1
|
Coudert T, Delphin A, Barrier A, Legris L, Warnking JM, Lamalle L, Doneva M, Lemasson B, Barbier EL, Christen T. Relaxometry and contrast-free cerebral microvascular quantification using balanced steady-state free precession MR fingerprinting. Magn Reson Med 2025; 94:302-316. [PMID: 39825561 DOI: 10.1002/mrm.30434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/11/2024] [Accepted: 12/31/2024] [Indexed: 01/20/2025]
Abstract
PURPOSE This study proposes a novel, contrast-free Magnetic Resonance Fingerprinting (MRF) method using balanced Steady-State Free Precession (bSSFP) sequences for the quantification of cerebral blood volume (CBV), vessel radius (R), and relaxometry parameters (T 1 $$ {}_1 $$ , T 2 $$ {}_2 $$ , T 2 $$ {}_2 $$ *) in the brain. METHODS The technique leverages the sensitivity of bSSFP sequences to intra-voxel frequency distributions in both transient and steady-state regimes. A dictionary-matching process is employed, using simulations of realistic mouse microvascular networks to generate the MRF dictionary. The method is validated through in silico and in vivo experiments on six healthy subjects, comparing results with standard MRF methods and literature values. RESULTS The proposed method shows strong correlation and agreement with standard MRF methods for T 1 $$ {}_1 $$ and T 2 $$ {}_2 $$ values. High-resolution maps provide detailed visualizations of CBV and microvascular structures, highlighting differences in white matter (WM) and gray matter (GM) regions. The measured GM/WM ratio for CBV is 1.91, consistent with literature values. CONCLUSION This contrast-free bSSFP-based MRF method offers an new approach for quantifying CBV, vessel radius, and relaxometry parameters. Further validation against DSC imaging and clinical studies in pathological conditions is warranted to confirm its clinical utility.
Collapse
Affiliation(s)
- Thomas Coudert
- Université Grenoble Alpes, INSERM, U1216, Grenoble Institute Neurosciences, GIN, Grenoble, France
| | - Aurélien Delphin
- Université Grenoble Alpes, INSERM, US17, CNRS, UAR3552, CHU Grenoble Alpes, IRMaGe, Grenoble, France
| | - Antoine Barrier
- Université Grenoble Alpes, INSERM, U1216, Grenoble Institute Neurosciences, GIN, Grenoble, France
| | - Loïc Legris
- Université Grenoble Alpes, INSERM, U1216, Grenoble Institute Neurosciences, GIN, Grenoble, France
- Université Grenoble Alpes, Stroke Unit, Department of Neurology, CHU Grenoble Alpes, Grenoble, France
| | - Jan M Warnking
- Université Grenoble Alpes, INSERM, U1216, Grenoble Institute Neurosciences, GIN, Grenoble, France
- Université Grenoble Alpes, INSERM, US17, CNRS, UAR3552, CHU Grenoble Alpes, IRMaGe, Grenoble, France
| | - Laurent Lamalle
- Université Grenoble Alpes, INSERM, US17, CNRS, UAR3552, CHU Grenoble Alpes, IRMaGe, Grenoble, France
| | | | - Benjamin Lemasson
- Université Grenoble Alpes, INSERM, U1216, Grenoble Institute Neurosciences, GIN, Grenoble, France
| | - Emmanuel L Barbier
- Université Grenoble Alpes, INSERM, U1216, Grenoble Institute Neurosciences, GIN, Grenoble, France
| | - Thomas Christen
- Université Grenoble Alpes, INSERM, U1216, Grenoble Institute Neurosciences, GIN, Grenoble, France
| |
Collapse
|
2
|
Dennison JB, Langham MC, Wiemken AS, Xu J, Schwab RJ, Detre JA, Wehrli FW. Concurrent evaluation of cerebral oxygen metabolism and upper airway architecture via temporally resolved MRI. J Cereb Blood Flow Metab 2025:271678X251345293. [PMID: 40415373 PMCID: PMC12106373 DOI: 10.1177/0271678x251345293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/27/2025] [Accepted: 05/02/2025] [Indexed: 05/27/2025]
Abstract
Obstructive sleep apnea (OSA) disrupts the oxygen supply during apneic and hypopneic events. To evaluate the feasibility of concurrently monitoring cerebral metabolic rate of oxygen (CMRO2) and airway anatomy, a magnetic resonance imaging (MRI) pulse sequence was developed that interleaves measurements of CMRO2 with anatomic imaging of the upper airway at a temporal resolution of 5 seconds. The sequence was first tested in healthy subjects during wakefulness to detect the effect of volitional breath-hold and swallowing apneas on neuro-metabolic parameters and airway morphology. Subsequently, select patients with diagnosed OSA and healthy reference subjects were scanned during 90 minutes of wakefulness and sleep with concurrent electroencephalographic (EEG) monitoring and airway plethysmography. During non-rapid eye movement sleep, changes in metabolic parameters caused by neurovascular-metabolic uncoupling were detected, resulting in sleep-stage dependent reductions in the CMRO2. Spontaneous apneas were visible in airway images and confirmed plethysmographically. Recurrent apneas in patients during N1 and N2 sleep led to increased SvO2 and CBF (hypercapnic-hypoxic response) and decreases in SaO2 (hypoxemic response from airway closure) resulting in CMRO2 reductions as large 60%. The results demonstrate the MRI potential of noninvasive assessment of the dynamic changes in airway anatomy and brain metabolism in OSA during sleep.
Collapse
Affiliation(s)
- Jeffrey B Dennison
- Department of Radiology, Perelman School of Medicine, University of Philadelphia, Pennsylvania, PA, USA
| | - Michael C Langham
- Department of Radiology, Perelman School of Medicine, University of Philadelphia, Pennsylvania, PA, USA
| | - Andrew S Wiemken
- Department of Sleep Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jing Xu
- Department of Radiology, Perelman School of Medicine, University of Philadelphia, Pennsylvania, PA, USA
- Information Management & Decision-making Science, Shanghai International Studies University, Shanghai, China
| | - Richard J Schwab
- Department of Sleep Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John A Detre
- Departments of Neurology and Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Felix W Wehrli
- Department of Radiology, Perelman School of Medicine, University of Philadelphia, Pennsylvania, PA, USA
| |
Collapse
|
3
|
Yan S, Lu J, Duan B, Zhang S, Liu D, Qin Y, Dimov AV, Cho J, Li Y, Zhu W, Wang Y. Potential Separation of Multiple System Atrophy and Parkinson's Disease by Susceptibility-derived Components. Neuroimage 2025:121241. [PMID: 40286829 DOI: 10.1016/j.neuroimage.2025.121241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 04/10/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Substantial evidence emphasizes the dysregulation of iron homeostasis, demyelination and oxidative stress in the neurodegenerative process of multiple system atrophy (MSA) and Parkinson's disease (PD), although its clinical implications remain unclear. Recent MRI post-processing techniques leveraging magnetic susceptibility properties provide a noninvasive means to characterize iron, myelin content and oxygen metabolism alterations. This study aims to investigate subcortical alterations of susceptibility-derived metrics in these two synucleinopathies. METHODS A cohort comprising 180 patients (122 with PD and 58 with MSA) and 77 healthy controls (HCs) underwent clinical evaluation and multi-echo gradient echo MRI scans. Susceptibility source separation, susceptibility-based oxygen extraction fraction (OEF) mapping and semiautomatic subcortical nuclei segmentation were utilized to derive parametric values of deep gray matter in all subjects. RESULTS MSA patients showed markedly elevated paramagnetic susceptibility values in the putamen, globus pallidus (GP) and thalamus; increased diamagnetic susceptibility values in the putamen and dentate nucleus; and reduced OEF values across all nuclei compared with PD patients and HCs. Whereas PD exhibited increased positive susceptibility values in the substantia nigra and enhancing negative values in the GP, similar to MSA. Notably, age-related reductions in OEF were evident in HCs, which was altered by the MSA pathology. Paramagnetic susceptibility was correlated with disease severity. Moreover, the susceptibility-derived metrics of striatum and midbrain nuclei proved to be effective predictors to distinguish PD from MSA (AUC = 0.833). CONCLUSION Susceptibility-derived metrics could detect pathological involvement distinct to each disease, offering significant potential for differentiating between MSA and PD in clinical settings.
Collapse
Affiliation(s)
- Su Yan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Lu
- Department of CT & MRI, The First Affiliated Hospital, College of Medicine, Shihezi University, Shihezi, China, 107 North Second Road
| | - Bingfang Duan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Qin
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alexey V Dimov
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Junghun Cho
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Yuanhao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
4
|
Shen Y, Zhang L, Ding G, Boyd E, Kaur J, Li Q, Haacke EM, Hu J, Jiang Q. Vascular Contribution to Cerebral Waste Clearance Affected by Aging or Diabetes. Diagnostics (Basel) 2025; 15:1019. [PMID: 40310437 PMCID: PMC12026099 DOI: 10.3390/diagnostics15081019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/05/2025] [Accepted: 04/15/2025] [Indexed: 05/02/2025] Open
Abstract
Background: The brain's vascular system has recently been shown to provide an important efflux pathway for cerebral waste clearance (CWC). However, little is known about the influence of aging or diabetes on the CWC. The aim of the current study is to investigate the vasculature contribution to CWC under aging and diabetic conditions. Methods: Male Wistar rats under aging and diabetic conditions were evaluated using dynamic intra-cisterna superparamagnetic iron oxide-enhanced susceptibility-weighted imaging (SPIO-SWI). Theoretical analysis of the expected signal intensity using SPIO-SWI was compared with the corresponding dynamic in vivo images. Quantitative susceptibility mapping (QSM) was used to evaluate the iron-based tracer concentration in the venous system. Results: Our data demonstrated that the theoretical analysis predicted the dynamic changes in the signal intensity after SPIO infusion. The distinct hyperintense signals due to the lower concentration of the SPIO over time in cerebrospinal fluid (CSF) and meningeal lymphatic (ML) vessels likely represented the CWC through various efflux pathways, including cerebral vascular and ML vessels. The QSM analysis further revealed reduced CWC from the vasculature in both the aged and diabetic groups compared to the younger group. Conclusions: Our results demonstrated that SPIO-SWI can quantitatively evaluate the CWC efflux contributions from cerebral vascular vessels under aging or diabetic conditions.
Collapse
Affiliation(s)
- Yimin Shen
- Department of Radiology, Wayne State University, Detroit, MI 48202, USA; (Y.S.); (E.M.H.); (J.H.)
| | - Li Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (L.Z.); (G.D.); (E.B.); (J.K.); (Q.L.)
- Department of Neurology, Michigan State University, East Lansing, MI 48824, USA
| | - Guangliang Ding
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (L.Z.); (G.D.); (E.B.); (J.K.); (Q.L.)
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| | - Edward Boyd
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (L.Z.); (G.D.); (E.B.); (J.K.); (Q.L.)
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| | - Jasleen Kaur
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (L.Z.); (G.D.); (E.B.); (J.K.); (Q.L.)
| | - Qingjiang Li
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (L.Z.); (G.D.); (E.B.); (J.K.); (Q.L.)
| | - E. Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI 48202, USA; (Y.S.); (E.M.H.); (J.H.)
- Department of Neurology, Wayne State University, Detroit, MI 48202, USA
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, MI 48202, USA; (Y.S.); (E.M.H.); (J.H.)
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (L.Z.); (G.D.); (E.B.); (J.K.); (Q.L.)
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Neurology, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
5
|
Kataike VM, Desmond PM, Steward C, Campbell BCV, Mitchell PJ, Ng F, Venkatraman V. Oxygen extraction fraction changes in ischemic tissue from 24-72 hours to 12 months after successful reperfusion. J Cereb Blood Flow Metab 2025:271678X251333940. [PMID: 40219845 PMCID: PMC11993554 DOI: 10.1177/0271678x251333940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025]
Abstract
Oxygen Extraction Fraction (OEF) is a critical measure of a tissue's metabolic state post-ischemic stroke. This study investigated OEF changes in stroke-affected tissue compared to healthy tissue, post-reperfusion. OEF maps generated from gradient echo MRI images of 87 ischemic stroke patients at three time points after successful Endovascular Thrombectomy (EVT) were analysed in a prospective longitudinal multicentre study. Regions of interest (ROIs) delineating the infarct areas and corresponding mirror regions were drawn. The MR-derived OEF index values were obtained from the ROIs and compared using Wilcoxon signed rank tests. The cross-sectional comparison of OEF index values revealed lower values in the infarct areas than the corresponding contralateral areas at all three time points after successful EVT, presented as median (interquartile range) [24-72 hours: 20.84 (17.56-26.82)% vs 27.56 (23.22-31.87)%; 3 months: 27.37 (23.28-30.35)% vs 32.55 (28.00-35.81)%; 12 months: 24.38 (22.35-29.77)% vs 29.39 (25.86-34.04)%, p < 0.001 for all three time points]. Longitudinally, relative OEF index values increased gradually over time [24-72 hours: 0.81 (0.67-0.87); 3 months: 0.86 (0.79-0.95); 12 months: 0.88 (0.75-0.95)]. The findings revealed that following successful EVT, OEF in infarct tissue improves over time, indicating potential tissue recovery.Trial registration name and URL: Post-Reperfusion Pathophysiology in Acute Ischemic Stroke https://trialsearch.who.int/Trial2.aspx?TrialID=ACTRN12624000629538.
Collapse
Affiliation(s)
| | - Patricia M Desmond
- Department of Radiology, The University of Melbourne, Parkville, VIC, Australia
- Department of Medical Imaging, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Christopher Steward
- Department of Radiology, The University of Melbourne, Parkville, VIC, Australia
- Department of Medical Imaging, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Bruce CV Campbell
- Department of Medicine at The Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Department of Neurology, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Peter J Mitchell
- Department of Radiology, The University of Melbourne, Parkville, VIC, Australia
- Department of Medical Imaging, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Felix Ng
- Department of Medicine at The Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Department of Neurology, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Neurology, Austin Health, Heidelberg, VIC, Australia
| | - Vijay Venkatraman
- Department of Radiology, The University of Melbourne, Parkville, VIC, Australia
- Department of Medical Imaging, The Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
6
|
Elanghovan P, Nguyen T, Spincemaille P, Gupta A, Wang Y, Cho J. Sensitivity assessment of QSM+qBOLD (or QQ) in detecting elevated oxygen extraction fraction (OEF) in physiological change. J Cereb Blood Flow Metab 2025; 45:735-745. [PMID: 39501700 PMCID: PMC11951439 DOI: 10.1177/0271678x241298584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 02/12/2025]
Abstract
The study investigated the sensitivity of a novel MRI-based OEF mapping, quantitative susceptibility mapping plus quantitative blood oxygen level-dependent imaging (QSM+qBOLD or QQ), to physiological changes, particularly increased oxygen extraction fraction (OEF) by using hyperventilation as a vasoconstrictive stimulus. While QQ's sensitivity to decreased OEF during hypercapnia has been demonstrated, its sensitivity to increased OEF levels, crucial for cerebrovascular disorders like vascular dementia and Parkinson's disease, remains unexplored. In comparison with a previous QSM-based OEF, we evaluated QQ's sensitivity to high OEF values. MRI data were obtained from 11 healthy subjects during resting state (RS) and hyperventilation state (HV) using a 3 T MRI with a three-dimensional multi-echo gradient echo sequence (mGRE) and arterial spin labeling (ASL). Region of interest (ROI) analysis and paired t-tests were used to compare OEF, CMRO2 and CBF between QQ and QSM. Similar to QSM, QQ showed higher OEF during HV compared to RS: in cortical gray matter, QQ-OEF and QSM-OEF was 36.4 ± 4.7% and 35.3 ± 12.5% at RS and 45.0 ± 11.6% and 45.0 ± 14.8% in HV, respectively. These findings demonstrate QQ's ability to detect physiological changes and suggest its potential in studying brain metabolism in neurological disorders.
Collapse
Affiliation(s)
- Praveena Elanghovan
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
| | - Thanh Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | | | - Ajay Gupta
- Department of Radiology, Columbia University, New York, NY, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Junghun Cho
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
7
|
Cherukara MT, Shmueli K. Comparing repeatability metrics for quantitative susceptibility mapping in the head and neck. MAGMA (NEW YORK, N.Y.) 2025:10.1007/s10334-025-01229-3. [PMID: 40024974 DOI: 10.1007/s10334-025-01229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 03/04/2025]
Abstract
OBJECTIVE Quantitative susceptibility mapping (QSM) is a technique that has been demonstrated to be highly repeatable in the brain. As QSM is applied to other parts of the body, it is necessary to investigate metrics for quantifying repeatability, to enable optimization of repeatable QSM reconstruction pipelines beyond the brain. MATERIALS AND METHODS MRI data were acquired in the head and neck (HN) region in ten healthy volunteers, who underwent six acquisitions across two sessions. QSMs were reconstructed using six representative state-of-the-art techniques. Repeatability of the susceptibility values was compared using voxel-wise metrics (normalized root mean squared error and XSIM) and ROI-based metrics (within-subject and between-subject standard deviation, coefficient of variation (CV), intraclass correlation coefficient (ICC)). RESULTS Both within-subject and between-subject variations were smaller than the variation between QSM dipole inversion methods, in most ROIs. autoNDI produced the most repeatable susceptibility values, with ICC > 0.75 in three of six HN ROIs with an average ICC of 0.66 across all ROIs. Joint consideration of standard deviation and ICC offered the best metric of repeatability for comparisons between QSM methods, given typical distributions of positive and negative QSM values. DISCUSSION Repeatability of QSM in the HN region is highly dependent on the dipole inversion method chosen, but the most repeatable methods (autoNDI, QSMnet, TFI) are only moderately repeatable in most HN ROIs.
Collapse
Affiliation(s)
- Matthew T Cherukara
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
| | - Karin Shmueli
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| |
Collapse
|
8
|
Guo Y, Lin Z, Fan Z, Tian X. Epileptic brain network mechanisms and neuroimaging techniques for the brain network. Neural Regen Res 2024; 19:2637-2648. [PMID: 38595282 PMCID: PMC11168515 DOI: 10.4103/1673-5374.391307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/08/2023] [Accepted: 11/22/2023] [Indexed: 04/11/2024] Open
Abstract
Epilepsy can be defined as a dysfunction of the brain network, and each type of epilepsy involves different brain-network changes that are implicated differently in the control and propagation of interictal or ictal discharges. Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice. An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tractography, diffusion kurtosis imaging-based fiber tractography, fiber ball imaging-based tractography, electroencephalography, functional magnetic resonance imaging, magnetoencephalography, positron emission tomography, molecular imaging, and functional ultrasound imaging have been extensively used to delineate epileptic networks. In this review, we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy, and extensively analyze the imaging mechanisms, advantages, limitations, and clinical application ranges of each technique. A greater focus on emerging advanced technologies, new data analysis software, a combination of multiple techniques, and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions.
Collapse
Affiliation(s)
- Yi Guo
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Zhonghua Lin
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Zhen Fan
- Department of Geriatrics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Xin Tian
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Kataike VM, Desmond PM, Steward C, Mitchell PJ, Davey C, Yassi N, Bivard A, Parsons MW, Campbell BCV, Ng F, Venkatraman V. Iron changes within infarct tissue in ischemic stroke patients after successful reperfusion quantified using QSM. Neuroradiology 2024; 66:2233-2242. [PMID: 39172165 PMCID: PMC11611990 DOI: 10.1007/s00234-024-03444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
PURPOSE For nearly half of patients who undergo Endovascular Thrombectomy following ischemic stroke, successful recanalisation does not guarantee a good outcome. Understanding the underlying tissue changes in the infarct tissue with the help of biomarkers specific to ischemic stroke could offer valuable insights for better treatment and patient management decisions. Using quantitative susceptibility mapping (QSM) MRI to measure cerebral iron concentration, this study aims to track the progression of iron within the infarct lesion after successful reperfusion. METHODS In a prospective study of 87 ischemic stroke patients, successfully reperfused patients underwent MRI scans at 24-to-72 h and 3 months after reperfusion. QSM maps were generated from gradient-echo MRI images. QSM values, measured in parts per billion (ppb), were extracted from ROIs defining the infarct and mirror homolog in the contralateral hemisphere and were compared cross-sectionally and longitudinally. RESULTS QSM values in the infarct ROIs matched those of the contralateral ROIs at 24-to-72 h, expressed as median (interquartile range) ppb [0.71(-7.67-10.09) vs. 2.20(-10.50-14.05) ppb, p = 0.55], but were higher at 3 months [10.68(-2.30-21.10) vs. -1.27(-12.98-9.82) ppb, p < 0.001]. The infarct QSM values at 3 months were significantly higher than those at 24-to-72 h [10.41(-2.50-18.27) ppb vs. 1.68(-10.36-12.25) ppb, p < 0.001]. Infarct QSM at 24-to-72 h and patient outcome measured at three months did not demonstrate a significant association. CONCLUSION Following successful endovascular reperfusion, iron concentration in infarct tissue, as measured by QSM increases over time compared to that in healthy tissue. However, its significance warrants further investigation.
Collapse
Affiliation(s)
| | - Patricia M Desmond
- Department of Radiology, The University of Melbourne, Parkville, VIC, 3050, Australia
- Department of Medical Imaging, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Christopher Steward
- Department of Radiology, The University of Melbourne, Parkville, VIC, 3050, Australia
- Department of Medical Imaging, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Peter J Mitchell
- Department of Radiology, The University of Melbourne, Parkville, VIC, 3050, Australia
- Department of Medical Imaging, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Christian Davey
- Statistical Consulting Centre, School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - Nawaf Yassi
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Andrew Bivard
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Mark W Parsons
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Department of Neurology, University of New South Wales Southwestern Sydney Clinical School, Ingham Institute for Applied Medical Research, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Bruce C V Campbell
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Felix Ng
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Vijay Venkatraman
- Department of Radiology, The University of Melbourne, Parkville, VIC, 3050, Australia
- Department of Medical Imaging, The Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
10
|
Caldwell HG, Hoiland RL, Bain AR, Howe CA, Carr JMJR, Gibbons TD, Durrer CG, Tymko MM, Stacey BS, Bailey DM, Sekhon MS, MacLeod DB, Ainslie PN. Evidence for direct CO 2 -mediated alterations in cerebral oxidative metabolism in humans. Acta Physiol (Oxf) 2024; 240:e14197. [PMID: 38958262 DOI: 10.1111/apha.14197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
AIM How the cerebral metabolic rates of oxygen and glucose utilization (CMRO2 and CMRGlc, respectively) are affected by alterations in arterial PCO2 (PaCO2) is equivocal and therefore was the primary question of this study. METHODS This retrospective analysis involved pooled data from four separate studies, involving 41 healthy adults (35 males/6 females). Participants completed stepwise steady-state alterations in PaCO2 ranging between 30 and 60 mmHg. The CMRO2 and CMRGlc were assessed via the Fick approach (CBF × arterial-internal jugular venous difference of oxygen or glucose content, respectively) utilizing duplex ultrasound of the internal carotid artery and vertebral artery to calculate cerebral blood flow (CBF). RESULTS The CMRO2 was altered by 0.5 mL × min-1 (95% CI: -0.6 to -0.3) per mmHg change in PaCO2 (p < 0.001) which corresponded to a 9.8% (95% CI: -13.2 to -6.5) change in CMRO2 with a 9 mmHg change in PaCO2 (inclusive of hypo- and hypercapnia). The CMRGlc was reduced by 7.7% (95% CI: -15.4 to -0.08, p = 0.045; i.e., reduction in net glucose uptake) and the oxidative glucose index (ratio of oxygen to glucose uptake) was reduced by 5.6% (95% CI: -11.2 to 0.06, p = 0.049) with a + 9 mmHg increase in PaCO2. CONCLUSION Collectively, the CMRO2 is altered by approximately 1% per mmHg change in PaCO2. Further, glucose is incompletely oxidized during hypercapnia, indicating reductions in CMRO2 are either met by compensatory increases in nonoxidative glucose metabolism or explained by a reduction in total energy production.
Collapse
Affiliation(s)
- Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Collaborative Entity for REsearching Brain Ischemia (CEREBRI), University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthony R Bain
- Department of Kinesiology, Faculty of Human Kinetics, University of Windsor, Windsor, Ontario, Canada
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Travis D Gibbons
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Cody G Durrer
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Michael M Tymko
- Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Human Cerebrovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Mypinder S Sekhon
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Collaborative Entity for REsearching Brain Ischemia (CEREBRI), University of British Columbia, Vancouver, British Columbia, Canada
- Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - David B MacLeod
- Human Pharmacology and Physiology Lab, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
11
|
T AR, K K, Paul JS. Unveiling metabolic patterns in dementia: Insights from high-resolution quantitative blood-oxygenation-level-dependent MRI. Med Phys 2024; 51:6002-6019. [PMID: 38888202 DOI: 10.1002/mp.17173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/12/2024] [Accepted: 05/08/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Oxygen extraction fraction (OEF) and deoxyhemoglobin (DoHb) levels reflect variations in cerebral oxygen metabolism in demented patients. PURPOSE Delineating the metabolic profiles evident throughout different phases of dementia necessitates an integrated analysis of OEF and DoHb levels. This is enabled by leveraging high-resolution quantitative blood oxygenation level dependent (qBOLD) analysis of magnitude images obtained from a multi-echo gradient-echo MRI (mGRE) scan performed on a 3.0 Tesla scanner. METHODS Achieving superior spatial resolution in qBOLD necessitates the utilization of an mGRE scan with only four echoes, which in turn limits the number of measurements compared to the parameters within the qBOLD model. Consequently, it becomes imperative to discard non-essential parameters to facilitate further analysis. This process entails transforming the qBOLD model into a format suitable for fitting the log-magnitude difference (L-MDif) profiles of the four echo magnitudes present in each brain voxel. In order to bolster spatial specificity, the log-difference qBOLD model undergoes refinement into a representative form, termed as r-qBOLD, particularly when applied to class-averaged L-MDif signals derived through k-means clustering of L-MDif signals from all brain voxels into a predetermined number of clusters. The agreement between parameters estimated using r-qBOLD for different cluster sizes is validated using Bland-Altman analysis, and the model's goodness-of-fit is evaluated using aχ 2 ${\chi ^2}$ -test. Retrospective MRI data of Alzheimer's disease (AD), mild cognitive impairment (MCI), and non-demented patients without neuropathological disorders, pacemakers, other implants, or psychiatric disorders, who completed a minimum of three visits prior to MRI enrolment, are utilized for the study. RESULTS Utilizing a cohort comprising 30 demented patients aged 65-83 years in stages 4-6 representing mild, moderate, and severe stages according to the clinical dementia rating (CDR), matched with an age-matched non-demented control group of 18 individuals, we conducted joint observations of OEF and DoHb levels estimated using r-qBOLD. The observations elucidate metabolic signatures in dementia based on OEF and DoHb levels in each voxel. Our principal findings highlight the significance of spatial patterns of metabolic profiles (metabolic patterns) within two distinct regimes: OEF levels exceeding the normal range (S1-regime), and OEF levels below the normal range (S2-regime). The S1-regime, accompanied by low DoHb levels, predominantly manifests in fronto-parietal and perivascular regions with increase in dementia severity. Conversely, the S2-regime, accompanied by low DoHb levels, is observed in medial temporal (MTL) regions. Other regions with abnormal metabolic patterns included the orbitofrontal cortex (OFC), medial-orbital prefrontal cortex (MOPFC), hypothalamus, ventro-medial prefrontal cortex (VMPFC), and retrosplenial cortex (RSP). Dysfunction in the OFC and MOPFC indicated cognitive and emotional impairment, while hypothalamic involvement potentially indicated preclinical dementia. Reduced metabolic activity in the RSP suggested early-stage AD related functional abnormalities. CONCLUSIONS Integrated analysis of OEF and DoHb levels using r-qBOLD reveals distinct metabolic signatures across dementia phases, highlighting regions susceptible to neuronal loss, vascular involvement, and preclinical indicators.
Collapse
Affiliation(s)
- Arun Raj T
- Division of Medical Informatics, School of Informatics, Kerala University of Digital Sciences Innovation & Technology (DUK), Trivandrum, Kerala, India
| | - Karthik K
- Department of Neuroimaging & Interventional Radiology, National Institute of Mental Health and Neuro-Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Joseph Suresh Paul
- Division of Medical Informatics, School of Informatics, Kerala University of Digital Sciences Innovation & Technology (DUK), Trivandrum, Kerala, India
| |
Collapse
|
12
|
Sawan H, Li C, Buch S, Bernitsas E, Haacke EM, Ge Y, Chen Y. Reduced oxygen extraction fraction in deep cerebral veins associated with cognitive impairment in multiple sclerosis. J Cereb Blood Flow Metab 2024; 44:1298-1305. [PMID: 38820447 PMCID: PMC11342723 DOI: 10.1177/0271678x241259551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 06/02/2024]
Abstract
Studying the relationship between cerebral oxygen utilization and cognitive impairment is essential to understanding neuronal functional changes in the disease progression of multiple sclerosis (MS). This study explores the potential of using venous susceptibility in internal cerebral veins (ICVs) as an imaging biomarker for cognitive impairment in relapsing-remitting MS (RRMS) patients. Quantitative susceptibility mapping derived from fully flow-compensated MRI phase data was employed to directly measure venous blood oxygen saturation levels (SvO2) in the ICVs. Results revealed a significant reduction in the susceptibility of ICVs (212.4 ± 30.8 ppb vs 239.4 ± 25.9 ppb) and a significant increase of SvO2 (74.5 ± 1.89% vs 72.4 ± 2.23%) in patients with RRMS compared with age- and sex-matched healthy controls. Both the susceptibility of ICVs (r = 0.508, p = 0.031) and the SvO2 (r = -0.498, p = 0.036) exhibited a moderate correlation with cognitive decline in these patients assessed by the Paced Auditory Serial Addition Test, while no significant correlation was observed with clinical disability measured by the Expanded Disability Status Scale. The findings suggest that venous susceptibility in ICVs has the potential to serve as a specific indicator of oxygen metabolism and cognitive function in RRMS. .
Collapse
Affiliation(s)
- Hasan Sawan
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Chenyang Li
- Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Sagar Buch
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Evanthia Bernitsas
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - E Mark Haacke
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yulin Ge
- Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Yongsheng Chen
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
13
|
Lin Z, Jiang D, Hong Y, Zhang Y, Hsu YC, Lu H, Wu D. Vessel-specific quantification of cerebral venous oxygenation with velocity-encoding preparation and rapid acquisition. Magn Reson Med 2024; 92:782-791. [PMID: 38523598 DOI: 10.1002/mrm.30092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024]
Abstract
PURPOSE Non-invasive measurement of cerebral venous oxygenation (Yv) is of critical importance in brain diseases. The present work proposed a fast method to quantify regional Yv map for both large and small veins. METHODS A new sequence was developed, referred to as TRU-VERA (T2 relaxation under velocity encoding and rapid acquisition, which isolates blood spins from static tissue with velocity-encoding preparation, modulates the T2 weighting of venous signal with T2-preparation and utilizes a bSSFP readout to achieve fast acquisition with high resolution. The sequence was first optimized to achieve best sensitivity for both large and small veins, and then validated with TRUST (T2 relaxation under spin tagging), TRUPC (T2 relaxation under phase contrast), and accelerated TRUPC MRI. Regional difference of Yv was evaluated, and test-retest reproducibility was examined. RESULTS Optimal Venc was determined to be 3 cm/s, while recovery time and balanced SSFP flip angle within reasonable range had minimal effect on SNR efficiency. Venous T2 measured with TRU-VERA was highly correlated with T2 from TRUST (R2 = 0.90), and a conversion equation was established for further calibration to Yv. TRU-VERA sequences showed consistent Yv estimation with TRUPC (R2 = 0.64) and accelerated TRUPC (R2 = 0.79). Coefficient of variation was 0.84% for large veins and 2.49% for small veins, suggesting an excellent test-retest reproducibility. CONCLUSION The proposed TRU-VERA sequence is a promising method for vessel-specific oxygenation assessment.
Collapse
Affiliation(s)
- Zixuan Lin
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yiwen Hong
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yi-Cheng Hsu
- MR Collaboration, Siemens Healthineers Ltd, Shanghai, China
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Moura J, Granziera C, Marta M, Silva AM. Emerging imaging markers in radiologically isolated syndrome: implications for earlier treatment initiation. Neurol Sci 2024; 45:3061-3068. [PMID: 38374458 DOI: 10.1007/s10072-024-07402-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
The presence of central nervous system lesions fulfilling the criteria of dissemination in space and time on MRI leads to the diagnosis of a radiologically isolated syndrome (RIS), which may be an early sign of multiple sclerosis (MS). However, some patients who do not fulfill the necessary criteria for RIS still evolve to MS, and some T2 hyperintensities that resemble demyelinating lesions may originate from mimics. In light of the recent recognition of the efficacy of disease-modifying therapy (DMT) in RIS, it is relevant to consider additional imaging features that are more specific of MS. We performed a narrative review on cortical lesions (CL), the central vein sign (CVS), and paramagnetic rim lesions (PRL) in patients with RIS. In previous RIS studies, the reported prevalence of CLs ranges between 20.0 and 40.0%, CVS + white matter lesions (WMLs) between 87.0 and 93.0% and PRLs between 26.7 and 63.0%. Overall, these imaging findings appear to be frequent in RIS cohorts, although not consistently taken into account in previous studies. The search for CLs, CVS + WML and PRLs in RIS patients could lead to earlier identification of patients who will evolve to MS and benefit from DMTs.
Collapse
Affiliation(s)
- João Moura
- Department of Neurology, Centro Hospitalar Universitário de Santo António, Largo Professor Abel Salazar, 4099-001, Porto, Portugal.
- ICBAS School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Monica Marta
- Department of Neurology, Royal London Hospital, Barts Health NHS Trust, London, UK
- Neuroscience and Trauma, Blizard Institute of Cell and Molecular Science, London, UK
| | - Ana Martins Silva
- Department of Neurology, Centro Hospitalar Universitário de Santo António, Largo Professor Abel Salazar, 4099-001, Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Unit of Multidisciplinary Research in Biomedicine, Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| |
Collapse
|
15
|
Wegener S, Baron JC, Derdeyn CP, Fierstra J, Fromm A, Klijn CJM, van Niftrik CHB, Schaafsma JD. Hemodynamic Stroke: Emerging Concepts, Risk Estimation, and Treatment. Stroke 2024; 55:1940-1950. [PMID: 38864227 DOI: 10.1161/strokeaha.123.044386] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Ischemic stroke can arise from the sudden occlusion of a brain-feeding artery by a clot (embolic), or local thrombosis. Hemodynamic stroke occurs when blood flow does not sufficiently meet the metabolic demand of a brain region at a certain time. This discrepancy between demand and supply can occur with cerebropetal arterial occlusion or high-grade stenosis but also arises with systemic conditions reducing blood pressure. Treatment of hemodynamic stroke is targeted toward increasing blood flow to the affected area by either systemically or locally enhancing perfusion. Thus, blood pressure is often maintained above normal values, and extra-intracranial flow augmentation bypass surgery is increasingly considered. Still, current evidence supporting the superiority of pressure or flow increase over conservative measures is limited. However, methods assessing hemodynamic impairment and identifying patients at risk of hemodynamic stroke are rapidly evolving. Sophisticated models incorporating clinical and imaging factors have been suggested to aid patient selection. In this narrative review, we provide current state-of-the-art knowledge about hemodynamic stroke, tools for assessment, and treatment options.
Collapse
Affiliation(s)
- Susanne Wegener
- Department of Neurology (S.W.), University Hospital Zurich (USZ) and University of Zurich (UZH), Switzerland
- Clinical Neurocenter Zurich and Neuroscience Center Zurich (ZNZ), Switzerland (S.W., J.F., C.H.B.v.N.)
| | - Jean Claude Baron
- Department of Neurology, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Université Paris Cité, Inserm U1266, FHU NeuroVasc, France (J.C.B.)
| | - Colin P Derdeyn
- Department of Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville (C.P.D.)
| | - Jorn Fierstra
- Department of Neurosurgery (J.F., C.H.B.v.N.), University Hospital Zurich (USZ) and University of Zurich (UZH), Switzerland
- Clinical Neurocenter Zurich and Neuroscience Center Zurich (ZNZ), Switzerland (S.W., J.F., C.H.B.v.N.)
| | - Annette Fromm
- Department of Neurology, Haukeland University Hospital, Bergen, Norway (A.F.)
| | - Catharina J M Klijn
- Department of Neurology at Radboud University Nijmegen, the Netherlands (C.J.M.K.)
| | - Christiaan Hendrik Bas van Niftrik
- Department of Neurosurgery (J.F., C.H.B.v.N.), University Hospital Zurich (USZ) and University of Zurich (UZH), Switzerland
- Clinical Neurocenter Zurich and Neuroscience Center Zurich (ZNZ), Switzerland (S.W., J.F., C.H.B.v.N.)
| | - Joanna D Schaafsma
- Division of Neurology, Department of Medicine (JDS) and Division of Neuroradiology, Department of Medical Imaging, University Health Network, Toronto, Canada (DJM, DMM) (J.D.S.)
| |
Collapse
|
16
|
Abstract
The metabolic rate of oxygen (MRO2) is fundamental to tissue metabolism. Determination of MRO2 demands knowledge of the arterio-venous difference in hemoglobin-bound oxygen concentration, typically expressed as oxygen extraction fraction (OEF), and blood flow rate (BFR). MRI is uniquely suited for measurement of both these quantities, yielding MRO2 in absolute physiologic units of µmol O2 min-1/100 g tissue. Two approaches are discussed, both relying on hemoglobin magnetism. Emphasis will be on cerebral oxygen metabolism expressed in terms of the cerebral MRO2 (CMRO2), but translation of the relevant technologies to other organs, including kidney and placenta will be touched upon as well. The first class of methods exploits the blood's bulk magnetic susceptibility, which can be derived from field maps. The second is based on measurement of blood water T2, which is modulated by diffusion and exchange in the local-induced fields within and surrounding erythrocytes. Some whole-organ methods achieve temporal resolution adequate to permit time-series studies of brain energetics, for instance, during sleep in the scanner with concurrent electroencephalogram (EEG) sleep stage monitoring. Conversely, trading temporal for spatial resolution has led to techniques for spatially resolved approaches based on quantitative blood oxygen level dependent (BOLD) or calibrated BOLD models, allowing regional assessment of vascular-metabolic parameters, both also exploiting deoxyhemoglobin paramagnetism like their whole-organ counterparts.
Collapse
Affiliation(s)
- Felix W Wehrli
- Laboratory for Structural, Physiologic and Functional Imaging (LSPFI), Department of Radiology, Perelman School of Medicine, University Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Lee H, Xu J, Fernandez-Seara MA, Wehrli FW. Validation of a new 3D quantitative BOLD based cerebral oxygen extraction mapping. J Cereb Blood Flow Metab 2024; 44:1184-1198. [PMID: 38289876 PMCID: PMC11179617 DOI: 10.1177/0271678x231220332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 02/01/2024]
Abstract
Quantitative BOLD (qBOLD) MRI allows evaluation of oxidative metabolism of the brain based purely on an endogenous contrast mechanism. The method quantifies deoxygenated blood volume (DBV) and hemoglobin oxygen saturation level of venous blood (Yv), yielding oxygen extraction fraction (OEF), and along with a separate measurement of cerebral blood flow, cerebral metabolic rate of oxygen (CMRO2) maps. Here, we evaluated our recently reported 3D qBOLD method that rectifies a number of deficiencies in prior qBOLD approaches in terms of repeat reproducibility and sensitivity to hypercapnia on the metabolic parameters, and in comparison to dual-gas calibrated BOLD (cBOLD) MRI for determining resting-state oxygen metabolism. Results suggested no significant difference between test-retest qBOLD scans in either DBV and OEF. Exposure to hypercapnia yielded group averages of 38 and 28% for OEF and 151 and 146 µmol/min/100 g for CMRO2 in gray matter at baseline and hypercapnia, respectively. The decrease of OEF during hypercapnia was significant (p ≪ 0.01), whereas CMRO2 did not change significantly (p = 0.25). Finally, baseline OEF (37 vs. 39%) and CMRO2 (153 vs. 145 µmol/min/100 g) in gray matter using qBOLD and dual-gas cBOLD were found to be in good agreement with literature values, and were not significantly different from each other (p > 0.1).
Collapse
Affiliation(s)
- Hyunyeol Lee
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, Republic of Korea
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jing Xu
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maria A Fernandez-Seara
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiology, Clinica Universidad de Navarra, Pamplona, Spain
| | - Felix W Wehrli
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Li C, Buch S, Sun Z, Muccio M, Jiang L, Chen Y, Haacke EM, Zhang J, Wisniewski TM, Ge Y. In vivo mapping of hippocampal venous vasculature and oxygenation using susceptibility imaging at 7T. Neuroimage 2024; 291:120597. [PMID: 38554779 PMCID: PMC11115460 DOI: 10.1016/j.neuroimage.2024.120597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
Mapping the small venous vasculature of the hippocampus in vivo is crucial for understanding how functional changes of hippocampus evolve with age. Oxygen utilization in the hippocampus could serve as a sensitive biomarker for early degenerative changes, surpassing hippocampal tissue atrophy as the main source of information regarding tissue degeneration. Using an ultrahigh field (7T) susceptibility-weighted imaging (SWI) sequence, it is possible to capture oxygen-level dependent contrast of submillimeter-sized vessels. Moreover, the quantitative susceptibility mapping (QSM) results derived from SWI data allow for the simultaneous estimation of venous oxygenation levels, thereby enhancing the understanding of hippocampal function. In this study, we proposed two potential imaging markers in a cohort of 19 healthy volunteers aged between 20 and 74 years. These markers were: 1) hippocampal venous density on SWI images and 2) venous susceptibility (Δχvein) in the hippocampus-associated draining veins (the inferior ventricular veins (IVV) and the basal veins of Rosenthal (BVR) using QSM images). They were chosen specifically to help characterize the oxygen utilization of the human hippocampus and medial temporal lobe (MTL). As part of the analysis, we demonstrated the feasibility of measuring hippocampal venous density and Δχvein in the IVV and BVR at 7T with high spatial resolution (0.25 × 0.25 × 1 mm3). Our results demonstrated the in vivo reconstruction of the hippocampal venous system, providing initial evidence regarding the presence of the venous arch structure within the hippocampus. Furthermore, we evaluated the age effect of the two quantitative estimates and observed a significant increase in Δχvein for the IVV with age (p=0.006, r2 = 0.369). This may suggest the potential application of Δχvein in IVV as a marker for assessing changes in atrophy-related hippocampal oxygen utilization in normal aging and neurodegenerative diseases such as AD and dementia.
Collapse
Affiliation(s)
- Chenyang Li
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA; Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Sagar Buch
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhe Sun
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA; Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Marco Muccio
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA
| | - Li Jiang
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA
| | - Yongsheng Chen
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - E Mark Haacke
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Radiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jiangyang Zhang
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Yulin Ge
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
19
|
Kim J, Lee H, Oh SS, Jang J, Lee H. Automated Quantification of Total Cerebral Blood Flow from Phase-Contrast MRI and Deep Learning. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:563-574. [PMID: 38343224 PMCID: PMC11031545 DOI: 10.1007/s10278-023-00948-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/06/2023] [Accepted: 10/25/2023] [Indexed: 04/20/2024]
Abstract
Knowledge of input blood to the brain, which is represented as total cerebral blood flow (tCBF), is important in evaluating brain health. Phase-contrast (PC) magnetic resonance imaging (MRI) enables blood velocity mapping, allowing for noninvasive measurements of tCBF. In the procedure, manual selection of brain-feeding arteries is an essential step, but is time-consuming and often subjective. Thus, the purpose of this work was to develop and validate a deep learning (DL)-based technique for automated tCBF quantifications. To enhance the DL segmentation performance on arterial blood vessels, in the preprocessing step magnitude and phase images of PC MRI were multiplied several times. Thereafter, a U-Net was trained on 218 images for three-class segmentation. Network performance was evaluated in terms of the Dice coefficient and the intersection-over-union (IoU) on 40 test images, and additionally, on externally acquired 20 datasets. Finally, tCBF was calculated from the DL-predicted vessel segmentation maps, and its accuracy was statistically assessed with the correlation of determination (R2), the intraclass correlation coefficient (ICC), paired t-tests, and Bland-Altman analysis, in comparison to manually derived values. Overall, the DL segmentation network provided accurate labeling of arterial blood vessels for both internal (Dice=0.92, IoU=0.86) and external (Dice=0.90, IoU=0.82) tests. Furthermore, statistical analyses for tCBF estimates revealed good agreement between automated versus manual quantifications in both internal (R2=0.85, ICC=0.91, p=0.52) and external (R2=0.88, ICC=0.93, p=0.88) test groups. The results suggest feasibility of a simple and automated protocol for quantifying tCBF from neck PC MRI and deep learning.
Collapse
Affiliation(s)
- Jinwon Kim
- School of Electronic and Electrical Engineering, Kyungpook National University, IT1-603, Daehak-ro 80, Buk-gu, Daegu, 41075, Republic of Korea
| | - Hyebin Lee
- Department of Radiology, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung Suk Oh
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Republic of Korea
| | - Jinhee Jang
- Department of Radiology, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyunyeol Lee
- School of Electronic and Electrical Engineering, Kyungpook National University, IT1-603, Daehak-ro 80, Buk-gu, Daegu, 41075, Republic of Korea.
| |
Collapse
|
20
|
Mi J, Liu C, Chen H, Qian Y, Zhu J, Zhang Y, Liang Y, Wang L, Ta D. Light on Alzheimer's disease: from basic insights to preclinical studies. Front Aging Neurosci 2024; 16:1363458. [PMID: 38566826 PMCID: PMC10986738 DOI: 10.3389/fnagi.2024.1363458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Alzheimer's disease (AD), referring to a gradual deterioration in cognitive function, including memory loss and impaired thinking skills, has emerged as a substantial worldwide challenge with profound social and economic implications. As the prevalence of AD continues to rise and the population ages, there is an imperative demand for innovative imaging techniques to help improve our understanding of these complex conditions. Photoacoustic (PA) imaging forms a hybrid imaging modality by integrating the high-contrast of optical imaging and deep-penetration of ultrasound imaging. PA imaging enables the visualization and characterization of tissue structures and multifunctional information at high resolution and, has demonstrated promising preliminary results in the study and diagnosis of AD. This review endeavors to offer a thorough overview of the current applications and potential of PA imaging on AD diagnosis and treatment. Firstly, the structural, functional, molecular parameter changes associated with AD-related brain imaging captured by PA imaging will be summarized, shaping the diagnostic standpoint of this review. Then, the therapeutic methods aimed at AD is discussed further. Lastly, the potential solutions and clinical applications to expand the extent of PA imaging into deeper AD scenarios is proposed. While certain aspects might not be fully covered, this mini-review provides valuable insights into AD diagnosis and treatment through the utilization of innovative tissue photothermal effects. We hope that it will spark further exploration in this field, fostering improved and earlier theranostics for AD.
Collapse
Affiliation(s)
- Jie Mi
- Yiwu Research Institute, Fudan University, Yiwu, China
| | - Chao Liu
- Yiwu Research Institute, Fudan University, Yiwu, China
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai, China
| | - Honglei Chen
- Yiwu Research Institute, Fudan University, Yiwu, China
| | - Yan Qian
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai, China
| | - Jingyi Zhu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yachao Zhang
- Medical Ultrasound Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yizhi Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Dean Ta
- Yiwu Research Institute, Fudan University, Yiwu, China
- Department of Electronic Engineering, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Sawan H, Li C, Buch S, Bernitsas E, Haacke EM, Ge Y, Chen Y. Reduced Oxygen Extraction Fraction in Deep Cerebral Veins Associated with Cognitive Impairment in Multiple Sclerosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.10.24301049. [PMID: 38260542 PMCID: PMC10802653 DOI: 10.1101/2024.01.10.24301049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Studying the relationship between cerebral oxygen utilization and cognitive impairment is essential to understanding neuronal functional changes in the disease progression of multiple sclerosis (MS). This study explores the potential of using venous susceptibility in internal cerebral veins (ICVs) as an imaging biomarker for cognitive impairment in relapsing-remitting MS (RRMS) patients. Quantitative susceptibility mapping derived from fully flow-compensated MRI phase data was employed to directly measure venous blood oxygen saturation levels (SvO2) in the ICVs. Results revealed a significant reduction in the susceptibility of ICVs (212.4 ± 30.8 ppb vs 239.4 ± 25.9 ppb) and a significant increase of SvO2 (74.5 ± 1.89 % vs 72.4 ± 2.23 %) in patients with RRMS compared with age- and sex-matched healthy controls. Both the susceptibility of ICVs (r = 0.646, p = 0.004) and the SvO2 (r = -0.603, p = 0.008) exhibited a strong correlation with cognitive decline in these patients assessed by the Paced Auditory Serial Addition Test, while no significant correlation was observed with clinical disability measured by the Expanded Disability Status Scale. The findings suggest that venous susceptibility in ICVs has the potential to serve as a specific indicator of oxygen metabolism and cognitive function in RRMS.
Collapse
Affiliation(s)
- Hasan Sawan
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Chenyang Li
- Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Sagar Buch
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Evanthia Bernitsas
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - E. Mark Haacke
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yulin Ge
- Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Yongsheng Chen
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
22
|
Yang A, Zhuang H, Du L, Liu B, Lv K, Luan J, Hu P, Chen F, Wu K, Shu N, Shmuel A, Ma G, Wang Y. Evaluation of whole-brain oxygen metabolism in Alzheimer's disease using QSM and quantitative BOLD. Neuroimage 2023; 282:120381. [PMID: 37734476 DOI: 10.1016/j.neuroimage.2023.120381] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/14/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023] Open
Abstract
OBJECTIVE The objective of this study was to evaluate the whole-brain pattern of oxygen extraction fraction (OEF), cerebral blood flow (CBF), and cerebral metabolic rate of oxygen consumption (CMRO2) perturbation in Alzheimer's disease (AD) and investigate the relationship between regional cerebral oxygen metabolism and global cognition. METHODS Twenty-six AD patients and 25 age-matched healthy controls (HC) were prospectively recruited in this study. Mini-Mental State Examination (MMSE) was used to evaluate cognitive status. We applied the QQ-CCTV algorithm which combines quantitative susceptibility mapping and quantitative blood oxygen level-dependent models (QQ) for OEF calculation. CBF map was computed from arterial spin labeling and CMRO2 was generated based on Fick's principle. Whole-brain and regional OEF, CBF, and CMRO2 analyses were performed. The associations between these measures in substructures of deep brain gray matter and MMSE scores were assessed. RESULTS Whole brain voxel-wise analysis showed that CBF and CMRO2 values significantly decreased in AD predominantly in the bilateral angular gyrus, precuneus gyrus and parieto-temporal regions. Regional analysis showed that CBF value decreased in the bilateral caudal hippocampus and left rostral hippocampus and CMRO2 value decreased in left caudal and rostral hippocampus in AD patients. Considering all subjects in the AD and HC groups combined, the mean CBF and CMRO2 values in the bilateral hippocampus positively correlated with the MMSE score. CONCLUSION CMRO2 mapping with the QQ-CCTV method - which is readily available in MR systems for clinical practice - can be a potential biomarker for AD. In addition, CMRO2 in the hippocampus may be a useful tool for monitoring cognitive impairment.
Collapse
Affiliation(s)
- Aocai Yang
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, PR China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PR China
| | - Hangwei Zhuang
- Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA; Department of Radiology, Weill Cornell Medical College, New York, New York 10065, USA
| | - Lei Du
- Department of Radiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, PR China
| | - Bing Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, PR China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PR China
| | - Kuan Lv
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, PR China; Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, PR China
| | - Jixin Luan
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, PR China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PR China
| | - Pianpian Hu
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, PR China; Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, PR China
| | - Feng Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, Hainan, PR China
| | - Kai Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangdong 510006, Guangzhou, PR China
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, PR China
| | - Amir Shmuel
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Departments of Neurology and Neurosurgery, Physiology, and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, PR China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PR China.
| | - Yi Wang
- Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA; Department of Radiology, Weill Cornell Medical College, New York, New York 10065, USA
| |
Collapse
|
23
|
Wijnen JP, Seiberlich N, Golay X. Will standardization kill innovation? MAGMA (NEW YORK, N.Y.) 2023; 36:525-528. [PMID: 37632642 DOI: 10.1007/s10334-023-01115-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/28/2023]
Affiliation(s)
| | - Nicole Seiberlich
- Department of Radiology, University of Michigan, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA.
| | | |
Collapse
|