1
|
Shibu P, Ra D, Robins JE, Joseph S, Anteraper S. Terra Incognita - Contributions of the Olivo-Cerebellar System to Autism Spectrum Disorder. CEREBELLUM (LONDON, ENGLAND) 2025; 24:93. [PMID: 40316858 DOI: 10.1007/s12311-025-01843-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/20/2025] [Indexed: 05/04/2025]
Abstract
The inferior olivary nuclei (ION), a key component of the olivo-cerebellar system, remain understudied in autism spectrum disorder (ASD) research despite evident cerebellar involvement. This perspective piece aims to elucidate the critical role of the ION in cerebellar microcircuitry and its potential implications in ASD pathophysiology. We review the olivo- cerebellar system and the structural and functional alterations of the ION in autism, highlighting findings from neuroanatomical, neuroimaging, and behavioral studies. ION disruptions, although underexplored, may have a major role in the symptomatology of ASD, particularly higher-order cognitive abilities, rapid stimuli processing, and motor coordination. Specifically, we highlight how anomalies in olivary neuron morphology and olivo-cerebellar connectivity patterns may underlie deficits in temporal processing and motor learning observed in ASD. Furthermore, we discuss the challenges in brainstem imaging and recent advancements in ultra-high field (UHF) 7 T MRI technology, as standard neuroimaging techniques. As these neuroimaging techniques continue to evolve, further investigation of the functional territories of the ION holds promise for providing essential understandings into ASD processes and may lead to pioneering therapeutic options targeting this crucial brainstem area.
Collapse
Affiliation(s)
- Pranav Shibu
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Daniel Ra
- Program in Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Jemima Elise Robins
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | | | - Sheeba Anteraper
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Krimmel SR, Laumann TO, Chauvin RJ, Hershey T, Roland JL, Shimony JS, Willie JT, Norris SA, Marek S, N Van A, Wang A, Monk J, Scheidter KM, Whiting FI, Ramirez-Perez N, Metoki A, Baden NJ, Kay BP, Siegel JS, Nahman-Averbuch H, Snyder AZ, Fair DA, Lynch CJ, Raichle ME, Gordon EM, Dosenbach NUF. The human brainstem's red nucleus was upgraded to support goal-directed action. Nat Commun 2025; 16:3398. [PMID: 40210909 PMCID: PMC11986128 DOI: 10.1038/s41467-025-58172-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/13/2025] [Indexed: 04/12/2025] Open
Abstract
The red nucleus, a large brainstem structure, coordinates limb movement for locomotion in quadrupedal animals. In humans, its pattern of anatomical connectivity differs from that of quadrupeds, suggesting a different purpose. Here, we apply our most advanced resting-state functional connectivity based precision functional mapping in highly sampled individuals (n = 5), resting-state functional connectivity in large group-averaged datasets (combined n ~ 45,000), and task based analysis of reward, motor, and action related contrasts from group-averaged datasets (n > 1000) and meta-analyses (n > 14,000 studies) to precisely examine red nucleus function. Notably, red nucleus functional connectivity with motor-effector networks (somatomotor hand, foot, and mouth) is minimal. Instead, connectivity is strongest to the action-mode and salience networks, which are important for action/cognitive control and reward/motivated behavior. Consistent with this, the red nucleus responds to motor planning more than to actual movement, while also responding to rewards. Our results suggest the human red nucleus implements goal-directed behavior by integrating behavioral valence and action plans instead of serving a pure motor-effector function.
Collapse
Affiliation(s)
- Samuel R Krimmel
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Roselyne J Chauvin
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tamara Hershey
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, USA
| | - Jarod L Roland
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jon T Willie
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
- National Center for Adaptive Neurotechnologies, St. Louis, MO, USA
| | - Scott A Norris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Scott Marek
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew N Van
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Anxu Wang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Division of Computation and Data Science, Washington University, St. Louis, MO, USA
| | - Julia Monk
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kristen M Scheidter
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Forrest I Whiting
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Nadeshka Ramirez-Perez
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Athanasia Metoki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Noah J Baden
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Benjamin P Kay
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua S Siegel
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
| | - Hadas Nahman-Averbuch
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Abraham Z Snyder
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Damien A Fair
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - Charles J Lynch
- Department of Psychiatry, Weill Cornell Medicine, New York, New York, USA
| | - Marcus E Raichle
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Evan M Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA.
- Program in Occupational Therapy, Washington University, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3
|
Zamboni E, Watson I, Stirnberg R, Huber L, Formisano E, Goebel R, Kennerley AJ, Morland AB. Mapping curvature domains in human V4 using CBV-sensitive layer-fMRI at 3T. Front Neurosci 2025; 19:1537026. [PMID: 40078711 PMCID: PMC11897262 DOI: 10.3389/fnins.2025.1537026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction A full understanding of how we see our world remains a fundamental research question in vision neuroscience. While topographic profiling has allowed us to identify different visual areas, the exact functional characteristics and organization of areas up in the visual hierarchy (beyond V1 & V2) is still debated. It is hypothesized that visual area V4 represents a vital intermediate stage of processing spatial and curvature information preceding object recognition. Advancements in magnetic resonance imaging hardware and acquisition techniques (e.g., non-BOLD functional MRI) now permits the capture of cortical layer-specific functional properties and organization of the human brain (including the visual system) at high precision. Methods Here, we use functional cerebral blood volume measures to study the modularity in how responses to contours (curvature) are organized within area V4 of the human brain. To achieve this at 3 Tesla (a clinically relevant field strength) we utilize optimized high-resolution 3D-Echo Planar Imaging (EPI) Vascular Space Occupancy (VASO) measurements. Results Data here provide the first evidence of curvature domains in human V4 that are consistent with previous findings from non-human primates. We show that VASO and BOLD tSNR maps for functional imaging align with high field equivalents, with robust time series of changes to visual stimuli measured across the visual cortex. V4 curvature preference maps for VASO show strong modular organization compared to BOLD imaging contrast. It is noted that BOLD has a much lower sensitivity (due to known venous vasculature weightings) and specificity to stimulus contrast. We show evidence that curvature domains persist across the cortical depth. The work advances our understanding of the role of mid-level area V4 in human processing of curvature and shape features. Impact Knowledge of how the functional architecture and hierarchical integration of local contours (curvature) contribute to formation of shapes can inform computational models of object recognition. Techniques described here allow for quantification of individual differences in functional architecture of mid-level visual areas to help drive a better understanding of how changes in functional brain organization relate to difference in visual perception.
Collapse
Affiliation(s)
- Elisa Zamboni
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
- York Neuroimaging Centre, University of York, York, United Kingdom
| | - Isaac Watson
- York Neuroimaging Centre, University of York, York, United Kingdom
- Biomedical Imaging Science Department, Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | | | | | - Elia Formisano
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Aneurin J. Kennerley
- Institute of Sport, Department of Sports and Exercise Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Antony B. Morland
- York Neuroimaging Centre, University of York, York, United Kingdom
- Department of Psychology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| |
Collapse
|
4
|
Knudsen L, Vizioli L, De Martino F, Faes LK, Handwerker DA, Moeller S, Bandettini PA, Huber L. NORDIC denoising on VASO data. Front Neurosci 2025; 18:1499762. [PMID: 39834697 PMCID: PMC11743533 DOI: 10.3389/fnins.2024.1499762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025] Open
Abstract
The use of submillimeter resolution functional magnetic resonance imaging (fMRI) is increasing in popularity due to the prospect of studying human brain activation non-invasively at the scale of cortical layers and columns. This method, known as laminar fMRI, is inherently signal-to-noise ratio (SNR)-limited, especially at lower field strengths, with the dominant noise source being of thermal origin. Furthermore, laminar fMRI is challenged with signal displacements due to draining vein effects in conventional gradient-echo blood oxygen level-dependent (BOLD) imaging contrasts. fMRI contrasts such as cerebral blood volume (CBV)-sensitive vascular space occupancy (VASO) sequences have the potential to mitigate draining vein effects. However, VASO comes along with another reduction in detection sensitivity. NOise Reduction with DIstribution Corrected (NORDIC) PCA (principal component analysis) is a denoising technique specifically aimed at suppressing thermal noise, which has proven useful for increasing the SNR of high-resolution functional data. While NORDIC has been examined for BOLD acquisitions, its application to VASO data has been limited, which was the focus of the present study. We present a preliminary analysis to evaluate NORDIC's capability to suppress thermal noise while preserving the VASO signal across a wide parameter space at 3T. For the data presented here, with a proper set of parameters, NORDIC reduced thermal noise with minimal bias on the underlying signal and preserved spatial resolution. Denoising performance was found to vary with different implementation strategies and parameter choices, for which we provide recommendations. We conclude that when applied properly, NORDIC has the potential to overcome the sensitivity limitations of laminar-specific VASO fMRI. Since very few groups currently have 3T VASO data, by sharing our analysis and code, we can compile and compare the effects of NORDIC across a broader range of acquisition parameters and study designs. Such a communal effort will help develop robust recommendations that will increase the utility of laminar fMRI at lower field strengths.
Collapse
Affiliation(s)
- Lasse Knudsen
- Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus, Denmark
- Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, China
| | - Luca Vizioli
- CMRR, University of Minnesota, Minneapolis, MN, United States
| | | | | | - Daniel A. Handwerker
- Section on Functional Imaging Methods, NIH, National Institute of Mental Health, Bethesda, MD, United States
| | - Steen Moeller
- CMRR, University of Minnesota, Minneapolis, MN, United States
| | - Peter A. Bandettini
- Section on Functional Imaging Methods, NIH, National Institute of Mental Health, Bethesda, MD, United States
- Functional Magnetic Resonance Imaging (FMRI) Core, NIH, National Institute of Mental Health, Bethesda, MD, United States
| | - Laurentius Huber
- Functional Magnetic Resonance Imaging (FMRI) Core, NIH, National Institute of Mental Health, Bethesda, MD, United States
| |
Collapse
|
5
|
Kupers ER, Knapen T, Merriam EP, Kay KN. Principles of intensive human neuroimaging. Trends Neurosci 2024; 47:856-864. [PMID: 39455343 PMCID: PMC11563852 DOI: 10.1016/j.tins.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
The rise of large, publicly shared functional magnetic resonance imaging (fMRI) data sets in human neuroscience has focused on acquiring either a few hours of data on many individuals ('wide' fMRI) or many hours of data on a few individuals ('deep' fMRI). In this opinion article, we highlight an emerging approach within deep fMRI, which we refer to as 'intensive' fMRI: one that strives for extensive sampling of cognitive phenomena to support computational modeling and detailed investigation of brain function at the single voxel level. We discuss the fundamental principles, trade-offs, and practical considerations of intensive fMRI. We also emphasize that intensive fMRI does not simply mean collecting more data: it requires careful design of experiments to enable a rich hypothesis space, optimizing data quality, and strategically curating public resources to maximize community impact.
Collapse
Affiliation(s)
- Eline R Kupers
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA; Department of Psychology, Stanford University, Stanford, CA, USA.
| | - Tomas Knapen
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience, Royal Netherlands Academy of Sciences, Amsterdam, the Netherlands; Cognitive Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Elisha P Merriam
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - Kendrick N Kay
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
6
|
Labonte AK, Camacho MC, Moser J, Koirala S, Laumann TO, Marek S, Fair D, Sylvester CM. Precision Functional Mapping to Advance Developmental Psychiatry Research. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100370. [PMID: 39309212 PMCID: PMC11416589 DOI: 10.1016/j.bpsgos.2024.100370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/25/2024] Open
Abstract
Many psychiatric conditions have their roots in early development. Individual differences in prenatal brain function (which is influenced by a combination of genetic risk and the prenatal environment) likely interact with individual differences in postnatal experience, resulting in substantial variation in brain functional organization and development in infancy. Neuroimaging has been a powerful tool for understanding typical and atypical brain function and holds promise for uncovering the neurodevelopmental basis of psychiatric illness; however, its clinical utility has been relatively limited thus far. A substantial challenge in this endeavor is the traditional approach of averaging brain data across groups despite individuals varying in their brain organization, which likely obscures important clinically relevant individual variation. Precision functional mapping (PFM) is a neuroimaging technique that allows the capture of individual-specific and highly reliable functional brain properties. Here, we discuss how PFM, through its focus on individuals, has provided novel insights for understanding brain organization across the life span and its promise in elucidating the neural basis of psychiatric disorders. We first summarize the extant literature on PFM in normative populations, followed by its limited utilization in studying psychiatric conditions in adults. We conclude by discussing the potential for infant PFM in advancing developmental precision psychiatry applications, given that many psychiatric disorders start during early infancy and are associated with changes in individual-specific functional neuroanatomy. By exploring the intersection of PFM, development, and psychiatric research, this article underscores the importance of individualized approaches in unraveling the complexities of brain function and improving clinical outcomes across development.
Collapse
Affiliation(s)
- Alyssa K. Labonte
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
- Neurosciences Graduate Program, Washington University in St. Louis, St. Louis, Missouri
| | - M. Catalina Camacho
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Julia Moser
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota
- Institute of Child Development, University of Minnesota, Minneapolis, Minnesota
| | - Sanju Koirala
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota
| | - Timothy O. Laumann
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Scott Marek
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Damien Fair
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota
- Institute of Child Development, University of Minnesota, Minneapolis, Minnesota
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Chad M. Sylvester
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
7
|
Moser J, Nelson SM, Koirala S, Madison TJ, Labonte AK, Carrasco CM, Feczko E, Moore LA, Lundquist JT, Weldon KB, Grimsrud G, Hufnagle K, Ahmed W, Myers MJ, Adeyemo B, Snyder AZ, Gordon EM, Dosenbach NUF, Tervo-Clemmens B, Larsen B, Moeller S, Yacoub E, Vizioli L, Uğurbil K, Laumann TO, Sylvester CM, Fair DA. Multi-echo Acquisition and Thermal Denoising Advances Precision Functional Imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.27.564416. [PMID: 37961636 PMCID: PMC10634909 DOI: 10.1101/2023.10.27.564416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The characterization of individual functional brain organization with Precision Functional Mapping has provided important insights in recent years in adults. However, little is known about the ontogeny of inter-individual differences in brain functional organization during human development. Precise characterization of systems organization during periods of high plasticity is likely to be essential for discoveries promoting lifelong health. Obtaining precision fMRI data during development has unique challenges that highlight the importance of establishing new methods to improve data acquisition, processing, and analysis. Here, we investigate two methods that can facilitate attaining this goal: multi-echo (ME) data acquisition and thermal noise removal with Noise Reduction with Distribution Corrected (NORDIC) principal component analysis. We applied these methods to precision fMRI data from adults, children, and newborn infants. In adults, both ME acquisitions and NORDIC increased temporal signal to noise ratio (tSNR) as well as the split-half reliability of functional connectivity matrices, with the combination helping more than either technique alone. The benefits of NORDIC denoising replicated in both our developmental samples. ME acquisitions revealed longer and more variable T2* relaxation times across the brain in infants relative to older children and adults, leading to major differences in the echo weighting for optimally combining ME data. This result suggests ME acquisitions may be a promising tool for optimizing developmental fMRI, albeit application in infants needs further investigation. The present work showcases methodological advances that improve Precision Functional Mapping in adults and developmental populations and, at the same time, highlights the need for further improvements in infant specific fMRI.
Collapse
Affiliation(s)
- Julia Moser
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Steven M Nelson
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Sanju Koirala
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - Thomas J Madison
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Alyssa K Labonte
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Eric Feczko
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Lucille A Moore
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Jacob T Lundquist
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Kimberly B Weldon
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Gracie Grimsrud
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Kristina Hufnagle
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Weli Ahmed
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Michael J Myers
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Babatunde Adeyemo
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Abraham Z Snyder
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Evan M Gordon
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St Louis, MO, USA
| | - Brenden Tervo-Clemmens
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Bart Larsen
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Steen Moeller
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Luca Vizioli
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Kamil Uğurbil
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Timothy O Laumann
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Chad M Sylvester
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Taylor Family Institute for Innovative Research, Washington University in St. Louis, St. Louis, MO, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
8
|
Chan RW, Hamilton-Fletcher G, Edelman BJ, Faiq MA, Sajitha TA, Moeller S, Chan KC. NOise Reduction with DIstribution Corrected (NORDIC) principal component analysis improves brain activity detection across rodent and human functional MRI contexts. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:1-18. [PMID: 39463889 PMCID: PMC11506209 DOI: 10.1162/imag_a_00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/29/2024]
Abstract
NOise Reduction with DIstribution Corrected (NORDIC) principal component analysis (PCA) has been shown to selectively suppress thermal noise and improve the temporal signal-to-noise ratio (tSNR) in human functional magnetic resonance imaging (fMRI). However, the feasibility to improve data quality for rodent fMRI using NORDIC PCA remains uncertain. NORDIC PCA may also be particularly beneficial for improving topological brain mapping, as conventional mapping requires precise spatiotemporal signals from large datasets (ideally ~1 hour acquisition) for individual representations. In this study, we evaluated the effects of NORDIC PCA compared with "Standard" processing in various rodent fMRI contexts that range from task-evoked optogenetic fMRI to resting-state fMRI. We also evaluated the effects of NORDIC PCA on human resting-state and retinotopic mapping fMRI via population receptive field (pRF) modeling. In rodent optogenetic fMRI, apart from doubling the tSNR, NORDIC PCA resulted in a larger number of activated voxels and a significant decrease in the variance of evoked brain responses without altering brain morphology. In rodent resting-state fMRI, we found that NORDIC PCA induced a nearly threefold increase in tSNR and preserved task-free relative cerebrovascular reactivity (rCVR) across cortical depth. NORDIC PCA further improved the detection of TGN020-induced aquaporin-4 inhibition on rCVR compared with Standard processing without NORDIC PCA. NORDIC PCA also increased the tSNR for both human resting-state and pRF fMRI, and for the latter also increased activation cluster sizes while retaining retinotopic organization. This suggests that NORDIC PCA preserves the spatiotemporal precision of fMRI signals needed for pRF analysis, and effectively captures small activity changes with high sensitivity. Taken together, these results broadly demonstrate the value of NORDIC PCA for the enhanced detection of neural dynamics across various rodent and human fMRI contexts. This can in turn play an important role in improving fMRI image quality and sensitivity for translational and preclinical neuroimaging research.
Collapse
Affiliation(s)
- Russell W. Chan
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, United States
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Tech4Health Institute, New York University Grossman School of Medicine, New York, NY, United States
- E-SENSE Innovation & Technology, Hong Kong, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Giles Hamilton-Fletcher
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, United States
- Tech4Health Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Bradley J. Edelman
- Brain-Wide Circuits for Behavior Research Group, Max Planck Institute of Biological Intelligence, Planegg, Germany
- Emotion Research Department, Max Planck Institute of Psychiatry, Munich, Germany
| | - Muneeb A. Faiq
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, United States
- Tech4Health Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Thajunnisa A. Sajitha
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, United States
- Tech4Health Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Steen Moeller
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States
| | - Kevin C. Chan
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, United States
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Tech4Health Institute, New York University Grossman School of Medicine, New York, NY, United States
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Ceja IFT, Gladytz T, Starke L, Tabelow K, Niendorf T, Reimann HM. Precision fMRI and cluster-failure in the individual brain. Hum Brain Mapp 2024; 45:e26813. [PMID: 39185695 PMCID: PMC11345700 DOI: 10.1002/hbm.26813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/06/2024] [Accepted: 07/20/2024] [Indexed: 08/27/2024] Open
Abstract
Advances in neuroimaging acquisition protocols and denoising techniques, along with increasing magnetic field strengths, have dramatically improved the temporal signal-to-noise ratio (tSNR) in functional magnetic resonance imaging (fMRI). This permits spatial resolution with submillimeter voxel sizes and ultrahigh temporal resolution and opens a route toward performing precision fMRI in the brains of individuals. Yet ultrahigh spatial and temporal resolution comes at a cost: it reduces tSNR and, therefore, the sensitivity to the blood oxygen level-dependent (BOLD) effect and other functional contrasts across the brain. Here we investigate the potential of various smoothing filters to improve BOLD sensitivity while preserving the spatial accuracy of activated clusters in single-subject analysis. We introduce adaptive-weight smoothing with optimized metrics (AWSOM), which addresses this challenge extremely well. AWSOM employs a local inference approach that is as sensitive as cluster-corrected inference of data smoothed with large Gaussian kernels, but it preserves spatial details across multiple tSNR levels. This is essential for examining whole-brain fMRI data because tSNR varies across the entire brain, depending on the distance of a brain region from the receiver coil, the type of setup, acquisition protocol, preprocessing, and resolution. We found that cluster correction in single subjects results in inflated family-wise error and false positive rates. AWSOM effectively suppresses false positives while remaining sensitive even to small clusters of activated voxels. Furthermore, it preserves signal integrity, that is, the relative activation strength of significant voxels, making it a valuable asset for a wide range of fMRI applications. Here we demonstrate these features and make AWSOM freely available to the research community for download.
Collapse
Affiliation(s)
- Igor Fabian Tellez Ceja
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.)BerlinGermany
- Charité—Universitätsmedizin BerlinBerlinGermany
| | - Thomas Gladytz
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.)BerlinGermany
| | - Ludger Starke
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.)BerlinGermany
| | - Karsten Tabelow
- Weierstrass Institute for Applied Analysis and StochasticsBerlinGermany
| | - Thoralf Niendorf
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.)BerlinGermany
- Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max‐Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Henning Matthias Reimann
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.)BerlinGermany
| |
Collapse
|
10
|
Zhao LS, Raithel CU, Tisdall MD, Detre JA, Gottfried JA. Leveraging Multi-Echo EPI to Enhance BOLD Sensitivity in Task-based Olfactory fMRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575530. [PMID: 38293143 PMCID: PMC10827088 DOI: 10.1101/2024.01.15.575530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Functional magnetic resonance imaging (fMRI) using blood-oxygenation-level-dependent (BOLD) contrast relies on gradient echo echo-planar imaging (GE-EPI) to quantify dynamic susceptibility changes associated with the hemodynamic response to neural activity. However, acquiring BOLD fMRI in human olfactory regions is particularly challenging due to their proximity to the sinuses where large susceptibility gradients induce magnetic field distortions. BOLD fMRI of the human olfactory system is further complicated by respiratory artifacts that are highly correlated with event onsets in olfactory tasks. Multi-echo EPI (ME-EPI) acquires gradient echo data at multiple echo times (TEs) during a single acquisition and can leverage signal evolution over the multiple echo times to enhance BOLD sensitivity and reduce artifactual signal contributions. In the current study, we developed a ME-EPI acquisition protocol for olfactory task-based fMRI and demonstrated significant improvement in BOLD signal sensitivity over conventional single-echo EPI (1E-EPI). The observed improvement arose from both an increase in BOLD signal changes through a T 2 * -weighted echo combination and a reduction in non-BOLD artifacts through the application of the Multi-Echo Independent Components Analysis (ME-ICA) denoising method. This study represents one of the first direct comparisons between 1E-EPI and ME-EPI in high-susceptibility regions and provides compelling evidence in favor of using ME-EPI for future task-based fMRI studies.
Collapse
|
11
|
Faes LK, Lage-Castellanos A, Valente G, Yu Z, Cloos MA, Vizioli L, Moeller S, Yacoub E, De Martino F. Evaluating the effect of denoising submillimeter auditory fMRI data with NORDIC. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:1-18. [PMID: 39810817 PMCID: PMC11726685 DOI: 10.1162/imag_a_00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 01/16/2025]
Abstract
Functional magnetic resonance imaging (fMRI) has emerged as an essential tool for exploring human brain function. Submillimeter fMRI, in particular, has emerged as a tool to study mesoscopic computations. The inherently low signal-to-noise ratio (SNR) at submillimeter resolutions warrants the use of denoising approaches tailored at reducing thermal noise-the dominant contributing noise component in high-resolution fMRI. NOise Reduction with DIstribution Corrected Principal Component Analysis (NORDIC PCA) is one of such approaches, and has been benchmarked against other approaches in several applications. Here, we investigate the effects that two versions of NORDIC denoising have on auditory submillimeter data. While investigating auditory functional responses poses unique challenges, we anticipated NORDIC to have a positive impact on the data on the basis of previous applications. Our results show that NORDIC denoising improves the detection sensitivity and the reliability of estimates in submillimeter auditory fMRI data. These effects can be explained by the reduction of the noise-induced signal variability. However, we did observe a reduction in the average response amplitude (percent signal change) within regions of interest, which may suggest that a portion of the signal of interest, which could not be distinguished from general i.i.d. noise, was also removed. We conclude that, while evaluating the effects of the signal reduction induced by NORDIC may be necessary for each application, using NORDIC in high-resolution auditory fMRI studies may be advantageous because of the large reduction in variability of the estimated responses.
Collapse
Affiliation(s)
- Lonike K. Faes
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Agustin Lage-Castellanos
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neuroinformatics, Cuban Neuroscience Center, Havana City, Cuba
| | - Giancarlo Valente
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Zidan Yu
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, United States
- MRI Research Center, University of Hawaii, Honolulu, HI, United States
| | - Martijn A. Cloos
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, United States
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Australia
| | - Luca Vizioli
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Steen Moeller
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Federico De Martino
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
12
|
Herthum H, Hetzer S. Tensor denoising of quantitative multi-parameter mapping. Magn Reson Med 2024; 92:145-157. [PMID: 38368616 DOI: 10.1002/mrm.30050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
PURPOSE Quantitative multi-parameter mapping (MPM) provides maps of physical quantities representing physiologically meaningful tissue characteristics, which allows to investigate microstructure-function relationships reflecting normal or pathologic processes in the brain. However, the achievable spatial resolution and stability of MPM for basic research or clinical applications is severely constrained by SNR limits of the MR acquisition process, resulting in relatively long acquisition times. To increase SNR, we denoise MPM acquisitions using principal component analysis along tensors exploiting the Marchenko-Pastur law (tMPPCA). METHODS tMPPCA denoising was applied to three sets of MPM raw data before the quantification of maps of proton density, magnetization transfer saturation, R1, and R2*. The regional SNR gain for high-resolution MPM was investigated as well as reproducibility gains for clinically optimized protocols with moderate and high acceleration factors at different image resolutions. RESULTS Substantial noise reduction in raw data was achieved, resulting in reduced noise for quantitative mapping up to sixfold without introducing bias of mean values (below 1%). Scan-rescan fluctuations were reduced up to threefold. Denoising allowed to decrease the voxel volume fourfold at the same scan time or reduce the scan time twofold at same voxel volume without loss of sensitivity. CONCLUSIONS tMPPCA denoising can (a) improve of fine spatial and temporal patterns, (b) considerably reduce scan time for clinical applications, or (c) increase resolution to potentially push cutting-edge MPM protocols from the upper to the lower limit of the mesoscopic scale.
Collapse
Affiliation(s)
- Helge Herthum
- Berlin Center for Advanced Neuroimaging, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Hetzer
- Berlin Center for Advanced Neuroimaging, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
13
|
Moore LA, Hermosillo RJM, Feczko E, Moser J, Koirala S, Allen MC, Buss C, Conan G, Juliano AC, Marr M, Miranda-Dominguez O, Mooney M, Myers M, Rasmussen J, Rogers CE, Smyser CD, Snider K, Sylvester C, Thomas E, Fair DA, Graham AM. Towards personalized precision functional mapping in infancy. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:1-20. [PMID: 40083644 PMCID: PMC11899874 DOI: 10.1162/imag_a_00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/12/2024] [Accepted: 04/04/2024] [Indexed: 03/16/2025]
Abstract
The precise network topology of functional brain systems is highly specific to individuals and undergoes dramatic changes during critical periods of development. Large amounts of high-quality resting state data are required to investigate these individual differences, but are difficult to obtain in early infancy. Using the template matching method, we generated a set of infant network templates to use as priors for individualized functional resting-state network mapping in two independent neonatal datasets with extended acquisition of resting-state functional MRI (fMRI) data. We show that template matching detects all major adult resting-state networks in individual infants and that the topology of these resting-state network maps is individual-specific. Interestingly, there was no plateau in within-subject network map similarity with up to 25 minutes of resting-state data, suggesting that the amount and/or quality of infant data required to achieve stable or high-precision network maps is higher than adults. These findings are a critical step towards personalized precision functional brain mapping in infants, which opens new avenues for clinical applicability of resting-state fMRI and potential for robust prediction of how early functional connectivity patterns relate to subsequent behavioral phenotypes and health outcomes.
Collapse
Affiliation(s)
- Lucille A. Moore
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, United States
| | - Robert J. M. Hermosillo
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, United States
| | - Eric Feczko
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Julia Moser
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, United States
- Institute of Child Development, University of Minnesota, Minneapolis, MN, United States
| | - Sanju Koirala
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, United States
- Institute of Child Development, University of Minnesota, Minneapolis, MN, United States
| | - Madeleine C. Allen
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Claudia Buss
- Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Greg Conan
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, United States
| | - Anthony C. Juliano
- Department of Psychiatry, University of Vermont, Burlington, VT, United States
| | - Mollie Marr
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Oscar Miranda-Dominguez
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, United States
| | - Michael Mooney
- Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, Portland, OR, United States
| | - Michael Myers
- Department of Psychiatry, Washington University, St. Louis, MO, United States
| | - Jerod Rasmussen
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, United States
- Department of Pediatrics, University of California, Irvine, CA, United States
| | - Cynthia E. Rogers
- Department of Psychiatry, Washington University, St. Louis, MO, United States
| | - Christopher D. Smyser
- Departments of Neurology, Radiology, and Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Kathy Snider
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Chad Sylvester
- Department of Psychiatry, Washington University, St. Louis, MO, United States
| | - Elina Thomas
- Department of Neuroscience, Earlham College, Richmond, IN, United States
| | - Damien A. Fair
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- Institute of Child Development, University of Minnesota, Minneapolis, MN, United States
- College of Education and Human Development, University of Minnesota, Minneapolis, MN, United States
| | - Alice M. Graham
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
14
|
Faes LK, Lage-Castellanos A, Valente G, Yu Z, Cloos MA, Vizioli L, Moeller S, Yacoub E, De Martino F. Evaluating the effect of denoising submillimeter auditory fMRI data with NORDIC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577070. [PMID: 38328173 PMCID: PMC10849717 DOI: 10.1101/2024.01.24.577070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Functional magnetic resonance imaging (fMRI) has emerged as an essential tool for exploring human brain function. Submillimeter fMRI, in particular, has emerged as a tool to study mesoscopic computations. The inherently low signal-to-noise ratio (SNR) at submillimeter resolutions warrants the use of denoising approaches tailored at reducing thermal noise - the dominant contributing noise component in high resolution fMRI. NORDIC PCA is one of such approaches, and has been benchmarked against other approaches in several applications. Here, we investigate the effects that two versions of NORDIC denoising have on auditory submillimeter data. As investigating auditory functional responses poses unique challenges, we anticipated that the benefit of this technique would be especially pronounced. Our results show that NORDIC denoising improves the detection sensitivity and the reliability of estimates in submillimeter auditory fMRI data. These effects can be explained by the reduction of the noise-induced signal variability. However, we also observed a reduction in the average response amplitude (percent signal), which may suggest that a small amount of signal was also removed. We conclude that, while evaluating the effects of the signal reduction induced by NORDIC may be necessary for each application, using NORDIC in high resolution auditory fMRI studies may be advantageous because of the large reduction in variability of the estimated responses.
Collapse
Affiliation(s)
- Lonike K. Faes
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Agustin Lage-Castellanos
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, The Netherlands
- Department of Neuroinformatics, Cuban Neuroscience Center, Havana City 11600, Cuba
| | - Giancarlo Valente
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Zidan Yu
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
- MRI Research Center, University of Hawaii, United States
| | - Martijn A. Cloos
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia 4066, Australia
| | - Luca Vizioli
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Steen Moeller
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Federico De Martino
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, The Netherlands
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
15
|
Krimmel SR, Laumann TO, Chauvin RJ, Hershey T, Roland JL, Shimony JS, Willie JT, Norris SA, Marek S, Van AN, Monk J, Scheidter KM, Whiting F, Ramirez-Perez N, Metoki A, Wang A, Kay BP, Nahman-Averbuch H, Fair DA, Lynch CJ, Raichle ME, Gordon EM, Dosenbach NUF. The brainstem's red nucleus was evolutionarily upgraded to support goal-directed action. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.30.573730. [PMID: 38260662 PMCID: PMC10802246 DOI: 10.1101/2023.12.30.573730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The red nucleus is a large brainstem structure that coordinates limb movement for locomotion in quadrupedal animals (Basile et al., 2021). The humans red nucleus has a different pattern of anatomical connectivity compared to quadrupeds, suggesting a unique purpose (Hatschek, 1907). Previously the function of the human red nucleus remained unclear at least partly due to methodological limitations with brainstem functional neuroimaging (Sclocco et al., 2018). Here, we used our most advanced resting-state functional connectivity (RSFC) based precision functional mapping (PFM) in highly sampled individuals (n = 5) and large group-averaged datasets (combined N ~ 45,000), to precisely examine red nucleus functional connectivity. Notably, red nucleus functional connectivity to motor-effector networks (somatomotor hand, foot, and mouth) was minimal. Instead, red nucleus functional connectivity along the central sulcus was specific to regions of the recently discovered somato-cognitive action network (SCAN; (Gordon et al., 2023)). Outside of primary motor cortex, red nucleus connectivity was strongest to the cingulo-opercular (CON) and salience networks, involved in action/cognitive control (Dosenbach et al., 2007; Newbold et al., 2021) and reward/motivated behavior (Seeley, 2019), respectively. Functional connectivity to these two networks was organized into discrete dorsal-medial and ventral-lateral zones. Red nucleus functional connectivity to the thalamus recapitulated known structural connectivity of the dento-rubral thalamic tract (DRTT) and could prove clinically useful in functionally targeting the ventral intermediate (VIM) nucleus. In total, our results indicate that far from being a 'motor' structure, the red nucleus is better understood as a brainstem nucleus for implementing goal-directed behavior, integrating behavioral valence and action plans.
Collapse
Affiliation(s)
- Samuel R Krimmel
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Roselyne J Chauvin
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tamara Hershey
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Psychological & Brain Sciences, Washington University, St. Louis, Missouri, USA
| | - Jarod L Roland
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jon T Willie
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, New York, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri
| | - Scott A Norris
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Scott Marek
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew N Van
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| | - Julia Monk
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kristen M Scheidter
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Forrest Whiting
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nadeshka Ramirez-Perez
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Athanasia Metoki
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Anxu Wang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Computation and Data Science, Washington University, St. Louis, Missouri, USA
| | - Benjamin P Kay
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hadas Nahman-Averbuch
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Damien A Fair
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota, USA
- Institute of Child Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Charles J Lynch
- Department of Psychiatry, Weill Cornell Medicine, New York, New York, USA
| | - Marcus E Raichle
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Psychological & Brain Sciences, Washington University, St. Louis, Missouri, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| | - Evan M Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Psychological & Brain Sciences, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
- Program in Occupational Therapy, Washington University, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
16
|
Kaptan M, Horn U, Vannesjo SJ, Mildner T, Weiskopf N, Finsterbusch J, Brooks JCW, Eippert F. Reliability of resting-state functional connectivity in the human spinal cord: Assessing the impact of distinct noise sources. Neuroimage 2023; 275:120152. [PMID: 37142169 PMCID: PMC10262064 DOI: 10.1016/j.neuroimage.2023.120152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023] Open
Abstract
The investigation of spontaneous fluctuations of the blood-oxygen-level-dependent (BOLD) signal has recently been extended from the brain to the spinal cord, where it has stimulated interest from a clinical perspective. A number of resting-state functional magnetic resonance imaging (fMRI) studies have demonstrated robust functional connectivity between the time series of BOLD fluctuations in bilateral dorsal horns and between those in bilateral ventral horns, in line with the functional neuroanatomy of the spinal cord. A necessary step prior to extension to clinical studies is assessing the reliability of such resting-state signals, which we aimed to do here in a group of 45 healthy young adults at the clinically prevalent field strength of 3T. When investigating connectivity in the entire cervical spinal cord, we observed fair to good reliability for dorsal-dorsal and ventral-ventral connectivity, whereas reliability was poor for within- and between-hemicord dorsal-ventral connectivity. Considering how prone spinal cord fMRI is to noise, we extensively investigated the impact of distinct noise sources and made two crucial observations: removal of physiological noise led to a reduction in functional connectivity strength and reliability - due to the removal of stable and participant-specific noise patterns - whereas removal of thermal noise considerably increased the detectability of functional connectivity without a clear influence on reliability. Finally, we also assessed connectivity within spinal cord segments and observed that while the pattern of connectivity was similar to that of whole cervical cord, reliability at the level of single segments was consistently poor. Taken together, our results demonstrate the presence of reliable resting-state functional connectivity in the human spinal cord even after thoroughly accounting for physiological and thermal noise, but at the same time urge caution if focal changes in connectivity (e.g. due to segmental lesions) are to be studied, especially in a longitudinal manner.
Collapse
Affiliation(s)
- Merve Kaptan
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Ulrike Horn
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - S Johanna Vannesjo
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Toralf Mildner
- Methods & Development Group Nuclear Magnetic Resonance, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, University of Leipzig, Leipzig, Germany
| | - Jürgen Finsterbusch
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonathan C W Brooks
- School of Psychology, University of East Anglia Wellcome Wolfson Brain Imaging Centre (UWWBIC), Norwich, UK
| | - Falk Eippert
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
17
|
Fernandes FF, Olesen JL, Jespersen SN, Shemesh N. MP-PCA denoising of fMRI time-series data can lead to artificial activation "spreading". Neuroimage 2023; 273:120118. [PMID: 37062372 DOI: 10.1016/j.neuroimage.2023.120118] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023] Open
Abstract
MP-PCA denoising has become the method of choice for denoising MRI data since it provides an objective threshold to separate the signal components from unwanted thermal noise components. In rodents, thermal noise in the coils is an important source of noise that can reduce the accuracy of activation mapping in fMRI. Further confounding this problem, vendor data often contains zero-filling and other post-processing steps that may violate MP-PCA assumptions. Here, we develop an approach to denoise vendor data and assess activation "spreading" caused by MP-PCA denoising in rodent task-based fMRI data. Data was obtained from N = 3 mice using conventional multislice and ultrafast acquisitions (1 s and 50 ms temporal resolution, respectively), during visual stimulation. MP-PCA denoising produced SNR gains of 64% and 39% and Fourier Spectral Amplitude (FSA) increases in BOLD maps of 9% and 7% for multislice and ultrafast data, respectively, when using a small [2 2] denoising window. Larger windows provided higher SNR and FSA gains with increased spatial extent of activation that may or may not represent real activation. Simulations showed that MP-PCA denoising can incur activation "spreading" with increased false positive rate and smoother functional maps due to local "bleeding" of principal components, and that the optimal denoising window for improved specificity of functional mapping, based on Dice score calculations, depends on the data's tSNR and functional CNR. This "spreading" effect applies also to another recently proposed low-rank denoising method (NORDIC), although to a lesser degree. Our results bode well for enhancing spatial and/or temporal resolution in future fMRI work, while taking into account the sensitivity/specificity trade-offs of low-rank denoising methods.
Collapse
Affiliation(s)
| | - Jonas L Olesen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Sune N Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal.
| |
Collapse
|