1
|
Falsaperla R, Sortino V, Kluger GJ, Herberhold T, Rüegger A, Striano P, Ruggieri M, Klepper J, Ramantani G. Exploring ketogenic diet resistance in glucose transporter type 1 deficiency syndrome: A comprehensive review and critical appraisal. Epilepsia Open 2025; 10:31-39. [PMID: 39641282 PMCID: PMC11803274 DOI: 10.1002/epi4.13110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/19/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
Glucose transporter type 1 deficiency syndrome (GLUT1DS) commonly presents with early-onset epilepsy that often resists conventional pharmacological treatment. Ketogenic diet therapy (KDT) is the preferred approach to address the underlying metabolic anomaly. However, a subset of GLUT1DS patients presents resistance to KDT, with the causes remaining elusive. This comprehensive literature review aims to explore the characteristics of KDT failure in GLUT1DS and identify risk factors within this population. Our goal is to improve counseling and prognostication for these patients. So, we conducted a comprehensive literature review on PubMed, focusing on studies documenting pediatric GLUT1DS patients with drug-resistant epilepsy unresponsive to KDT. We identified five cases of KDT failure in female GLUT1DS patients, aged 10 days to 13 years at diagnosis. Predominant seizure types were absence seizures, with a few cases of clonic, tonic, or myoclonic seizures. EEG consistently revealed 2-3.5 Hz generalized spike-and-wave discharges. Genetic investigations revealed point mutations and deletions in two cases each. Despite an in-depth search, no specific features were found to reliably distinguish KDT non-responders from responders, underscoring the need for further research. In cases of KDT ineffectiveness for seizure control in GLUT1DS patients, exploring alternative therapeutic strategies becomes imperative to managing symptoms while maintaining quality of life. Large-scale multicenter studies, facilitated through international collaborations like the European Network for Therapy in Rare Epilepsies (NETRE), hold promise in elucidating the complexities of this patient population and developing personalized therapeutic approaches. PLAIN LANGUAGE SUMMARY: Glucose transporter type 1 deficiency syndrome often causes difficult-to-treat epilepsy. The ketogenic diet works for many patients, but some do not respond. This review investigated cases of diet failure but could not identify common features among poor responders. Further research is needed to understand these cases and explore alternative treatments.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- Neonatal Intensive Care Unit and Neonatal Accompaniment Unit, Azienda Ospedaliero‐Universitaria Policlinico "Rodolico‐San Marco," San Marco HospitalUniversity of CataniaCataniaItaly
- Unit of Pediatrics and Pediatric Emergency, Azienda Ospedaliero‐Universitaria Policlinico "Rodolico‐San Marco," San Marco HospitalUniversity of CataniaCataniaItaly
- Department of Medical Sciences‐Pediatric SectionUniversity of FerraraFerraraItaly
| | - Vincenzo Sortino
- Unit of Pediatrics and Pediatric Emergency, Azienda Ospedaliero‐Universitaria Policlinico "Rodolico‐San Marco," San Marco HospitalUniversity of CataniaCataniaItaly
| | - Gerhard Josef Kluger
- Epilepsy Center for Children and AdolescentsSchön Clinic VogtareuthVogtareuthGermany
| | - Thomas Herberhold
- Clinic for Neuropediatrics and NeurorehabilitationEpilepsy Center for Children and Adolescents, Schön Klinik VogtareuthVogtareuthGermany
| | - Andrea Rüegger
- Department of NeuropediatricsUniversity Children's Hospital ZurichZurichSwitzerland
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases UnitIRCCS Istituto Giannina Gaslini", Full Member of ERN‐EpicareGenovaItaly
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversity of GenovaGenovaItaly
| | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child NeuropsychiatryUniversity of CataniaCataniaItaly
| | | | - Georgia Ramantani
- Department of NeuropediatricsUniversity Children's Hospital ZurichZurichSwitzerland
- University of ZurichZurichSwitzerland
| |
Collapse
|
2
|
Falsaperla R, Sortino V, Vitaliti G, Privitera GF, Ruggieri M, Fusto G, Pappalardo XG. GLUT-1DS resistant to ketogenic diet: from clinical feature to in silico analysis. An exemplificative case report with a literature review. Neurogenetics 2024; 25:69-78. [PMID: 38190079 DOI: 10.1007/s10048-023-00742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
Glucose transporter type 1 deficiency syndrome (GLUT-1DS) is characterized by alterations in glucose translocation through the blood-brain barrier (BBB) due to mutation involving the GLUT-1 transporter. The fundamental therapy is ketogenic diet (KD) that provide an alternative energetic substrate - ketone bodies that across the BBB via MCT-1 - for the brain. Symptoms are various and include intractable seizure, acquired microcephalia, abnormal ocular movement, movement disorder, and neurodevelopment delay secondary to an energetic crisis for persistent neuroglycopenia. KD is extremely effective in controlling epileptic seizures and has a positive impact on movement disorders and cognitive impairment. Cases of KD resistance are rare, and only a few of them are reported in the literature, all regarding seizure. Our study describes a peculiar case of GLUT-1DS due to a new deletion involving the first codon of SLC2A1 gene determining a loss of function with a resistance to KD admitted to hospital due to intractable episodes of dystonia. This patient presented a worsening of symptomatology at higher ketonemia values but without hyperketosis and showed a complete resolution of symptomatology while maintaining low ketonemia values. Our study proposes an in-silico genomic and proteomic analysis aimed at explaining the atypical response to KD exhibited by our patient. In this way, we propose a new clinical and research approach based on precision medicine and molecular modelling to be applied to patients with GLUT-1DS resistant to first-line treatment with ketogenic diet by in silico study of genetic and altered protein product.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- Neonatal Intensive Care Unit and Neonatal Accompaniment Unit, Azienda Ospedaliero-Universitaria Policlinico "Rodolico-San Marco," San Marco Hospital, University of Catania, Catania, Italy.
- Unit of Pediatrics and Pediatric Emergency, Azienda Ospedaliero-Universitaria Policlinico, "Rodolico-San Marco," San Marco Hospital, Catania, Italy.
| | - Vincenzo Sortino
- Unit of Pediatrics and Pediatric Emergency, Azienda Ospedaliero-Universitaria Policlinico, "Rodolico-San Marco," San Marco Hospital, Catania, Italy
| | - Giovanna Vitaliti
- Unit of Pediatrics and Pediatric Emergency, Azienda Ospedaliero-Universitaria Policlinico, "Rodolico-San Marco," San Marco Hospital, Catania, Italy
| | | | - Martino Ruggieri
- Unit of Clinical Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, AOU "Policlinico," PO "G. Rodolico", Via S. Sofia, 78, 95124, Catania, Italy
| | - Gaia Fusto
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Xena Giada Pappalardo
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
- National Council of Research, Institute for Research and Biomedical Innovation (IRIB), Unit of Catania, Catania, Italy
| |
Collapse
|
3
|
Zhou Y, Wen H, Gu L, Fu J, Guo J, Du L, Zhou X, Yu X, Huang Y, Wang H. Aminoglucose-functionalized, redox-responsive polymer nanomicelles for overcoming chemoresistance in lung cancer cells. J Nanobiotechnology 2017; 15:87. [PMID: 29179722 PMCID: PMC5704373 DOI: 10.1186/s12951-017-0316-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/04/2017] [Indexed: 01/30/2023] Open
Abstract
Background Chemotherapeutic drugs used for cancer therapy frequently encounter multiple-drug resistance (MDR). Nanoscale carriers that can target tumors to accumulate and release drugs intracellularly have the greatest potential for overcoming MDR. Glucose transporter-1 (GLUT-1) and glutathione (GSH) overexpression in cancer cells was exploited to assemble aminoglucose (AG)-conjugated, redox-responsive nanomicelles from a single disulfide bond-bridged block polymer of polyethylene glycol and polylactic acid (AG-PEG-SS-PLA). However, whether this dual functional vector can overcome MDR in lung cancer is unknown. Results In this experiment, AG-PEG-SS-PLA was synthetized successfully, and paclitaxel (PTX)-loaded AG-PEG-SS-PLA (AG-PEG-SS-PLA/PTX) nanomicelles exhibited excellent physical properties. These nanomicelles show enhanced tumor targeting as well as drug accumulation and retention in MDR cancer cells. Caveolin-dependent endocytosis is mainly responsible for nanomicelle internalization. After internalization, the disulfide bond of AG-PEG-SS-PLA is cleaved in the presence of high intracellular glutathione levels, causing the hydrophobic core to become a polar aqueous solution, which subsequently results in nanomicelle disassembly and the rapid release of encapsulated PTX. Reduced drug resistance was observed in cancer cells in vitro. The caspase-9 and caspase-3 cascade was activated by the AG-PEG-SS-PLA/PTX nanomicelles through upregulation of the pro-apoptotic proteins Bax and Bid and suppression of the anti-apoptotic protein Bcl-2, thereby increasing apoptosis. Furthermore, significantly enhanced tumor growth inhibition was observed in nude mice bearing A549/ADR xenograft tumors after the administration of AG-PEG-SS-PLA/PTX nanomicelles via tail injection. Conclusions These promising results indicate that AG-PEG-SS-PLA/PTX nanomicelles could provide the foundation for a paradigm shift in MDR cancer therapy. Electronic supplementary material The online version of this article (10.1186/s12951-017-0316-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi Zhou
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Huaying Wen
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Liang Gu
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Jijun Fu
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Jiayi Guo
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Lingran Du
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Xiaoqin Zhou
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Xiyong Yu
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Yugang Huang
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China.
| | - He Wang
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China. .,Center of Cancer Research, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China.
| |
Collapse
|
4
|
Veggiotti P, De Giorgis V. Dietary Treatments and New Therapeutic Perspective in GLUT1 Deficiency Syndrome. Curr Treat Options Neurol 2014; 16:291. [PMID: 24634059 DOI: 10.1007/s11940-014-0291-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OPINION STATEMENT GLUT1 deficiency syndrome (GLUT1DS) results from impaired glucose transport into the brain: awareness of its wide phenotypic spectrum is a prerequisite in order to ensure an early diagnosis, treating the patients is the subsequent challenge to allow prompt compensation for the brain's lack of fuel. The ketogenic diet (KD) plays a primary role in the treatment of GLUT1DS because it provides ketone bodies as an alternative source to meet the demands of energy of the brain. Therefore, we recommend early initiation of the KD based on the assumption that early diagnosis and treatment improves the long term neurological outcome: the classic KD (4:1 or 3:1) at the present time is the most proven and effective in GLUT1DS. A KD should be continued at least until adolescence, although there are reports of good tolerability even in adulthood, possibly with a less rigorous ratio; in our experience seizure and movement disorder control can be achieved by a 2:1 ketogenic ratio but the relationship between ketosis and neurodevelopmental outcome remains undetermined. Other types of KDs can, therefore, be considered. The Modified Atkins diet, for example, is also well tolerated and provides effective symptom control; furthermore, this diet has the advantage of being easy to prepare and more palatable, which are important requirements for good compliance. Nevertheless, about 20 % of these patients have compliance trouble or the same diet loses its effectiveness over time; for these reasons, new therapeutic strategies are currently under investigation but further studies on pathophysiological mechanisms and potential effects of novel "diets" or "therapies" are needed for this new pathology.
Collapse
Affiliation(s)
- Pierangelo Veggiotti
- Department of Child Neurology and Psychiatry C. Mondino National Neurological Institute, Via Mondino, 2, 27100, Pavia, Italy,
| | | |
Collapse
|
5
|
GLUT1 deficiency syndrome: an update. Rev Neurol (Paris) 2013; 170:91-9. [PMID: 24269118 DOI: 10.1016/j.neurol.2013.09.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/01/2013] [Accepted: 09/02/2013] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Glucose transporter type 1 deficiency syndrome is caused by heterozygous, mostly de novo, mutations in the SLC2A1 gene encoding the glucose transporter GLUT1. Mutations in this gene limit brain glucose availability and lead to cerebral energy deficiency. STATE OF THE ART The phenotype is characterized by the variable association of mental retardation, acquired microcephaly, complex motor disorders, and paroxysmal manifestations including seizures and non-epileptic paroxysmal episodes. Clinical severity varies from mild motor dysfunction to severe neurological disability. In patients with mild phenotypes, paroxysmal manifestations may be the sole manifestations of the disease. In particular, the diagnosis should be considered in patients with paroxysmal exercise-induced dyskinesia or with early-onset generalized epilepsy. Low CSF level of glucose, relative to blood level, is the best biochemical clue to the diagnosis although not constantly found. Molecular analysis of the SLC2A1 gene confirms the diagnosis. Ketogenic diet is the cornerstone of the treatment and implicates a close monitoring by a multidisciplinary team including trained dieticians. Non-specific drugs may be used as add-on symptomatic treatments but their effects are often disappointing. CONCLUSION Glucose transporter type 1 deficiency syndrome is likely under diagnosed due to its complex and pleiotropic phenotype. Proper identification of the affected patients is important for clinical practice since the disease is treatable.
Collapse
|