1
|
Meira AT, de Moraes MPM, Ferreira MG, Franklin GL, Rezende Filho FM, Teive HAG, Barsottini OGP, Pedroso JL. Immune-mediated ataxias: Guide to clinicians. Parkinsonism Relat Disord 2023; 117:105861. [PMID: 37748994 DOI: 10.1016/j.parkreldis.2023.105861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
Immune-mediated cerebellar ataxias were initially described as a clinical entity in the 1980s, and since then, an expanding body of evidence has contributed to our understanding of this topic. These ataxias encompass various etiologies, including postinfectious cerebellar ataxia, gluten ataxia, paraneoplastic cerebellar degeneration, opsoclonus-myoclonus-ataxia syndrome and primary autoimmune cerebellar ataxia. The increased permeability of the brain-blood barrier could potentially explain the vulnerability of the cerebellum to autoimmune processes. In this manuscript, our objective is to provide a comprehensive review of the most prevalent diseases within this group, emphasizing clinical indicators, pathogenesis, and current treatment approaches.
Collapse
Affiliation(s)
- Alex T Meira
- Universidade Federal da Paraíba, Departamento de Medicina Interna, Serviço de Neurologia, João Pessoa, PB, Brazil.
| | | | - Matheus G Ferreira
- Universidade Federal do Paraná, Hospital de Clínicas, Departamento de Medicina Interna, Serviço de Neurologia, Curitiba, PR, Brazil
| | - Gustavo L Franklin
- Pontifícia Universidade Católica, Departamento de Medicina Interna, Serviço de Neurologia, Curitiba, PR, Brazil
| | | | - Hélio A G Teive
- Universidade Federal do Paraná, Hospital de Clínicas, Departamento de Medicina Interna, Serviço de Neurologia, Curitiba, PR, Brazil
| | | | - José Luiz Pedroso
- Universidade Federal de São Paulo, Departamento de Neurologia, São Paulo, SP, Brazil
| |
Collapse
|
2
|
Manto M, Mitoma H. Recent Advances in Immune-Mediated Cerebellar Ataxias: Pathogenesis, Diagnostic Approaches, Therapies, and Future Challenges-Editorial. Brain Sci 2023; 13:1626. [PMID: 38137074 PMCID: PMC10741786 DOI: 10.3390/brainsci13121626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 12/24/2023] Open
Abstract
The clinical category of immune-mediated cerebellar ataxias (IMCAs) has been established after 3 decades of clinical and experimental research. The cerebellum is particularly enriched in antigens (ion channels and related proteins, synaptic adhesion/organizing proteins, transmitter receptors, glial cells) and is vulnerable to immune attacks. IMCAs include various disorders, including gluten ataxia (GA), post-infectious cerebellitis (PIC), Miller Fisher syndrome (MFS), paraneoplastic cerebellar degeneration (PCD), opsoclonus myoclonus syndrome (OMS), and anti-GAD ataxia. Other disorders such as multiple sclerosis (MS), acute disseminated encephalomyelitis (ADEM), Behçet disease, and collagen vascular disorders may also present with cerebellar symptoms when lesions are localized to cerebellar pathways. The triggers of autoimmunity are established in GA (gluten sensitivity), PIC and MFS (infections), PCD (malignancy), and OMS (infections or malignant tumors). Patients whose clinical profiles do not match those of classic types of IMCAs are now included in the spectrum of primary autoimmune cerebellar ataxia (PACA). Recent remarkable progress has clarified various characteristics of these etiologies and therapeutic strategies in terms of immunotherapies. However, it still remains to be elucidated as to how immune tolerance is broken, leading to autoimmune insults of the cerebellum, and the consecutive sequence of events occurring during cerebellar damage caused by antibody- or cell-mediated mechanisms. Antibodies may specifically target the cerebellar circuitry and impair synaptic mechanisms (synaptopathies). The present Special Issue aims to illuminate what is solved and what is unsolved in clinical practice and the pathophysiology of IMCAs. Immune ataxias now represent a genuine category of immune insults to the central nervous system (CNS).
Collapse
Affiliation(s)
- Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, 6000 Charleroi, Belgium
- Service des Neurosciences, Université de Mons, 7000 Mons, Belgium
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo 160-8402, Japan;
| |
Collapse
|
3
|
Quack L, Glatter S, Wegener-Panzer A, Cleaveland R, Bertolini A, Endmayr V, Seidl R, Breu M, Wendel E, Schimmel M, Baumann M, Rauchenzauner M, Pritsch M, Boy N, Muralter T, Kluger G, Makoswski C, Kraus V, Leiz S, Loehr-Nilles C, Kreth JH, Braig S, Schilling S, Kern J, Blank C, Tro Baumann B, Vieth S, Wallot M, Reindl M, Ringl H, Wandinger KP, Leypoldt F, Höftberger R, Rostásy K. Autoantibody status, neuroradiological and clinical findings in children with acute cerebellitis. Eur J Paediatr Neurol 2023; 47:118-130. [PMID: 38284996 DOI: 10.1016/j.ejpn.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Acute cerebellitis (AC) in children and adolescents is an inflammatory disease of the cerebellum due to viral or bacterial infections but also autoimmune-mediated processes. OBJECTIVE To investigate the frequency of autoantibodies in serum and CSF as well as the neuroradiological features in children with AC. MATERIAL AND METHODS Children presenting with symptoms suggestive of AC defined as acute/subacute onset of cerebellar symptoms and MRI evidence of cerebellar inflammation or additional CSF pleocytosis, positive oligoclonal bands (OCBs), and/or presence of autoantibodies in case of negative cerebellar MRI. Children fulfilling the above-mentioned criteria and a complete data set including clinical presentation, CSF studies, testing for neuronal/cerebellar and MOG antibodies as well as MRI scans performed at disease onset were eligible for this retrospective multicenter study. RESULTS 36 patients fulfilled the inclusion criteria for AC (f:m = 14:22, median age 5.5 years). Ataxia was the most common cerebellar symptom present in 30/36 (83 %) in addition to dysmetria (15/36) or dysarthria (13/36). A substantial number of children (21/36) also had signs of encephalitis such as somnolence or seizures. In 10/36 (28 %) children the following autoantibodies (abs) were found: MOG-abs (n = 5) in serum, GFAPα-abs (n = 1) in CSF, GlyR-abs (n = 1) in CSF, mGluR1-abs (n = 1) in CSF and serum. In two further children, antibodies were detected only in serum (GlyR-abs, n = 1; GFAPα-abs, n = 1). MRI signal alterations in cerebellum were found in 30/36 children (83 %). Additional supra- and/or infratentorial lesions were present in 12/36 children, including all five children with MOG-abs. Outcome after a median follow-up of 3 months (range: 1 a 75) was favorable with an mRS ≤2 in 24/36 (67 %) after therapy. Antibody (ab)-positive children were significantly more likely to have a better outcome than ab-negative children (p = .022). CONCLUSION In nearly 30 % of children in our study with AC, a range of abs was found, underscoring that autoantibody testing in serum and CSF should be included in the work-up of a child with suspected AC. The detection of MOG-abs in AC does expand the MOGAD spectrum.
Collapse
Affiliation(s)
- L Quack
- Department of Pediatric Neurology, Childreńs Hospital Datteln, University Witten/Herdecke, Datteln, Germany
| | - S Glatter
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Austria; Comprehensive Center for Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - A Wegener-Panzer
- Department of Pediatric Radiology, Childreńs Hospital Datteln, University Witten/Herdecke, Datteln, Germany
| | - R Cleaveland
- Department of Pediatric Radiology, Childreńs Hospital Datteln, University Witten/Herdecke, Datteln, Germany
| | - A Bertolini
- Department of Pediatric Neurology, Childreńs Hospital Datteln, University Witten/Herdecke, Datteln, Germany
| | - V Endmayr
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Austria
| | - R Seidl
- Department of Pediatrics, Bethanien Hospital, Moers, Germany
| | - M Breu
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - E Wendel
- Division of Pediatric Neurology, Department of Pediatrics, Olgahospital, Stuttgart, Germany
| | - M Schimmel
- Division of Pediatric Neurology, Clinic of Pediatrics, Augsburg University Hospital, University of Augsburg, Augsburg, Germany
| | - M Baumann
- Department of Pediatric I, Pediatric Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - M Rauchenzauner
- Department of Pediatric I, Pediatric Neurology, Medical University of Innsbruck, Innsbruck, Austria; Centre of Epilepsy for Children and Adolescents, Schoen Klinik Vogtareuth, Hospital for Neuropediatrics and Neurological Rehabilitation, Vogtareuth, Germany
| | - M Pritsch
- Department of Neuropediatrics, Children's Hospital DRK Siegen, Siegen, Germany
| | - N Boy
- Centre for Child and Adolescent Medicine, Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - T Muralter
- Centre of Epilepsy for Children and Adolescents, Schoen Klinik Vogtareuth, Hospital for Neuropediatrics and Neurological Rehabilitation, Vogtareuth, Germany
| | - G Kluger
- Centre of Epilepsy for Children and Adolescents, Schoen Klinik Vogtareuth, Hospital for Neuropediatrics and Neurological Rehabilitation, Vogtareuth, Germany; Research Institute for Rehabilitation, Transition, and Palliation, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - C Makoswski
- Pediatric Neurology, Department of Pediatrics, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, Germany
| | - V Kraus
- Pediatric Neurology, Department of Pediatrics, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, Germany; Social Pediatrics, Department of Pediatrics, Technical University of Munich, Munich, Germany
| | - S Leiz
- Department of Pediatrics and Adolescent Medicine, Hospital Dritter Orden, Munich, Germany
| | - C Loehr-Nilles
- Department of Neuropediatrics, Klinikum Mutterhaus der Borromäerinnen, Trier, Germany
| | - J H Kreth
- Department of Neuropediatrics, Social Pediatric Center, Klinikum Leverkusen, Leverkusen, Germany
| | - S Braig
- Department of Pediatrics, Klinikum Bayreuth, Bayreuth, Germany
| | - S Schilling
- Department of Neuropediatrics, Clinic of Pediatrics, Barmherzige Brüder St. Hedwig Hospital, Regensburg, Germany
| | - J Kern
- Department of Pediatric Neurology and Developmental Medicine, University Children's Hospital Tübingen, Germany
| | - C Blank
- Department of Pediatric Neurology, Children's Hospital St. Marien, Landshut, Germany
| | - B Tro Baumann
- Department of Neuropediatrics, Children's Hospital DRK Siegen, Siegen, Germany
| | - S Vieth
- Department of Pediatrics, University Medical Center Schleswig Holstein, Kiel, Germany
| | - M Wallot
- Department of Pediatrics, Bethanien Hospital, Moers, Germany
| | - M Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Austria
| | - H Ringl
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria; Department of Radiology, Klinik Donaustadt, Vienna, Austria
| | - K P Wandinger
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel/Lübeck, Germany
| | - F Leypoldt
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel/Lübeck, Germany; Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - R Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria.
| | - K Rostásy
- Department of Pediatric Neurology, Childreńs Hospital Datteln, University Witten/Herdecke, Datteln, Germany.
| |
Collapse
|
4
|
Autoimmune cerebellar hypermetabolism: Report of three cases and literature overview. Rev Neurol (Paris) 2021; 178:337-346. [PMID: 34657731 DOI: 10.1016/j.neurol.2021.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 11/23/2022]
Abstract
We report three cases of vermian cerebellar hypermetabolism in patients with autoimmune encephalitis. One of our patients was positive for anti-Ma2 antibodies and one for anti-Zic4 antibodies while the remaining patient did not present any known antibodies. The seronegative patient deteriorated after immune checkpoint inhibitor treatment for a pulmonary adenocarcinoma and improved with immunosuppressive drugs, which is in favour of an underlying autoimmune mechanism. They all presented with subacute neurological symptoms. Brain magnetic resonance imaging was normal except in one patient, where hyperintensities were present on FLAIR sequence around the third ventricle and the cerebral aqueduct. 18F-FDG brain positron emission tomography with computed tomography (18F-FDG PET-CT) demonstrated an unusual vermian cerebellar hypermetabolism in the three cases. While cerebellar hypermetabolism on 18F-FDG PET-CT has been described in various neurological diseases, such vermian - and more broadly cerebellar - hypermetabolism was seldom described in previous studies on autoimmune encephalitis. When differential diagnoses have been ruled out, this pattern may be of interest for the positive diagnosis of autoimmune encephalitis in difficult diagnostic cases.
Collapse
|
5
|
Mitoma H, Manto M, Hadjivassiliou M. Immune-Mediated Cerebellar Ataxias: Clinical Diagnosis and Treatment Based on Immunological and Physiological Mechanisms. J Mov Disord 2021; 14:10-28. [PMID: 33423437 PMCID: PMC7840241 DOI: 10.14802/jmd.20040] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/04/2020] [Indexed: 12/24/2022] Open
Abstract
Since the first description of immune-mediated cerebellar ataxias (IMCAs) by Charcot in 1868, several milestones have been reached in our understanding of this group of neurological disorders. IMCAs have diverse etiologies, such as gluten ataxia, postinfectious cerebellitis, paraneoplastic cerebellar degeneration, opsoclonus myoclonus syndrome, anti-GAD ataxia, and primary autoimmune cerebellar ataxia. The cerebellum, a vulnerable autoimmune target of the nervous system, has remarkable capacities (collectively known as the cerebellar reserve, closely linked to plasticity) to compensate and restore function following various pathological insults. Therefore, good prognosis is expected when immune-mediated therapeutic interventions are delivered during early stages when the cerebellar reserve can be preserved. However, some types of IMCAs show poor responses to immunotherapies, even if such therapies are introduced at an early stage. Thus, further research is needed to enhance our understanding of the autoimmune mechanisms underlying IMCAs, as such research could potentially lead to the development of more effective immunotherapies. We underscore the need to pursue the identification of robust biomarkers.
Collapse
Affiliation(s)
- Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo, Japan
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, Charleroi, Belgium.,Service des Neurosciences, University of Mons, Mons, Belgium
| | | |
Collapse
|
6
|
Recent Advances in the Treatment of Cerebellar Disorders. Brain Sci 2019; 10:brainsci10010011. [PMID: 31878024 PMCID: PMC7017280 DOI: 10.3390/brainsci10010011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022] Open
Abstract
Various etiopathologies affect the cerebellum, resulting in the development of cerebellar ataxias (CAs), a heterogeneous group of disorders characterized clinically by movement incoordination, affective dysregulation, and cognitive dysmetria. Recent progress in clinical and basic research has opened the door of the ‘‘era of therapy” of CAs. The therapeutic rationale of cerebellar diseases takes into account the capacity of the cerebellum to compensate for pathology and restoration, which is collectively termed cerebellar reserve. In general, treatments of CAs are classified into two categories: cause-cure treatments, aimed at arresting disease progression, and neuromodulation therapies, aimed at potentiating cerebellar reserve. Both forms of therapies should be introduced as soon as possible, at a time where cerebellar reserve is still preserved. Clinical studies have established evidence-based cause-cure treatments for metabolic and immune-mediated CAs. Elaborate protocols of rehabilitation and non-invasive cerebellar stimulation facilitate cerebellar reserve, leading to recovery in the case of controllable pathologies (metabolic and immune-mediated CAs) and delay of disease progression in the case of uncontrollable pathologies (degenerative CAs). Furthermore, recent advances in molecular biology have encouraged the development of new forms of therapies: the molecular targeting therapy, which manipulates impaired RNA or proteins, and the neurotransplantation therapy, which delays cell degeneration and facilitates compensatory functions. The present review focuses on the therapeutic rationales of these recently developed therapeutic modalities, highlighting the underlying pathogenesis.
Collapse
|
7
|
Mitoma H, Manto M, Hampe CS. Immune-mediated Cerebellar Ataxias: Practical Guidelines and Therapeutic Challenges. Curr Neuropharmacol 2019; 17:33-58. [PMID: 30221603 PMCID: PMC6341499 DOI: 10.2174/1570159x16666180917105033] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/06/2018] [Accepted: 09/03/2018] [Indexed: 12/11/2022] Open
Abstract
Immune-mediated cerebellar ataxias (IMCAs), a clinical entity reported for the first time in the 1980s, include gluten ataxia (GA), paraneoplastic cerebellar degenerations (PCDs), antiglutamate decarboxylase 65 (GAD) antibody-associated cerebellar ataxia, post-infectious cerebellitis, and opsoclonus myoclonus syndrome (OMS). These IMCAs share common features with regard to therapeutic approaches. When certain factors trigger immune processes, elimination of the antigen( s) becomes a priority: e.g., gluten-free diet in GA and surgical excision of the primary tumor in PCDs. Furthermore, various immunotherapeutic modalities (e.g., steroids, immunoglobulins, plasmapheresis, immunosuppressants, rituximab) should be considered alone or in combination to prevent the progression of the IMCAs. There is no evidence of significant differences in terms of response and prognosis among the various types of immunotherapies. Treatment introduced at an early stage, when CAs or cerebellar atrophy is mild, is associated with better prognosis. Preservation of the "cerebellar reserve" is necessary for the improvement of CAs and resilience of the cerebellar networks. In this regard, we emphasize the therapeutic principle of "Time is Cerebellum" in IMCAs.
Collapse
Affiliation(s)
- Hiroshi Mitoma
- Address correspondence to this author at the Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan;, E-mail:
| | | | | |
Collapse
|
8
|
Mitoma H, Manto M, Hampe CS. Immune-mediated cerebellar ataxias: from bench to bedside. CEREBELLUM & ATAXIAS 2017; 4:16. [PMID: 28944066 PMCID: PMC5609024 DOI: 10.1186/s40673-017-0073-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 09/07/2017] [Indexed: 02/08/2023]
Abstract
The cerebellum is a vulnerable target of autoimmunity in the CNS. The category of immune-mediated cerebellar ataxias (IMCAs) was recently established, and includes in particular paraneoplastic cerebellar degenerations (PCDs), gluten ataxia (GA) and anti-GAD65 antibody (Ab) associated-CA, all characterized by the presence of autoantibodies. The significance of onconeuronal autoantibodies remains uncertain in some cases. The pathogenic role of anti-GAD65Ab has been established both in vitro and in vivo, but a consensus has not been reached yet. Recent studies of anti-GAD65 Ab-associated CA have clarified that (1) autoantibodies are generally polyclonal and elicit pathogenic effects related to epitope specificity, and (2) the clinical course can be divided into two phases: a phase of functional disorder followed by cell death. These features provide the rationale for prompt diagnosis and therapeutic strategies. The concept “Time is brain” has been completely underestimated in the field of immune ataxias. We now put forward the concept “Time is cerebellum” to underline the importance of very early therapeutic strategies in order to prevent or stop the loss of neurons and synapses. The diagnosis of IMCAs should depend not only on Ab testing, but rather on a rapid and comprehensive assessment of the clinical/immune profile. Treatment should be applied during the period of preserved cerebellar reserve, and should encompass early removal of the conditions (such as remote primary tumors) or diseases that trigger the autoimmunity, followed by the combinations of various immunotherapies.
Collapse
Affiliation(s)
- Hiroshi Mitoma
- Tokyo Medical University, Medical Education Promotion Center, 6-7-1 Nishi-Shinjyuku, Shinjyuku-ku, Tokyo, 160-0023 Japan
| | - Mario Manto
- Unité d'Etude du Mouvement (UEM), FNRS, ULB-Erasme, 1070 Bruxelles, Belgium.,Service des Neurosciences, University of Mons, 7000 Mons, Belgium
| | | |
Collapse
|
9
|
Pavone P, Praticò AD, Pavone V, Lubrano R, Falsaperla R, Rizzo R, Ruggieri M. Ataxia in children: early recognition and clinical evaluation. Ital J Pediatr 2017; 43:6. [PMID: 28257643 PMCID: PMC5347818 DOI: 10.1186/s13052-016-0325-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 12/26/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Ataxia is a sign of different disorders involving any level of the nervous system and consisting of impaired coordination of movement and balance. It is mainly caused by dysfunction of the complex circuitry connecting the basal ganglia, cerebellum and cerebral cortex. A careful history, physical examination and some characteristic maneuvers are useful for the diagnosis of ataxia. Some of the causes of ataxia point toward a benign course, but some cases of ataxia can be severe and particularly frightening. METHODS Here, we describe the primary clinical ways of detecting ataxia, a sign not easily recognizable in children. We also report on the main disorders that cause ataxia in children. RESULTS The causal events are distinguished and reported according to the course of the disorder: acute, intermittent, chronic-non-progressive and chronic-progressive. CONCLUSIONS Molecular research in the field of ataxia in children is rapidly expanding; on the contrary no similar results have been attained in the field of the treatment since most of the congenital forms remain fully untreatable. Rapid recognition and clinical evaluation of ataxia in children remains of great relevance for therapeutic results and prognostic counseling.
Collapse
Affiliation(s)
- Piero Pavone
- University-Hospital “Policlinico-Vittorio Emanuele”, University of Catania, Catania, Italy
- Unit of Pediatrics and Pediatric Emergency, Azienda Ospedaliera Universitaria Vittorio Emanuele-Policlinico, University of Catania, Italy, Via Plebiscito 767, 95123 Catania, Italy
| | - Andrea D. Praticò
- Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Vito Pavone
- Department of Orthopaedics, University of Catania, Catania, Italy
| | | | - Raffaele Falsaperla
- University-Hospital “Policlinico-Vittorio Emanuele”, University of Catania, Catania, Italy
| | - Renata Rizzo
- Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Martino Ruggieri
- Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
10
|
Graus F, Titulaer MJ, Balu R, Benseler S, Bien CG, Cellucci T, Cortese I, Dale RC, Gelfand JM, Geschwind M, Glaser CA, Honnorat J, Höftberger R, Iizuka T, Irani SR, Lancaster E, Leypoldt F, Prüss H, Rae-Grant A, Reindl M, Rosenfeld MR, Rostásy K, Saiz A, Venkatesan A, Vincent A, Wandinger KP, Waters P, Dalmau J. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 2016; 15:391-404. [PMID: 26906964 PMCID: PMC5066574 DOI: 10.1016/s1474-4422(15)00401-9] [Citation(s) in RCA: 2606] [Impact Index Per Article: 289.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/08/2015] [Accepted: 12/16/2015] [Indexed: 12/18/2022]
Abstract
Encephalitis is a severe inflammatory disorder of the brain with many possible causes and a complex differential diagnosis. Advances in autoimmune encephalitis research in the past 10 years have led to the identification of new syndromes and biomarkers that have transformed the diagnostic approach to these disorders. However, existing criteria for autoimmune encephalitis are too reliant on antibody testing and response to immunotherapy, which might delay the diagnosis. We reviewed the literature and gathered the experience of a team of experts with the aims of developing a practical, syndrome-based diagnostic approach to autoimmune encephalitis and providing guidelines to navigate through the differential diagnosis. Because autoantibody test results and response to therapy are not available at disease onset, we based the initial diagnostic approach on neurological assessment and conventional tests that are accessible to most clinicians. Through logical differential diagnosis, levels of evidence for autoimmune encephalitis (possible, probable, or definite) are achieved, which can lead to prompt immunotherapy.
Collapse
Affiliation(s)
- Francesc Graus
- Neuroimmunology Program, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Service of Neurology, Hospital Clinic, Barcelona, Spain.
| | | | - Ramani Balu
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Susanne Benseler
- Department of Pediatrics, Alberta Children Hospital, Calgary, AB, Canada
| | | | - Tania Cellucci
- Department of Pediatrics, McMaster Children's Hospital, McMaster University, Hamilton, ON, Canada
| | - Irene Cortese
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Russell C Dale
- Neuroimmunology Group, Children's Hospital at Westmead, University of Sydney, Sydney, NSW, Australia
| | - Jeffrey M Gelfand
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Michael Geschwind
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Carol A Glaser
- Division of Pediatric Infectious Diseases, Kaiser Permanente, Oakland Medical Center and University of California, San Francisco, CA, USA
| | - Jerome Honnorat
- French Reference Center on Paraneoplastic Neurological Syndrome, Hospices Civils De Lyon, Hôpital Neurologique, Inserm U1028, CNRS UMR 5292, Lyon's Neurosciences Research Center, Université Claude-Bernard Lyon-1, Lyon, France
| | - Romana Höftberger
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Takahiro Iizuka
- Department of Neurology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Sarosh R Irani
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Eric Lancaster
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Frank Leypoldt
- Neuroimmunology, Institute of Clinical Chemistry, and Department of Neurology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Harald Prüss
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany; German Center for Neurodegenerative Disorders Berlin, Berlin, Germany
| | | | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Myrna R Rosenfeld
- Neuroimmunology Program, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Kevin Rostásy
- Department of Pediatric Neurology, Children's Hospital Datteln, Witten/Herdecke University, Datteln, Germany
| | - Albert Saiz
- Neuroimmunology Program, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Service of Neurology, Hospital Clinic, Barcelona, Spain
| | - Arun Venkatesan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Klaus-Peter Wandinger
- Institute of Clinical Chemistry and Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Patrick Waters
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Josep Dalmau
- Neuroimmunology Program, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
11
|
Mitoma H, Hadjivassiliou M, Honnorat J. Guidelines for treatment of immune-mediated cerebellar ataxias. CEREBELLUM & ATAXIAS 2015; 2:14. [PMID: 26561527 PMCID: PMC4641375 DOI: 10.1186/s40673-015-0034-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/05/2015] [Indexed: 12/17/2022]
Abstract
Immune-mediated cerebellar ataxias include gluten ataxia, paraneoplastic cerebellar degeneration, GAD antibody associated cerebellar ataxia, and Hashimoto’s encephalopathy. Despite the identification of an increasing number of immune-mediated cerebellar ataxias, there is no proposed standardized therapy. We evaluated the efficacies of immunotherapies in reported cases using a common scale of daily activity. The analysis highlighted the importance of removal of autoimmune triggering factors (e.g., gluten or cancer) and the need for immunotherapy evaluation (e.g., corticosteroids, intravenous immunoglobulin, immunosuppressants) and adaptation according to each subtype.
Collapse
Affiliation(s)
- Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo, Japan
| | | | - Jérôme Honnorat
- University Lyon 1, University Lyon, Rue Guillaume Paradin, 69372 Lyon, Cedex 08 France ; INSERM, UMR-S1028, CNRS, UMR-5292, Lyon Neuroscience Research Center, Neuro-Oncology and Neuro-Inflammation Team, 7, Rue Guillaume Paradin, 69372 Lyon, Cedex 08 France ; National Reference Centre for Paraneoplastic Neurological Diseases, Hospices civils de Lyon, Hôpital neurologique, 69677 Bron, France ; Hospices Civils de Lyon, Neuro-oncology, Hôpital Neurologique, 69677 Bron, France
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW This article discusses recent advances in the understanding of clinical and genetic aspects of primary ataxias, including congenital, autosomal recessive, autosomal dominant, episodic, X-linked, and mitochondrial ataxias, as well as idiopathic degenerative and secondary ataxias. RECENT FINDINGS Many important observations have been published in recent years in connection with primary ataxias, particularly new loci and genes. The most commonly inherited ataxias may present with typical and atypical phenotypes. In the group of idiopathic degenerative ataxias, genes have been found in patients with multiple system atrophy type C. Secondary ataxias represent an important group of sporadic, cerebellar, and afferent/sensory ataxias. SUMMARY Knowledge of primary ataxias has been growing rapidly in recent years. Here we review different forms of primary ataxia, including inherited forms, which are subdivided into congenital, autosomal recessive cerebellar ataxias, autosomal dominant cerebellar ataxias, episodic ataxias, X-linked ataxias, and mitochondrial ataxias, as well as sporadic ataxias and idiopathic degenerative ataxias. Secondary or acquired ataxias are also reviewed and the most common causes are discussed.
Collapse
Affiliation(s)
- Hélio A.G. Teive
- Department of Internal Medicine, Movement Disorders Unit and Neurology Service, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil and
| | - Tetsuo Ashizawa
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
13
|
[Anti-GAD antibodies in paraneoplastic cerebellar ataxia associated with limbic encephalitis and autonomic dysfunction]. Rev Neurol (Paris) 2012; 168:363-6. [PMID: 22405456 DOI: 10.1016/j.neurol.2011.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 06/10/2011] [Accepted: 07/02/2011] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Cerebellar ataxia and stiff person-syndrome are the main neurological syndromes associated with antibodies to glutamic acid decarboxylase (GAD). CASE REPORT A 59-year-old patient, with history of polymyalgia rheumatica and active smoking, was admitted for subacute cerebellar ataxia and memory dysfunction explained by limbic encephalitis on brain MRI. He also presented with orthostatic hypotension and erectile dysfunction revealing autonomic dysfunction. CSF was inflammatory and antibodies to GAD were positive. Onconeuronal antibodies including GABA(B) receptor antibodies were negative. Patient's condition quickly improved after intravenous immunoglobulins. A few months later, a small cell lung carcinoma was diagnosed and precociously treated. CONCLUSION This case report underlines the importance of appropriate studies to confirm a primitive neoplasia, when confronted with limbic encephalitis and cerebellar ataxia, even if anti-GAD antibodies rarely define paraneoplastic syndromes.
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW The most relevant advances in immune-mediated movement disorders are described, with emphasis on the clinical--immunological associations, novel antigens, and treatment. RECENT FINDINGS Many movement disorders previously considered idiopathic or degenerative are now recognized as immune-mediated. Some disorders are paraneoplastic, such as anti-CRMP5-associated chorea, anti-Ma2 hypokinesis and rigidity, anti-Yo cerebellar ataxia and tremor, and anti-Hu ataxia and pesudoathetosis. Other disorders such as Sydenham's chorea, or chorea related to systemic lupus erythematosus and antiphospholipid syndrome occur in association with multiple antibodies, are not paraneoplastic, and are triggered by molecular mimicry or unknown mechanisms. Recent studies have revealed a new category of disorders that can be paraneoplastic or not, and associate with antibodies against cell-surface or synaptic proteins. They include anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis, which may cause dyskinesias, chorea, ballismus or dystonia (NMDAR antibodies), the spectrum of Stiff-person syndrome/muscle rigidity (glutamic acid decarboxylase, amphiphysin, GABA(A)-receptor-associated protein, or glycine receptor antibodies), neuromyotonia (Caspr2 antibodies), and opsoclonus--myoclonus--ataxia (unknown antigens). SUMMARY Neurologists should be aware that many movement disorders are immune-mediated. Recognition of these disorders is important because it may lead to the diagnosis of an occult cancer, and a substantial number of patients, mainly those with antibodies to cell-surface or synaptic proteins, respond to immunotherapy.
Collapse
Affiliation(s)
- Jessica Panzer
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|