1
|
Mao C, Mo Y, Jiang J, Fang S, Hu Z, Ke Z, Zhao H, Xu Y. Association between high plasma p-tau181 level and gait changes in patients with mild cognitive impairment. Sci Rep 2025; 15:14679. [PMID: 40287471 PMCID: PMC12033327 DOI: 10.1038/s41598-025-94472-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 03/13/2025] [Indexed: 04/29/2025] Open
Abstract
Previous studies on gait changes in mild cognitive impairment (MCI) are inconsistent. Alzheimer's disease (AD) plasma biomarkers, amyloid beta (Aβ) and phosphorylated-tau (p-tau), are relevant to gait disorders. This study explores gait changes in MCI and the relationship between gait performance and AD plasma biomarkers. 231 participants were recruited and stratified based on p-tau181 levels into: low p-tau181 with normal cognition (lT-NC), low p-tau181 with MCI (lT-MCI), and high p-tau181 with MCI (hT-MCI). The same cohort was subsequently stratified by Aβ42/Aβ40 levels into: high Aβ42/Aβ40 with normal cognition (hA-NC), high Aβ42/Aβ40 with MCI (hA-MCI), and low Aβ42/Aβ40 with MCI (lA-MCI). Demographic, cognitive and gait data were compared across groups. The hT-MCI and lA-MCI groups were older than the other groups. Significant differences in stride length were found between lT-NC and hT-MCI, lT-MCI and hT-MCI, but not between lT-NC and lT-MCI. Neuropsychological assessments revealed poorer performance in hT-MCI and lT-MCI groups relative to lT-NC, while global cognitive function was comparable between hT-MCI and lT-MCI groups. No such associations were observed between stride length and Aβ42/Aβ40 levels. Decreased stride length, which is generally considered to be indicative of poorer gait, was significantly associated with elevated p-tau181 levels and independent of global cognitive status. These findings highlight the potential of p-tau181 as a biomarker for tau-related motor dysfunction in MCI.
Collapse
Affiliation(s)
- Chenglu Mao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China.
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210000, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210000, China.
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China.
| | - Yuting Mo
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210000, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210000, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210000, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China
| | - Jialiu Jiang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210000, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210000, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China
| | - Shuang Fang
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210000, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210000, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210000, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China
| | - Zheqi Hu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210000, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210000, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China
| | - Zhihong Ke
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210000, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210000, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210000, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China
| | - Hui Zhao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China.
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210000, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210000, China.
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China.
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China.
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210000, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210000, China.
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China.
| |
Collapse
|
2
|
Festini SB, Kegler G, Reuter-Lorenz PA. Hemispheric organization of the brain and its prevailing impact on the neuropsychology of aging. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:169-180. [PMID: 40074395 DOI: 10.1016/b978-0-443-15646-5.00004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Age differences in brain hemispheric asymmetry have figured prominently in the neuropsychology of aging. Here, a broad overview of these empirical and theoretical approaches is provided that dates back to the 1970s and continues to the present day. Methodological advances often brought new evidence to bear on older ideas and promoted the development of new ones. The deficit-focused hypothesis of accelerated right-hemisphere aging is reviewed first, followed by subsequent accounts pertaining to compensation, reserve, and their potential hemispheric underpinnings. Structural and functional neuroimaging reveal important and consistent age-related patterns, including indications of reduced brain asymmetry in older relative to younger adults. While not mutually exclusive, different neuropsychologic theories of aging offer divergent interpretations of such patterns, including age-related reductions in neural specificity (dedifferentiation) and age-related compensatory bilateral recruitment [e.g., Hemispheric Asymmetry Reduction in Older Adults (HAROLD); Compensation-Related Utilization of Neural Circuits Hypothesis (CRUNCH)]. Further, recent neurobehavioral evidence suggests that the right hemisphere plays a unique role in resisting the neurocognitive effects of aging via brain reserve. Future advances in human cognitive neuroscience, including neurostimulation methods for targeted interventions, along with analytic techniques informed by machine learning promise new insights into the neuropsychology of aging and the role of hemispheric processes in resilience and decline.
Collapse
|
3
|
Guichet C, Roger É, Attyé A, Achard S, Mermillod M, Baciu M. Midlife dynamics of white matter architecture in lexical production. Neurobiol Aging 2024; 144:138-152. [PMID: 39357455 DOI: 10.1016/j.neurobiolaging.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/04/2024]
Abstract
We aimed to examine the white matter changes associated with lexical production difficulties, beginning in midlife with increased naming latencies. To delay lexical production decline, middle-aged adults may rely on domain-general and language-specific compensatory mechanisms proposed by the LARA model (Lexical Access and Retrieval in Aging). However, the white matter changes supporting these mechanisms remains largely unknown. Using data from the CAMCAN cohort, we employed an unsupervised and data-driven methodology to examine the relationships between diffusion-weighted imaging and lexical production. Our findings indicate that midlife is marked by alterations in brain structure within distributed dorsal, ventral, and anterior cortico-subcortical networks, marking the onset of lexical production decline around ages 53-54. Middle-aged adults may initially adopt a "semantic strategy" to compensate for lexical production challenges, but this strategy seems compromised later (ages 55-60) as semantic control declines. These insights underscore the interplay between domain-general and language-specific processes in the trajectory of lexical production performance in healthy aging and hint at potential biomarkers for language-related neurodegenerative pathologies.
Collapse
Affiliation(s)
- Clément Guichet
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, Grenoble 38000, France
| | - Élise Roger
- Institut Universitaire de Gériatrie de Montréal, Communication and Aging Lab, Montreal, Quebec, Canada; Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | | | - Sophie Achard
- Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, Grenoble 38000, France
| | | | - Monica Baciu
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, Grenoble 38000, France; Neurology Department, CMRR, Grenoble Hospital, Grenoble 38000, France.
| |
Collapse
|
4
|
Corriveau-Lecavalier N, Adams JN, Fischer L, Molloy EN, Maass A. Cerebral hyperactivation across the Alzheimer's disease pathological cascade. Brain Commun 2024; 6:fcae376. [PMID: 39513091 PMCID: PMC11542485 DOI: 10.1093/braincomms/fcae376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
Neuronal dysfunction in specific brain regions or across distributed brain networks is a known feature of Alzheimer's disease. An often reported finding in the early stage of the disease is the presence of increased functional MRI (fMRI) blood oxygenation level-dependent signal under task conditions relative to cognitively normal controls, a phenomenon known as 'hyperactivation'. However, research in the past decades yielded complex, sometimes conflicting results. The magnitude and topology of fMRI hyperactivation patterns have been found to vary across the preclinical and clinical spectrum of Alzheimer's disease, including concomitant 'hypoactivation' in some cases. These incongruences are likely due to a range of factors, including the disease stage at which the cohort is examined, the brain areas or networks studied and the fMRI paradigm utilized to evoke these functional abnormalities. Additionally, a perennial question pertains to the nature of hyperactivation in the context of Alzheimer's disease. Some propose it reflects compensatory mechanisms to sustain cognitive performance, while others suggest it is linked to the pathological disruption of a highly regulated homeostatic cycle that contributes to, or even drives, disease progression. Providing a coherent narrative for these empirical and conceptual discrepancies is paramount to develop disease models, understand the synergy between hyperactivation and the Alzheimer's disease pathological cascade and tailor effective interventions. We first provide a comprehensive overview of functional brain changes spanning the course from normal ageing to the clinical spectrum of Alzheimer's disease. We then highlight evidence supporting a close relationship between fMRI hyperactivation and in vivo markers of Alzheimer's pathology. We primarily focus on task-based fMRI studies in humans, but also consider studies using different functional imaging techniques and animal models. We then discuss the potential mechanisms underlying hyperactivation in the context of Alzheimer's disease and provide a testable framework bridging hyperactivation, ageing, cognition and the Alzheimer's disease pathological cascade. We conclude with a discussion of future challenges and opportunities to advance our understanding of the fundamental disease mechanisms of Alzheimer's disease, and the promising development of therapeutic interventions incorporating or aimed at hyperactivation and large-scale functional systems.
Collapse
Affiliation(s)
- Nick Corriveau-Lecavalier
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55902, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota 55902 USA
| | - Jenna N Adams
- Department of Neurobiology and Behavior, University of California, Irvine 92697, CA, USA
| | - Larissa Fischer
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
| | - Eóin N Molloy
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
- Division of Nuclear Medicine, Department of Radiology & Nuclear Medicine, Faculty of Medicine, Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
| | - Anne Maass
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
- Institute for Biology, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| |
Collapse
|
5
|
Hennessee JP, Lung TC, Park DC, Kennedy KM. Age differences in BOLD modulation to task difficulty as a function of amyloid burden. Cereb Cortex 2024; 34:bhae357. [PMID: 39227310 PMCID: PMC11371418 DOI: 10.1093/cercor/bhae357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024] Open
Abstract
Effective cognitive performance often requires the allocation of additional neural resources (i.e. blood-oxygen-level-dependent [BOLD] activation) as task demands increase, and this demand-related modulation is affected by amyloid-beta deposition and normal aging. The present study investigated these complex relationships between amyloid, modulation, and cognitive function (i.e. fluid ability). Participants from the Dallas Lifespan Brain Study (DLBS, n = 252, ages 50-89) completed a semantic judgment task during functional magnetic resonance imaging (fMRI) where the judgments differed in classification difficulty. Amyloid burden was assessed via positron emission tomography (PET) using 18F-florbetapir. A quadratic relationship between amyloid standardized value uptake ratios (SUVRs) and BOLD modulation was observed such that modulation was weaker in those with moderately elevated SUVRs (e.g. just reaching amyloid-positivity), whereas those with very high SUVRs (e.g. SUVR > 1.5) showed strong modulation. Greater modulation was related to better fluid ability, and this relationship was strongest in younger participants and those with lower amyloid burden. These results support the theory that effective demand-related modulation contributes to healthy cognitive aging, especially in the transition from middle age to older adulthood, whereas high modulation may be dysfunctional in those with substantial amyloid deposition.
Collapse
Affiliation(s)
- Joseph P Hennessee
- Center for Vital Longevity; Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, 1600 Viceroy Dr., Suite 800, Dallas, TX 75235, United States
| | - Tzu-Chen Lung
- Center for Vital Longevity; Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, 1600 Viceroy Dr., Suite 800, Dallas, TX 75235, United States
| | - Denise C Park
- Center for Vital Longevity; Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, 1600 Viceroy Dr., Suite 800, Dallas, TX 75235, United States
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, United States
| | - Kristen M Kennedy
- Center for Vital Longevity; Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, 1600 Viceroy Dr., Suite 800, Dallas, TX 75235, United States
| |
Collapse
|
6
|
Yue WL, Ng KK, Liu S, Qian X, Chong JSX, Koh AJ, Ong MQW, Ting SKS, Ng ASL, Kandiah N, Yeo BTT, Zhou JH. Differential spatial working memory-related functional network reconfiguration in young and older adults. Netw Neurosci 2024; 8:395-417. [PMID: 38952809 PMCID: PMC11142455 DOI: 10.1162/netn_a_00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/05/2024] [Indexed: 07/03/2024] Open
Abstract
Functional brain networks have preserved architectures in rest and task; nevertheless, previous work consistently demonstrated task-related brain functional reorganization. Efficient rest-to-task functional network reconfiguration is associated with better cognition in young adults. However, aging and cognitive load effects, as well as contributions of intra- and internetwork reconfiguration, remain unclear. We assessed age-related and load-dependent effects on global and network-specific functional reconfiguration between rest and a spatial working memory (SWM) task in young and older adults, then investigated associations between functional reconfiguration and SWM across loads and age groups. Overall, global and network-level functional reconfiguration between rest and task increased with age and load. Importantly, more efficient functional reconfiguration associated with better performance across age groups. However, older adults relied more on internetwork reconfiguration of higher cognitive and task-relevant networks. These reflect the consistent importance of efficient network updating despite recruitment of additional functional networks to offset reduction in neural resources and a change in brain functional topology in older adults. Our findings generalize the association between efficient functional reconfiguration and cognition to aging and demonstrate distinct brain functional reconfiguration patterns associated with SWM in aging, highlighting the importance of combining rest and task measures to study aging cognition.
Collapse
Affiliation(s)
- Wan Lin Yue
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore
| | - Kwun Kei Ng
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore
| | - Siwei Liu
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore
| | - Xing Qian
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore
| | - Joanna Su Xian Chong
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore
| | - Amelia Jialing Koh
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore
| | - Marcus Qin Wen Ong
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore
| | | | | | - Nagaendran Kandiah
- National Neuroscience Institute, Singapore
- Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore
| | - B. T. Thomas Yeo
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital
- Department of Electrical and Computer Engineering, N.1 Institute for Health and Memory Networks Program, National University of Singapore
| | - Juan Helen Zhou
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore
- Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore
| |
Collapse
|
7
|
Imperio CM, Chua EF. Lack of effects of online HD-tDCS over the left or right DLPFC in an associative memory and metamemory monitoring task. PLoS One 2024; 19:e0300779. [PMID: 38848375 PMCID: PMC11161112 DOI: 10.1371/journal.pone.0300779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/20/2024] [Indexed: 06/09/2024] Open
Abstract
Neuroimaging studies have shown that activity in the prefrontal cortex correlates with two critical aspects of normal memory functioning: retrieval of episodic memories and subjective "feelings-of-knowing" about our memory. Brain stimulation can be used to test the causal role of the prefrontal cortex in these processes, and whether the role differs for the left versus right prefrontal cortex. We compared the effects of online High-Definition transcranial Direct Current Stimulation (HD-tDCS) over the left or right dorsolateral prefrontal cortex (DLPFC) compared to sham during a proverb-name associative memory and feeling-of-knowing task. There were no significant effects of HD-tDCS on either associative recognition or feeling-of-knowing performance, with Bayesian analyses showing moderate support for the null hypotheses. Despite past work showing effects of HD-tDCS on other memory and feeling-of-knowing tasks, and neuroimaging showing effects with similar tasks, these findings add to the literature of non-significant effects with tDCS. This work highlights the need to better understand factors that determine the effectiveness of tDCS, especially if tDCS is to have a successful future as a clinical intervention.
Collapse
Affiliation(s)
- Casey M Imperio
- The Graduate Center of the City University of New York, New York, New York, United States of America
| | - Elizabeth F Chua
- The Graduate Center of the City University of New York, New York, New York, United States of America
- Brooklyn College of the City University of New York, New York, New York, United States of America
| |
Collapse
|
8
|
Li X, Ng KK, Wong JJY, Zhou JH, Yow WQ. Brain gray matter morphometry relates to onset age of bilingualism and theory of mind in young and older adults. Sci Rep 2024; 14:3193. [PMID: 38326334 PMCID: PMC10850089 DOI: 10.1038/s41598-023-48710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/29/2023] [Indexed: 02/09/2024] Open
Abstract
Lifelong bilingualism may result in neural reserve against decline not only in the general cognitive domain, but also in social cognitive functioning. In this study, we show the brain structural correlates that are associated with second language age of acquisition (L2AoA) and theory of mind (the ability to reason about mental states) in normal aging. Participants were bilingual adults (46 young, 50 older) who completed a theory-of-mind task battery, a language background questionnaire, and an anatomical MRI scan to obtain cortical morphometric features (i.e., gray matter volume, thickness, and surface area). Findings indicated a theory-of-mind decline in older adults compared to young adults, controlling for education and general cognition. Importantly, earlier L2AoA and better theory-of-mind performance were associated with larger volume, higher thickness, and larger surface area in the bilateral temporal, medial temporal, superior parietal, and prefrontal brain regions. These regions are likely to be involved in mental representations, language, and cognitive control. The morphometric association with L2AoA in young and older adults were comparable, but its association with theory of mind was stronger in older adults than young adults. The results demonstrate that early bilingual acquisition may provide protective benefits to intact theory-of-mind abilities against normal age-related declines.
Collapse
Affiliation(s)
- Xiaoqian Li
- Humanities, Arts and Social Sciences, Singapore University of Technology and Design, Singapore, Singapore
| | - Kwun Kei Ng
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joey Ju Yu Wong
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Juan Helen Zhou
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.
| | - W Quin Yow
- Humanities, Arts and Social Sciences, Singapore University of Technology and Design, Singapore, Singapore.
| |
Collapse
|
9
|
Roger E, Labache L, Hamlin N, Kruse J, Baciu M, Doucet GE. When Age Tips the Balance: a Dual Mechanism Affecting Hemispheric Specialization for Language. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.569978. [PMID: 38106059 PMCID: PMC10723284 DOI: 10.1101/2023.12.04.569978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Aging engenders neuroadaptations, generally reducing specificity and selectivity in functional brain responses. Our investigation delves into the functional specialization of brain hemispheres within language-related networks across adulthood. In a cohort of 728 healthy adults spanning ages 18 to 88, we modeled the trajectories of inter-hemispheric asymmetry concerning the principal functional gradient across 37 homotopic regions of interest (hROIs) of an extensive language network, known as the Language-and-Memory Network. Our findings reveal that over two-thirds of Language-and-Memory Network hROIs undergo asymmetry changes with age, falling into two main clusters. The first cluster evolves from left-sided specialization to right-sided tendencies, while the second cluster transitions from right-sided asymmetry to left-hemisphere dominance. These reversed asymmetry shifts manifest around midlife, occurring after age 50, and are associated with poorer language production performance. Our results provide valuable insights into the influence of functional brain asymmetries on language proficiency and present a dynamic perspective on brain plasticity during the typical aging process.
Collapse
Affiliation(s)
- Elise Roger
- Institut Universitaire de Gériatrie de Montréal, Communication and Aging Lab, Montreal, Quebec, Canada
- Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000 Grenoble, France
| | - Loïc Labache
- Department of Psychology, Yale University, New Haven, CT, 06520, US
| | - Noah Hamlin
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, US
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, 68178, US
| | - Jordanna Kruse
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, US
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, 68178, US
| | - Monica Baciu
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000 Grenoble, France
| | - Gaelle E. Doucet
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, US
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, 68178, US
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Omaha, NE, 68178, US
| |
Collapse
|
10
|
Moisseinen N, Särkämö T, Kauramäki J, Kleber B, Sihvonen AJ, Martínez-Molina N. Differential effects of ageing on the neural processing of speech and singing production. Front Aging Neurosci 2023; 15:1236971. [PMID: 37731954 PMCID: PMC10507273 DOI: 10.3389/fnagi.2023.1236971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Background Understanding healthy brain ageing has become vital as populations are ageing rapidly and age-related brain diseases are becoming more common. In normal brain ageing, speech processing undergoes functional reorganisation involving reductions of hemispheric asymmetry and overactivation in the prefrontal regions. However, little is known about how these changes generalise to other vocal production, such as singing, and how they are affected by associated cognitive demands. Methods The present cross-sectional fMRI study systematically maps the neural correlates of vocal production across adulthood (N=100, age 21-88 years) using a balanced 2x3 design where tasks varied in modality (speech: proverbs / singing: song phrases) and cognitive demand (repetition / completion from memory / improvisation). Results In speech production, ageing was associated with decreased left pre- and postcentral activation across tasks and increased bilateral angular and right inferior temporal and fusiform activation in the improvisation task. In singing production, ageing was associated with increased activation in medial and bilateral prefrontal and parietal regions in the completion task, whereas other tasks showed no ageing effects. Direct comparisons between the modalities showed larger age-related activation changes in speech than singing across tasks, including a larger left-to-right shift in lateral prefrontal regions in the improvisation task. Conclusion The present results suggest that the brains' singing network undergoes differential functional reorganisation in normal ageing compared to the speech network, particularly during a task with high executive demand. These findings are relevant for understanding the effects of ageing on vocal production as well as how singing can support communication in healthy ageing and neurological rehabilitation.
Collapse
Affiliation(s)
- Nella Moisseinen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, Centre of Excellence in Music, Mind, Body and the Brain, University of Helsinki, Helsinki, Finland
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, Centre of Excellence in Music, Mind, Body and the Brain, University of Helsinki, Helsinki, Finland
| | - Jaakko Kauramäki
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, Centre of Excellence in Music, Mind, Body and the Brain, University of Helsinki, Helsinki, Finland
| | - Boris Kleber
- Centre for Music in the Brain, Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Aleksi J. Sihvonen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, Centre of Excellence in Music, Mind, Body and the Brain, University of Helsinki, Helsinki, Finland
- School of Health and Rehabilitation Sciences, Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Noelia Martínez-Molina
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, Centre of Excellence in Music, Mind, Body and the Brain, University of Helsinki, Helsinki, Finland
- Department of Information and Communication Technologies, Centre for Brain and Cognition, University Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
11
|
Surya JR, Habelhah B, Haroon J, Mahdavi K, Jordan K, Becerra S, Venkatraman V, Deveney C, Bystritsky A, Kuhn T, Jordan S. Functional MRI Lateralization [M1] of dlPFC and Implications for Transcranial Magnetic Stimulation (TMS) Targeting. Diagnostics (Basel) 2023; 13:2690. [PMID: 37627949 PMCID: PMC10453109 DOI: 10.3390/diagnostics13162690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The present study investigates a potential method of optimizing effective strategies for the functional lateralization of the dorsolateral prefrontal cortex (dlPFC) while in a scanner. Effective hemisphere lateralization of the dlPFC is crucial for lowering the functional risks connected to specific interventions (such as neurosurgery and transcranial magnetic stimulation (TMS), as well as increasing the effectiveness of a given intervention by figuring out the optimal location. This task combines elements of creative problem solving, executive decision making based on an internal rule set, and working memory. A retrospective analysis was performed on a total of 58 unique participants (34 males, 24 females, Mage = 42.93 years, SDage = 16.38). Of these participants, 47 were classified as right-handed, 7 were classified as left-handed, and 4 were classified as ambidextrous, according to the Edinburgh Handedness Inventory. The imaging data were qualitatively judged by two trained, blinded investigators (neurologist and neuropsychologist) for dominant handedness (primary motor cortex) and dominant dorsolateral prefrontal cortex (dlPFC). The results demonstrated that 21.4% of right-handed individuals showed a dominant dlPFC localized to the right hemisphere rather than the assumed left, and 16.7% of left-handers were dominant in their left hemisphere. The task completed in the scanner might be an efficient method for localizing a potential dlPFC target for the purpose of brain stimulation (e.g., TMS), though further study replications are needed to extend and validate these findings.
Collapse
Affiliation(s)
- Jean Rama Surya
- Neurological Associates—The Interventional Group, 2811 Wilshire Blvd #790, Santa Monica, CA 90403, USA; (B.H.); (J.H.); (C.D.)
| | - Barshen Habelhah
- Neurological Associates—The Interventional Group, 2811 Wilshire Blvd #790, Santa Monica, CA 90403, USA; (B.H.); (J.H.); (C.D.)
| | - Jonathan Haroon
- Neurological Associates—The Interventional Group, 2811 Wilshire Blvd #790, Santa Monica, CA 90403, USA; (B.H.); (J.H.); (C.D.)
| | - Kennedy Mahdavi
- Neurological Associates—The Interventional Group, 2811 Wilshire Blvd #790, Santa Monica, CA 90403, USA; (B.H.); (J.H.); (C.D.)
| | - Kaya Jordan
- Neurological Associates—The Interventional Group, 2811 Wilshire Blvd #790, Santa Monica, CA 90403, USA; (B.H.); (J.H.); (C.D.)
| | - Sergio Becerra
- Neurological Associates—The Interventional Group, 2811 Wilshire Blvd #790, Santa Monica, CA 90403, USA; (B.H.); (J.H.); (C.D.)
| | - Victoria Venkatraman
- Neurological Associates—The Interventional Group, 2811 Wilshire Blvd #790, Santa Monica, CA 90403, USA; (B.H.); (J.H.); (C.D.)
| | - Chloe Deveney
- Neurological Associates—The Interventional Group, 2811 Wilshire Blvd #790, Santa Monica, CA 90403, USA; (B.H.); (J.H.); (C.D.)
| | - Alexander Bystritsky
- Department of Psychiatry and Biobehavioral Sciences, UCLA School of Medicine, Le Conte Ave, Los Angeles, CA 10833, USA
| | - Taylor Kuhn
- Neurological Associates—The Interventional Group, 2811 Wilshire Blvd #790, Santa Monica, CA 90403, USA; (B.H.); (J.H.); (C.D.)
- Department of Psychiatry and Biobehavioral Sciences, UCLA School of Medicine, Le Conte Ave, Los Angeles, CA 10833, USA
| | - Sheldon Jordan
- Neurological Associates—The Interventional Group, 2811 Wilshire Blvd #790, Santa Monica, CA 90403, USA; (B.H.); (J.H.); (C.D.)
- Department of Neurology, UCLA School of Medicine, Le Conte Ave, Los Angeles, CA 10833, USA
| |
Collapse
|