1
|
Guo S, Levy O, Dvir H, Kang R, Li D, Havlin S, Axelrod V. Time Persistence of the FMRI Resting-State Functional Brain Networks. J Neurosci 2025; 45:e1570242025. [PMID: 39880677 PMCID: PMC11925003 DOI: 10.1523/jneurosci.1570-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/27/2024] [Accepted: 01/22/2025] [Indexed: 01/31/2025] Open
Abstract
Time persistence is a fundamental property of many complex physical and biological systems; thus understanding the phenomenon in the brain is of high importance. Time persistence has been explored at the level of stand-alone neural time-series, but since the brain functions as an interconnected network, it is essential to examine time persistence at the network level. Changes in resting-state networks have been previously investigated using both dynamic (i.e., examining connectivity states) and static functional connectivity (i.e., test-retest reliability), but no systematic investigation of the time persistence as a network was conducted, particularly across different timescales (i.e., seconds, minutes, dozens of seconds, days) and different brain subnetworks. Additionally, individual differences in network time persistence have not been explored. Here, we devised a new framework to estimate network time persistence at both the link (i.e., connection) and node levels. In a comprehensive series analysis of three functional MRI resting-state datasets including both sexes, we established that (1) the resting-state functional brain network becomes gradually less similar to itself for the gaps up to 23 min within the run and even less similar for the gap between the days; (2) network time persistence varies across functional networks, while the sensory networks are more persistent than nonsensory networks; (3) participants show stable individual characteristic persistence, which has a genetic component; and (4) individual characteristic persistence could be linked to behavioral performance. Overall, our detailed characterization of network time persistence sheds light on the potential role of time persistence in brain functioning and cognition.
Collapse
Affiliation(s)
- Shu Guo
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- Department of Physics, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Orr Levy
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520-8011
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Hila Dvir
- Department of Physics, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Rui Kang
- School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China
- Yunnan Innovation Institute, Beihang University, Kunming 650233, China
| | - Daqing Li
- School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China
- College of Safety Science and Engineering, Civil Aviation University of China, Tianjin 300300, China
| | - Shlomo Havlin
- Department of Physics, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Vadim Axelrod
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
2
|
Jun S, Altmann A, Sadaghiani S. Modulatory Neurotransmitter Genotypes Shape Dynamic Functional Connectome Reconfigurations. J Neurosci 2025; 45:e1939242025. [PMID: 39843237 PMCID: PMC11884390 DOI: 10.1523/jneurosci.1939-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/04/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025] Open
Abstract
Dynamic reconfigurations of the functional connectome across different connectivity states are highly heritable, predictive of cognitive abilities, and linked to mental health. Despite their established heritability, the specific polymorphisms that shape connectome dynamics are largely unknown. Given the widespread regulatory impact of modulatory neurotransmitters on functional connectivity, we comprehensively investigated a large set of single nucleotide polymorphisms (SNPs) of their receptors, metabolic enzymes, and transporters in 674 healthy adult subjects (347 females) from the Human Connectome Project. Preregistered modulatory neurotransmitter SNPs and dynamic connectome features entered a Stability Selection procedure with resampling. We found that specific subsets of these SNPs explain individual differences in temporal phenotypes of fMRI-derived connectome dynamics for which we previously established heritability. Specifically, noradrenergic polymorphisms explained Fractional Occupancy, i.e., the proportion of time spent in each connectome state, and cholinergic polymorphisms explained Transition Probability, i.e., the probability to transition between state pairs, respectively. This work identifies specific genetic effects on connectome dynamics via the regulatory impact of modulatory neurotransmitter systems. Our observations highlight the potential of dynamic connectome features as endophenotypes for neurotransmitter-focused precision psychiatry.
Collapse
Affiliation(s)
- Suhnyoung Jun
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Psychology Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Andre Altmann
- Department of Medical Physics, Centre for Medical Image Computing (CMIC), University College London, London WC1V 6LJ, United Kingdom
| | - Sepideh Sadaghiani
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Psychology Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
3
|
Hotama CF, Kralik JD, Jeong J. Critical Regions and Connections Form Pathways and Clusters in the Mouse Brain. Eur J Neurosci 2025; 61:e16673. [PMID: 39996373 DOI: 10.1111/ejn.16673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 11/26/2024] [Accepted: 12/30/2024] [Indexed: 02/26/2025]
Abstract
Connectome network analysis across multiple species should help identify principles of brain function. Here, we examined three fundamental properties-global efficiency, global betweenness centrality, and global clustering-in the mesoscale tract-tracing data of the mouse connectome; and conducted vulnerability analysis to identify the critical regions and connections based on the loss in network function when each brain region (213) and connection (16,594) was removed. Robustness tests examining noise effects were also conducted. There were five key findings. First, we identified eight critical regions and 38 critical connections, with more central, limbic regions dominant; and with robustness analysis showing (a) the importance of connection strength; and (b) the findings being robust to noise. Second, although critical regions and connections were significantly based on their local network properties, global influences sometimes deviated from local ones (e.g., critical globally but with lower local scores), thereby revealing global-level interactions. Third, the critical components organized into two main pathways (one from piriform cortex to globus pallidus; the other, entorhinal cortex to the amygdala), and two main clusters (centred on caudoputamen and entorhinal cortex). Fourth, for brain function, all main categories from perception to action were represented: e.g., olfaction (piriform cortex), learning and memory (entorhinal cortex), affect (amygdala and caudoputamen), and cognitive and motor processing (caudoputamen, globus pallidus). Finally, the claustrum was intriguingly identified as critical, perhaps for information integration and motor translation. Vulnerability analysis provides a unique approach to characterizing the fundamental structure of nervous systems.
Collapse
Affiliation(s)
- Christianus F Hotama
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jerald D Kralik
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jaeseung Jeong
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
4
|
Jun S, Malone SM, Alderson TH, Harper J, Hunt RH, Thomas KM, Wilson S, Iacono WG, Sadaghiani S. Cognitive abilities are associated with rapid dynamics of electrophysiological connectome states. Netw Neurosci 2024; 8:1089-1104. [PMID: 39735509 PMCID: PMC11674572 DOI: 10.1162/netn_a_00390] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/17/2024] [Indexed: 12/31/2024] Open
Abstract
Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, hold significant implications for cognition. However, connectome dynamics at fast (>1 Hz) timescales highly relevant to cognition are poorly understood due to the dominance of inherently slow fMRI in connectome studies. Here, we investigated the behavioral significance of rapid electrophysiological connectome dynamics using source-localized EEG connectomes during resting state (N = 926, 473 females). We focused on dynamic connectome features pertinent to individual differences, specifically those with established heritability: Fractional Occupancy (i.e., the overall duration spent in each recurrent connectome state) in beta and gamma bands and Transition Probability (i.e., the frequency of state switches) in theta, alpha, beta, and gamma bands. Canonical correlation analysis found a significant relationship between the heritable phenotypes of subsecond connectome dynamics and cognition. Specifically, principal components of Transition Probabilities in alpha (followed by theta and gamma bands) and a cognitive factor representing visuospatial processing (followed by verbal and auditory working memory) most notably contributed to the relationship. We conclude that rapid connectome state transitions shape individuals' cognitive abilities and traits. Such subsecond connectome dynamics may inform about behavioral function and dysfunction and serve as endophenotypes for cognitive abilities.
Collapse
Affiliation(s)
- Suhnyoung Jun
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Stephen M. Malone
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Thomas H. Alderson
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Jeremy Harper
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Ruskin H. Hunt
- Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Kathleen M. Thomas
- Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Sylia Wilson
- Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - William G. Iacono
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Sepideh Sadaghiani
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
5
|
Jun S, Alderson TH, Malone SM, Harper J, Hunt RH, Thomas KM, Iacono WG, Wilson S, Sadaghiani S. Rapid dynamics of electrophysiological connectome states are heritable. Netw Neurosci 2024; 8:1065-1088. [PMID: 39735507 PMCID: PMC11674403 DOI: 10.1162/netn_a_00391] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/17/2024] [Indexed: 12/31/2024] Open
Abstract
Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a prominent feature of brain activity with broad functional implications. While infraslow (<0.1 Hz) connectome dynamics have been extensively studied with fMRI, rapid dynamics highly relevant for cognition are poorly understood. Here, we asked whether rapid electrophysiological connectome dynamics constitute subject-specific brain traits and to what extent they are under genetic influence. Using source-localized EEG connectomes during resting state (N = 928, 473 females), we quantified the heritability of multivariate (multistate) features describing temporal or spatial characteristics of connectome dynamics. States switched rapidly every ∼60-500 ms. Temporal features were heritable, particularly Fractional Occupancy (in theta, alpha, beta, and gamma bands) and Transition Probability (in theta, alpha, and gamma bands), representing the duration spent in each state and the frequency of state switches, respectively. Genetic effects explained a substantial proportion of the phenotypic variance of these features: Fractional Occupancy in beta (44.3%) and gamma (39.8%) bands and Transition Probability in theta (38.4%), alpha (63.3%), beta (22.6%), and gamma (40%) bands. However, we found no evidence for the heritability of dynamic spatial features, specifically states' Modularity and connectivity pattern. We conclude that genetic effects shape individuals' connectome dynamics at rapid timescales, specifically states' overall occurrence and sequencing.
Collapse
Affiliation(s)
- Suhnyoung Jun
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Thomas H. Alderson
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Stephen M. Malone
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Jeremy Harper
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Ruskin H. Hunt
- Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Kathleen M. Thomas
- Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - William G. Iacono
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Sylia Wilson
- Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Sepideh Sadaghiani
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
6
|
Zhen Y, Yang Y, Zheng Y, Wang X, Liu L, Zheng Z, Zheng H, Tang S. The heritability and structural correlates of resting-state fMRI complexity. Neuroimage 2024; 296:120657. [PMID: 38810892 DOI: 10.1016/j.neuroimage.2024.120657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024] Open
Abstract
The complexity of fMRI signals quantifies temporal dynamics of spontaneous neural activity, which has been increasingly recognized as providing important insights into cognitive functions and psychiatric disorders. However, its heritability and structural underpinnings are not well understood. Here, we utilize multi-scale sample entropy to extract resting-state fMRI complexity in a large healthy adult sample from the Human Connectome Project. We show that fMRI complexity at multiple time scales is heritable in broad brain regions. Heritability estimates are modest and regionally variable. We relate fMRI complexity to brain structure including surface area, cortical myelination, cortical thickness, subcortical volumes, and total brain volume. We find that surface area is negatively correlated with fine-scale complexity and positively correlated with coarse-scale complexity in most cortical regions, especially the association cortex. Most of these correlations are related to common genetic and environmental effects. We also find positive correlations between cortical myelination and fMRI complexity at fine scales and negative correlations at coarse scales in the prefrontal cortex, lateral temporal lobe, precuneus, lateral parietal cortex, and cingulate cortex, with these correlations mainly attributed to common environmental effects. We detect few significant associations between fMRI complexity and cortical thickness. Despite the non-significant association with total brain volume, fMRI complexity exhibits significant correlations with subcortical volumes in the hippocampus, cerebellum, putamen, and pallidum at certain scales. Collectively, our work establishes the genetic basis and structural correlates of resting-state fMRI complexity across multiple scales, supporting its potential application as an endophenotype for psychiatric disorders.
Collapse
Affiliation(s)
- Yi Zhen
- School of Mathematical Sciences, Beihang University, Beijing 100191, China; Key laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
| | - Yaqian Yang
- School of Mathematical Sciences, Beihang University, Beijing 100191, China; Key laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
| | - Yi Zheng
- School of Mathematical Sciences, Beihang University, Beijing 100191, China; Key laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
| | - Xin Wang
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China; Key laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China; Zhongguancun Laboratory, Beijing 100094, China; Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China; PengCheng Laboratory, Shenzhen 518055, China
| | - Longzhao Liu
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China; Key laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China; Zhongguancun Laboratory, Beijing 100094, China; Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China; PengCheng Laboratory, Shenzhen 518055, China
| | - Zhiming Zheng
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China; Key laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China; Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai 264003, China; Zhongguancun Laboratory, Beijing 100094, China; Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China; PengCheng Laboratory, Shenzhen 518055, China; State Key Lab of Software Development Environment, Beihang University, Beijing 100191, China
| | - Hongwei Zheng
- Beijing Academy of Blockchain and Edge Computing, Beijing 100085, China.
| | - Shaoting Tang
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China; Key laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China; Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai 264003, China; Zhongguancun Laboratory, Beijing 100094, China; Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China; PengCheng Laboratory, Shenzhen 518055, China; State Key Lab of Software Development Environment, Beihang University, Beijing 100191, China.
| |
Collapse
|
7
|
Proshina E, Deynekina T, Martynova O. Neurogenetics of Brain Connectivity: Current Approaches to the Study (Review). Sovrem Tekhnologii Med 2024; 16:66-76. [PMID: 39421629 PMCID: PMC11482091 DOI: 10.17691/stm2024.16.1.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Indexed: 10/19/2024] Open
Abstract
Owing to the advances of neuroimaging techniques, a number of functional brain networks associated both with specific functions and the state of relative inactivity has been distinguished. A sufficient bulk of information has been accumulated on changes in connectivity (links between brain regions) in psychopathologies, for example, depression, schizophrenia, autism. Their genetic markers are being actively investigated using a candidate-gene approach or a genome-wide association study. At the same time, there is not much data considering connectivity as an intermediate link in the genotype-pathology chain, although it seems to be a reliable endophenotype, since it demonstrates a high stability and high heritability. In the present review, we consider the results of investigations devoted to the search for biomarkers, molecular and genetic associations of functional, partially anatomical, and effective connectivity. The main approaches to the evaluation of connectivity neurogenetics have been described, as well as specific genetic variants, for which the association with brain connectivity in psychiatric pathologies has been detected.
Collapse
Affiliation(s)
- E.A. Proshina
- Researcher, Centre for Cognition & Decision Making, Institute for Cognitive Neurosciences; National Research University Higher School of Economics, 20 Myasnitskaya St., Moscow, 101000, Russia
| | - T.S. Deynekina
- Analyst; Center for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, 10 Pogodinskaya St., Moscow, 119121, Russia
| | - O.V. Martynova
- Deputy Director, Head of the Laboratory of Human Higher Nervous Activity; Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerova St., Moscow, 117485, Russia, Associate Professor, Department of Biology and Biotechnology; National Research University Higher School of Economics, 20 Myasnitskaya St., Moscow, 101000, Russia
| |
Collapse
|
8
|
Jun S, Malone SM, Iacono WG, Harper J, Wilson S, Sadaghiani S. Cognitive abilities are associated with rapid dynamics of electrophysiological connectome states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575736. [PMID: 38293067 PMCID: PMC10827041 DOI: 10.1101/2024.01.15.575736] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, hold significant implications for cognition. However, connectome dynamics at fast (> 1Hz) timescales highly relevant to cognition are poorly understood due to the dominance of inherently slow fMRI in connectome studies. Here, we investigated the behavioral significance of rapid electrophysiological connectome dynamics using source-localized EEG connectomes during resting-state (N=926, 473 females). We focused on dynamic connectome features pertinent to individual differences, specifically those with established heritability: Fractional Occupancy (i.e., the overall duration spent in each recurrent connectome state) in beta and gamma bands, and Transition Probability (i.e., the frequency of state switches) in theta, alpha, beta, and gamma bands. Canonical correlation analysis found a significant relationship between the heritable phenotypes of sub-second connectome dynamics and cognition. Specifically, principal components of Transition Probabilities in alpha (followed by theta and gamma bands) and a cognitive factor representing visuospatial processing (followed by verbal and auditory working memory) most notably contributed to the relationship. We conclude that the specific order in which rapid connectome states are sequenced shapes individuals' cognitive abilities and traits. Such sub-second connectome dynamics may inform about behavioral function and dysfunction and serve as endophenotypes for cognitive abilities.
Collapse
Affiliation(s)
- Suhnyoung Jun
- Psychology Department, University of Illinois at Urbana-Champaign
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign
| | - Stephen M Malone
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - William G Iacono
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Jeremy Harper
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Sylia Wilson
- Institute of Child Development, University of Minnesota, Twin Cities, USA
| | - Sepideh Sadaghiani
- Psychology Department, University of Illinois at Urbana-Champaign
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign
- Neuroscience Program, University of Illinois at Urbana-Champaign
| |
Collapse
|
9
|
Jun S, Malone SM, Iacono WG, Harper J, Wilson S, Sadaghiani S. Rapid dynamics of electrophysiological connectome states are heritable. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575731. [PMID: 38293031 PMCID: PMC10827044 DOI: 10.1101/2024.01.15.575731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a prominent feature of brain activity with broad functional implications. While infra-slow (<0.1Hz) connectome dynamics have been extensively studied with fMRI, rapid dynamics highly relevant for cognition are poorly understood. Here, we asked whether rapid electrophysiological connectome dynamics constitute subject-specific brain traits and to what extent they are under genetic influence. Using source-localized EEG connectomes during resting-state (N=928, 473 females), we quantified heritability of multivariate (multi-state) features describing temporal or spatial characteristics of connectome dynamics. States switched rapidly every ~60-500ms. Temporal features were heritable, particularly, Fractional Occupancy (in theta, alpha, beta, and gamma bands) and Transition Probability (in theta, alpha, and gamma bands), representing the duration spent in each state and the frequency of state switches, respectively. Genetic effects explained a substantial proportion of phenotypic variance of these features: Fractional Occupancy in beta (44.3%) and gamma (39.8%) bands and Transition Probability in theta (38.4%), alpha (63.3%), beta (22.6%), and gamma (40%) bands. However, we found no evidence for heritability of spatial features, specifically states' Modularity and connectivity pattern. We conclude that genetic effects strongly shape individuals' connectome dynamics at rapid timescales, specifically states' overall occurrence and sequencing.
Collapse
Affiliation(s)
- Suhnyoung Jun
- Psychology Department, University of Illinois at Urbana-Champaign
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign
| | - Stephen M Malone
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - William G Iacono
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Jeremy Harper
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Sylia Wilson
- Institute of Child Development, University of Minnesota, Twin Cities, USA
| | - Sepideh Sadaghiani
- Psychology Department, University of Illinois at Urbana-Champaign
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign
- Neuroscience Program, University of Illinois at Urbana-Champaign
| |
Collapse
|