1
|
Moon S, Lee J, Lee WH. Predicting brain age with global-local attention network from multimodal neuroimaging data: Accuracy, generalizability, and behavioral associations. Comput Biol Med 2025; 184:109411. [PMID: 39556917 DOI: 10.1016/j.compbiomed.2024.109411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024]
Abstract
Brain age, an emerging biomarker for brain diseases and aging, is typically predicted using single-modality T1-weighted structural MRI data. This study investigates the benefits of integrating structural MRI with diffusion MRI to enhance brain age prediction. We propose an attention-based deep learning model that fuses global-context information from structural MRI with local details from diffusion metrics. The model was evaluated using two large datasets: the Human Connectome Project (HCP, n = 1064, age 22-37) and the Cambridge Center for Aging and Neuroscience (Cam-CAN, n = 639, age 18-88). It was tested for generalizability and robustness on three independent datasets (n = 546, age 20-86), reproducibility on a test-retest dataset (n = 44, age 22-35), and longitudinal consistency (n = 129, age 46-92). We also examined the relationship between predicted brain age and behavioral measures. Results showed that the multimodal model improved prediction accuracy, achieving mean absolute errors (MAEs) of 2.44 years in the HCP dataset (sagittal plane) and 4.36 years in the Cam-CAN dataset (axial plane). The corresponding R2 values were 0.258 and 0.914, respectively, reflecting the model's ability to explain variance in the predictions across both datasets. Compared to single-modality models, the multimodal approach showed better generalization, reducing MAEs by 10-76 % and enhancing robustness by 22-82 %. While the multimodal model exhibited superior reproducibility, the sMRI model showed slightly better longitudinal consistency. Importantly, the multimodal model revealed unique associations between predicted brain age and behavioral measures, such as walking endurance and loneliness in the HCP dataset, which were not detected with chronological age alone. In the Cam-CAN dataset, brain age and chronological age exhibited similar correlations with behavioral measures. By integrating sMRI and dMRI through an attention-based model, our proposed approach enhances predictive accuracy and provides deeper insights into the relationship between brain aging and behavior.
Collapse
Affiliation(s)
- SungHwan Moon
- Department of Software Convergence, Kyung Hee University, Yongin, Republic of Korea
| | - Junhyeok Lee
- Department of Software Convergence, Kyung Hee University, Yongin, Republic of Korea
| | - Won Hee Lee
- Department of Software Convergence, Kyung Hee University, Yongin, Republic of Korea.
| |
Collapse
|
2
|
Li J, Segel A, Feng X, Tu JC, Eck A, King KT, Adeyemo B, Karcher NR, Chen L, Eggebrecht AT, Wheelock MD. Network-level enrichment provides a framework for biological interpretation of machine learning results. Netw Neurosci 2024; 8:762-790. [PMID: 39355443 PMCID: PMC11349033 DOI: 10.1162/netn_a_00383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/15/2024] [Indexed: 10/03/2024] Open
Abstract
Machine learning algorithms are increasingly being utilized to identify brain connectivity biomarkers linked to behavioral and clinical outcomes. However, research often prioritizes prediction accuracy at the expense of biological interpretability, and inconsistent implementation of ML methods may hinder model accuracy. To address this, our paper introduces a network-level enrichment approach, which integrates brain system organization in the context of connectome-wide statistical analysis to reveal network-level links between brain connectivity and behavior. To demonstrate the efficacy of this approach, we used linear support vector regression (LSVR) models to examine the relationship between resting-state functional connectivity networks and chronological age. We compared network-level associations based on raw LSVR weights to those produced from the forward and inverse models. Results indicated that not accounting for shared family variance inflated prediction performance, the k-best feature selection via Pearson correlation reduced accuracy and reliability, and raw LSVR model weights produced network-level associations that deviated from the significant brain systems identified by forward and inverse models. Our findings offer crucial insights for applying machine learning to neuroimaging data, emphasizing the value of network enrichment for biological interpretation.
Collapse
Affiliation(s)
- Jiaqi Li
- Department of Statistics and Data Science, Washington University in St. Louis, MO, USA
| | - Ari Segel
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, MO, USA
| | - Xinyang Feng
- Department of Statistics and Data Science, Washington University in St. Louis, MO, USA
| | - Jiaxin Cindy Tu
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, MO, USA
| | - Andy Eck
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, MO, USA
| | - Kelsey T. King
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, MO, USA
| | - Babatunde Adeyemo
- Department of Neurology, Washington University in St. Louis, MO, USA
| | - Nicole R. Karcher
- Department of Psychiatry, Washington University in St. Louis, MO, USA
| | - Likai Chen
- Department of Statistics and Data Science, Washington University in St. Louis, MO, USA
| | - Adam T. Eggebrecht
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, MO, USA
| | - Muriah D. Wheelock
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, MO, USA
| |
Collapse
|
3
|
P L R, K S G. Revolutionizing dementia detection: Leveraging vision and Swin transformers for early diagnosis. Am J Med Genet B Neuropsychiatr Genet 2024; 195:e32979. [PMID: 38619385 DOI: 10.1002/ajmg.b.32979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/01/2024] [Accepted: 03/04/2024] [Indexed: 04/16/2024]
Abstract
Dementia, an increasingly prevalent neurological disorder with a projected threefold rise globally by 2050, necessitates early detection for effective management. The risk notably increases after age 65. Dementia leads to a progressive decline in cognitive functions, affecting memory, reasoning, and problem-solving abilities. This decline can impact the individual's ability to perform daily tasks and make decisions, underscoring the crucial importance of timely identification. With the advent of technologies like computer vision and deep learning, the prospect of early detection becomes even more promising. Employing sophisticated algorithms on imaging data, such as positron emission tomography scans, facilitates the recognition of subtle structural brain changes, enabling diagnosis at an earlier stage for potentially more effective interventions. In an experimental study, the Swin transformer algorithm demonstrated superior overall accuracy compared to the vision transformer and convolutional neural network, emphasizing its efficiency. Detecting dementia early is essential for proactive management, personalized care, and implementing preventive measures, ultimately enhancing outcomes for individuals and lessening the overall burden on healthcare systems.
Collapse
Affiliation(s)
- Rini P L
- Department of Information Technology, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, India
| | - Gayathri K S
- Department of Information Technology, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, India
| |
Collapse
|
4
|
Zhang X, Pan Y, Wu T, Zhao W, Zhang H, Ding J, Ji Q, Jia X, Li X, Lee Z, Zhang J, Bai L. Brain age prediction using interpretable multi-feature-based convolutional neural network in mild traumatic brain injury. Neuroimage 2024; 297:120751. [PMID: 39048043 DOI: 10.1016/j.neuroimage.2024.120751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Convolutional neural network (CNN) can capture the structural features changes of brain aging based on MRI, thus predict brain age in healthy individuals accurately. However, most studies use single feature to predict brain age in healthy individuals, ignoring adding information from multiple sources and the changes in brain aging patterns after mild traumatic brain injury (mTBI) were still unclear. METHODS Here, we leveraged the structural data from a large, heterogeneous dataset (N = 1464) to implement an interpretable 3D combined CNN model for brain-age prediction. In addition, we also built an atlas-based occlusion analysis scheme with a fine-grained human Brainnetome Atlas to reveal the age-sstratified contributed brain regions for brain-age prediction in healthy controls (HCs) and mTBI patients. The correlations between brain predicted age gaps (brain-PAG) following mTBI and individual's cognitive impairment, as well as the level of plasma neurofilament light were also examined. RESULTS Our model utilized multiple 3D features derived from T1w data as inputs, and reduced the mean absolute error (MAE) of age prediction to 3.08 years and improved Pearson's r to 0.97 on 154 HCs. The strong generalizability of our model was also validated across different centers. Regions contributing the most significantly to brain age prediction were the caudate and thalamus for HCs and patients with mTBI, and the contributive regions were mostly located in the subcortical areas throughout the adult lifespan. The left hemisphere was confirmed to contribute more in brain age prediction throughout the adult lifespan. Our research showed that brain-PAG in mTBI patients was significantly higher than that in HCs in both acute and chronic phases. The increased brain-PAG in mTBI patients was also highly correlated with cognitive impairment and a higher level of plasma neurofilament light, a marker of neurodegeneration. The higher brain-PAG and its correlation with severe cognitive impairment showed a longitudinal and persistent nature in patients with follow-up examinations. CONCLUSION We proposed an interpretable deep learning framework on a relatively large dataset to accurately predict brain age in both healthy individuals and mTBI patients. The interpretable analysis revealed that the caudate and thalamus became the most contributive role across the adult lifespan in both HCs and patients with mTBI. The left hemisphere contributed significantly to brain age prediction may enlighten us to be concerned about the lateralization of brain abnormality in neurological diseases in the future. The proposed interpretable deep learning framework might also provide hope for testing the performance of related drugs and treatments in the future.
Collapse
Affiliation(s)
- Xiang Zhang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yizhen Pan
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tingting Wu
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wenpu Zhao
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Haonan Zhang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jierui Ding
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qiuyu Ji
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaoyan Jia
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xuan Li
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhiqi Lee
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jie Zhang
- Department of Radiation Medicine, School of Preventive Medicine, Air Force Medical University, Xi'an 710032, China.
| | - Lijun Bai
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
5
|
Wei Y, Abrol A, Lah J, Qiu D, Calhoun VD. A deep spatio-temporal attention model of dynamic functional network connectivity shows sensitivity to Alzheimer's in asymptomatic individuals. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039841 DOI: 10.1109/embc53108.2024.10781740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Alzheimer's disease (AD) progresses from asymptomatic changes to clinical symptoms, emphasizing the importance of early detection for proper treatment. Functional magnetic resonance imaging (fMRI), particularly dynamic functional network connectivity (dFNC), has emerged as an important biomarker for AD. Nevertheless, studies probing at-risk subjects in the pre-symptomatic stage using dFNC are limited. To identify at-risk subjects and understand alterations of dFNC in different stages, we leverage deep learning advancements and introduce a transformer-convolution framework for predicting at-risk subjects based on dFNC, incorporating spatial-temporal self-attention to capture brain network dependencies and temporal dynamics. Our model significantly outperforms other popular machine learning methods. By analyzing individuals with diagnosed AD and mild cognitive impairment (MCI), we studied the AD progression and observed a higher similarity between MCI and asymptomatic AD. The interpretable analysis highlights the cognitive-control network's diagnostic importance, with the model focusing on intra-visual domain dFNC when predicting asymptomatic AD subjects.
Collapse
|
6
|
Amiri S, van den Berg M, Nazem-Zadeh MR, Verhoye M, Amiri M, Keliris GA. Nodal degree centrality in the default mode-like network of the TgF344-AD Alzheimer's disease rat model as a measure of early network alterations. NPJ AGING 2024; 10:29. [PMID: 38902224 PMCID: PMC11190202 DOI: 10.1038/s41514-024-00151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/19/2024] [Indexed: 06/22/2024]
Abstract
This study investigates brain network alterations in the default mode-like network (DMLN) at early stages of disease progression in a rat model of Alzheimer's disease (AD) with application in the development of early diagnostic biomarkers of AD in translational studies. Thirteen male TgF344-AD (TG) rats, and eleven male wild-types (WT) littermates underwent longitudinal resting-state fMRI at the age of 4 and 6 months (pre and early-plaque stages of AD). Alterations in connectivity within DMLN were characterized by calculating the nodal degree (ND), a graph theoretical measure of centrality. The ND values of the left CA2 subregion of the hippocampus was found to be significantly lower in the 4-month-old TG cohort compared to the age-matched WT littermates. Moreover, a lower ND value (hypo-connectivity) was observed in the right prelimbic cortex (prL) and basal forebrain in the 6-month-old TG cohort, compared to the same age WT cohort. Indeed, the ND pattern in the DMLN in both TG and WT cohorts showed significant differences across the two time points that represent pre-plaque and early plaque stages of disease progression. Our findings indicate that lower nodal degree (hypo-connectivity) in the left CA2 in the pre-plaque stage of AD and hypo-connectivity between the basal forebrain and the DMLN regions in the early-plaque stage demonstrated differences in comparison to healthy controls. These results suggest that a graph-theoretical measure such as the nodal degree, can characterize brain networks and improve our insights into the mechanisms underlying Alzheimer's disease.
Collapse
Affiliation(s)
- Saba Amiri
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Monica van den Berg
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Mohammad-Reza Nazem-Zadeh
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
- Department of neuroscience, Monash university, Melbourne, Vic, Australia
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Mahmood Amiri
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Georgios A Keliris
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium.
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium.
- Institute of Computer Science, Hellas Foundation for Research & Technology - Hellas, Heraklion, Crete, Greece.
| |
Collapse
|
7
|
Orlichenko A, Qu G, Zhou Z, Liu A, Deng HW, Ding Z, Stephen JM, Wilson TW, Calhoun VD, Wang YP. A Demographic-Conditioned Variational Autoencoder for fMRI Distribution Sampling and Removal of Confounds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594528. [PMID: 38798580 PMCID: PMC11118390 DOI: 10.1101/2024.05.16.594528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Objective fMRI and derived measures such as functional connectivity (FC) have been used to predict brain age, general fluid intelligence, psychiatric disease status, and preclinical neurodegenerative disease. However, it is not always clear that all demographic confounds, such as age, sex, and race, have been removed from fMRI data. Additionally, many fMRI datasets are restricted to authorized researchers, making dissemination of these valuable data sources challenging. Methods We create a variational autoencoder (VAE)-based model, DemoVAE, to decorrelate fMRI features from demographics and generate high-quality synthetic fMRI data based on user-supplied demographics. We train and validate our model using two large, widely used datasets, the Philadelphia Neurodevel-opmental Cohort (PNC) and Bipolar and Schizophrenia Network for Intermediate Phenotypes (BSNIP). Results We find that DemoVAE recapitulates group differences in fMRI data while capturing the full breadth of individual variations. Significantly, we also find that most clinical and computerized battery fields that are correlated with fMRI data are not correlated with DemoVAE latents. An exception are several fields related to schizophrenia medication and symptom severity. Conclusion Our model generates fMRI data that captures the full distribution of FC better than traditional VAE or GAN models. We also find that most prediction using fMRI data is dependent on correlation with, and prediction of, demographics. Significance Our DemoVAE model allows for generation of high quality synthetic data conditioned on subject demographics as well as the removal of the confounding effects of demographics. We identify that FC-based prediction tasks are highly influenced by demographic confounds.
Collapse
|
8
|
Orlichenko A, Qu G, Zhou Z, Liu A, Deng HW, Ding Z, Stephen JM, Wilson TW, Calhoun VD, Wang YP. A Demographic-Conditioned Variational Autoencoder for fMRI Distribution Sampling and Removal of Confounds. ARXIV 2024:arXiv:2405.07977v1. [PMID: 38800653 PMCID: PMC11118598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Objective fMRI and derived measures such as functional connectivity (FC) have been used to predict brain age, general fluid intelligence, psychiatric disease status, and preclinical neurodegenerative disease. However, it is not always clear that all demographic confounds, such as age, sex, and race, have been removed from fMRI data. Additionally, many fMRI datasets are restricted to authorized researchers, making dissemination of these valuable data sources challenging. Methods We create a variational autoencoder (VAE)-based model, DemoVAE, to decorrelate fMRI features from demographics and generate high-quality synthetic fMRI data based on user-supplied demographics. We train and validate our model using two large, widely used datasets, the Philadelphia Neurodevelopmental Cohort (PNC) and Bipolar and Schizophrenia Network for Intermediate Phenotypes (BSNIP). Results We find that DemoVAE recapitulates group differences in fMRI data while capturing the full breadth of individual variations. Significantly, we also find that most clinical and computerized battery fields that are correlated with fMRI data are not correlated with DemoVAE latents. An exception are several fields related to schizophrenia medication and symptom severity. Conclusion Our model generates fMRI data that captures the full distribution of FC better than traditional VAE or GAN models. We also find that most prediction using fMRI data is dependent on correlation with, and prediction of, demographics. Significance Our DemoVAE model allows for generation of high quality synthetic data conditioned on subject demographics as well as the removal of the confounding effects of demographics. We identify that FC-based prediction tasks are highly influenced by demographic confounds.
Collapse
Affiliation(s)
- Anton Orlichenko
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118
| | - Gang Qu
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118
| | - Ziyu Zhou
- Department of Computer Science, Tulane University, New Orleans, LA 70118
| | - Anqi Liu
- Center for Biomedical Informatics and Genomics, Tulane Integrated Institute of Data & Health Sciences, Tulane University, New Orleans, LA 70112
| | - Hong-Wen Deng
- Center for Biomedical Informatics and Genomics, Tulane Integrated Institute of Data & Health Sciences, Tulane University, New Orleans, LA 70112
| | - Zhengming Ding
- Department of Computer Science, Tulane University, New Orleans, LA 70118
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118
| |
Collapse
|
9
|
Chang JR, Yao ZF, Hsieh S, Nordling TEM. Age Prediction Using Resting-State Functional MRI. Neuroinformatics 2024; 22:119-134. [PMID: 38341830 DOI: 10.1007/s12021-024-09653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 02/13/2024]
Abstract
The increasing lifespan and large individual differences in cognitive capability highlight the importance of comprehending the aging process of the brain. Contrary to visible signs of bodily ageing, like greying of hair and loss of muscle mass, the internal changes that occur within our brains remain less apparent until they impair function. Brain age, distinct from chronological age, reflects our brain's health status and may deviate from our actual chronological age. Notably, brain age has been associated with mortality and depression. The brain is plastic and can compensate even for severe structural damage by rewiring. Functional characterization offers insights that structural cannot provide. Contrary to the multitude of studies relying on structural magnetic resonance imaging (MRI), we utilize resting-state functional MRI (rsfMRI). We also address the issue of inclusion of subjects with abnormal brain ageing through outlier removal. In this study, we employ the Least Absolute Shrinkage and Selection Operator (LASSO) to identify the 39 most predictive correlations derived from the rsfMRI data. The data is from a cohort of 176 healthy right-handed volunteers, aged 18-78 years (95/81 male/female, mean age 48, SD 17) collected at the Mind Research Imaging Center at the National Cheng Kung University. We establish a normal reference model by excluding 68 outliers, which achieves a leave-one-out mean absolute error of 2.48 years. By asking which additional features that are needed to predict the chronological age of the outliers with a smaller error, we identify correlations predictive of abnormal aging. These are associated with the Default Mode Network (DMN). Our normal reference model has the lowest prediction error among published models evaluated on adult subjects of almost all ages and is thus a candidate for screening for abnormal brain aging that has not yet manifested in cognitive decline. This study advances our ability to predict brain aging and provides insights into potential biomarkers for assessing brain age, suggesting that the role of DMN in brain aging should be studied further.
Collapse
Affiliation(s)
- Jose Ramon Chang
- Department of Mechanical Engineering, National Cheng Kung University, No. 1 University Rd., Tainan, 701, Taiwan
| | - Zai-Fu Yao
- College of Education, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Research Center for Education and Mind Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Kinesiology, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Basic Psychology Group, Department of Educational Psychology and Counseling, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shulan Hsieh
- Department of Psychology, National Cheng Kung University, No. 1 University Rd., Tainan, 701, Taiwan
- Institute of Allied Health Sciences, National Cheng Kung University, No. 1 University Rd., Tainan, 701, Taiwan
- Department of Public Health, College of Medicine, National Cheng Kung University, No. 1 University Rd., Tainan, 701, Taiwan
| | - Torbjörn E M Nordling
- Department of Mechanical Engineering, National Cheng Kung University, No. 1 University Rd., Tainan, 701, Taiwan.
| |
Collapse
|
10
|
Seitz-Holland J, Haas SS, Penzel N, Reichenberg A, Pasternak O. BrainAGE, brain health, and mental disorders: A systematic review. Neurosci Biobehav Rev 2024; 159:105581. [PMID: 38354871 PMCID: PMC11119273 DOI: 10.1016/j.neubiorev.2024.105581] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
The imaging-based method of brainAGE aims to characterize an individual's vulnerability to age-related brain changes. The present study systematically reviewed brainAGE findings in neuropsychiatric conditions and discussed the potential of brainAGE as a marker for biological age. A systematic PubMed search (from inception to March 6th, 2023) identified 273 articles. The 30 included studies compared brainAGE between neuropsychiatric and healthy groups (n≥50). We presented results qualitatively and adapted a bias risk assessment questionnaire. The imaging modalities, design, and input features varied considerably between studies. While the studies found higher brainAGE in neuropsychiatric conditions (11 mild cognitive impairment/ dementia, 11 schizophrenia spectrum/ other psychotic and bipolar disorder, six depression/ anxiety, two multiple groups), the associations with clinical characteristics were mixed. While brainAGE is sensitive to group differences, limitations include the lack of diverse training samples, multi-modal studies, and external validation. Only a few studies obtained longitudinal data, and all have used algorithms built solely to predict chronological age. These limitations impede the validity of brainAGE as a biological age marker.
Collapse
Affiliation(s)
- Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Shalaila S Haas
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nora Penzel
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Abraham Reichenberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Orlichenko A, Su KJ, Shen H, Deng HW, Wang YP. Somatomotor-visual resting state functional connectivity increases after 2 years in the UK Biobank longitudinal cohort. J Med Imaging (Bellingham) 2024; 11:024010. [PMID: 38618171 PMCID: PMC11009525 DOI: 10.1117/1.jmi.11.2.024010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/26/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024] Open
Abstract
Purpose Functional magnetic resonance imaging (fMRI) and functional connectivity (FC) have been used to follow aging in both children and older adults. Robust changes have been observed in children, in which high connectivity among all brain regions changes to a more modular structure with maturation. We examine FC changes in older adults after 2 years of aging in the UK Biobank (UKB) longitudinal cohort. Approach We process fMRI connectivity data using the Power264 atlas and then test whether the average internetwork FC changes in the 2722-subject longitudinal cohort are statistically significant using a Bonferroni-corrected t -test. We also compare the ability of Power264 and UKB-provided, independent component analysis (ICA)-based FC to determine which of a longitudinal scan pair is older. Finally, we investigate cross-sectional FC changes as well as differences due to differing scanner tasks in the UKB, Philadelphia Neurodevelopmental Cohort, and Alzheimer's Disease Neuroimaging Initiative datasets. Results We find a 6.8% average increase in somatomotor network (SMT)-visual network (VIS) connectivity from younger to older scans (corrected p < 10 - 15 ) that occurs in male, female, older subject (> 65 years old), and younger subject (< 55 years old) groups. Among all internetwork connections, the average SMT-VIS connectivity is the best predictor of relative scan age. Using the full FC and a training set of 2000 subjects, one is able to predict which scan is older 82.5% of the time using either the full Power264 FC or the UKB-provided ICA-based FC. Conclusions We conclude that SMT-VIS connectivity increases with age in the UKB longitudinal cohort and that resting state FC increases with age in the UKB cross-sectional cohort.
Collapse
Affiliation(s)
- Anton Orlichenko
- Tulane University, Department of Biomedical Engineering, New Orleans, Louisiana, United States
| | - Kuan-Jui Su
- Tulane University, School of Medicine, Center for Biomedical Informatics and Genomics, New Orleans, Louisiana, United States
| | - Hui Shen
- Tulane University, School of Medicine, Center for Biomedical Informatics and Genomics, New Orleans, Louisiana, United States
| | - Hong-Wen Deng
- Tulane University, School of Medicine, Center for Biomedical Informatics and Genomics, New Orleans, Louisiana, United States
| | - Yu-Ping Wang
- Tulane University, Department of Biomedical Engineering, New Orleans, Louisiana, United States
| |
Collapse
|
12
|
Brown JA, Lee AJ, Fernhoff K, Pistone T, Pasquini L, Wise AB, Staffaroni AM, Luisa Mandelli M, Lee SE, Boxer AL, Rankin KP, Rabinovici GD, Luisa Gorno Tempini M, Rosen HJ, Kramer JH, Miller BL, Seeley WW, Alzheimer’s Disease Neuroimaging Initiative (ADNI). Functional network collapse in neurodegenerative disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569654. [PMID: 38106054 PMCID: PMC10723363 DOI: 10.1101/2023.12.01.569654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Cognitive and behavioral deficits in Alzheimer's disease (AD) and frontotemporal dementia (FTD) result from brain atrophy and altered functional connectivity. However, it is unclear how atrophy relates to functional connectivity disruptions across dementia subtypes and stages. We addressed this question using structural and functional MRI from 221 patients with AD (n=82), behavioral variant FTD (n=41), corticobasal syndrome (n=27), nonfluent (n=34) and semantic (n=37) variant primary progressive aphasia, and 100 cognitively normal individuals. Using partial least squares regression, we identified three principal structure-function components. The first component showed overall atrophy correlating with primary cortical hypo-connectivity and subcortical/association cortical hyper-connectivity. Components two and three linked focal syndrome-specific atrophy to peri-lesional hypo-connectivity and distal hyper-connectivity. Structural and functional component scores predicted global and domain-specific cognitive deficits. Anatomically, functional connectivity changes reflected alterations in specific brain activity gradients. Eigenmode analysis identified temporal phase and amplitude collapse as an explanation for atrophy-driven functional connectivity changes.
Collapse
Affiliation(s)
- Jesse A. Brown
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Alex J. Lee
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Kristen Fernhoff
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Taylor Pistone
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Lorenzo Pasquini
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Amy B. Wise
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Adam M. Staffaroni
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Maria Luisa Mandelli
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Suzee E. Lee
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Adam L. Boxer
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Katherine P. Rankin
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Gil D. Rabinovici
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Maria Luisa Gorno Tempini
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Howard J. Rosen
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Joel H. Kramer
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Bruce L. Miller
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | - William W. Seeley
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, San Francisco, CA, USA
| | | |
Collapse
|
13
|
Orlichenko A, Daly G, Zhou Z, Liu A, Shen H, Deng HW, Wang YP. ImageNomer: Description of a functional connectivity and omics analysis tool and case study identifying a race confound. NEUROIMAGE. REPORTS 2023; 3:100191. [PMID: 38125823 PMCID: PMC10732473 DOI: 10.1016/j.ynirp.2023.100191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Most packages for the analysis of fMRI-based functional connectivity (FC) and genomic data are used with a programming language interface, lacking an easy-to-navigate GUI frontend. This exacerbates two problems found in these types of data: demographic confounds and quality control in the face of high dimensionality of features. The reason is that it is too slow and cumbersome to use a programming interface to create all the necessary visualizations required to identify all correlations, confounding effects, or quality control problems in a dataset. FC in particular usually contains tens of thousands of features per subject, and can only be summarized and efficiently explored using visualizations. To remedy this situation, we have developed ImageNomer, a data visualization and analysis tool that allows inspection of both subject-level and cohort-level demographic, genomic, and imaging features. The software is Python-based, runs in a self-contained Docker image, and contains a browser-based GUI frontend. We demonstrate the usefulness of ImageNomer by identifying an unexpected race confound when predicting achievement scores in the Philadelphia Neurodevelopmental Cohort (PNC) dataset, which contains multitask fMRI and single nucleotide polymorphism (SNP) data of healthy adolescents. In the past, many studies have attempted to use FC to identify achievement-related features in fMRI. Using ImageNomer to visualize trends in achievement scores between races, we find a clear potential for confounding effects if race can be predicted using FC. Using correlation analysis in the ImageNomer software, we show that FCs correlated with Wide Range Achievement Test (WRAT) score are in fact more highly correlated with race. Investigating further, we find that whereas both FC and SNP (genomic) features can account for 10-15% of WRAT score variation, this predictive ability disappears when controlling for race. We also use ImageNomer to investigate race-FC correlation in the Bipolar and Schizophrenia Network for Intermediate Phenotypes (BSNIP) dataset. In this work, we demonstrate the advantage of our ImageNomer GUI tool in data exploration and confound detection. Additionally, this work identifies race as a strong confound in FC data and casts doubt on the possibility of finding unbiased achievement-related features in fMRI and SNP data of healthy adolescents.
Collapse
Affiliation(s)
- Anton Orlichenko
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Grant Daly
- College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Ziyu Zhou
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Anqi Liu
- School of Medicine, Tulane University, New Orleans, LA, USA
| | - Hui Shen
- School of Medicine, Tulane University, New Orleans, LA, USA
| | - Hong-Wen Deng
- School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| |
Collapse
|
14
|
Yang Z, Zhao W, Linli Z, Guo S, Feng J. Associations between polygenic risk scores and accelerated brain ageing in smokers. Psychol Med 2023; 53:7785-7794. [PMID: 37555321 PMCID: PMC10755245 DOI: 10.1017/s0033291723001812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Smoking contributes to a variety of neurodegenerative diseases and neurobiological abnormalities, suggesting that smoking is associated with accelerated brain aging. However, the neurobiological mechanisms affected by smoking, and whether they are genetically influenced, remain to be investigated. METHODS Using structural magnetic resonance imaging data from the UK Biobank (n = 33 293), a brain age predictor was trained on non-smoking healthy groups and tested on smokers to obtain the BrainAge Gap (BAG). The cumulative effect of multiple common genetic variants associated with smoking was then calculated to acquire a polygenic risk score (PRS). The relationship between PRS, BAG, total gray matter volume (tGMV), and smoking parameters was explored and further genes included in the PRS were annotated to identify potential molecular mechanisms affected by smoking. RESULTS The BrainAge in smokers was predicted with very high accuracy (r = 0.725, MAE = 4.16). Smokers had a greater BAG (Cohen's d = 0.074, p < 0.0001) and higher PRS (Cohen's d = 0.63, p < 0.0001) than non-smokers. A higher PRS was associated with increased amount of smoking, mediated by BAG and tGMV. Several neurotransmitters and ion channel pathways were enriched in the group of smoking-related genes involved in addiction, brain synaptic plasticity, and some neurological disorders. CONCLUSION By using a simplified single indicator of the entire brain (BAG) in combination with the PRS, this study highlights the greater BAG in smokers and its linkage with genes and smoking behavior, providing insight into the neurobiological underpinnings and potential features of smoking-related aging.
Collapse
Affiliation(s)
- Zeyu Yang
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, P.R.China
- Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, P.R.China
| | - Wei Zhao
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, P.R.China
- Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, P.R.China
| | - Zeqiang Linli
- School of Mathematics and Statistics, Guangdong University of Foreign Studies, Guangzhou, 510006, P.R.China
| | - Shuixia Guo
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, P.R.China
- Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, P.R.China
| | - Jianfeng Feng
- Centre for Computational Systems Biology, Fudan University, Shanghai 200433, P.R.China
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, England
| |
Collapse
|
15
|
Orlichenko A, Su KJ, Tian Q, Shen H, Deng HW, Wang YP. Somatomotor-Visual Resting State Functional Connectivity Increases After Two Years in the UK Biobank Longitudinal Cohort. ARXIV 2023:arXiv:2308.07992v2. [PMID: 37645050 PMCID: PMC10462162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Purpose Functional magnetic resonance imaging (fMRI) and functional connectivity (FC) have been used to follow aging in both children and older adults. Robust changes have been observed in children, where high connectivity among all brain regions changes to a more modular structure with maturation. In this work, we examine changes in FC in older adults after two years of aging in the UK Biobank longitudinal cohort. Approach We process data using the Power264 atlas, then test whether FC changes in the 2,722-subject longitudinal cohort are statistically significant using a Bonferroni-corrected t-test. We also compare the ability of Power264 and UKB-provided, ICA-based FC to determine which of a longitudinal scan pair is older. Results We find a 6.8% average increase in SMT-VIS connectivity from younger to older scan (from ρ = 0.39 to ρ = 0.42) that occurs in male, female, older subject (> 65 years old), and younger subject (< 55 years old) groups. Among all inter-network connections, this average SMT-VIS connectivity is the best predictor of relative scan age, accurately predicting which scan is older 57% of the time. Using the full FC and a training set of 2,000 subjects, one is able to predict which scan is older 82.5% of the time using either the full Power264 FC or the UKB-provided ICA-based FC. Conclusions We conclude that SMT-VIS connectivity increases in the longitudinal cohort, while resting state FC increases generally with age in the cross-sectional cohort. However, we consider the possibility of a change in resting state scanner task between UKB longitudinal data acquisitions.
Collapse
Affiliation(s)
- Anton Orlichenko
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118
| | - Kuan-Jui Su
- Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA 70118
| | - Qing Tian
- Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA 70118
| | - Hui Shen
- Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA 70118
| | - Hong-Wen Deng
- Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA 70118
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118
| |
Collapse
|
16
|
Orlichenko A, Su KJ, Tian Q, Shen H, Deng HW, Wang YP. Somatomotor-Visual Resting State Functional Connectivity Increases After Two Years in the UK Biobank Longitudinal Cohort. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.15.23294133. [PMID: 37645791 PMCID: PMC10462217 DOI: 10.1101/2023.08.15.23294133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Purpose Functional magnetic resonance imaging (fMRI) and functional connectivity (FC) have been used to follow aging in both children and older adults. Robust changes have been observed in children, where high connectivity among all brain regions changes to a more modular structure with maturation. In this work, we examine changes in FC in older adults after two years of aging in the UK Biobank longitudinal cohort. Approach We process data using the Power264 atlas, then test whether FC changes in the 2,722-subject longitudinal cohort are statistically significant using a Bonferroni-corrected t-test. We also compare the ability of Power264 and UKB-provided, ICA-based FC to determine which of a longitudinal scan pair is older. Results We find a 6.8% average increase in SMT-VIS connectivity from younger to older scan (from ρ = 0.39 to ρ = 0.42 ) that occurs in male, female, older subject (> 65 years old), and younger subject (< 55 years old) groups. Among all inter-network connections, this average SMT-VIS connectivity is the best predictor of relative scan age, accurately predicting which scan is older 57% of the time. Using the full FC and a training set of 2,000 subjects, one is able to predict which scan is older 82.5% of the time using either the full Power264 FC or the UKB-provided ICA-based FC. Conclusions We conclude that SMT-VIS connectivity increases in the longitudinal cohort, while resting state FC increases generally with age in the cross-sectional cohort. However, we consider the possibility of a change in resting state scanner task between UKB longitudinal data acquisitions.
Collapse
Affiliation(s)
- Anton Orlichenko
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118
| | - Kuan-Jui Su
- Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA 70118
| | - Qing Tian
- Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA 70118
| | - Hui Shen
- Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA 70118
| | - Hong-Wen Deng
- Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA 70118
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118
| |
Collapse
|
17
|
Orlichenko A, Qu G, Su KJ, Liu A, Shen H, Deng HW, Wang YP. Identifiability in Functional Connectivity May Unintentionally Inflate Prediction Results. ARXIV 2023:arXiv:2308.01451v1. [PMID: 37576121 PMCID: PMC10418521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Functional magnetic resonance (fMRI) is an invaluable tool in studying cognitive processes in vivo. Many recent studies use functional connectivity (FC), partial correlation connectivity (PC), or fMRI-derived brain networks to predict phenotypes with results that sometimes cannot be replicated. At the same time, FC can be used to identify the same subject from different scans with great accuracy. In this paper, we show a method by which one can unknowingly inflate classification results from 61% accuracy to 86% accuracy by treating longitudinal or contemporaneous scans of the same subject as independent data points. Using the UK Biobank dataset, we find one can achieve the same level of variance explained with 50 training subjects by exploiting identifiability as with 10,000 training subjects without double-dipping. We replicate this effect in four different datasets: the UK Biobank (UKB), the Philadelphia Neurodevelopmental Cohort (PNC), the Bipolar and Schizophrenia Network for Intermediate Phenotypes (BSNIP), and an OpenNeuro Fibromyalgia dataset (Fibro). The unintentional improvement ranges between 7% and 25% in the four datasets. Additionally, we find that by using dynamic functional connectivity (dFC), one can apply this method even when one is limited to a single scan per subject. One major problem is that features such as ROIs or connectivities that are reported alongside inflated results may confuse future work. This article hopes to shed light on how even minor pipeline anomalies may lead to unexpectedly superb results.
Collapse
Affiliation(s)
- Anton Orlichenko
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Gang Qu
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Kuan-Jui Su
- School of Medicine, Tulane University, New Orleans, LA, USA
| | - Anqi Liu
- School of Medicine, Tulane University, New Orleans, LA, USA
| | - Hui Shen
- School of Medicine, Tulane University, New Orleans, LA, USA
| | - Hong-Wen Deng
- School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| |
Collapse
|
18
|
McKay NS, Gordon BA, Hornbeck RC, Dincer A, Flores S, Keefe SJ, Joseph-Mathurin N, Jack CR, Koeppe R, Millar PR, Ances BM, Chen CD, Daniels A, Hobbs DA, Jackson K, Koudelis D, Massoumzadeh P, McCullough A, Nickels ML, Rahmani F, Swisher L, Wang Q, Allegri RF, Berman SB, Brickman AM, Brooks WS, Cash DM, Chhatwal JP, Day GS, Farlow MR, la Fougère C, Fox NC, Fulham M, Ghetti B, Graff-Radford N, Ikeuchi T, Klunk W, Lee JH, Levin J, Martins R, Masters CL, McConathy J, Mori H, Noble JM, Reischl G, Rowe C, Salloway S, Sanchez-Valle R, Schofield PR, Shimada H, Shoji M, Su Y, Suzuki K, Vöglein J, Yakushev I, Cruchaga C, Hassenstab J, Karch C, McDade E, Perrin RJ, Xiong C, Morris JC, Bateman RJ, Benzinger TLS. Positron emission tomography and magnetic resonance imaging methods and datasets within the Dominantly Inherited Alzheimer Network (DIAN). Nat Neurosci 2023; 26:1449-1460. [PMID: 37429916 PMCID: PMC10400428 DOI: 10.1038/s41593-023-01359-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/15/2023] [Indexed: 07/12/2023]
Abstract
The Dominantly Inherited Alzheimer Network (DIAN) is an international collaboration studying autosomal dominant Alzheimer disease (ADAD). ADAD arises from mutations occurring in three genes. Offspring from ADAD families have a 50% chance of inheriting their familial mutation, so non-carrier siblings can be recruited for comparisons in case-control studies. The age of onset in ADAD is highly predictable within families, allowing researchers to estimate an individual's point in the disease trajectory. These characteristics allow candidate AD biomarker measurements to be reliably mapped during the preclinical phase. Although ADAD represents a small proportion of AD cases, understanding neuroimaging-based changes that occur during the preclinical period may provide insight into early disease stages of 'sporadic' AD also. Additionally, this study provides rich data for research in healthy aging through inclusion of the non-carrier controls. Here we introduce the neuroimaging dataset collected and describe how this resource can be used by a range of researchers.
Collapse
Affiliation(s)
| | | | | | - Aylin Dincer
- Washington University in St. Louis, St. Louis, MO, USA
| | - Shaney Flores
- Washington University in St. Louis, St. Louis, MO, USA
| | - Sarah J Keefe
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | | | | | - Beau M Ances
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - Diana A Hobbs
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | | | | | | | | | - Laura Swisher
- Washington University in St. Louis, St. Louis, MO, USA
| | - Qing Wang
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - Adam M Brickman
- Columbia University Irving Medical Center, New York, NY, USA
| | - William S Brooks
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - David M Cash
- UK Dementia Research Institute at University College London, London, UK
- University College London, London, UK
| | - Jasmeer P Chhatwal
- Massachusetts General and Brigham & Women's Hospitals, Harvard Medical School, Boston, MA, USA
| | | | | | - Christian la Fougère
- Department of Radiology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Nick C Fox
- UK Dementia Research Institute at University College London, London, UK
- University College London, London, UK
| | - Michael Fulham
- Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | | | | | | | | | | | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Ralph Martins
- Edith Cowan University, Joondalup, Western Australia, Australia
| | | | | | | | - James M Noble
- Columbia University Irving Medical Center, New York, NY, USA
| | - Gerald Reischl
- Department of Radiology, University of Tübingen, Tübingen, Germany
| | | | | | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | - Yi Su
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | | | - Jonathan Vöglein
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Igor Yakushev
- School of Medicine, Technical University of Munich, Munich, Germany
| | | | | | - Celeste Karch
- Washington University in St. Louis, St. Louis, MO, USA
| | - Eric McDade
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - John C Morris
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | |
Collapse
|
19
|
Gao J, Liu J, Xu Y, Peng D, Wang Z. Brain age prediction using the graph neural network based on resting-state functional MRI in Alzheimer's disease. Front Neurosci 2023; 17:1222751. [PMID: 37457008 PMCID: PMC10347411 DOI: 10.3389/fnins.2023.1222751] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is a neurodegenerative disease that significantly impacts the quality of life of patients and their families. Neuroimaging-driven brain age prediction has been proposed as a potential biomarker to detect mental disorders, such as AD, aiding in studying its effects on functional brain networks. Previous studies have shown that individuals with AD display impaired resting-state functional connections. However, most studies on brain age prediction have used structural magnetic resonance imaging (MRI), with limited studies based on resting-state functional MRI (rs-fMRI). Methods In this study, we applied a graph neural network (GNN) model on controls to predict brain ages using rs-fMRI in patients with AD. We compared the performance of the GNN model with traditional machine learning models. Finally, the post hoc model was also used to identify the critical brain regions in AD. Results The experimental results demonstrate that our GNN model can predict brain ages of normal controls using rs-fMRI data from the ADNI database. Moreover the differences between brain ages and chronological ages were more significant in AD patients than in normal controls. Our results also suggest that AD is associated with accelerated brain aging and that the GNN model based on resting-state functional connectivity is an effective tool for predicting brain age. Discussion Our study provides evidence that rs-fMRI is a promising modality for brain age prediction in AD research, and the GNN model proves to be effective in predicting brain age. Furthermore, the effects of the hippocampus, parahippocampal gyrus, and amygdala on brain age prediction are verified.
Collapse
Affiliation(s)
| | | | | | | | - Zhengning Wang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
20
|
Orlichenko A, Qu G, Zhang G, Patel B, Wilson TW, Stephen JM, Calhoun VD, Wang YP. Latent Similarity Identifies Important Functional Connections for Phenotype Prediction. IEEE Trans Biomed Eng 2023; 70:1979-1989. [PMID: 37015625 PMCID: PMC10284019 DOI: 10.1109/tbme.2022.3232964] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Endophenotypes such as brain age and fluid intelligence are important biomarkers of disease status. However, brain imaging studies to identify these biomarkers often encounter limited numbers of subjects but high dimensional imaging features, hindering reproducibility. Therefore, we develop an interpretable, multivariate classification/regression algorithm, called Latent Similarity (LatSim), suitable for small sample size but high feature dimension datasets. METHODS LatSim combines metric learning with a kernel similarity function and softmax aggregation to identify task-related similarities between subjects. Inter-subject similarity is utilized to improve performance on three prediction tasks using multi-paradigm fMRI data. A greedy selection algorithm, made possible by LatSim's computational efficiency, is developed as an interpretability method. RESULTS LatSim achieved significantly higher predictive accuracy at small sample sizes on the Philadelphia Neurodevelopmental Cohort (PNC) dataset. Connections identified by LatSim gave superior discriminative power compared to those identified by other methods. We identified 4 functional brain networks enriched in connections for predicting brain age, sex, and intelligence. CONCLUSION We find that most information for a predictive task comes from only a few (1-5) connections. Additionally, we find that the default mode network is over-represented in the top connections of all predictive tasks. SIGNIFICANCE We propose a novel prediction algorithm for small sample, high feature dimension datasets and use it to identify connections in task fMRI data. Our work can lead to new insights in both algorithm design and neuroscience research.
Collapse
|
21
|
Jirsaraie RJ, Gorelik AJ, Gatavins MM, Engemann DA, Bogdan R, Barch DM, Sotiras A. A systematic review of multimodal brain age studies: Uncovering a divergence between model accuracy and utility. PATTERNS (NEW YORK, N.Y.) 2023; 4:100712. [PMID: 37123443 PMCID: PMC10140612 DOI: 10.1016/j.patter.2023.100712] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Brain aging is a complex, multifaceted process that can be challenging to model in ways that are accurate and clinically useful. One of the most common approaches has been to apply machine learning to neuroimaging data with the goal of predicting age in a data-driven manner. Building on initial brain age studies that were derived solely from T1-weighted scans (i.e., unimodal), recent studies have incorporated features across multiple imaging modalities (i.e., "multimodal"). In this systematic review, we show that unimodal and multimodal models have distinct advantages. Multimodal models are the most accurate and sensitive to differences in chronic brain disorders. In contrast, unimodal models from functional magnetic resonance imaging were most sensitive to differences across a broad array of phenotypes. Altogether, multimodal imaging has provided us valuable insight for improving the accuracy of brain age models, but there is still much untapped potential with regard to achieving widespread clinical utility.
Collapse
Affiliation(s)
- Robert J. Jirsaraie
- Division of Computational and Data Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Aaron J. Gorelik
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Martins M. Gatavins
- Division of Computational and Data Sciences, Washington University in St. Louis, St. Louis, MO, USA
- Undergraduate Neuroscience Program, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Denis A. Engemann
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
- Université Paris-Saclay, Inria, CEA, Palaiseau, France
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Deanna M. Barch
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Aristeidis Sotiras
- Department of Radiology and Institute for Informatics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Corresponding author
| |
Collapse
|
22
|
Petrican R, Fornito A. Adolescent neurodevelopment and psychopathology: The interplay between adversity exposure and genetic risk for accelerated brain ageing. Dev Cogn Neurosci 2023; 60:101229. [PMID: 36947895 PMCID: PMC10041470 DOI: 10.1016/j.dcn.2023.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
In adulthood, stress exposure and genetic risk heighten psychological vulnerability by accelerating neurobiological senescence. To investigate whether molecular and brain network maturation processes play a similar role in adolescence, we analysed genetic, as well as longitudinal task neuroimaging (inhibitory control, incentive processing) and early life adversity (i.e., material deprivation, violence) data from the Adolescent Brain and Cognitive Development study (N = 980, age range: 9-13 years). Genetic risk was estimated separately for Major Depressive Disorder (MDD) and Alzheimer's Disease (AD), two pathologies linked to stress exposure and allegedly sharing a causal connection (MDD-to-AD). Adversity and genetic risk for MDD/AD jointly predicted functional network segregation patterns suggestive of accelerated (GABA-linked) visual/attentional, but delayed (dopamine [D2]/glutamate [GLU5R]-linked) somatomotor/association system development. A positive relationship between brain maturation and psychopathology emerged only among the less vulnerable adolescents, thereby implying that normatively maladaptive neurodevelopmental alterations could foster adjustment among the more exposed and genetically more stress susceptible youths. Transcriptomic analyses suggested that sensitivity to stress may underpin the joint neurodevelopmental effect of adversity and genetic risk for MDD/AD, in line with the proposed role of negative emotionality as a precursor to AD, likely to account for the alleged causal impact of MDD on dementia onset.
Collapse
Affiliation(s)
- Raluca Petrican
- Institute of Population Health, Department of Psychology, University of Liverpool, Bedford Street South, Liverpool L69 7ZA, United Kingdom.
| | - Alex Fornito
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
23
|
Investigating brain aging trajectory deviations in different brain regions of individuals with schizophrenia using multimodal magnetic resonance imaging and brain-age prediction: a multicenter study. Transl Psychiatry 2023; 13:82. [PMID: 36882419 PMCID: PMC9992684 DOI: 10.1038/s41398-023-02379-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
Although many studies on brain-age prediction in patients with schizophrenia have been reported recently, none has predicted brain age based on different neuroimaging modalities and different brain regions in these patients. Here, we constructed brain-age prediction models with multimodal MRI and examined the deviations of aging trajectories in different brain regions of participants with schizophrenia recruited from multiple centers. The data of 230 healthy controls (HCs) were used for model training. Next, we investigated the differences in brain age gaps between participants with schizophrenia and HCs from two independent cohorts. A Gaussian process regression algorithm with fivefold cross-validation was used to train 90, 90, and 48 models for gray matter (GM), functional connectivity (FC), and fractional anisotropy (FA) maps in the training dataset, respectively. The brain age gaps in different brain regions for all participants were calculated, and the differences in brain age gaps between the two groups were examined. Our results showed that most GM regions in participants with schizophrenia in both cohorts exhibited accelerated aging, particularly in the frontal lobe, temporal lobe, and insula. The parts of the white matter tracts, including the cerebrum and cerebellum, indicated deviations in aging trajectories in participants with schizophrenia. However, no accelerated brain aging was noted in the FC maps. The accelerated aging in 22 GM regions and 10 white matter tracts in schizophrenia potentially exacerbates with disease progression. In individuals with schizophrenia, different brain regions demonstrate dynamic deviations of brain aging trajectories. Our findings provided more insights into schizophrenia neuropathology.
Collapse
|
24
|
Goyal MS, Blazey T, Metcalf NV, McAvoy MP, Strain JF, Rahmani M, Durbin TJ, Xiong C, Benzinger TLS, Morris JC, Raichle ME, Vlassenko AG. Brain aerobic glycolysis and resilience in Alzheimer disease. Proc Natl Acad Sci U S A 2023; 120:e2212256120. [PMID: 36745794 PMCID: PMC9963219 DOI: 10.1073/pnas.2212256120] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/04/2023] [Indexed: 02/08/2023] Open
Abstract
The distribution of brain aerobic glycolysis (AG) in normal young adults correlates spatially with amyloid-beta (Aβ) deposition in individuals with symptomatic and preclinical Alzheimer disease (AD). Brain AG decreases with age, but the functional significance of this decrease with regard to the development of AD symptomatology is poorly understood. Using PET measurements of regional blood flow, oxygen consumption, and glucose utilization-from which we derive AG-we find that cognitive impairment is strongly associated with loss of the typical youthful pattern of AG. In contrast, amyloid positivity without cognitive impairment was associated with preservation of youthful brain AG, which was even higher than that seen in cognitively unimpaired, amyloid negative adults. Similar findings were not seen for blood flow nor oxygen consumption. Finally, in cognitively unimpaired adults, white matter hyperintensity burden was found to be specifically associated with decreased youthful brain AG. Our results suggest that AG may have a role in the resilience and/or response to early stages of amyloid pathology and that age-related white matter disease may impair this process.
Collapse
Affiliation(s)
- Manu S. Goyal
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO63110
- Department of Neurology, Washington University School of Medicine, St. Louis, MO63110
- Neuroimaging Labs Research Center, Washington University School of Medicine, St. Louis, MO63110
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO63108
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO63110
| | - Tyler Blazey
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO63110
- Neuroimaging Labs Research Center, Washington University School of Medicine, St. Louis, MO63110
| | - Nicholas V. Metcalf
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO63110
- Neuroimaging Labs Research Center, Washington University School of Medicine, St. Louis, MO63110
| | - Mark P. McAvoy
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO63110
- Neuroimaging Labs Research Center, Washington University School of Medicine, St. Louis, MO63110
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO63108
| | - Jeremy F. Strain
- Department of Neurology, Washington University School of Medicine, St. Louis, MO63110
- Neuroimaging Labs Research Center, Washington University School of Medicine, St. Louis, MO63110
| | - Maryam Rahmani
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO63110
- Neuroimaging Labs Research Center, Washington University School of Medicine, St. Louis, MO63110
| | - Tony J. Durbin
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO63110
- Neuroimaging Labs Research Center, Washington University School of Medicine, St. Louis, MO63110
| | - Chengjie Xiong
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO63108
| | - Tammie L.-S. Benzinger
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO63110
- Neuroimaging Labs Research Center, Washington University School of Medicine, St. Louis, MO63110
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO63108
| | - John C. Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO63110
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO63108
| | - Marcus E. Raichle
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO63110
- Department of Neurology, Washington University School of Medicine, St. Louis, MO63110
- Neuroimaging Labs Research Center, Washington University School of Medicine, St. Louis, MO63110
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO63108
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO63110
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO63130
- Department of Psychology & Brain Science, Washington University School of Medicine, St. Louis, MO63130
| | - Andrei G. Vlassenko
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO63110
- Neuroimaging Labs Research Center, Washington University School of Medicine, St. Louis, MO63110
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO63108
| |
Collapse
|
25
|
Millar PR, Gordon BA, Luckett PH, Benzinger TLS, Cruchaga C, Fagan AM, Hassenstab JJ, Perrin RJ, Schindler SE, Allegri RF, Day GS, Farlow MR, Mori H, Nübling G, Bateman RJ, Morris JC, Ances BM. Multimodal brain age estimates relate to Alzheimer disease biomarkers and cognition in early stages: a cross-sectional observational study. eLife 2023; 12:e81869. [PMID: 36607335 PMCID: PMC9988262 DOI: 10.7554/elife.81869] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023] Open
Abstract
Background Estimates of 'brain-predicted age' quantify apparent brain age compared to normative trajectories of neuroimaging features. The brain age gap (BAG) between predicted and chronological age is elevated in symptomatic Alzheimer disease (AD) but has not been well explored in presymptomatic AD. Prior studies have typically modeled BAG with structural MRI, but more recently other modalities, including functional connectivity (FC) and multimodal MRI, have been explored. Methods We trained three models to predict age from FC, structural (S), or multimodal MRI (S+FC) in 390 amyloid-negative cognitively normal (CN/A-) participants (18-89 years old). In independent samples of 144 CN/A-, 154 CN/A+, and 154 cognitively impaired (CI; CDR > 0) participants, we tested relationships between BAG and AD biomarkers of amyloid and tau, as well as a global cognitive composite. Results All models predicted age in the control training set, with the multimodal model outperforming the unimodal models. All three BAG estimates were significantly elevated in CI compared to controls. FC-BAG was significantly reduced in CN/A+ participants compared to CN/A-. In CI participants only, elevated S-BAG and S+FC BAG were associated with more advanced AD pathology and lower cognitive performance. Conclusions Both FC-BAG and S-BAG are elevated in CI participants. However, FC and structural MRI also capture complementary signals. Specifically, FC-BAG may capture a unique biphasic response to presymptomatic AD pathology, while S-BAG may capture pathological progression and cognitive decline in the symptomatic stage. A multimodal age-prediction model improves sensitivity to healthy age differences. Funding This work was supported by the National Institutes of Health (P01-AG026276, P01- AG03991, P30-AG066444, 5-R01-AG052550, 5-R01-AG057680, 1-R01-AG067505, 1S10RR022984-01A1, and U19-AG032438), the BrightFocus Foundation (A2022014F), and the Alzheimer's Association (SG-20-690363-DIAN).
Collapse
Affiliation(s)
- Peter R Millar
- Department of Neurology, Washington University in St. LouisSt LouisUnited States
| | - Brian A Gordon
- Department of Radiology, Washington University in St. LouisSt LouisUnited States
| | - Patrick H Luckett
- Department of Neurosurgery, Washington University in St. LouisSt LouisUnited States
| | - Tammie LS Benzinger
- Department of Radiology, Washington University in St. LouisSt LouisUnited States
- Department of Neurosurgery, Washington University in St. LouisSt LouisUnited States
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St. LouisSt LouisUnited States
| | - Anne M Fagan
- Department of Neurology, Washington University in St. LouisSt LouisUnited States
| | - Jason J Hassenstab
- Department of Neurology, Washington University in St. LouisSt LouisUnited States
| | - Richard J Perrin
- Department of Neurology, Washington University in St. LouisSt LouisUnited States
- Department of Pathology and Immunology, Washington University in St. LouisSt LouisUnited States
| | - Suzanne E Schindler
- Department of Neurology, Washington University in St. LouisSt LouisUnited States
| | - Ricardo F Allegri
- Department of Cognitive Neurology, Institute for Neurological Research (FLENI)Buenos AiresArgentina
| | - Gregory S Day
- Department of Neurology, Mayo Clinic FloridaJacksonvilleUnited States
| | - Martin R Farlow
- Department of Neurology, Indiana University School of MedicineIndianapolisUnited States
| | - Hiroshi Mori
- Department of Clinical Neuroscience, Osaka Metropolitan University Medical School, Nagaoka Sutoku UniversityOsakaJapan
| | - Georg Nübling
- Department of Neurology, Ludwig-Maximilians UniversityMunichGermany
- German Center for Neurodegenerative DiseasesMunichGermany
| | - Randall J Bateman
- Department of Neurology, Washington University in St. LouisSt LouisUnited States
| | - John C Morris
- Department of Neurology, Washington University in St. LouisSt LouisUnited States
| | - Beau M Ances
- Department of Neurology, Washington University in St. LouisSt LouisUnited States
- Department of Radiology, Washington University in St. LouisSt LouisUnited States
| |
Collapse
|
26
|
Zhu JD, Tsai SJ, Lin CP, Lee YJ, Yang AC. Predicting aging trajectories of decline in brain volume, cortical thickness and fractional anisotropy in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:1. [PMID: 36596800 PMCID: PMC9810255 DOI: 10.1038/s41537-022-00325-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023]
Abstract
Brain-age prediction is a novel approach to assessing deviated brain aging trajectories in different diseases. However, most studies have used an average brain age gap (BAG) of individuals with schizophrenia of different illness durations for comparison with healthy participants. Therefore, this study investigated whether declined brain structures as reflected by BAGs may be present in schizophrenia in terms of brain volume, cortical thickness, and fractional anisotropy across different illness durations. We used brain volume, cortical thickness, and fractional anisotropy as features to train three models from the training dataset. Three models were applied to predict brain ages in the hold-out test and schizophrenia datasets and calculate BAGs. We divided the schizophrenia dataset into multiple groups based on the illness duration using a sliding time window approach for ANCOVA analysis. The brain volume and cortical thickness models revealed that, in comparison with healthy controls, individuals with schizophrenia had larger BAGs across different illness durations, whereas the BAG in terms of fractional anisotropy did not differ from that of healthy controls after disease onset. Moreover, the BAG at the initial stage of schizophrenia was the largest in the cortical thickness model. In contrast, the BAG from approximately two decades after disease onset was the largest in the brain volume model. Our findings suggest that schizophrenia differentially affects the decline of different brain structures during the disease course. Moreover, different trends of decline in thickness and volume-based measures suggest a differential decline in dimensions of brain structure throughout the course of schizophrenia.
Collapse
Grants
- This work was supported by grants from the National Science and Technology Council, Taiwan (grant number 110-2321-B-A49A-502 and 110-2628-B-A49A-509, and 110-2634-F-075-001 to Albert C. Yang). Dr. Albert C. Yang was also supported by the Mt. Jade Young Scholarship Award from the Ministry of Education, Taiwan, as well as Brain Research Center, National Yang Ming Chiao Tung University, and the Ministry of Education (Aim for the Top University Plan), Taipei, Taiwan.
- Mr. J. D. Zhu was supported by the scholarship (108-2926-I-010-001-MY4) from the National Science and Technology Council, Taiwan.
- This work was supported by grants from the National Science and Technology Council, Taiwan (grant number 110-2321-B-A49A-502 and 110-2628-B-A49A-509, and 110-2634-F-075-001 to S. J. Tsai).
Collapse
Affiliation(s)
- Jun-Ding Zhu
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ju Lee
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Albert C Yang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Digital Medicine and Smart Healthcare Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
27
|
Wisch JK, Babulal GM, Petersen K, Millar PR, Shacham E, Scroggins S, Boerwinkle AH, Flores S, Keefe S, Gordon BA, Morris JC, Ances BM. A practitioner's guide to geospatial analysis in a neuroimaging context. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12413. [PMID: 36935765 PMCID: PMC10019584 DOI: 10.1002/dad2.12413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 03/18/2023]
Abstract
Introduction Health disparities arise from biological-environmental interactions. Neuroimaging cohorts are reaching sufficiently large sample sizes such that analyses could evaluate how the environment affects the brain. We present a practical guide for applying geospatial methods to a neuroimaging cohort. Methods We estimated brain age gap (BAG) from structural magnetic resonance imaging (MRI) from 239 city-dwelling participants in St. Louis, Missouri. We compared these participants to population-level estimates from the American Community Survey (ACS). We used geospatial analysis to identify neighborhoods associated with patterns of altered brain structure. We also evaluated the relationship between Area Deprivation Index (ADI) and BAG. Results We identify areas in St. Louis, Missouri that were significantly associated with higher BAG from a spatially representative cohort. We provide replication code. Conclusion We observe a relationship between neighborhoods and brain health, which suggests that neighborhood-based interventions could be appropriate. We encourage other studies to geocode participant information to evaluate biological-environmental interaction.
Collapse
Affiliation(s)
- Julie K. Wisch
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Ganesh M Babulal
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
- Department of Clinical Research and LeadershipThe George Washington University School of Medicine and Health SciencesWashington, DCUSA
- Department of PsychologyFaculty of HumanitiesUniversity of JohannesburgJohannesburgSouth Africa
| | - Kalen Petersen
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Peter R. Millar
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Enbal Shacham
- Taylor Geospatial InstituteCollege for Public Health and Social Justice, Saint Louis UniversitySt. LouisMissouriUSA
| | - Stephen Scroggins
- Taylor Geospatial InstituteCollege for Public Health and Social Justice, Saint Louis UniversitySt. LouisMissouriUSA
| | - Anna H. Boerwinkle
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Shaney Flores
- Department of RadiologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Sarah Keefe
- Department of RadiologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Brian A. Gordon
- Department of RadiologyWashington University in St. LouisSt. LouisMissouriUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt LouisMissouriUSA
- Center for Clinical StudiesWashington University in St. LouisSt. LouisMissouriUSA
| | - John C. Morris
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt LouisMissouriUSA
| | - Beau M. Ances
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
- Department of RadiologyWashington University in St. LouisSt. LouisMissouriUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt LouisMissouriUSA
- Center for Clinical StudiesWashington University in St. LouisSt. LouisMissouriUSA
| |
Collapse
|
28
|
Sone D, Beheshti I. Neuroimaging-Based Brain Age Estimation: A Promising Personalized Biomarker in Neuropsychiatry. J Pers Med 2022; 12:jpm12111850. [PMID: 36579560 PMCID: PMC9695293 DOI: 10.3390/jpm12111850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 11/10/2022] Open
Abstract
It is now possible to estimate an individual's brain age via brain scans and machine-learning models. This validated technique has opened up new avenues for addressing clinical questions in neurology, and, in this review, we summarize the many clinical applications of brain-age estimation in neuropsychiatry and general populations. We first provide an introduction to typical neuroimaging modalities, feature extraction methods, and machine-learning models that have been used to develop a brain-age estimation framework. We then focus on the significant findings of the brain-age estimation technique in the field of neuropsychiatry as well as the usefulness of the technique for addressing clinical questions in neuropsychiatry. These applications may contribute to more timely and targeted neuropsychiatric therapies. Last, we discuss the practical problems and challenges described in the literature and suggest some future research directions.
Collapse
Affiliation(s)
- Daichi Sone
- Department of Psychiatry, Jikei University School of Medicine, Tokyo 105-8461, Japan
- Correspondence: ; Tel.: +81-03-3433
| | - Iman Beheshti
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
29
|
Liang WS, Goetz LH, Schork NJ. Assessing brain and biological aging trajectories associated with Alzheimer's disease. Front Neurosci 2022; 16:1036102. [PMID: 36389222 PMCID: PMC9650396 DOI: 10.3389/fnins.2022.1036102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022] Open
Abstract
The development of effective treatments to prevent and slow Alzheimer's disease (AD) pathogenesis is needed in order to tackle the steady increase in the global prevalence of AD. This challenge is complicated by the need to identify key health shifts that precede the onset of AD and cognitive decline as these represent windows of opportunity for intervening and preventing disease. Such shifts may be captured through the measurement of biomarkers that reflect the health of the individual, in particular those that reflect brain age and biological age. Brain age biomarkers provide a composite view of the health of the brain based on neuroanatomical analyses, while biological age biomarkers, which encompass the epigenetic clock, provide a measurement of the overall health state of an individual based on DNA methylation analysis. Acceleration of brain and biological ages is associated with changes in cognitive function, as well as neuropathological markers of AD. In this mini-review, we discuss brain age and biological age research in the context of cognitive decline and AD. While more research is needed, studies show that brain and biological aging trajectories are variable across individuals and that such trajectories are non-linear at older ages. Longitudinal monitoring of these biomarkers may be valuable for enabling earlier identification of divergent pathological trajectories toward AD and providing insight into points for intervention.
Collapse
Affiliation(s)
- Winnie S. Liang
- NetBio, Inc., Los Angeles, CA, United States
- Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Laura H. Goetz
- NetBio, Inc., Los Angeles, CA, United States
- Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Nicholas J. Schork
- NetBio, Inc., Los Angeles, CA, United States
- Translational Genomics Research Institute, Phoenix, AZ, United States
| |
Collapse
|
30
|
Accelerated functional brain aging in major depressive disorder: evidence from a large scale fMRI analysis of Chinese participants. Transl Psychiatry 2022; 12:397. [PMID: 36130921 PMCID: PMC9492670 DOI: 10.1038/s41398-022-02162-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/12/2022] Open
Abstract
Major depressive disorder (MDD) is one of the most common mental health conditions that has been intensively investigated for its association with brain atrophy and mortality. Recent studies suggest that the deviation between the predicted and the chronological age can be a marker of accelerated brain aging to characterize MDD. However, current conclusions are usually drawn based on structural MRI information collected from Caucasian participants. The universality of this biomarker needs to be further validated by subjects with different ethnic/racial backgrounds and by different types of data. Here we make use of the REST-meta-MDD, a large scale resting-state fMRI dataset collected from multiple cohort participants in China. We develop a stacking machine learning model based on 1101 healthy controls, which estimates a subject's chronological age from fMRI with promising accuracy. The trained model is then applied to 1276 MDD patients from 24 sites. We observe that MDD patients exhibit a +4.43 years (p < 0.0001, Cohen's d = 0.31, 95% CI: 2.23-3.88) higher brain-predicted age difference (brain-PAD) compared to controls. In the MDD subgroup, we observe a statistically significant +2.09 years (p < 0.05, Cohen's d = 0.134525) brain-PAD in antidepressant users compared to medication-free patients. The statistical relationship observed is further checked by three different machine learning algorithms. The positive brain-PAD observed in participants in China confirms the presence of accelerated brain aging in MDD patients. The utilization of functional brain connectivity for age estimation verifies existing findings from a new dimension.
Collapse
|