1
|
Yang PF, Reed J, Yang Z, Wang F, Zheng N, Gore JC, Chen LM. Multimodal Correspondence between Optogenetic fMRI, Electrophysiology, and Anatomical Maps of the Secondary Somatosensory Cortex in Nonhuman Primates. J Neurosci 2025; 45:e2375242025. [PMID: 40204434 PMCID: PMC12096144 DOI: 10.1523/jneurosci.2375-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/26/2025] [Accepted: 03/16/2025] [Indexed: 04/11/2025] Open
Abstract
Optogenetic neuromodulation combined with functional MRI (opto-fMRI) enables noninvasive monitoring of brain-wide activity and probes causal connections. In this study, we focused on the secondary somatosensory (S2) cortex, a hub for integrating tactile and nociceptive information. By selectively stimulating excitatory neurons in the S2 cortex of monkeys using optogenetics, we observed widespread opto-fMRI activity in regions beyond the somatosensory system, as well as a strong spatial correspondence between opto-fMRI activity map and anatomical connections of the S2 cortex. Locally, optogenetically evoked fMRI BOLD signals from putative excitatory neurons exhibited standard hemodynamic response function. At low laser power, graded opto-fMRI signal changes are closely correlated with increases in local field potential (LFP) signals, but not with spiking activity. This indicates that LFP changes in excitatory neurons more accurately reflect the opto-fMRI signals than spikes. In summary, our optogenetic fMRI and anatomical findings provide causal functional and anatomical evidence supporting the role of the S2 cortex as a critical hub connecting sensory regions to higher-order cortical and subcortical regions involved in cognition and emotion. The electrophysiological basis of the opto-fMRI signals uncovered in this study offers novel insights into interpreting opto-fMRI results. Nonhuman primates are an invaluable intermediate model for translating optogenetic preclinical findings to humans.
Collapse
Affiliation(s)
- Pai-Feng Yang
- Vanderbilt University Li Min, Vanderbilt University, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Jamie Reed
- Vanderbilt University Li Min, Vanderbilt University, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Zhangyan Yang
- Vanderbilt University Li Min, Vanderbilt University, Nashville, Tennessee 37232
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232
| | - Feng Wang
- Vanderbilt University Li Min, Vanderbilt University, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Ning Zheng
- Vanderbilt University Li Min, Vanderbilt University, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - John C Gore
- Vanderbilt University Li Min, Vanderbilt University, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232
| | - Li Min Chen
- Vanderbilt University Li Min, Vanderbilt University, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
2
|
Mishra A, Yang PF, Manuel TJ, Newton AT, Phipps MA, Luo H, Sigona MK, Dockum AQ, Reed JL, Gore JC, Grissom WA, Caskey CF, Chen LM. Modulating nociception networks: the impact of low-intensity focused ultrasound on thalamocortical connectivity. Brain Commun 2025; 7:fcaf062. [PMID: 40040842 PMCID: PMC11878384 DOI: 10.1093/braincomms/fcaf062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 01/08/2025] [Accepted: 02/06/2025] [Indexed: 03/06/2025] Open
Abstract
Pain engages multiple brain networks, with the thalamus serving as a critical subcortical hub. This study aims to explore the effects of low-intensity transcranial focused ultrasound-induced suppression on the organization of thalamocortical nociceptive networks. We employed MR-guided focused ultrasound, a potential non-invasive therapy, with real-time ultrasound beam localization feedback and fMRI monitoring. We first functionally identified the focused ultrasound target at the thalamic ventroposterior lateral nucleus by mapping the whole-brain blood oxygenation level-dependent responses to nociceptive heat stimulation of the hand using fMRI in each individual macaque monkey under light anaesthesia. The blood oxygenation level-dependent fMRI signals from the heat-responsive thalamic ventroposterior lateral nucleus were analysed to derive thalamocortical effective functional connectivity network using the psychophysical interaction method. Nineteen cortical regions across sensorimotor, cognitive, associative and limbic networks exhibited strong effective functional connectivity to the thalamic ventroposterior lateral during heat nociceptive processing. Focused ultrasound-induced suppression of heat activity in the thalamic ventroposterior lateral nucleus altered nociceptive responses in most of the 19 regions. Data-driven hierarchical clustering analyses of blood oxygenation level-dependent time courses across all thalamocortical region-of-interest pairs identified two effective functional connectivity subnetworks. The concurrent suppression of thalamic heat response with focused ultrasound reorganized these subnetworks and modified thalamocortical connection strength. Our findings suggest that the thalamic ventroposterior lateral nucleus has extensive and causal connections to a wide array of cortical areas during nociceptive processing. The combination of MR-guided focused ultrasound with fMRI enables precise dissection and modulation of nociceptive networks in the brain, a capability that no other device-based neuromodulation methods have achieved. This presents a promising non-invasive tool for modulating pain networks with profound clinical relevance. The robust modulation of nociceptive effective functional connectivity networks by focused ultrasound strongly supports the thalamic ventroposterior lateral as a viable target for pain management strategies.
Collapse
Affiliation(s)
- Arabinda Mishra
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pai-Feng Yang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas J Manuel
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Allen T Newton
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Anthony Phipps
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Huiwen Luo
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Michelle K Sigona
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Allison Q Dockum
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jamie L Reed
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - William A Grissom
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Charles F Caskey
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
3
|
Zhang C, Tong F, Zhou B, He M, Liu S, Zhou X, Ma Q, Feng T, Du WJ, Yang H, Xu H, Xiao L, Xu ZZ, Zhu C, Wu R, Wang YQ, Han Q. TMC6 functions as a GPCR-like receptor to sense noxious heat via Gαq signaling. Cell Discov 2024; 10:66. [PMID: 38886367 PMCID: PMC11183229 DOI: 10.1038/s41421-024-00678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/08/2024] [Indexed: 06/20/2024] Open
Abstract
Thermosensation is vital for the survival, propagation, and adaption of all organisms, but its mechanism is not fully understood yet. Here, we find that TMC6, a membrane protein of unknown function, is highly expressed in dorsal root ganglion (DRG) neurons and functions as a Gαq-coupled G protein-coupled receptor (GPCR)-like receptor to sense noxious heat. TMC6-deficient mice display a substantial impairment in noxious heat sensation while maintaining normal perception of cold, warmth, touch, and mechanical pain. Further studies show that TMC6 interacts with Gαq via its intracellular C-terminal region spanning Ser780 to Pro810. Specifically disrupting such interaction using polypeptide in DRG neurons, genetically ablating Gαq, or pharmacologically blocking Gαq-coupled GPCR signaling can replicate the phenotype of TMC6 deficient mice regarding noxious heat sensation. Noxious heat stimulation triggers intracellular calcium release from the endoplasmic reticulum (ER) of TMC6- but not control vector-transfected HEK293T cell, which can be significantly inhibited by blocking PLC or IP3R. Consistently, noxious heat-induced intracellular Ca2+ release from ER and action potentials of DRG neurons largely reduced when ablating TMC6 or blocking Gαq/PLC/IP3R signaling pathway as well. In summary, our findings indicate that TMC6 can directly function as a Gαq-coupled GPCR-like receptor sensing noxious heat.
Collapse
Affiliation(s)
- Chen Zhang
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Fang Tong
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Bin Zhou
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Mingdong He
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Shuai Liu
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Xiaomeng Zhou
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Qiang Ma
- School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tianyu Feng
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Wan-Jie Du
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Huan Yang
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Hao Xu
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Lei Xiao
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Zhen-Zhong Xu
- School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng Zhu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Ruiqi Wu
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China.
| | - Yan-Qing Wang
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China.
| | - Qingjian Han
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Guo F, Lin SD, Du Y, Hu TT, Wang Y, Chen Z, Zhang SH. Secondary somatosensory cortex glutamatergic innervation of the thalamus facilitates pain. Pain 2024; 165:1142-1153. [PMID: 38112733 DOI: 10.1097/j.pain.0000000000003117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/27/2023] [Indexed: 12/21/2023]
Abstract
ABSTRACT Although the secondary somatosensory cortex (SII) is known to be involved in pain perception, its role in pain modulation and neuropathic pain is yet unknown. In this study, we found that glutamatergic neurons in deep layers of the SII (SII Glu ) responded to bilateral sensory inputs by changing their firing with most being inhibited by contralateral noxious stimulation. Optical inhibition and activation of unilateral SII Glu reduced and enhanced bilateral nociceptive sensitivity, respectively, without affecting mood status. Tracing experiments revealed that SII Glu sent dense monosynaptic projections to the posterolateral nucleus (VPL) and the posterior nucleus (Po) of the thalamus. Optical inhibition and activation of projection terminals of SII Glu in the unilateral VPL and Po inhibited and facilitated pain on the contralateral side, respectively. After partial sciatic nerve ligation, SII Glu became hyperactive as evidenced by higher frequency of spontaneous firing, but the response patterns to peripheral stimulation remained. Optical inhibition of SII Glu alleviated not only bilateral mechanical allodynia and thermal hyperalgesia but also the negative affect associated with spontaneous pain. Inhibition of SII Glu terminals in the VPL and Po also relieved neuropathic pain. This study revealed that SII Glu and the circuits to the VPL and Po constitute a part of the endogenous pain modulatory network. These corticothalamic circuits became hyperactive after peripheral nerve injury, hence contributes to neuropathic pain. These results justify proper inhibition of SII Glu and associated neural circuits as a potential clinical strategy for neuropathic pain treatment.
Collapse
Affiliation(s)
- Fang Guo
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shi-Da Lin
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Du
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ting-Ting Hu
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shi-Hong Zhang
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Zhu H, Tao Y, Wang S, Zhu X, Lin K, Zheng N, Chen LM, Xu F, Wu R. fMRI, LFP, and anatomical evidence for hierarchical nociceptive routing pathway between somatosensory and insular cortices. Neuroimage 2024; 289:120549. [PMID: 38382864 DOI: 10.1016/j.neuroimage.2024.120549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 02/23/2024] Open
Abstract
The directional organization of multiple nociceptive regions, particularly within obscure operculoinsular areas, underlying multidimensional pain processing remains elusive. This study aims to establish the fundamental organization between somatosensory and insular cortices in routing nociceptive information. By employing an integrated multimodal approach of high-field fMRI, intracranial electrophysiology, and transsynaptic viral tracing in rats, we observed a hierarchically organized connection of S1/S2 → posterior insula → anterior insula in routing nociceptive information. The directional nociceptive pathway determined by early fMRI responses was consistent with that examined by early evoked LFP, intrinsic effective connectivity, and anatomical projection, suggesting fMRI could provide a valuable facility to discern directional neural circuits in animals and humans non-invasively. Moreover, our knowledge of the nociceptive hierarchical organization of somatosensory and insular cortices and the interface role of the posterior insula may have implications for the development of targeted pain therapies.
Collapse
Affiliation(s)
- Hongyan Zhu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yan Tao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Siqi Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xutao Zhu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kunzhang Lin
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ning Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science and Department of Psychology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Fuqiang Xu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Ruiqi Wu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 200031, China.
| |
Collapse
|
6
|
Mishra A, Yang PF, Manuel TJ, Newton AT, Phipps MA, Luo H, Sigona MK, Reed JL, Gore JC, Grissom WA, Caskey CF, Chen LM. Disrupting nociceptive information processing flow through transcranial focused ultrasound neuromodulation of thalamic nuclei. Brain Stimul 2023; 16:1430-1444. [PMID: 37741439 PMCID: PMC10702144 DOI: 10.1016/j.brs.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/25/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND MRI-guided transcranial focused ultrasound (MRgFUS) as a next-generation neuromodulation tool can precisely target and stimulate deep brain regions with high spatial selectivity. Combined with MR-ARFI (acoustic radiation force imaging) and using fMRI BOLD signal as functional readouts, our previous studies have shown that low-intensity FUS can excite or suppress neural activity in the somatosensory cortex. OBJECTIVE To investigate whether low-intensity FUS can suppress nociceptive heat stimulation-induced responses in thalamic nuclei during hand stimulation, and to determine how this suppression influences the information processing flow within nociception networks. FINDINGS BOLD fMRI activations evoked by 47.5 °C heat stimulation of hand were detected in 24 cortical regions, which belong to sensory, affective, and cognitive nociceptive networks. Concurrent delivery of low-intensity FUS pulses (650 kHz, 550 kPa) to the predefined heat nociceptive stimulus-responsive thalamic centromedial_parafascicular (CM_para), mediodorsal (MD), ventral_lateral (VL_ and ventral_lateral_posteroventral (VLpv) nuclei suppressed their heat responses. Off-target cortical areas exhibited reduced, enhanced, or no significant fMRI signal changes, depending on the specific areas. Differentiable thalamocortical information flow during the processing of nociceptive heat input was observed, as indicated by the time to reach 10% or 30% of the heat-evoked BOLD signal peak. Suppression of thalamic heat responses significantly altered nociceptive processing flow and direction between the thalamus and cortical areas. Modulation of contralateral versus ipsilateral areas by unilateral thalamic activity differed. Signals detected in high-order cortical areas, such as dorsal frontal (DFC) and ventrolateral prefrontal (vlPFC) cortices, exhibited faster response latencies than sensory areas. CONCLUSIONS The concurrent delivery of FUS suppressed nociceptive heat response in thalamic nuclei and disrupted the nociceptive network. This study offers new insights into the causal functional connections within the thalamocortical networks and demonstrates the modulatory effects of low-intensity FUS on nociceptive information processing.
Collapse
Affiliation(s)
- Arabinda Mishra
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pai-Feng Yang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas J Manuel
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Allen T Newton
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Anthony Phipps
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | - Huiwen Luo
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | - Michelle K Sigona
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | - Jamie L Reed
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - William A Grissom
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Charles F Caskey
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
7
|
Hartig R, Karimi A, Evrard HC. Interconnected sub-networks of the macaque monkey gustatory connectome. Front Neurosci 2022; 16:818800. [PMID: 36874640 PMCID: PMC9978403 DOI: 10.3389/fnins.2022.818800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 08/24/2022] [Indexed: 02/18/2023] Open
Abstract
Macroscopic taste processing connectivity was investigated using functional magnetic resonance imaging during the presentation of sour, salty, and sweet tastants in anesthetized macaque monkeys. This examination of taste processing affords the opportunity to study the interactions between sensory regions, central integrators, and effector areas. Here, 58 brain regions associated with gustatory processing in primates were aggregated, collectively forming the gustatory connectome. Regional regression coefficients (or β-series) obtained during taste stimulation were correlated to infer functional connectivity. This connectivity was then evaluated by assessing its laterality, modularity and centrality. Our results indicate significant correlations between same region pairs across hemispheres in a bilaterally interconnected scheme for taste processing throughout the gustatory connectome. Using unbiased community detection, three bilateral sub-networks were detected within the graph of the connectome. This analysis revealed clustering of 16 medial cortical structures, 24 lateral structures, and 18 subcortical structures. Across the three sub-networks, a similar pattern was observed in the differential processing of taste qualities. In all cases, the amplitude of the response was greatest for sweet, but the network connectivity was strongest for sour and salty tastants. The importance of each region in taste processing was computed using node centrality measures within the connectome graph, showing centrality to be correlated across hemispheres and, to a smaller extent, region volume. Connectome hubs exhibited varying degrees of centrality with a prominent leftward increase in insular cortex centrality. Taken together, these criteria illustrate quantifiable characteristics of the macaque monkey gustatory connectome and its organization as a tri-modular network, which may reflect the general medial-lateral-subcortical organization of salience and interoception processing networks.
Collapse
Affiliation(s)
- Renée Hartig
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Functional and Comparative Neuroanatomy Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karl University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany.,Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Ali Karimi
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Henry C Evrard
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Functional and Comparative Neuroanatomy Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karl University of Tübingen, Tübingen, Germany.,Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States.,International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|