investigations into functional neural connectivity signatures that explain various aspects of sensorimotor control, to assist the development of personalized rehabilitation that targets the specific brain networks responsible for the individuals' distinct sensorimotor deficits.
Collapse
Affiliation(s)
- Adam Baker
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, 77 President St., Charleston, SC 29425, USA
| | - Christian Schranz
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, 77 President St., Charleston, SC 29425, USA
| | - Na Jin Seo
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, 77 President St., Charleston, SC 29425, USA
- Division of Occupational Therapy, Department of Rehabilitation Sciences, College of Health Professions, Medical University of South Carolina, 151B Rutledge Ave., Charleston, SC 29425, USA
- Ralph H. Johnson VA Health Care System, 109 Bee St., Charleston, SC 29425, USA
| |
Collapse
|
9
|
Simon-Martinez C, Antoniou MP, Bouthour W, Bavelier D, Levi D, Backus BT, Dornbos B, Blaha JJ, Kropp M, Müller H, Murray M, Thumann G, Steffen H, Matusz PJ. Stereoptic serious games as a visual rehabilitation tool for individuals with a residual amblyopia (AMBER trial): a protocol for a crossover randomized controlled trial. BMC Ophthalmol 2023; 23:220. [PMID: 37198558 DOI: 10.1186/s12886-023-02944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Amblyopia is the most common developmental vision disorder in children. The initial treatment consists of refractive correction. When insufficient, occlusion therapy may further improve visual acuity. However, the challenges and compliance issues associated with occlusion therapy may result in treatment failure and residual amblyopia. Virtual reality (VR) games developed to improve visual function have shown positive preliminary results. The aim of this study is to determine the efficacy of these games to improve vision, attention, and motor skills in patients with residual amblyopia and identify brain-related changes. We hypothesize that a VR-based training with the suggested ingredients (3D cues and rich feedback), combined with increasing the difficulty level and the use of various games in a home-based environment is crucial for treatment efficacy of vision recovery, and may be particularly effective in children. METHODS The AMBER study is a randomized, cross-over, controlled trial designed to assess the effect of binocular stimulation (VR-based stereoptic serious games) in individuals with residual amblyopia (n = 30, 6-35 years of age), compared to refractive correction on vision, selective attention and motor control skills. Additionally, they will be compared to a control group of age-matched healthy individuals (n = 30) to account for the unique benefit of VR-based serious games. All participants will play serious games 30 min per day, 5 days per week, for 8 weeks. The games are delivered with the Vivid Vision Home software. The amblyopic cohort will receive both treatments in a randomized order according to the type of amblyopia, while the control group will only receive the VR-based stereoscopic serious games. The primary outcome is visual acuity in the amblyopic eye. Secondary outcomes include stereoacuity, functional vision, cortical visual responses, selective attention, and motor control. The outcomes will be measured before and after each treatment with 8-week follow-up. DISCUSSION The VR-based games used in this study have been conceived to deliver binocular visual stimulation tailored to the individual visual needs of the patient, which will potentially result in improved basic and functional vision skills as well as visual attention and motor control skills. TRIAL REGISTRATION This protocol is registered on ClinicalTrials.gov (identifier: NCT05114252) and in the Swiss National Clinical Trials Portal (identifier: SNCTP000005024).
Collapse
Affiliation(s)
- Cristina Simon-Martinez
- University of Applied Sciences Western Switzerland (HES-SO) Valais-Wallis, Rue de Technopole 3, 3960, Sierre, Switzerland.
- Department of Ophthalmology, University Hospitals of Geneva, Geneva, Switzerland.
- The Sense Innovation and Research Center, Lausanne and Sion, Sion, Switzerland.
- Experimental Ophthalmology, University of Geneva, Geneva, Switzerland.
| | - Maria-Paraskevi Antoniou
- University of Applied Sciences Western Switzerland (HES-SO) Valais-Wallis, Rue de Technopole 3, 3960, Sierre, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, Geneva, Switzerland
- The Sense Innovation and Research Center, Lausanne and Sion, Sion, Switzerland
- Experimental Ophthalmology, University of Geneva, Geneva, Switzerland
| | - Walid Bouthour
- Department of Ophthalmology, University Hospitals of Geneva, Geneva, Switzerland
- Experimental Ophthalmology, University of Geneva, Geneva, Switzerland
| | - Daphne Bavelier
- Faculty of Psychology and Education Sciences, University of Geneva, Geneva, Switzerland
| | - Dennis Levi
- Herbert Wertheim School of Optometry & Vision Science, Helen Wills Neuroscience Institute, University of California Berkley, Berkley, CA, USA
| | - Benjamin T Backus
- Vivid Vision, Inc, 424 Treat Ave., Ste B, San Francisco, CA, 94110, USA
| | - Brian Dornbos
- Vivid Vision, Inc, 424 Treat Ave., Ste B, San Francisco, CA, 94110, USA
| | - James J Blaha
- Vivid Vision, Inc, 424 Treat Ave., Ste B, San Francisco, CA, 94110, USA
| | - Martina Kropp
- Department of Ophthalmology, University Hospitals of Geneva, Geneva, Switzerland
- Experimental Ophthalmology, University of Geneva, Geneva, Switzerland
| | - Henning Müller
- University of Applied Sciences Western Switzerland (HES-SO) Valais-Wallis, Rue de Technopole 3, 3960, Sierre, Switzerland
| | - Micah Murray
- The Sense Innovation and Research Center, Lausanne and Sion, Sion, Switzerland
- Institute of Health Sciences, School of Health Sciences, HES-SO Valais-Wallis, Sion, Switzerland
- Laboratory for Investigative Neurophysiology, Department of Radiology, Lausanne University Hospital, University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Gabriele Thumann
- Department of Ophthalmology, University Hospitals of Geneva, Geneva, Switzerland
- Experimental Ophthalmology, University of Geneva, Geneva, Switzerland
| | - Heimo Steffen
- Department of Ophthalmology, University Hospitals of Geneva, Geneva, Switzerland
- Experimental Ophthalmology, University of Geneva, Geneva, Switzerland
| | - Pawel J Matusz
- University of Applied Sciences Western Switzerland (HES-SO) Valais-Wallis, Rue de Technopole 3, 3960, Sierre, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, Geneva, Switzerland
- The Sense Innovation and Research Center, Lausanne and Sion, Sion, Switzerland
- Experimental Ophthalmology, University of Geneva, Geneva, Switzerland
- Institute of Health Sciences, School of Health Sciences, HES-SO Valais-Wallis, Sion, Switzerland
- Laboratory for Investigative Neurophysiology, Department of Radiology, Lausanne University Hospital, University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
- Department of Hearing & Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
10
|
Byczynski G, Vanneste S. Modulating motor learning with brain stimulation: Stage-specific perspectives for transcranial and transcutaneous delivery. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110766. [PMID: 37044280 DOI: 10.1016/j.pnpbp.2023.110766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/22/2023] [Accepted: 04/09/2023] [Indexed: 04/14/2023]
Abstract
Brain stimulation has been used in motor learning studies with success in improving aspects of task learning, retention, and consolidation. Using a variety of motor tasks and stimulus parameters, researchers have produced an array of literature supporting the efficacy of brain stimulation to modulate motor task learning. We discuss the use of transcranial direct current stimulation, transcranial alternating current stimulation, and peripheral nerve stimulation to modulate motor learning. In a novel approach, we review literature of motor learning modulation in terms of learning stage, categorizing learning into acquisition, consolidation, and retention. We endeavour to provide a current perspective on the stage-specific mechanism behind modulation of motor task learning, to give insight into how electrical stimulation improves or hinders motor learning, and how mechanisms differ depending on learning stage. Offering a look into the effectiveness of peripheral nerve stimulation for motor learning, we include potential mechanisms and overlapping features with transcranial stimulation. We conclude by exploring how peripheral stimulation may contribute to the results of studies that employed brain stimulation intracranially.
Collapse
Affiliation(s)
- Gabriel Byczynski
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, D02 PN40, Ireland; Global Brain Health Institute, Trinity College Dublin, D02 PN40, Ireland
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, D02 PN40, Ireland; School of Psychology, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, D02 PN40, Ireland; Global Brain Health Institute, Trinity College Dublin, D02 PN40, Ireland.
| |
Collapse
|