1
|
Quach TT, Duchemin AM. Intelligence, brain structure, dendrites, and genes: Genetic, epigenetic and the underlying of the quadruple helix complexity. Neurosci Biobehav Rev 2025; 175:106212. [PMID: 40389043 DOI: 10.1016/j.neubiorev.2025.106212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 05/01/2025] [Accepted: 05/12/2025] [Indexed: 05/21/2025]
Abstract
Intelligence can be referred to as the mental ability to learn, comprehend abstract concepts, and solve complex problems. Twin and adoption studies have provided insights into the influence of the familial environment and highlighted the importance of heritability in the development of cognition. Detecting the relative contribution of brain areas, neuronal structures, and connectomes has brought some understanding on how various brain areas, white/gray matter structures and neuronal connectivity process information and contribute to intelligence. Using histological, anatomical, electrophysiological, neuropsychological, neuro-imaging and molecular biology methods, several key concepts have emerged: 1) the parietofrontal-hippocampal integrations probably constitute a substrate for smart behavior, 2) neuronal activity results in structural plasticity of dendritic branches responsible for information transfer, critical for learning and memory, 3) intelligent people process information efficiently, 4) the environment triggers mnemonic epigenomic programs (via dynamic regulation of chromatin accessibility, DNA methylation, loop interruption/formation and histone modification) conferring cognitive phenotypes throughout life, and 5) single/double DNA breaks are prominent in human brain disorders associated with cognitive impairment including Alzheimer's disease and schizophrenia. Along with these observations, molecular/cellular/biological studies have identified sets of specific genes associated with higher scores on intelligence tests. Interestingly, many of these genes are associated with dendritogenesis. Because dendrite structure/function is involved in cognition, the control of dendrite genesis/maintenance may be critical for understanding the landscape of general/specific cognitive ability and new pathways for therapeutic approaches.
Collapse
Affiliation(s)
- Tam T Quach
- Department of Neuroscience. The Ohio State University, Columbus, OH 43210, USA.
| | - Anne-Marie Duchemin
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Huang Z, Du X, Li F, Lan Z, Guo L, Pan L. Gut microbiota and blood metabolites: unveiling their roles in hippocampal volume changes through Mendelian randomization and mediation analysis. Metab Brain Dis 2025; 40:178. [PMID: 40220127 DOI: 10.1007/s11011-025-01611-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
Changes in hippocampal volume (HV) are linked to various neuropsychiatric disorders. Observational studies suggest associations of gut microbiota (GM) and blood metabolites (BM) with changes in HV; however, their causal relationships remain unclear. We aimed to use Mendelian randomization (MR) to investigate the causal associations of GM and BM with changes in HV and to explore the potential mediating role of BM. Using two-sample MR (TSMR) analysis, we examined 412 GM traits and 1,400 BM traits with a focus on their causal relationships with age-independent/dependent longitudinal changes in HV, primarily using the inverse variance weighted method. Furthermore, we explored the mediating role of BM through a two-step MR design. We identified 44 GM traits and 175 BM traits having nominally significant causal associations with age-independent/dependent longitudinal changes in HV. In addition, the glycine-to-pyridoxal ratio (mediation proportion: 7.38%) and the phosphate-to-citrate ratio (mediation proportion: 12.55%) mediated the effect of the pathway of L-arginine degradation II on the reduction of age-independent longitudinal changes in HV. Our study reveals the causal effects of GM and BM on longitudinal changes in HV and identifies BM traits with mediating roles. These findings offer valuable insights for the prevention and treatment of the related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Zijin Huang
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530007, People's Republic of China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xueke Du
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530007, People's Republic of China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Fangzhou Li
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhixuan Lan
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530007, People's Republic of China
| | - Liang Guo
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Linghui Pan
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China.
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China.
- Guangxi Clinical Research Center for Anesthesiology, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
3
|
Gardette J, Besson G, Baillet M, Rizzolo L, Narbutas J, Van Egroo M, Chylinski D, Maquet P, Salmon E, Vandewalle G, Collette F, Bastin C. Individual differences in anterograde memory for details relate to posterior hippocampal volume. Cortex 2025; 185:64-73. [PMID: 39985936 DOI: 10.1016/j.cortex.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/06/2024] [Accepted: 01/06/2025] [Indexed: 02/24/2025]
Abstract
In recent years, there has been a growing interest in individual differences in autobiographical memory. The ability to recall details from personal past events correlates with the volume of specific hippocampal subfields in healthy adults. Although the posterior hippocampus is believed to process detailed memory representations independently of the memory's age, little is known about individual differences in the ability to recall newly encoded events in detail, and how these differences relate to hippocampal subregions. In this preregistered study, we scored the story recalls from 89 healthy middle-aged participants with a newly designed method that allows to distinguish information recalled in detail from gist recall (i.e., when only the general idea is recalled). After a 20-min delay, detailed information was transformed into gists, which is in line with recent evidence that gists can emerge rapidly after a new experience. In addition, we segmented the anterior and posterior hippocampal subfields CA1, CA2/3, dentate gyrus, and subiculum from high-resolution structural MRI. As predicted, the volume of the posterior hippocampus was positively correlated with the detail score but not with the gist score, yet this effect was significant in the right hemisphere only. We also observed trends towards associations between the detail score and specific subfields of the right posterior hippocampus, but none survived statistical correction for multiple comparisons. Finally, we found no evidence for the expected age-related increase in the use of gists over details. Taken together, these results suggest that the posterior hippocampus supports detail memory in the recall of both remote and newly acquired memories.
Collapse
Affiliation(s)
- Jeremy Gardette
- GIGA Research, CRC Human Imaging, University of Liège, Belgium; Psychology and Cognitive Neuroscience, Department of Psychology, University of Liège, Belgium.
| | - Gabriel Besson
- GIGA Research, CRC Human Imaging, University of Liège, Belgium; Psychology and Cognitive Neuroscience, Department of Psychology, University of Liège, Belgium
| | - Marion Baillet
- GIGA Research, CRC Human Imaging, University of Liège, Belgium; Psychology and Cognitive Neuroscience, Department of Psychology, University of Liège, Belgium
| | - Lou Rizzolo
- GIGA Research, CRC Human Imaging, University of Liège, Belgium; Psychology and Cognitive Neuroscience, Department of Psychology, University of Liège, Belgium
| | - Justinas Narbutas
- GIGA Research, CRC Human Imaging, University of Liège, Belgium; Psychology and Cognitive Neuroscience, Department of Psychology, University of Liège, Belgium
| | - Maxime Van Egroo
- GIGA Research, CRC Human Imaging, University of Liège, Belgium; Psychology and Cognitive Neuroscience, Department of Psychology, University of Liège, Belgium
| | - Daphne Chylinski
- GIGA Research, CRC Human Imaging, University of Liège, Belgium; Psychology and Cognitive Neuroscience, Department of Psychology, University of Liège, Belgium
| | - Pierre Maquet
- GIGA Research, CRC Human Imaging, University of Liège, Belgium; Psychology and Cognitive Neuroscience, Department of Psychology, University of Liège, Belgium
| | - Eric Salmon
- GIGA Research, CRC Human Imaging, University of Liège, Belgium; Psychology and Cognitive Neuroscience, Department of Psychology, University of Liège, Belgium
| | - Gilles Vandewalle
- GIGA Research, CRC Human Imaging, University of Liège, Belgium; Psychology and Cognitive Neuroscience, Department of Psychology, University of Liège, Belgium
| | - Fabienne Collette
- GIGA Research, CRC Human Imaging, University of Liège, Belgium; Psychology and Cognitive Neuroscience, Department of Psychology, University of Liège, Belgium
| | - Christine Bastin
- GIGA Research, CRC Human Imaging, University of Liège, Belgium; Psychology and Cognitive Neuroscience, Department of Psychology, University of Liège, Belgium.
| |
Collapse
|
4
|
Horovitz DJ, Askins LA, Regnier GM, McQuail JA. Age-related synaptic signatures of brain and cognitive reserve in the rat hippocampus and parahippocampal regions. Neurobiol Aging 2025; 148:80-97. [PMID: 39954409 DOI: 10.1016/j.neurobiolaging.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/17/2025]
Abstract
Age-related cognitive decline varies widely among individuals, with some showing resilience despite older age. This study examines synaptic markers of glutamatergic and GABAergic neurotransmission in the hippocampus and cortex of older rats with differing cognitive abilities, aiming to uncover mechanisms that contribute to cognitive resilience. We observed significant age-related reductions in vesicular glutamate transporter VGluT1, particularly in the stratum oriens (SO), radiatum (SR), and lacunosum-moleculare (SLM) of the dorsal CA3 and SLM of the dorsal CA1. Furthermore, loss of VGluT1 in the dorsal CA3-SLM correlated with severity of memory impairment. Higher levels of the vesicular GABA transporter (VGAT) were associated with better spatial learning in older rats, across several synaptic zones of the dorsal hippocampus, including the outer molecular layer of the dentate gyrus (DG), and the SO, SR, SLM, and pyramidal cell layers of both CA3 and CA1. This suggests that enhanced inhibitory neurotransmission specific to the dorsal aspect of the hippocampus may protect against age-related cognitive decline. While the dorsal hippocampus showed consistent age- and memory-related changes, markers in the ventral hippocampus remained largely intact. In the perirhinal cortex, VGluT1 declined with no changes in VGAT, while both markers remained unchanged in other cortical regions, including the lateral entorhinal, retrosplenial, and posterior parietal cortices. These findings highlight region-specific patterns of synaptic aging as potential markers of brain and cognitive reserve.
Collapse
Affiliation(s)
- David J Horovitz
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| | - Laura A Askins
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| | - Grace M Regnier
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| | - Joseph A McQuail
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|
5
|
Mijalkov M, Storm L, Zufiria-Gerbolés B, Veréb D, Xu Z, Canal-Garcia A, Sun J, Chang YW, Zhao H, Gómez-Ruiz E, Passaretti M, Garcia-Ptacek S, Kivipelto M, Svenningsson P, Zetterberg H, Jacobs H, Lüdge K, Brunner D, Mehlig B, Volpe G, Pereira JB. Computational memory capacity predicts aging and cognitive decline. Nat Commun 2025; 16:2748. [PMID: 40113762 PMCID: PMC11926346 DOI: 10.1038/s41467-025-57995-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
Memory is a crucial cognitive function that deteriorates with age. However, this ability is normally assessed using cognitive tests instead of the architecture of brain networks. Here, we use reservoir computing, a recurrent neural network computing paradigm, to assess the linear memory capacities of neural-network reservoirs extracted from brain anatomical connectivity data in a lifespan cohort of 636 individuals. The computational memory capacity emerges as a robust marker of aging, being associated with resting-state functional activity, white matter integrity, locus coeruleus signal intensity, and cognitive performance. We replicate our findings in an independent cohort of 154 young and 72 old individuals. By linking the computational memory capacity of the brain network with cognition, brain function and integrity, our findings open new pathways to employ reservoir computing to investigate aging and age-related disorders.
Collapse
Affiliation(s)
- Mite Mijalkov
- Department of Clinical Neuroscience, Division of Neuro, Karolinska Institutet, Stockholm, Sweden.
| | - Ludvig Storm
- Department of Physics, Goteborg University, Goteborg, Sweden
| | - Blanca Zufiria-Gerbolés
- Department of Clinical Neuroscience, Division of Neuro, Karolinska Institutet, Stockholm, Sweden
| | - Dániel Veréb
- Department of Clinical Neuroscience, Division of Neuro, Karolinska Institutet, Stockholm, Sweden
| | - Zhilei Xu
- Department of Clinical Neuroscience, Division of Neuro, Karolinska Institutet, Stockholm, Sweden
| | - Anna Canal-Garcia
- Department of Clinical Neuroscience, Division of Neuro, Karolinska Institutet, Stockholm, Sweden
| | - Jiawei Sun
- Department of Clinical Neuroscience, Division of Neuro, Karolinska Institutet, Stockholm, Sweden
| | - Yu-Wei Chang
- Department of Physics, Goteborg University, Goteborg, Sweden
| | - Hang Zhao
- Department of Physics, Goteborg University, Goteborg, Sweden
| | | | - Massimiliano Passaretti
- Department of Clinical Neuroscience, Division of Neuro, Karolinska Institutet, Stockholm, Sweden
| | - Sara Garcia-Ptacek
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging. Aging Brain Theme. Karolinska University Hospital, Solna, Sweden
| | - Miia Kivipelto
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
- University of Eastern Finland, Kuopio, Finland
| | - Per Svenningsson
- Department of Clinical Neuroscience, Division of Neuro, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Heidi Jacobs
- Maastricht University, Maastricht, Netherlands
- Massachusetts General Hospital, Boston, MA, USA
| | - Kathy Lüdge
- Institute of Physics, Technische Universität Ilmenau, Weimarer Straße 25, Ilmenau, Germany
| | - Daniel Brunner
- Institut FEMTO-ST, Université Franche-Comté, CNRS, Besançon, France
| | - Bernhard Mehlig
- Department of Physics, Goteborg University, Goteborg, Sweden
| | - Giovanni Volpe
- Department of Physics, Goteborg University, Goteborg, Sweden.
| | - Joana B Pereira
- Department of Clinical Neuroscience, Division of Neuro, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
6
|
Kalpouzos G, Persson J. Structure-function relationships in the human aging brain: An account of cross-sectional and longitudinal multimodal neuroimaging studies. Cortex 2025; 183:274-289. [PMID: 39756333 DOI: 10.1016/j.cortex.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/22/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025]
Abstract
The patterns of brain activation and functional connectivity, task-related and task-free, as a function of age have been well documented over the past 30 years. However, the aging brain undergoes structural changes that are likely to affect the functional properties of the brain. The relationship between brain structure and function started to be investigated more recently. Brain structure and brain function can influence behavioral outcomes independently, and several studies highlight independent contribution of structure and function on cognition. Here, a central assumption is that brain structure also affects behavior indirectly through its influence on brain function. In such a model, structure supports function. Although findings generally suggest that structure may indeed influence function, the direction of the associations, the variability in terms of regional effects and age windows when associations are observed vary greatly. Also, a certain number of studies highlight the independent contribution of structure and function on cognition. A critical aspect of studying aging is the necessity of longitudinal designs, allowing to observe true aging effects - as compared with age differences in cross-sectional designs. This review aims to give an updated account on research dealing with multimodal neuroimaging in aging, and more specifically on the links between structure and function and associated cognitive outcomes, putting in parallel findings from cross-sectional and longitudinal studies. Additionally, we discuss potential mechanisms by which age-related changes in structure may affect function, but also factors (sample characteristics, methodology) that may contribute to the heterogeneity of the findings and the lack of consensus on the associations between structure, function, cognition and aging.
Collapse
Affiliation(s)
- Grégoria Kalpouzos
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Jonas Persson
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Center for Lifespan Developmental Research (LEADER), School of Behavioral, Social and Legal Sciences, Örebro University, Örebro, Sweden.
| |
Collapse
|
7
|
Caillaud M, Gallagher I, Foret J, Haley AP. Structural and functional sex differences in medial temporal lobe subregions at midlife. BMC Neurosci 2024; 25:55. [PMID: 39455948 PMCID: PMC11515403 DOI: 10.1186/s12868-024-00905-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Research has increasingly recognized sex differences in aging and Alzheimer's Disease (AD) susceptibility. However, sex effects on the medial temporal lobe (MTL), a crucial region affected by aging and AD, remain poorly understood when it comes to the intricacies of morphology and functional connectivity. This study aimed to systematically analyze structural and functional connectivity among MTL subregions, which are known to exhibit documented morphological sex differences, during midlife, occurring before the putative pivotal age of cerebral decline. The study sought to explore the hypothesis that these differences in MTL subregion volumes would manifest in sex-related functional distinctions within the broader brain network. METHODS 201 cognitively unimpaired adults were included and stratified into four groups according to age and sex (i.e., Women and Men aged 40-50 and 50-60). These participants underwent comprehensive high-resolution structural MRI as well as resting-state functional MRI (rsfMRI). Utilizing established automated segmentation, we delineated MTL subregions and assessed morphological differences through an ANOVA. Subsequently, the CONN toolbox was employed for conducting ROI-to-ROI and Fractional Amplitude of Low-Frequency Fluctuations (fALFF) analyses to investigate functional connectivity within the specific MTL subregions among these distinct groups. RESULTS Significant differences in volumetric measurements were found primarily between women aged 40-50 and men of all ages, in the posterior hippocampus (pHPC) and the parahippocampal (PHC) cortex (p < 0.001), and, to a lesser extent, between women aged 50-60 and men of all ages (p < 0.05). Other distinctions were observed, but no significant differences in connectivity patterns or fALFF scores were detected between these groups. DISCUSSION Despite notable sex-related morphological differences in the posterior HPC and PHC regions, women and men appear to share a common pattern of brain connectivity at midlife. Longitudinal analyses are necessary to assess if midlife morphological sex differences in the MTL produce functional changes over time and thus, their potential role in cerebral decline. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
| | | | - Janelle Foret
- University of California San Diego, San Diego, CA, USA
| | | |
Collapse
|
8
|
Fenerci C, Setton R, Baracchini G, Snytte J, Spreng RN, Sheldon S. Lifespan differences in hippocampal subregion connectivity patterns during movie watching. Neurobiol Aging 2024; 141:182-193. [PMID: 38968875 DOI: 10.1016/j.neurobiolaging.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/17/2024] [Accepted: 06/22/2024] [Indexed: 07/07/2024]
Abstract
Age-related episodic memory decline is attributed to functional alternations in the hippocampus. Less clear is how aging affects the functional connections of the hippocampus to the rest of the brain during episodic memory processing. We examined fMRI data from the CamCAN dataset, in which a large cohort of participants watched a movie (N = 643; 18-88 years), a proxy for naturalistic episodic memory encoding. We examined connectivity profiles across the lifespan both within the hippocampus (anterior, posterior), and between the hippocampal subregions and cortical networks. Aging was associated with reductions in contralateral (left, right) but not ipsilateral (anterior, posterior) hippocampal subregion connectivity. Aging was primarily associated with increased coupling between the anterior hippocampus and regions affiliated with Control, Dorsal Attention and Default Mode networks, yet decreased coupling between the posterior hippocampus and a selection of these regions. Differences in age-related hippocampal-cortical, but not within-hippocampus circuitry selectively predicted worse memory performance. Our findings comprehensively characterize hippocampal functional topography in relation to cognition in older age, suggesting that shifts in cortico-hippocampal connectivity may be sensitive markers of age-related episodic memory decline.
Collapse
Affiliation(s)
- Can Fenerci
- Department of Psychology, McGill University, Montreal, QC, Canada.
| | - Roni Setton
- Department of Psychology, Harvard University, Cambridge, MA, USA
| | - Giulia Baracchini
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jamie Snytte
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - R Nathan Spreng
- Department of Psychology, McGill University, Montreal, QC, Canada; Department of Psychology, Harvard University, Cambridge, MA, USA; Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Signy Sheldon
- Department of Psychology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
9
|
Lissaman R, Rajagopal S, Kearley J, Pasvanis S, Rajah MN. Menopause status- and sex-related differences in age associations with spatial context memory and white matter microstructure at midlife. Neurobiol Aging 2024; 141:151-159. [PMID: 38954878 DOI: 10.1016/j.neurobiolaging.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024]
Abstract
Decline in spatial context memory emerges in midlife, the time when most females transition from pre- to post-menopause. Recent evidence suggests that, among post-menopausal females, advanced age is associated with functional brain alterations and lower spatial context memory. However, it is unknown whether similar effects are evident for white matter (WM) and, moreover, whether such effects contribute to sex differences at midlife. To address this, we conducted a study on 96 cognitively unimpaired middle-aged adults (30 males, 32 pre-menopausal females, 34 post-menopausal females). Spatial context memory was assessed using a face-location memory paradigm, while WM microstructure was assessed using diffusion tensor imaging. Behaviorally, advanced age was associated with lower spatial context memory in post-menopausal females but not pre-menopausal females or males. Additionally, advanced age was associated with microstructural variability in predominantly frontal WM (e.g., anterior corona radiata, genu of corpus callosum), which was related to lower spatial context memory among post-menopausal females. Our findings suggest that post-menopausal status enhances vulnerability to age effects on the brain's WM and episodic memory.
Collapse
Affiliation(s)
- Rikki Lissaman
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
| | | | - Julia Kearley
- Department of Psychology, McGill University, Montreal, QC, Canada
| | | | - Maria Natasha Rajah
- Department of Psychiatry, McGill University, Montreal, QC, Canada; Department of Psychology, Toronto Metropolitan University, Toronto, ON, Canada
| |
Collapse
|
10
|
Rodriguez KA, Mattox N, Desme C, Hall LV, Wu Y, Pruden SM. Harnessing technology to measure individual differences in spatial thinking in early childhood from a relational developmental systems perspective. ADVANCES IN CHILD DEVELOPMENT AND BEHAVIOR 2024; 67:236-272. [PMID: 39260905 DOI: 10.1016/bs.acdb.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
According to the Relational Developmental Systems perspective, the development of individual differences in spatial thinking (e.g., mental rotation, spatial reorientation, and spatial language) are attributed to various psychological (e.g., children's cognitive strategies), biological (e.g., structure and function of hippocampus), and cultural systems (e.g., caregiver spatial language input). Yet, measuring the development of individual differences in spatial thinking in young children, as well as the psychological, biological, and cultural systems that influence the development of these abilities, presents unique challenges. The current paper outlines ways to harness available technology including eye-tracking, eye-blink conditioning, MRI, Zoom, and LENA technology, to study the development of individual differences in young children's spatial thinking. The technologies discussed offer ways to examine children's spatial thinking development from different levels of analyses (i.e., psychological, biological, cultural), thereby allowing us to advance the study of developmental theory. We conclude with a discussion of the use of artificial intelligence.
Collapse
Affiliation(s)
- Karinna A Rodriguez
- Florida International University, Department of Psychology, Miami, FL, United States.
| | - Nick Mattox
- Florida International University, Department of Psychology, Miami, FL, United States
| | - Carlos Desme
- Florida International University, Department of Psychology, Miami, FL, United States
| | - LaTreese V Hall
- Florida International University, Department of Psychology, Miami, FL, United States
| | - Yinbo Wu
- Florida International University, Department of Psychology, Miami, FL, United States
| | - Shannon M Pruden
- Florida International University, Department of Psychology, Miami, FL, United States
| |
Collapse
|
11
|
Elliott BL, Mohyee RA, Ballard IC, Olson IR, Ellman LM, Murty VP. In vivo structural connectivity of the reward system along the hippocampal long axis. Hippocampus 2024; 34:327-341. [PMID: 38700259 DOI: 10.1002/hipo.23608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/11/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Recent work has identified a critical role for the hippocampus in reward-sensitive behaviors, including motivated memory, reinforcement learning, and decision-making. Animal histology and human functional neuroimaging have shown that brain regions involved in reward processing and motivation are more interconnected with the ventral/anterior hippocampus. However, direct evidence examining gradients of structural connectivity between reward regions and the hippocampus in humans is lacking. The present study used diffusion MRI (dMRI) and probabilistic tractography to quantify the structural connectivity of the hippocampus with key reward processing regions in vivo. Using a large sample of subjects (N = 628) from the human connectome dMRI data release, we found that connectivity profiles with the hippocampus varied widely between different regions of the reward circuit. While the dopaminergic midbrain (ventral tegmental area) showed stronger connectivity with the anterior versus posterior hippocampus, the ventromedial prefrontal cortex showed stronger connectivity with the posterior hippocampus. The limbic (ventral) striatum demonstrated a more homogeneous connectivity profile along the hippocampal long axis. This is the first study to generate a probabilistic atlas of the hippocampal structural connectivity with reward-related networks, which is essential to investigating how these circuits contribute to normative adaptive behavior and maladaptive behaviors in psychiatric illness. These findings describe nuanced structural connectivity that sets the foundation to better understand how the hippocampus influences reward-guided behavior in humans.
Collapse
Affiliation(s)
- Blake L Elliott
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - Raana A Mohyee
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - Ian C Ballard
- Department of Psychology, University of California, Riverside, California, USA
| | - Ingrid R Olson
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - Lauren M Ellman
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - Vishnu P Murty
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Li J, Wang Q, Li K, Yao L, Guo X. Tracking Age-Related Topological Changes in Individual Brain Morphological Networks Across the Human Lifespan. J Magn Reson Imaging 2024; 59:1841-1851. [PMID: 37702277 DOI: 10.1002/jmri.28984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Many studies have shown topological alterations associated with age in population-based brain morphological networks. However, it is not clear how individual brain morphological networks change with age across the lifespan. PURPOSE To characterize age-related topological changes in individual networks and investigate the relationships between individual- and group-based brain networks at the nodal, modular, and connectome levels. STUDY TYPE Retrospective analysis. POPULATION One hundred seventy-nine healthy subjects (108 males and 71 females), aged 6-85 years with a median age of 32 years and an inter-quartile range (IQR) of 26 years. FIELD STRENGTH/SEQUENCE T1-weighted images using the magnetization-prepared rapid gradient echo (MPRAGE) sequences. ASSESSMENT Two nodal-level indicators (nodal similarity and node matching), five modular-level indicators (modularity, intra/inter-module similarity, adjusted mutual information [AMI], and module variation), and five connectome-level indicators (global efficiency, characteristic path length, clustering coefficient, local efficiency, and individual contribution) were calculated in brain morphological networks. Regression models for different indicators were built to examine their lifetime trajectory patterns. STATISTICAL TESTS Single-sample t-test, Mantel's test, Pearson correlation coefficient. A P value <0.05 was considered statistically significant. RESULTS Among 68 nodes, 34 nodes showed significant age-related patterns (all P < 0.05, FDR-corrected) in nodal similarity, including linear decline and quadratic trends. The lifespan trajectory of the connectome-level topological attributes of the individual networks presented U-shaped or inverse U-shaped trends with age. Between the individual- and group-based brain networks, the average nodal similarity was 0.67 and the average AMI of module partitions was 0.57. DATA CONCLUSION The lifespan trajectories of the nodal similarity mainly followed linear decreasing and nonlinear trends, whereas the modularity and the global topological attributes exhibited nonlinear patterns. There was a high degree of consistency at both nodal similarity and modular division between the individual and group networks. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Jingming Li
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
| | - Qian Wang
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
| | - Ke Li
- Strategic Support Force Medical Center, Beijing, China
| | - Li Yao
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
| | - Xiaojuan Guo
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| |
Collapse
|
13
|
Snytte J, Setton R, Mwilambwe-Tshilobo L, Natasha Rajah M, Sheldon S, Turner GR, Spreng RN. Structure-Function Interactions in the Hippocampus and Prefrontal Cortex Are Associated with Episodic Memory in Healthy Aging. eNeuro 2024; 11:ENEURO.0418-23.2023. [PMID: 38479810 PMCID: PMC10972739 DOI: 10.1523/eneuro.0418-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 04/01/2024] Open
Abstract
Aging comes with declines in episodic memory. Memory decline is accompanied by structural and functional alterations within key brain regions, including the hippocampus and lateral prefrontal cortex, as well as their affiliated default and frontoparietal control networks. Most studies have examined how structural or functional differences relate to memory independently. Here we implemented a multimodal, multivariate approach to investigate how interactions between individual differences in structural integrity and functional connectivity relate to episodic memory performance in healthy aging. In a sample of younger (N = 111; mean age, 22.11 years) and older (N = 78; mean age, 67.29 years) adults, we analyzed structural MRI and multiecho resting-state fMRI data. Participants completed measures of list recall (free recall of words from a list), associative memory (cued recall of paired words), and source memory (cued recall of the trial type, or the sensory modality in which a word was presented). The findings revealed that greater structural integrity of the posterior hippocampus and middle frontal gyrus were linked with a pattern of increased within-network connectivity, which together were related to better associative and source memory in older adulthood. Critically, older adults displayed better memory performance in the context of decreased hippocampal volumes when structural differences were accompanied by functional reorganization. This functional reorganization was characterized by a pruning of connections between the hippocampus and the limbic and frontoparietal control networks. Our work provides insight into the neural mechanisms that underlie age-related compensation, revealing that the functional architecture associated with better memory performance in healthy aging is tied to the structural integrity of the hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- Jamie Snytte
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Roni Setton
- Department of Psychology, Harvard University, Cambridge, Massachusetts 02138
| | - Laetitia Mwilambwe-Tshilobo
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Psychology, Princeton University, Princeton, New Jersey 08540
| | - M Natasha Rajah
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Signy Sheldon
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Gary R Turner
- Department of Psychology, York University, Toronto, Ontario M3J 1P3, Canada
| | - R Nathan Spreng
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
14
|
Bunzeck N, Steiger TK, Krämer UM, Luedtke K, Marshall L, Obleser J, Tune S. Trajectories and contributing factors of neural compensation in healthy and pathological aging. Neurosci Biobehav Rev 2024; 156:105489. [PMID: 38040075 DOI: 10.1016/j.neubiorev.2023.105489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Neural degeneration is a hallmark of healthy aging and can be associated with specific cognitive impairments. However, neural degeneration per se is not matched by unremitting declines in cognitive abilities. Instead, middle-aged and older adults typically maintain surprisingly high levels of cognitive functioning, suggesting that the human brain can adapt to structural degeneration by neural compensation. Here, we summarize prevailing theories and recent empirical studies on neural compensation with a focus on often neglected contributing factors, such as lifestyle, metabolism and neural plasticity. We suggest that these factors moderate the relationship between structural integrity and neural compensation, maintaining psychological well-being and behavioral functioning. Finally, we discuss that a breakdown in neural compensation may pose a tipping point that distinguishes the trajectories of healthy vs pathological aging, but conjoint support from psychology and cognitive neuroscience for this alluring view is still scarce. Therefore, future experiments that target the concomitant processes of neural compensation and associated behavior will foster a comprehensive understanding of both healthy and pathological aging.
Collapse
Affiliation(s)
- Nico Bunzeck
- Department of Psychology, University of Lübeck, Germany; Center of Brain, Behavior and Metabolism, University of Lübeck, Germany.
| | | | - Ulrike M Krämer
- Department of Psychology, University of Lübeck, Germany; Center of Brain, Behavior and Metabolism, University of Lübeck, Germany; Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Kerstin Luedtke
- Institute of Health Sciences, Department of Physiotherapy, University of Lübeck, Germany
| | - Lisa Marshall
- Center of Brain, Behavior and Metabolism, University of Lübeck, Germany; Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Germany; Center of Brain, Behavior and Metabolism, University of Lübeck, Germany
| | - Sarah Tune
- Department of Psychology, University of Lübeck, Germany; Center of Brain, Behavior and Metabolism, University of Lübeck, Germany
| |
Collapse
|
15
|
Crestol A, Rajagopal S, Lissaman R, LaPlume AA, Pasvanis S, Olsen RK, Einstein G, Jacobs EG, Rajah MN. Menopause Status and Within-Group Differences in Chronological Age Affect the Functional Neural Correlates of Spatial Context Memory in Middle-Aged Females. J Neurosci 2023; 43:8756-8768. [PMID: 37903593 PMCID: PMC10727179 DOI: 10.1523/jneurosci.0663-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/01/2023] Open
Abstract
Reductions in the ability to encode and retrieve past experiences in rich spatial contextual detail (episodic memory) are apparent by midlife-a time when most females experience spontaneous menopause. Yet, little is known about how menopause status affects episodic memory-related brain activity at encoding and retrieval in middle-aged premenopausal and postmenopausal females, and whether any observed group differences in brain activity and memory performance correlate with chronological age within group. We conducted an event-related task fMRI study of episodic memory for spatial context to address this knowledge gap. Multivariate behavioral partial least squares was used to investigate how chronological age and retrieval accuracy correlated with brain activity in 31 premenopausal females (age range, 39.55-53.30 years; mean age, 44.28 years; SD age, 3.12 years) and 41 postmenopausal females (age range, 46.70-65.14 years; mean age, 57.56 years; SD age, 3.93 years). We found that postmenopausal status, and advanced age within postmenopause, was associated with lower spatial context memory. The fMRI analysis showed that only in postmenopausal females, advanced age was correlated with decreased activity in occipitotemporal, parahippocampal, and inferior parietal cortices during encoding and retrieval, and poorer spatial context memory performance. In contrast, only premenopausal females exhibited an overlap in encoding and retrieval activity in angular gyrus, midline cortical regions, and prefrontal cortex, which correlated with better spatial context retrieval accuracy. These results highlight how menopause status and chronological age, nested within menopause group, affect episodic memory and its neural correlates at midlife.SIGNIFICANCE STATEMENT This is the first fMRI study to examine how premenopause and postmenopause status affect the neural correlates of episodic memory encoding and retrieval, and how chronological age contributes to any observed group similarities and differences. We found that both menopause status (endocrine age) and chronological age affect spatial context memory and its neural correlates. Menopause status directly affected the direction of age-related and performance-related correlations with brain activity in inferior parietal, parahippocampal, and occipitotemporal cortices across encoding and retrieval. Moreover, we found that only premenopausal females exhibited cortical reinstatement of encoding-related activity in midline cortical, prefrontal, and angular gyrus, at retrieval. This suggests that spatial context memory abilities may rely on distinct brain systems at premenopause compared with postmenopause.
Collapse
Affiliation(s)
- Arielle Crestol
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec H3A 1A1, Canada
| | | | - Rikki Lissaman
- Douglas Mental Health University Institute, Verdun, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montréal, Quebec H3A 1A1, Canada
| | - Annalise A LaPlume
- Douglas Mental Health University Institute, Verdun, Quebec H4H 1R3, Canada
- Department of Psychology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | | | - Rosanna K Olsen
- Rotman Research Institute, Baycrest Centre and University of Toronto, Toronto, Ontario M6A 2E1, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario M5S 3G3, Canada
| | - Gillian Einstein
- Rotman Research Institute, Baycrest Centre and University of Toronto, Toronto, Ontario M6A 2E1, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario M5S 3G3, Canada
| | - Emily G Jacobs
- Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California 93106-9660
| | - M Natasha Rajah
- Douglas Mental Health University Institute, Verdun, Quebec H4H 1R3, Canada
- Department of Psychology, McGill University, Montréal, Quebec H3A 1G1, Canada
- Department of Psychiatry, McGill University, Montréal, Quebec H3A 1A1, Canada
- Department of Psychology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
16
|
Moscovitch DA, Moscovitch M, Sheldon S. Neurocognitive Model of Schema-Congruent and -Incongruent Learning in Clinical Disorders: Application to Social Anxiety and Beyond. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2023; 18:1412-1435. [PMID: 36795637 PMCID: PMC10623626 DOI: 10.1177/17456916221141351] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Negative schemas lie at the core of many common and debilitating mental disorders. Thus, intervention scientists and clinicians have long recognized the importance of designing effective interventions that target schema change. Here, we suggest that the optimal development and administration of such interventions can benefit from a framework outlining how schema change occurs in the brain. Guided by basic neuroscientific findings, we provide a memory-based neurocognitive framework for conceptualizing how schemas emerge and change over time and how they can be modified during psychological treatment of clinical disorders. We highlight the critical roles of the hippocampus, ventromedial prefrontal cortex, amygdala, and posterior neocortex in directing schema-congruent and -incongruent learning (SCIL) in the interactive neural network that comprises the autobiographical memory system. We then use this framework, which we call the SCIL model, to derive new insights about the optimal design features of clinical interventions that aim to strengthen or weaken schema-based knowledge through the core processes of episodic mental simulation and prediction error. Finally, we examine clinical applications of the SCIL model to schema-change interventions in psychotherapy and provide cognitive-behavior therapy for social anxiety disorder as an illustrative example.
Collapse
Affiliation(s)
- David A. Moscovitch
- Department of Psychology and Centre for Mental Health Research & Treatment, University of Waterloo
| | - Morris Moscovitch
- Rotman Research Institute and Department of Psychology, Baycrest Centre for Geriatric Care
- Department of Psychology, University of Toronto
| | | |
Collapse
|
17
|
Kim JS, Lee SA. Hippocampal orchestration of associative and sequential memory networks for episodic retrieval. Cell Rep 2023; 42:112989. [PMID: 37581985 DOI: 10.1016/j.celrep.2023.112989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/16/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023] Open
Abstract
Episodic memory involves the recollection of contextual details replayed mentally across time. Here, we propose the association-sequence network (ASN) model, characterizing complementary cortico-hippocampal networks underlying the retrieval of simultaneously associated and sequentially ordered events. Participants viewed objects, presented singly or in pairs, and later reported whether two objects were shown simultaneously, consecutively, or farther apart in time. Behavioral results and hippocampal activation reveal a correlation between the two sequential conditions but not the simultaneous condition, despite the temporal proximity of consecutive pairs. We also find that anterior hippocampal activity is modulated by temporal distance. Distinct cortical networks are engaged during simultaneous and sequential memory (prefrontal cortex and angular gyrus for association; supplementary motor cortex and precuneus for sequence); notably, these regions show differential connectivity with the hippocampus. The ASN model provides a comprehensive framework for how we reconstruct memories that are both rich in associative detail and temporally dynamic in nature.
Collapse
Affiliation(s)
- Ji Sun Kim
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul 08826, Korea
| | - Sang Ah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
18
|
Guardia T, Mazloum-Farzaghi N, Olsen RK, Tsvetanov KA, Campbell KL. Associative memory is more strongly predicted by age-related differences in the prefrontal cortex than medial temporal lobes. NEUROIMAGE: REPORTS 2023. [DOI: 10.1016/j.ynirp.2023.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
19
|
Kassis A, Fichot MC, Horcajada MN, Horstman AMH, Duncan P, Bergonzelli G, Preitner N, Zimmermann D, Bosco N, Vidal K, Donato-Capel L. Nutritional and lifestyle management of the aging journey: A narrative review. Front Nutr 2023; 9:1087505. [PMID: 36761987 PMCID: PMC9903079 DOI: 10.3389/fnut.2022.1087505] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/28/2022] [Indexed: 01/25/2023] Open
Abstract
With age, the physiological responses to occasional or regular stressors from a broad range of functions tend to change and adjust at a different pace and restoring these functions in the normal healthy range becomes increasingly challenging. Even if this natural decline is somehow unavoidable, opportunities exist to slow down and attenuate the impact of advancing age on major physiological processes which, when weakened, constitute the hallmarks of aging. This narrative review revisits the current knowledge related to the aging process and its impact on key metabolic functions including immune, digestive, nervous, musculoskeletal, and cardiovascular functions; and revisits insights into the important biological targets that could inspire effective strategies to promote healthy aging.
Collapse
Affiliation(s)
- Amira Kassis
- Whiteboard Nutrition Science, Beaconsfield, QC, Canada,Amira Kassis,
| | | | | | | | - Peter Duncan
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | | | - Nicolas Preitner
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Diane Zimmermann
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Nabil Bosco
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Karine Vidal
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Laurence Donato-Capel
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland,*Correspondence: Laurence Donato-Capel,
| |
Collapse
|