1
|
Fischer L, Molloy EN, Pichet Binette A, Vockert N, Marquardt J, Pacha Pilar A, Kreissl MC, Remz J, Tremblay-Mercier J, Poirier J, Rajah MN, Villeneuve S, Maass A. Precuneus Activity during Retrieval Is Positively Associated with Amyloid Burden in Cognitively Normal Older APOE4 Carriers. J Neurosci 2025; 45:e1408242024. [PMID: 39788739 PMCID: PMC11800745 DOI: 10.1523/jneurosci.1408-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025] Open
Abstract
The precuneus is a site of early amyloid-beta (Aβ) accumulation. Previous cross-sectional studies reported increased precuneus fMRI activity in older adults with mild cognitive deficits or elevated Aβ. However, longitudinal studies in early Alzheimer's disease (AD) are lacking and the relationship to the Apolipoprotein-E (APOE) genotype is unclear. Investigating the PREVENT-AD dataset, we assessed how baseline and longitudinal precuneus activity during successful memory retrieval relates to future Aβ and tau burden and change in memory performance. We further studied the moderation by APOE4 genotype. We included 165 older adults (age, 62.8 ± 4.4 years; 113 female; 66 APOE4 carriers) who were cognitively normal at baseline with a family history of AD. All participants performed task-fMRI at baseline and underwent 18F-flortaucipir-PET and 18F-NAV4694-Aβ-PET on average 5 years later. We found that higher baseline activity and greater longitudinal increase in precuneus activity were associated with higher Aβ burden in APOE4 carriers but not noncarriers. We observed no effects of precuneus activity on tau burden. Finally, APOE4 noncarriers with low baseline precuneus activity exhibited better longitudinal performance in an independent memory test compared with (1) noncarriers with higher baseline activity and (2) APOE4 carriers. Our findings suggest that higher task-related precuneus activity during memory retrieval at baseline and over time are associated with greater Aβ burden in cognitively normal APOE4 carriers. Our results further indicate that the absence of "hyperactivation" and the absence of the APOE4 allele is related with better future cognitive outcomes in cognitively normal older adults at risk for AD.
Collapse
Affiliation(s)
- Larissa Fischer
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
| | - Eóin N Molloy
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
- Division of Nuclear Medicine, Department of Radiology & Nuclear Medicine, Faculty of Medicine, Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
| | - Alexa Pichet Binette
- Clinical Memory Research, Faculty of Medicine, Lund University, Lund 223 62, Sweden
- Douglas Mental Health University Institute Research Centre, McGill University, Montréal H4H 1R3, Canada
| | - Niklas Vockert
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
| | - Jonas Marquardt
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
| | - Andrea Pacha Pilar
- Institute for Biology, Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
| | - Michael C Kreissl
- Division of Nuclear Medicine, Department of Radiology & Nuclear Medicine, Faculty of Medicine, Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
| | - Jordana Remz
- Douglas Mental Health University Institute Research Centre, McGill University, Montréal H4H 1R3, Canada
| | - Jennifer Tremblay-Mercier
- Douglas Mental Health University Institute Research Centre, McGill University, Montréal H4H 1R3, Canada
| | - Judes Poirier
- Douglas Mental Health University Institute Research Centre, McGill University, Montréal H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montréal H3A 1A1, Canada
| | - Maria Natasha Rajah
- Douglas Mental Health University Institute Research Centre, McGill University, Montréal H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montréal H3A 1A1, Canada
- Department of Psychology, Toronto Metropolitan University, Toronto M5S 1A1, Canada
| | - Sylvia Villeneuve
- Douglas Mental Health University Institute Research Centre, McGill University, Montréal H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montréal H3A 1A1, Canada
| | - Anne Maass
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
- Institute for Biology, Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
| |
Collapse
|
2
|
Gallet Q, Bouteloup V, Locatelli M, Habert MO, Chupin M, Campion JY, Michels PE, Delrieu J, Lebouvier T, Balageas AC, Surget A, Belzung C, Arlicot N, Ribeiro MJS, Gissot V, El-Hage W, Camus V, Gohier B, Desmidt T. Cerebral Metabolic Signature of Chronic Benzodiazepine Use in Nondemented Older Adults: An FDG-PET Study in the MEMENTO Cohort. Am J Geriatr Psychiatry 2024; 32:665-677. [PMID: 37973486 DOI: 10.1016/j.jagp.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE We sought to examine the association between chronic Benzodiazepine (BZD) use and brain metabolism obtained from 2-deoxy-2-fluoro-D-glucose (FDG) positron emission tomography (PET) in the MEMENTO clinical cohort of nondemented older adults with an isolated memory complaint or mild cognitive impairment at baseline. METHODS Our analysis focused on 3 levels: (1) the global mean brain standardized uptake value (SUVR), (2) the Alzheimer's disease (AD)-specific regions of interest (ROIs), and (3) the ratio of total SUVR on the brain and different anatomical ROIs. Cerebral metabolism was obtained from 2-deoxy-2-fluoro-D-glucose-FDG-PET and compared between chronic BZD users and nonusers using multiple linear regressions adjusted for age, sex, education, APOE ε 4 copy number, cognitive and neuropsychiatric assessments, history of major depressive episodes and antidepressant use. RESULTS We found that the SUVR was significantly higher in chronic BZD users (n = 192) than in nonusers (n = 1,122) in the whole brain (beta = 0.03; p = 0.038) and in the right amygdala (beta = 0.32; p = 0.012). Trends were observed for the half-lives of BZDs (short- and long-acting BZDs) (p = 0.051) and Z-drug hypnotic treatments (p = 0.060) on the SUVR of the right amygdala. We found no significant association in the other ROIs. CONCLUSION Our study is the first to find a greater global metabolism in chronic BZD users and a specific greater metabolism in the right amygdala. Because the acute administration of BZDs tends to reduce brain metabolism, these findings may correspond to a compensatory mechanism while the brain adapts with global metabolism upregulation, with a specific focus on the right amygdala.
Collapse
Affiliation(s)
- Quentin Gallet
- Department of Psychiatry, University Hospital, Angers, France
| | - Vincent Bouteloup
- Centre Inserm U1219 Bordeaux Population Health, CIC1401-EC, Institut de Santé Publique, d'Epidémiologie et de Développement, Université de Bordeaux, CHU de Bordeaux, Pôle Santé Publique, Bordeaux, France
| | - Maxime Locatelli
- CATI, US52-UAR2031, CEA, ICM, Sorbonne Université, CNRS, INSERM, APHP, Ile de France, France; Paris Brain Institute - Institut du Cerveau (ICM), CNRS UMR 7225, INSERM, U 1127, Sorbonne Université F-75013, Paris, France; Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, F-75006, Paris, France
| | - Marie-Odile Habert
- CATI, US52-UAR2031, CEA, ICM, Sorbonne Université, CNRS, INSERM, APHP, Ile de France, France; Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, F-75006, Paris, France; Service de médecine nucléaire, Hôpital Pitié-Salpêtrière, APHP, Paris 75013, France
| | - Marie Chupin
- CATI, US52-UAR2031, CEA, ICM, Sorbonne Université, CNRS, INSERM, APHP, Ile de France, France; Paris Brain Institute - Institut du Cerveau (ICM), CNRS UMR 7225, INSERM, U 1127, Sorbonne Université F-75013, Paris, France
| | | | | | - Julien Delrieu
- Gérontopôle, Department of Geriatrics, CHU Toulouse, Purpan University Hospital, Toulouse, France; UMR1027, Université de Toulouse, UPS, INSERM, Toulouse, France
| | | | | | | | | | - Nicolas Arlicot
- UMR 1253, iBrain, Université de Tours, INSERM, Tours, France; CIC 1415, Université de Tours, INSERM, Tours, France
| | - Maria-Joao Santiago Ribeiro
- CHU de Tours, Tours, France; UMR 1253, iBrain, Université de Tours, INSERM, Tours, France; CIC 1415, Université de Tours, INSERM, Tours, France
| | - Valérie Gissot
- CHU de Tours, Tours, France; UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
| | - Wissam El-Hage
- CHU de Tours, Tours, France; UMR 1253, iBrain, Université de Tours, INSERM, Tours, France; CIC 1415, Université de Tours, INSERM, Tours, France
| | - Vincent Camus
- CHU de Tours, Tours, France; UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
| | - Bénédicte Gohier
- Department of Psychiatry, University Hospital, Angers, France; Université d'Angers, Université de Nantes, LPPL, SFR CONFLUENCES, F-49000 Angers, France
| | - Thomas Desmidt
- CHU de Tours, Tours, France; UMR 1253, iBrain, Université de Tours, INSERM, Tours, France.
| |
Collapse
|
3
|
Ji X, Peng X, Tang H, Pan H, Wang W, Wu J, Chen J, Wei N. Alzheimer's disease phenotype based upon the carrier status of the apolipoprotein E ɛ4 allele. Brain Pathol 2024; 34:e13208. [PMID: 37646624 PMCID: PMC10711266 DOI: 10.1111/bpa.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 08/05/2023] [Indexed: 09/01/2023] Open
Abstract
The apolipoprotein E ɛ4 allele (APOE4) is universally acknowledged as the most potent genetic risk factor for Alzheimer's disease (AD). APOE4 promotes the initiation and progression of AD. Although the underlying mechanisms are unclearly understood, differences in lipid-bound affinity among the three APOE isoforms may constitute the basis. The protein APOE4 isoform has a high affinity with triglycerides and cholesterol. A distinction in lipid metabolism extensively impacts neurons, microglia, and astrocytes. APOE4 carriers exhibit phenotypic differences from non-carriers in clinical examinations and respond differently to multiple treatments. Therefore, we hypothesized that phenotypic classification of AD patients according to the status of APOE4 carrier will help specify research and promote its use in diagnosing and treating AD. Recent reviews have mainly evaluated the differences between APOE4 allele carriers and non-carriers from gene to protein structures, clinical features, neuroimaging, pathology, the neural network, and the response to various treatments, and have provided the feasibility of phenotypic group classification based on APOE4 carrier status. This review will facilitate the application of APOE phenomics concept in clinical practice and promote further medical research on AD.
Collapse
Affiliation(s)
- Xiao‐Yu Ji
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
- Brain Function and Disease LaboratoryShantou University Medical CollegeGuangdongChina
| | - Xin‐Yuan Peng
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
| | - Hai‐Liang Tang
- Fudan University Huashan Hospital, Department of Neurosurgery, State Key Laboratory for Medical NeurobiologyInstitutes of Brain Science, Shanghai Medical College‐Fudan UniversityShanghaiChina
| | - Hui Pan
- Shantou Longhu People's HospitalShantouGuangdongChina
| | - Wei‐Tang Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
| | - Jie Wu
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
- Brain Function and Disease LaboratoryShantou University Medical CollegeGuangdongChina
| | - Jian Chen
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
| | - Nai‐Li Wei
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
| |
Collapse
|
4
|
Silaghi CN, Farcaș M, Crăciun AM. Sirtuin 3 (SIRT3) Pathways in Age-Related Cardiovascular and Neurodegenerative Diseases. Biomedicines 2021; 9:biomedicines9111574. [PMID: 34829803 PMCID: PMC8615405 DOI: 10.3390/biomedicines9111574] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 01/08/2023] Open
Abstract
Age-associated cardiovascular and neurodegenerative diseases lead to high morbidity and mortality around the world. Sirtuins are vital enzymes for metabolic adaptation and provide protective effects against a wide spectrum of pathologies. Among sirtuins, mitochondrial sirtuin 3 (SIRT3) is an essential player in preserving the habitual metabolic profile. SIRT3 activity declines as a result of aging-induced changes in cellular metabolism, leading to increased susceptibility to endothelial dysfunction, hypertension, heart failure and neurodegenerative diseases. Stimulating SIRT3 activity via lifestyle, pharmacological or genetic interventions could protect against a plethora of pathologies and could improve health and lifespan. Thus, understanding how SIRT3 operates and how its protective effects could be amplified, will aid in treating age-associated diseases and ultimately, in enhancing the quality of life in elders.
Collapse
|
5
|
Martí‐Juan G, Sanroma‐Guell G, Cacciaglia R, Falcon C, Operto G, Molinuevo JL, González Ballester MÁ, Gispert JD, Piella G, The Alzheimer's Disease Neuroimaging Initiative, The ALFA Study. Nonlinear interaction between APOE ε4 allele load and age in the hippocampal surface of cognitively intact individuals. Hum Brain Mapp 2021; 42:47-64. [PMID: 33017488 PMCID: PMC7721244 DOI: 10.1002/hbm.25202] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/16/2020] [Accepted: 08/11/2020] [Indexed: 01/27/2023] Open
Abstract
The ε4 allele of the gene Apolipoprotein E is the major genetic risk factor for Alzheimer's Disease. APOE ε4 has been associated with changes in brain structure in cognitively impaired and unimpaired subjects, including atrophy of the hippocampus, which is one of the brain structures that is early affected by AD. In this work we analyzed the impact of APOE ε4 gene dose and its association with age, on hippocampal shape assessed with multivariate surface analysis, in a ε4-enriched cohort of n = 479 cognitively healthy individuals. Furthermore, we sought to replicate our findings on an independent dataset of n = 969 individuals covering the entire AD spectrum. We segmented the hippocampus of the subjects with a multi-atlas-based approach, obtaining high-dimensional meshes that can be analyzed in a multivariate way. We analyzed the effects of different factors including APOE, sex, and age (in both cohorts) as well as clinical diagnosis on the local 3D hippocampal surface changes. We found specific regions on the hippocampal surface where the effect is modulated by significant APOE ε4 linear and quadratic interactions with age. We compared between APOE and diagnosis effects from both cohorts, finding similarities between APOE ε4 and AD effects on specific regions, and suggesting that age may modulate the effect of APOE ε4 and AD in a similar way.
Collapse
Affiliation(s)
- Gerard Martí‐Juan
- BCN MedTech, Departament de Tecnologies de la Informació i les ComunicacionsUniversitat Pompeu FabraBarcelonaSpain
| | | | - Raffaele Cacciaglia
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Carles Falcon
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
- Centro de Investigación Biomédica en Red de BioingenieríaBiomateriales y Nanomedicina (CIBERBBN)MadridSpain
| | - Grégory Operto
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
- Universitat Pompeu FabraBarcelonaSpain
| | - Miguel Ángel González Ballester
- BCN MedTech, Departament de Tecnologies de la Informació i les ComunicacionsUniversitat Pompeu FabraBarcelonaSpain
- ICREABarcelonaSpain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
- Centro de Investigación Biomédica en Red de BioingenieríaBiomateriales y Nanomedicina (CIBERBBN)MadridSpain
- Universitat Pompeu FabraBarcelonaSpain
| | - Gemma Piella
- BCN MedTech, Departament de Tecnologies de la Informació i les ComunicacionsUniversitat Pompeu FabraBarcelonaSpain
| | | | | |
Collapse
|
6
|
Mole JP, Fasano F, Evans J, Sims R, Kidd E, Aggleton JP, Metzler-Baddeley C. APOE-ε4-related differences in left thalamic microstructure in cognitively healthy adults. Sci Rep 2020; 10:19787. [PMID: 33188215 PMCID: PMC7666117 DOI: 10.1038/s41598-020-75992-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/15/2020] [Indexed: 01/05/2023] Open
Abstract
APOE-ε4 is a main genetic risk factor for developing late onset Alzheimer's disease (LOAD) and is thought to interact adversely with other risk factors on the brain. However, evidence regarding the impact of APOE-ε4 on grey matter structure in asymptomatic individuals remains mixed. Much attention has been devoted to characterising APOE-ε4-related changes in the hippocampus, but LOAD pathology is known to spread through the whole of the Papez circuit including the limbic thalamus. Here, we tested the impact of APOE-ε4 and two other risk factors, a family history of dementia and obesity, on grey matter macro- and microstructure across the whole brain in 165 asymptomatic individuals (38-71 years). Microstructural properties of apparent neurite density and dispersion, free water, myelin and cell metabolism were assessed with Neurite Orientation Density and Dispersion (NODDI) and quantitative magnetization transfer (qMT) imaging. APOE-ε4 carriers relative to non-carriers had a lower macromolecular proton fraction (MPF) in the left thalamus. No risk effects were present for cortical thickness, subcortical volume, or NODDI indices. Reduced thalamic MPF may reflect inflammation-related tissue swelling and/or myelin loss in APOE-ε4. Future prospective studies should investigate the sensitivity and specificity of qMT-based MPF as a non-invasive biomarker for LOAD risk.
Collapse
Affiliation(s)
- Jilu P Mole
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Fabrizio Fasano
- Siemens Healthcare, Henkestrasse 127, 91052, Erlangen, Germany
| | - John Evans
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Rebecca Sims
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Haydn Ellis Building, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Emma Kidd
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue,, Cardiff, CF10 3NB, UK
| | - John P Aggleton
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Claudia Metzler-Baddeley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
7
|
Mole JP, Fasano F, Evans J, Sims R, Hamilton DA, Kidd E, Metzler-Baddeley C. Genetic risk of dementia modifies obesity effects on white matter myelin in cognitively healthy adults. Neurobiol Aging 2020; 94:298-310. [PMID: 32736120 DOI: 10.1016/j.neurobiolaging.2020.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 01/05/2023]
Abstract
APOE-ε4 is a major genetic risk factor for late-onset Alzheimer's disease that interacts with other risk factors, but the nature of such combined effects remains poorly understood. We quantified the impact of APOE-ε4, family history (FH) of dementia, and obesity on white matter (WM) microstructure in 165 asymptomatic adults (38-71 years old) using quantitative magnetization transfer and neurite orientation dispersion and density imaging. Microstructural properties of the fornix, parahippocampal cingulum, and uncinate fasciculus were compared with those in motor and whole-brain WM regions. Widespread interaction effects between APOE, FH, and waist-hip ratio were found in the myelin-sensitive macromolecular proton fraction from quantitative magnetization transfer. Among individuals with the highest genetic risk (FH+ and APOE-ε4), obesity was associated with reduced macromolecular proton fraction in the right parahippocampal cingulum, whereas no effects were present for those without FH. Risk effects on apparent myelin were moderated by hypertension and inflammation-related markers. These findings suggest that genetic risk modifies the impact of obesity on WM myelin consistent with neuroglia models of aging and late-onset Alzheimer's disease.
Collapse
Affiliation(s)
- Jilu P Mole
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | | | - John Evans
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Rebecca Sims
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
| | - Derek A Hamilton
- Department of Psychology, The University of New Mexico, Albuquerque, NM, USA
| | - Emma Kidd
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Claudia Metzler-Baddeley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK.
| |
Collapse
|
8
|
Li C, Duara R, Loewenstein DA, Izquierdo W, Cabrerizo M, Barker W, Adjouadi M. Greater Regional Cortical Thickness is Associated with Selective Vulnerability to Atrophy in Alzheimer's Disease, Independent of Amyloid Load and APOE Genotype. J Alzheimers Dis 2020; 69:145-156. [PMID: 30958345 DOI: 10.3233/jad-180231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Regional cortical thickness (rCTh) among cognitively normal (CN) adults (rCThCN) varies greatly between brain regions, as does the vulnerability to neurodegeneration. OBJECTIVE The goal of this study was to: 1) rank order rCThCN for various brain regions, and 2) explore their vulnerability to neurodegeneration in Alzheimer's disease (AD) within these brain regions. METHODS The relationship between rCTh among the CN group (rCThCN) and the percent difference in CTh (% CThDiff) in each region between the CN group and AD patients was examined. Pearson correlation analysis was performed accounting for amyloid-β (Aβ) protein and APOE genotype using 210 age, gender, and APOE matched CN (n = 105, age range: 56-90) and AD (n = 105, age range: 56-90) ADNI participants. RESULTS Strong positive correlations were observed between rCThCN and % CThDiff accounting for Aβ deposition and APOE status. Regions, such as the entorhinal cortex, which had the greatest CTh in the CN state, were also the regions which had the greatest % CThDiff. CONCLUSIONS Regions with the greatest CTh at the CN stage are found to aggregate in disease prone regions of AD, namely in the medial temporal lobe, including the temporal pole, ERC, parahippocampal gyrus, fusiform and the middle and inferior temporal gyrus. Although rCTh has been found to vary considerably across the different regions of the brain, our results indicate that regions with the greatest CTh at the CN stage are actually regions which have been found to be most vulnerable to neurodegeneration in AD.
Collapse
Affiliation(s)
- Chunfei Li
- Center for Advanced Technology and Education, Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA
| | - Ranjan Duara
- Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami, FL, USA.,Florida Alzheimer's Disease Research Center at Gainesville, Miami Beach, Miami, USA.,Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA.,Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - David A Loewenstein
- Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami, FL, USA.,Florida Alzheimer's Disease Research Center at Gainesville, Miami Beach, Miami, USA.,Center on Aging and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Walter Izquierdo
- Center for Advanced Technology and Education, Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA
| | - Mercedes Cabrerizo
- Center for Advanced Technology and Education, Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA
| | - Warren Barker
- Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami, FL, USA.,Florida Alzheimer's Disease Research Center at Gainesville, Miami Beach, Miami, USA
| | - Malek Adjouadi
- Center for Advanced Technology and Education, Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA.,Florida Alzheimer's Disease Research Center at Gainesville, Miami Beach, Miami, USA
| | | |
Collapse
|
9
|
Fang Z, Tang Y, Ying J, Tang C, Wang Q. Traditional Chinese medicine for anti-Alzheimer's disease: berberine and evodiamine from Evodia rutaecarpa. Chin Med 2020; 15:82. [PMID: 32774447 PMCID: PMC7409421 DOI: 10.1186/s13020-020-00359-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common diseases in elderly people with a high incidence of dementia at approximately 60-80%. The pathogenesis of AD was quite complicated and currently there is no unified conclusion in the academic community, so no efficiently clinical treatment is available. In recent years, with the development of traditional Chinese medicine (TCM), researchers have proposed the idea of relying on TCM to prevent and treat AD based on the characteristic of multiple targets of TCM. This study reviewed the pathological hypothesis of AD and the potential biomarkers found in the current researches. And the potential targets of berberine and evodiamine from Evodia rutaecarpa in AD were summarized and further analyzed. A compound-targets-pathway network was carried out to clarify the mechanism of action of berberine and evodiamine for AD. Furthermore, the limitations of current researches on the TCM and AD were discussed. It is hoped that this review will provide some references for development of TCM in the prevention and treatment of AD.
Collapse
Affiliation(s)
- Zhiling Fang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, 315211 Zhejiang China
| | - Yuqing Tang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, 315211 Zhejiang China
| | - Jiaming Ying
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, 315211 Zhejiang China
| | - Chunlan Tang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, 315211 Zhejiang China
| | - Qinwen Wang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, 315211 Zhejiang China
| |
Collapse
|
10
|
Rodrigue AL, Alexander-Bloch AF, Knowles EEM, Mathias SR, Mollon J, Koenis MMG, Perrone-Bizzozero NI, Almasy L, Turner JA, Calhoun VD, Glahn DC. Genetic Contributions to Multivariate Data-Driven Brain Networks Constructed via Source-Based Morphometry. Cereb Cortex 2020; 30:4899-4913. [PMID: 32318716 DOI: 10.1093/cercor/bhaa082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/12/2020] [Accepted: 03/17/2020] [Indexed: 11/14/2022] Open
Abstract
Identifying genetic factors underlying neuroanatomical variation has been difficult. Traditional methods have used brain regions from predetermined parcellation schemes as phenotypes for genetic analyses, although these parcellations often do not reflect brain function and/or do not account for covariance between regions. We proposed that network-based phenotypes derived via source-based morphometry (SBM) may provide additional insight into the genetic architecture of neuroanatomy given its data-driven approach and consideration of covariance between voxels. We found that anatomical SBM networks constructed on ~ 20 000 individuals from the UK Biobank were heritable and shared functionally meaningful genetic overlap with each other. We additionally identified 27 unique genetic loci that contributed to one or more SBM networks. Both GWA and genetic correlation results indicated complex patterns of pleiotropy and polygenicity similar to other complex traits. Lastly, we found genetic overlap between a network related to the default mode and schizophrenia, a disorder commonly associated with neuroanatomic alterations.
Collapse
Affiliation(s)
- Amanda L Rodrigue
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Emma E M Knowles
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Samuel R Mathias
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Josephine Mollon
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marinka M G Koenis
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA.,Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT 06106, USA
| | - Nora I Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.,Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Laura Almasy
- Department of Genetics, Perelman School of Medicine, and the Penn-CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica A Turner
- Psychology Department, Neurosciences Institute, Georgia State University, Atlanta, GA 30303, USA.,The Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA
| | - Vince D Calhoun
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA.,Psychology Department, Neurosciences Institute, Georgia State University, Atlanta, GA 30303, USA.,The Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA.,Mind Research Network, Department of Psychiatry and Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT 06106, USA
| |
Collapse
|
11
|
Yin J, Nielsen M, Carcione T, Li S, Shi J. Apolipoprotein E regulates mitochondrial function through the PGC-1α-sirtuin 3 pathway. Aging (Albany NY) 2019; 11:11148-11156. [PMID: 31808750 PMCID: PMC6932918 DOI: 10.18632/aging.102516] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/18/2019] [Indexed: 12/23/2022]
Abstract
Cerebral hypometabolism is a pathophysiological hallmark of Alzheimer’s disease (AD). Our previous studies found that a mitochondrial protein, sirtuin3 (Sirt3), was down-regulated in human AD postmortem brains. Sirt3 protected neurons against oligo-amyloid β-42 induced hypometabolism in human Apolipoprotein E4 (ApoE4) transgenic mice. However, how ApoE affects mitochondrial function and its proteins such as Sirt3 remains unclear. We characterized and compared levels of Sirt3 and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α, a Sirt3 activator), oxidative stress proteins, synaptic proteins, cognitive task performance and ATP production in 12-month old human ApoE4 and ApoE3 transgenic mice, and assessed changes in Sirt3 expression on cellular metabolism in primary neurons from ApoE4 and ApoE3 transgenic mice. Compared to ApoE3 mice, Sirt3 and PGC-1α levels were significantly lower in ApoE4 mice. Learning and memory, synaptic proteins, the NAD+/ NADH ratios, and ATP production were significantly lower in ApoE4 mice as well. Sirt3 knockdown reduced the oxygen consumption and ATP production in primary neurons with the human ApoE3, while Sirt3 overexpression protected these damages in ApoE4 neurons. Our findings suggest that ApoE4 suppresses mitochondrial function via the PGC-1α- Sirt3 pathway. This discovery provides us novel therapeutic targets for the treatment and prevention of AD.
Collapse
Affiliation(s)
- Junxiang Yin
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Barrow Neurological Institute, St. Joseph Hospital and Medical Center, Dignity Health Organization, Phoenix, AZ 85013, USA
| | - Megan Nielsen
- Barrow Neurological Institute, St. Joseph Hospital and Medical Center, Dignity Health Organization, Phoenix, AZ 85013, USA.,School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Tanner Carcione
- Barrow Neurological Institute, St. Joseph Hospital and Medical Center, Dignity Health Organization, Phoenix, AZ 85013, USA
| | - Shiping Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiong Shi
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Barrow Neurological Institute, St. Joseph Hospital and Medical Center, Dignity Health Organization, Phoenix, AZ 85013, USA.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Metzler-Baddeley C, Mole JP, Sims R, Fasano F, Evans J, Jones DK, Aggleton JP, Baddeley RJ. Fornix white matter glia damage causes hippocampal gray matter damage during age-dependent limbic decline. Sci Rep 2019; 9:1060. [PMID: 30705365 PMCID: PMC6355929 DOI: 10.1038/s41598-018-37658-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022] Open
Abstract
Aging leads to gray and white matter decline but their causation remains unclear. We explored two classes of models of age and dementia risk related brain changes. The first class of models emphasises the importance of gray matter: age and risk-related processes cause neurodegeneration and this causes damage in associated white matter tracts. The second class of models reverses the direction of causation: aging and risk factors cause white matter damage and this leads to gray matter damage. We compared these models with linear mediation analysis and quantitative MRI indices (from diffusion, quantitative magnetization transfer and relaxometry imaging) of tissue properties in two limbic structures implicated in age-related memory decline: the hippocampus and the fornix in 166 asymptomatic individuals (aged 38–71 years). Aging was associated with apparent glia but not neurite density damage in the fornix and the hippocampus. Mediation analysis supported white matter damage causing gray matter decline; controlling for fornix glia damage, the correlations between age and hippocampal damage disappear, but not vice versa. Fornix and hippocampal differences were both associated with reductions in episodic memory performance. These results suggest that fornix white matter glia damage may cause hippocampal gray matter damage during age-dependent limbic decline.
Collapse
Affiliation(s)
- Claudia Metzler-Baddeley
- Cardiff University Brain Research Imaging Centre (CUBRIC), Maindy Road, Cathays, Cardiff, CF24 4HQ, UK.
| | - Jilu P Mole
- Cardiff University Brain Research Imaging Centre (CUBRIC), Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Rebecca Sims
- Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Fabrizio Fasano
- Cardiff University Brain Research Imaging Centre (CUBRIC), Maindy Road, Cathays, Cardiff, CF24 4HQ, UK.,Siemens Healthcare, Head Office, Sir William Siemens Square, Surrey, GU16 8QD, UK
| | - John Evans
- Cardiff University Brain Research Imaging Centre (CUBRIC), Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), Maindy Road, Cathays, Cardiff, CF24 4HQ, UK.,School of Psychology, Faculty of Health Sciences, Australian Catholic University, Melbourne, Victoria, 3065, Australia
| | - John P Aggleton
- School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff, CF10 3AT, UK
| | - Roland J Baddeley
- Experimental Psychology, University of Bristol, 12a Priory Road, Bristol, BS8 1TU, UK
| |
Collapse
|
13
|
Martikainen IK, Kemppainen N, Johansson J, Teuho J, Helin S, Liu Y, Helisalmi S, Soininen H, Parkkola R, Ngandu T, Kivipelto M, Rinne JO. Brain β-Amyloid and Atrophy in Individuals at Increased Risk of Cognitive Decline. AJNR Am J Neuroradiol 2018; 40:80-85. [PMID: 30545837 DOI: 10.3174/ajnr.a5891] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 10/12/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND PURPOSE The relationship between brain β-amyloid and regional atrophy is still incompletely understood in elderly individuals at risk of dementia. Here, we studied the associations between brain β-amyloid load and regional GM and WM volumes in older adults who were clinically evaluated as being at increased risk of cognitive decline based on cardiovascular risk factors. MATERIALS AND METHODS Forty subjects (63-81 years of age) were recruited as part of a larger study, the Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability. Neuroimaging consisted of PET using 11C Pittsburgh compound-B and T1-weighted 3D MR imaging for the measurement of brain β-amyloid and GM and WM volumes, respectively. All subjects underwent clinical, genetic, and neuropsychological evaluations for the assessment of cognitive function and the identification of cardiovascular risk factors. RESULTS Sixteen subjects were visually evaluated as showing cortical β-amyloid (positive for β-amyloid). In the voxel-by-voxel analyses, no significant differences were found in GM and WM volumes between the samples positive and negative for β-amyloid. However, in the sample positive for β-amyloid, increases in 11C Pittsburgh compound-B uptake were associated with reductions in GM volume in the left prefrontal (P = .02) and right temporal lobes (P = .04). CONCLUSIONS Our results show a significant association between increases in brain β-amyloid and reductions in regional GM volume in individuals at increased risk of cognitive decline. This evidence is consistent with a model in which increases in β-amyloid incite neurodegeneration in memory systems before cognitive impairment manifests.
Collapse
Affiliation(s)
- I K Martikainen
- From the Department of Radiology (I.K.M.), Medical Imaging Center, Tampere University Hospital, Tampere, Finland
| | - N Kemppainen
- Division of Clinical Neurosciences (N.K., J.O.R.), Turku University Hospital, Turku, Finland.,Turku PET Centre (N.K., J.J., J.T., S. Helin, J.O.R.), University of Turku, Turku, Finland
| | - J Johansson
- Turku PET Centre (N.K., J.J., J.T., S. Helin, J.O.R.), University of Turku, Turku, Finland
| | - J Teuho
- Turku PET Centre (N.K., J.J., J.T., S. Helin, J.O.R.), University of Turku, Turku, Finland
| | - S Helin
- Turku PET Centre (N.K., J.J., J.T., S. Helin, J.O.R.), University of Turku, Turku, Finland
| | - Y Liu
- Department of Neurology (Y.L., S. Helisalmi, H.S., M.K.), University of Eastern Finland, Kuopio, Finland.,Neurocenter (Y.L., H.S., M.K.), Neurology, Kuopio University Hospital, Kuopio, Finland
| | - S Helisalmi
- Department of Neurology (Y.L., S. Helisalmi, H.S., M.K.), University of Eastern Finland, Kuopio, Finland
| | - H Soininen
- Department of Neurology (Y.L., S. Helisalmi, H.S., M.K.), University of Eastern Finland, Kuopio, Finland.,Neurocenter (Y.L., H.S., M.K.), Neurology, Kuopio University Hospital, Kuopio, Finland
| | - R Parkkola
- Department of Radiology (R.P.), University of Turku and Turku University Hospital, Turku, Finland
| | - T Ngandu
- Department of Public Health Solutions (T.N., M.K.), Public Health Promotion Unit, National Institute for Health and Welfare, Helsinki, Finland.,Division of Clinical Geriatrics (T.N., M.K.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - M Kivipelto
- Department of Neurology (Y.L., S. Helisalmi, H.S., M.K.), University of Eastern Finland, Kuopio, Finland.,Neurocenter (Y.L., H.S., M.K.), Neurology, Kuopio University Hospital, Kuopio, Finland.,Department of Public Health Solutions (T.N., M.K.), Public Health Promotion Unit, National Institute for Health and Welfare, Helsinki, Finland.,Division of Clinical Geriatrics (T.N., M.K.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - J O Rinne
- Division of Clinical Neurosciences (N.K., J.O.R.), Turku University Hospital, Turku, Finland.,Turku PET Centre (N.K., J.J., J.T., S. Helin, J.O.R.), University of Turku, Turku, Finland
| |
Collapse
|
14
|
Mutlu J, Landeau B, Gaubert M, de La Sayette V, Desgranges B, Chételat G. Distinct influence of specific versus global connectivity on the different Alzheimer’s disease biomarkers. Brain 2017; 140:3317-3328. [DOI: 10.1093/brain/awx279] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 09/05/2017] [Indexed: 12/23/2022] Open
|
15
|
Multimodal Fingerprints of Resting State Networks as assessed by Simultaneous Trimodal MR-PET-EEG Imaging. Sci Rep 2017; 7:6452. [PMID: 28743861 PMCID: PMC5527085 DOI: 10.1038/s41598-017-05484-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 05/25/2017] [Indexed: 12/20/2022] Open
Abstract
Simultaneous MR-PET-EEG (magnetic resonance imaging - positron emission tomography – electroencephalography), a new tool for the investigation of neuronal networks in the human brain, is presented here for the first time. It enables the assessment of molecular metabolic information with high spatial and temporal resolution in a given brain simultaneously. Here, we characterize the brain’s default mode network (DMN) in healthy male subjects using multimodal fingerprinting by quantifying energy metabolism via 2- [18F]fluoro-2-desoxy-D-glucose PET (FDG-PET), the inhibition – excitation balance of neuronal activation via magnetic resonance spectroscopy (MRS), its functional connectivity via fMRI and its electrophysiological signature via EEG. The trimodal approach reveals a complementary fingerprint. Neuronal activation within the DMN as assessed with fMRI is positively correlated with the mean standard uptake value of FDG. Electrical source localization of EEG signals shows a significant difference between the dorsal DMN and sensorimotor network in the frequency range of δ, θ, α and β–1, but not with β–2 and β–3. In addition to basic neuroscience questions addressing neurovascular-metabolic coupling, this new methodology lays the foundation for individual physiological and pathological fingerprints for a wide research field addressing healthy aging, gender effects, plasticity and different psychiatric and neurological diseases.
Collapse
|
16
|
Royall DR, Al-Rubaye S, Bishnoi R, Palmer RF. Few serum proteins mediate APOE's association with dementia. PLoS One 2017; 12:e0172268. [PMID: 28291794 PMCID: PMC5349443 DOI: 10.1371/journal.pone.0172268] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/02/2017] [Indexed: 02/08/2023] Open
Abstract
The latent variable "δ" (for "dementia") appears to be uniquely responsible for the dementing aspects of cognitive impairment. Age, depression, gender and the apolipoprotein E (APOE) e4 allele are independently associated with δ. In this analysis, we explore serum proteins as potential mediators of APOE's specific association with δ in a large, ethnically diverse longitudinal cohort, the Texas Alzheimer's Research and Care Consortium (TARCC). APOE was associated only with C-Reactive Protein (CRP), Adiponectin (APN) and Amphiregulin (AREG), although the latter two's associations did not survive Bonferroni correction for multiple comparisons. All three proteins were associated with δ and had weak potential mediation effects on APOE's association with that construct. Our findings suggest that APOE's association with cognitive performance is specific to δ and partially mediated by serum inflammatory proteins. The majority of APOE's significant unadjusted effect on δ is unexplained. It may instead arise from direct central nervous system effects, possibly on native intelligence. If so, then APOE may exert a life-long influence over δ and therefore all-cause dementia risk.
Collapse
Affiliation(s)
- Donald R. Royall
- Department of Psychiatry, the University of Texas Health Science Center, San Antonio, Texas, United States of America
- Department of Medicine, the University of Texas Health Science Center, San Antonio, Texas, United States of America
- Department of Family and Community Medicine, the University of Texas Health Science Center, San Antonio, Texas, United States of America
- South Texas Veterans’ Health System Audie L. Murphy Division Geriatric Research Education and Clinical Care Center, San Antonio, Texas, United States of America
| | - Safa Al-Rubaye
- Department of Psychiatry, the University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Ram Bishnoi
- Department of Psychiatry, the Medical College of Georgia, Augusta, Georgia, United States of America
| | - Raymond F. Palmer
- Department of Family and Community Medicine, the University of Texas Health Science Center, San Antonio, Texas, United States of America
| |
Collapse
|
17
|
Li C, Loewenstein DA, Duara R, Cabrerizo M, Barker W, Adjouadi M, Alzheimer’s Disease Neuroimaging Initiative, Taheri S. The Relationship of Brain Amyloid Load and APOE Status to Regional Cortical Thinning and Cognition in the ADNI Cohort. J Alzheimers Dis 2017; 59:1269-1282. [PMID: 28731444 PMCID: PMC6310151 DOI: 10.3233/jad-170286] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Both amyloid (Aβ) load and APOE4 allele are associated with neurodegenerative changes in Alzheimer's disease (AD) prone regions and with risk for cognitive impairment. OBJECTIVE To evaluate the unique and independent contribution of APOE4 allele status (E4+∖E4-), Aβ status (Amy+∖Amy-), and combined APOE4 and Aβ status on regional cortical thickness (CoTh) and cognition among participants diagnosed as cognitively normal (CN, n = 251), early mild cognitive impairment (EMCI, n = 207), late mild cognitive impairment (LMCI, n = 196), and mild AD (n = 162) from the ADNI. METHODS A series of two-way ANCOVAs with post-hoc Tukey HSD tests, controlling independently for Aβ and APOE4 status and age were examined. RESULTS Among LMCI and AD participants, cortical thinning was widespread in association with Amy+ status, whereas in association with E4+ status only in the inferior temporal and medial orbito-frontal regions. Among CN and EMCI participants, E4+ status, but not Amy+ status, was independently associated with increased CoTh, especially in limbic regions [e.g., in the entorhinal cortex, CoTh was 0.123 mm greater (p = 0.002) among E4+ than E4-participants]. Among CN and EMCI, both E4+ and Amy+ status were independently associated with cognitive impairment, which was greatest among those with combined E4 + and Amy+ status. CONCLUSION Decreased CoTh is independently associated with Amy+ status in many brain regions, but with E4+ status in very restricted number of brain regions. Among CN and EMCI participants, E4 + status is associated with increased CoTh, in medial and inferior temporal regions, although cognitive impairment at this state is independently associated with Amy+ and E4 + status. These findings imply a unique pathophysiological mechanism for E4 + status in AD and its progression.
Collapse
Affiliation(s)
- Chunfei Li
- Department of Electrical and Computer Engineering, Center for Advanced Technology and Education, Florida International University, Miami, FL, USA
| | - David A. Loewenstein
- Wien Center for Alzheimer’s Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA
- Department of Psychiatry and Behavioral Sciences, Center on Aging and Miller School of Medicine, University of Miami, Miami, FL, USA
- Departments of Neurology, University of Florida College of Medicine, Gainesville, FL, USA and Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Ranjan Duara
- Wien Center for Alzheimer’s Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA
- Departments of Neurology, University of Florida College of Medicine, Gainesville, FL, USA and Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- 1Florida ADRC (Florida Alzheimer’s Disease Research Center) at Gainesville, Miami Beach, Miami, FL, USA and Boca Raton, FL, USA
| | - Mercedes Cabrerizo
- Department of Electrical and Computer Engineering, Center for Advanced Technology and Education, Florida International University, Miami, FL, USA
| | - Warren Barker
- Wien Center for Alzheimer’s Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA
- 1Florida ADRC (Florida Alzheimer’s Disease Research Center) at Gainesville, Miami Beach, Miami, FL, USA and Boca Raton, FL, USA
| | - Malek Adjouadi
- Department of Electrical and Computer Engineering, Center for Advanced Technology and Education, Florida International University, Miami, FL, USA
- 1Florida ADRC (Florida Alzheimer’s Disease Research Center) at Gainesville, Miami Beach, Miami, FL, USA and Boca Raton, FL, USA
| | | | | |
Collapse
|
18
|
Dubois B, Hampel H, Feldman HH, Scheltens P, Aisen P, Andrieu S, Bakardjian H, Benali H, Bertram L, Blennow K, Broich K, Cavedo E, Crutch S, Dartigues JF, Duyckaerts C, Epelbaum S, Frisoni GB, Gauthier S, Genthon R, Gouw AA, Habert MO, Holtzman DM, Kivipelto M, Lista S, Molinuevo JL, O'Bryant SE, Rabinovici GD, Rowe C, Salloway S, Schneider LS, Sperling R, Teichmann M, Carrillo MC, Cummings J, Jack CR. Preclinical Alzheimer's disease: Definition, natural history, and diagnostic criteria. Alzheimers Dement 2016; 12:292-323. [PMID: 27012484 PMCID: PMC6417794 DOI: 10.1016/j.jalz.2016.02.002] [Citation(s) in RCA: 1285] [Impact Index Per Article: 142.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During the past decade, a conceptual shift occurred in the field of Alzheimer's disease (AD) considering the disease as a continuum. Thanks to evolving biomarker research and substantial discoveries, it is now possible to identify the disease even at the preclinical stage before the occurrence of the first clinical symptoms. This preclinical stage of AD has become a major research focus as the field postulates that early intervention may offer the best chance of therapeutic success. To date, very little evidence is established on this "silent" stage of the disease. A clarification is needed about the definitions and lexicon, the limits, the natural history, the markers of progression, and the ethical consequence of detecting the disease at this asymptomatic stage. This article is aimed at addressing all the different issues by providing for each of them an updated review of the literature and evidence, with practical recommendations.
Collapse
Affiliation(s)
- Bruno Dubois
- Institute of Memory and Alzheimer's Disease (IM2A) and Brain and Spine Institute (ICM) UMR S 1127 Frontlab, Department of Neurology, AP_HP, Pitié-Salpêtrière University Hospital, Sorbonne Universities, Pierre et Marie Curie University, Paris 06, Paris, France.
| | - Harald Hampel
- Institute of Memory and Alzheimer's Disease (IM2A) and Brain and Spine Institute (ICM) UMR S 1127 Frontlab, Department of Neurology, AP_HP, Pitié-Salpêtrière University Hospital, Sorbonne Universities, Pierre et Marie Curie University, Paris 06, Paris, France; AXA Research Fund & UPMC Chair, Paris, France
| | | | - Philip Scheltens
- Department of Neurology and Alzheimer Center, VU University Medical Center and Neuroscience Campus, Amsterdam, The Netherlands
| | - Paul Aisen
- University of Southern California San Diego, CA, USA
| | - Sandrine Andrieu
- UMR1027, INSERM, Université Toulouse III, Toulouse University Hospital, France
| | - Hovagim Bakardjian
- IHU-A-ICM-Institut des Neurosciences translationnelles de Paris, Paris, France
| | - Habib Benali
- INSERM U1146-CNRS UMR 7371-UPMC UM CR2, Site Pitié-Salpêtrière, Paris, France
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), Institutes of Neurogenetics and Integrative and Experimental Genomics, University of Lübeck, Lübeck, Germany; School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Lab, Department of Neuroscience and Physiology, University of Gothenburg, Mölndal Hospital, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - Enrica Cavedo
- AXA Research Fund & UPMC Chair, Paris, France; Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Sebastian Crutch
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK
| | | | - Charles Duyckaerts
- University Pierre et Marie Curie, Assistance Publique des Hôpitaux de Paris, Alzheimer-Prion Team Institut du Cerveau et de la Moelle (ICM), Paris, France
| | - Stéphane Epelbaum
- Institute of Memory and Alzheimer's Disease (IM2A) and Brain and Spine Institute (ICM) UMR S 1127 Frontlab, Department of Neurology, AP_HP, Pitié-Salpêtrière University Hospital, Sorbonne Universities, Pierre et Marie Curie University, Paris 06, Paris, France
| | - Giovanni B Frisoni
- University Hospitals and University of Geneva, Geneva, Switzerland; IRCCS Fatebenefratelli, Brescia, Italy
| | - Serge Gauthier
- McGill Center for Studies in Aging, Douglas Mental Health Research Institute, Montreal, Canada
| | - Remy Genthon
- Fondation pour la Recherche sur Alzheimer, Hôpital Pitié-Salpêtrière, Paris, France
| | - Alida A Gouw
- UMR1027, INSERM, Université Toulouse III, Toulouse University Hospital, France; Department of Clinical Neurophysiology/MEG Center, VU University Medical Center, Amsterdam
| | - Marie-Odile Habert
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France; AP-HP, Hôpital Pitié-Salpêtrière, Département de Médecine Nucléaire, Paris, France
| | - David M Holtzman
- Department of Neurology, Washington University, Hope Center for Neurological Disorders, St. Louis, MO, USA; Department of Neurology, Washington University, Knight Alzheimer's Disease Research Center, St. Louis, MO, USA
| | - Miia Kivipelto
- Center for Alzheimer Research, Karolinska Institutet, Department of Geriatric Medicine, Karolinska University Hospital, Stockholm, Sweden; Institute of Clinical Medicine/ Neurology, University of Eastern Finland, Kuopio, Finland
| | | | - José-Luis Molinuevo
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Sid E O'Bryant
- Center for Alzheimer's & Neurodegenerative Disease Research, University of North Texas Health Science Center, TX, USA
| | - Gil D Rabinovici
- Memory & Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Christopher Rowe
- Department of Molecular Imaging, Austin Health, University of Melbourne, Australia
| | - Stephen Salloway
- Memory and Aging Program, Butler Hospital, Alpert Medical School of Brown University, USA; Department of Neurology, Alpert Medical School of Brown University, USA; Department of Psychiatry, Alpert Medical School of Brown University, USA
| | - Lon S Schneider
- Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Reisa Sperling
- Harvard Medical School, Memory Disorders Unit, Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Boston, USA; Harvard Medical School, Memory Disorders Unit, Center for Alzheimer Research and Treatment, Massachusetts General Hospital, Boston, USA
| | - Marc Teichmann
- Institute of Memory and Alzheimer's Disease (IM2A) and Brain and Spine Institute (ICM) UMR S 1127 Frontlab, Department of Neurology, AP_HP, Pitié-Salpêtrière University Hospital, Sorbonne Universities, Pierre et Marie Curie University, Paris 06, Paris, France
| | - Maria C Carrillo
- The Alzheimer's Association Division of Medical & Scientific Relations, Chicago, USA
| | - Jeffrey Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Cliff R Jack
- Department of Radiology, Mayo Clinic, Rochester MN, USA
| |
Collapse
|
19
|
Cerebral cortical Aβ42 and PHF-τ in 325 consecutive brain autopsies stratified by diagnosis, location, and APOE. J Neuropathol Exp Neurol 2015; 74:100-9. [PMID: 25575135 DOI: 10.1097/nen.0000000000000153] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We used a novel approach to molecular quantification in standard fixed and embedded tissue to measure amyloid β 42 (Aβ(42)) and paired helical filament-τ (PHF-τ) in frontal, temporal, and parietal cortices from 325 consecutive brain autopsies collected as part of a population-based study of brain aging and incident dementia in the Seattle area. We observed significant effects of APOE ε4 on Aβ(42) levels in both diagnostic groups by disease stage and region. In contrast, we did not observe a significant effect of APOE ε4 on PHF-τ levels by disease stage in any region. Levels of Aβ(42) and PHF-τ in cerebral cortex were correlated more strongly in the Dementia group, and these measures had independent explanatory power for dementia beyond those of standard neuropathologic indices. Associations between Lewy body disease and Aβ(42) or PHF-τ levels and between Aβ(42) levels and microvascular brain injury suggested that these comorbid diseases enhanced the penetrance of Alzheimer disease. Our novel approach brings additional insights into the molecular pathogenesis of common causes of dementia and may serve as a platform for future studies pursuing associations between molecular changes in Alzheimer disease and genetic or environmental risk.
Collapse
|
20
|
Strike LT, Couvy-Duchesne B, Hansell NK, Cuellar-Partida G, Medland SE, Wright MJ. Genetics and Brain Morphology. Neuropsychol Rev 2015; 25:63-96. [DOI: 10.1007/s11065-015-9281-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/08/2015] [Indexed: 12/17/2022]
|
21
|
Braak H, Del Tredici K. Are cases with tau pathology occurring in the absence of Aβ deposits part of the AD-related pathological process? Acta Neuropathol 2014; 128:767-72. [PMID: 25359108 DOI: 10.1007/s00401-014-1356-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 10/14/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Heiko Braak
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm, Helmholtzstrasse 8/1, 89081, Ulm, Germany,
| | | |
Collapse
|
22
|
Fouquet M, Besson FL, Gonneaud J, La Joie R, Chételat G. Imaging Brain Effects of APOE4 in Cognitively Normal Individuals Across the Lifespan. Neuropsychol Rev 2014; 24:290-9. [DOI: 10.1007/s11065-014-9263-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/23/2014] [Indexed: 12/21/2022]
|