1
|
Öz Yıldız S, Yalnızoğlu D, Şimsek Kiper PÖ, Göçmen R, Soğukpınar M, Utine GE, Haliloğlu G. Delineation of ADPRHL2 Variants: Report of Two New Patients with Review of the Literature. Neuropediatrics 2024; 55:156-165. [PMID: 38365196 DOI: 10.1055/s-0044-1779618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
ADPRHL2 is involved in posttranslational modification and is known to have a role in physiological functions such as cell signaling, DNA repair, gene control, cell death, and response to stress. Recently, a group of neurological disorders due to ADPRHL2 variants is described, characterized by childhood-onset, stress-induced variable movement disorders, neuropathy, seizures, and neurodegenerative course. We present the diagnostic pathway of two pediatric patients with episodic dystonia and ataxia, who later had a neurodegenerative course complicated by central hypoventilation syndrome due to the same homozygous ADPRHL2 variant. We conducted a systematic literature search and data extraction procedure following the Preferred Reporting Items for Systematic Review and Meta-Analysis 2020 statement in terms of patients with ADPRHL2 variants, from 2018 up to 3 February, 2023. In total, 12 articles describing 47 patients were included in the final analysis. Median age at symptom onset was 2 (0.7-25) years, with the most common presenting symptoms being gait problems (n = 19, 40.4%), seizures (n = 16, 34%), ataxia (n = 13, 27.6%), and weakness (n = 10, 21.2%). Triggering factors (28/47; 59.5%) and regression (28/43; 60.4%), axonal polyneuropathy (9/23; 39.1%), and cerebral and cerebellar atrophy with white matter changes (28/36; 77.7%) were the other clues. The fatality rate and median age of death were 44.6% (n = 21) and 7 (2-34) years, respectively. ADPRHL2 variants should be considered in the context of episodic, stress-induced pediatric and adult-onset movement disorders and seizures.
Collapse
Affiliation(s)
- Sibel Öz Yıldız
- Division of Pediatric Neurology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Dilek Yalnızoğlu
- Division of Pediatric Neurology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Pelin Özlem Şimsek Kiper
- Division of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Rahşan Göçmen
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Merve Soğukpınar
- Division of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Gülen Eda Utine
- Division of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Göknur Haliloğlu
- Division of Pediatric Neurology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
2
|
Xu L, Wang G, Lv X, Zhang D, Yan C, Lin P. A novel mutation in HINT1 gene causes autosomal recessive axonal neuropathy with neuromyotonia, effective treatment with carbamazepine and review of the literature. Acta Neurol Belg 2022; 122:1305-1312. [PMID: 35767146 DOI: 10.1007/s13760-022-02006-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/09/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Autosomal recessive axonal neuropathy with neuromyotonia (ARAN-NM) is a rare disease entity linked to mutations in the histidine triad nucleotide binding protein 1 (HINT1) gene. The diagnosis and treatment of ARAN-NM are challenging. There have been few reports of ARAN-NM in East Asia. METHODS A 15-year-old Chinese ARAN-NM patient developed muscle weakness, cramps and atrophy in the lower limbs at the age of 12. Electromyography (EMG) showed motor axonal degeneration and neuromyotonic discharges. Whole exome sequencing was performed. Bioinformatic methods and computational 3D structure modeling were used to analyze the identified variant. According to literature review, carbamazepine was prescribed to the patient. RESULTS Genetic tests identified a homozygous mutation c.356G > T (p.R119L) in the HINT1 gene, which has never been reported before according to HGMD database. Several bioinformatic approaches predicted the variant was damaging. Computational 3D modeling indicated the variant changed the structure of HINT1 protein. Notably, we demonstrated the positive effects of carbamazepine in treating muscle stiffness and cramps of ARAN-NM. DISCUSSION 22 variants have been reported in the HINT1 gene, and we identified a novel c.356G > T (p.R119L) variant. Our study expands the genetic spectrum of ARAN-NM. Moreover, large clinical trials are required to further demonstrate the role of carbamazepine in ARAN-NM.
Collapse
Affiliation(s)
- Ling Xu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Guangyu Wang
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Xiaoqing Lv
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Dong Zhang
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Chuanzhu Yan
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Pengfei Lin
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
3
|
Keller N, Paketci C, Altmueller J, Fuhrmann N, Wunderlich G, Schrank B, Unver O, Yilmaz S, Boostani R, Karimiani EG, Motameny S, Thiele H, Nürnberg P, Maroofian R, Yis U, Wirth B, Karakaya M. Genomic variants causing mitochondrial dysfunction are common in hereditary lower motor neuron disease. Hum Mutat 2021; 42:460-472. [PMID: 33600046 DOI: 10.1002/humu.24181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/29/2020] [Accepted: 02/10/2021] [Indexed: 11/08/2022]
Abstract
Hereditary lower motor neuron diseases (LMND) other than 5q-spinal muscular atrophy (5q-SMA) can be classified according to affected muscle groups. Proximal and distal forms of non-5q-SMA represent a clinically and genetically heterogeneous spectrum characterized by significant overlaps with axonal forms of Charcot-Marie-Tooth (CMT) disease. A consensus for the best approach to molecular diagnosis needs to be reached, especially in light of continuous novel gene discovery and falling costs of next-generation sequencing (NGS). We performed exome sequencing (ES) in 41 families presenting with non-5q-SMA or axonal CMT, 25 of which had undergone a previous negative neuromuscular disease (NMD) gene panel analysis. The total diagnostic yield of ES was 41%. Diagnostic success in the cohort with a previous NMD-panel analysis was significantly extended by ES, primarily due to novel gene associated-phenotypes and uncharacteristic phenotypic presentations. We recommend early ES for individuals with hereditary LMND presenting uncharacteristic or significantly overlapping features. As mitochondrial dysfunction was the underlying pathomechanism in 47% of the solved individuals, we highlight the sensitivity of the anterior horn cell and peripheral nerve to mitochondrial imbalance as well as the necessity to screen for mitochondrial disorders in individuals presenting predominant lower motor neuron symptoms.
Collapse
Affiliation(s)
- Natalie Keller
- Institute of Human Genetics and Institute of Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Center for Rare Diseases Cologne, University Hospital Cologne, Cologne, Germany
| | - Cem Paketci
- Department of Pediatric Neurology, Dokuz Eylül University, Izmir, Turkey
| | - Janine Altmueller
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Nico Fuhrmann
- Institute of Human Genetics and Institute of Genetics, University of Cologne, Cologne, Germany
| | - Gilbert Wunderlich
- Center for Rare Diseases Cologne, University Hospital Cologne, Cologne, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Bertold Schrank
- Department of Neurology, DKD HELIOS Kliniken, Wiesbaden, Germany
| | - Olcay Unver
- Department of Pediatric Neurology, Marmara University, Istanbul, Turkey
| | - Sanem Yilmaz
- Department of Pediatric Neurology, Ege University, Izmir, Turkey
| | - Reza Boostani
- Department of Neurology, Ghaem Hospital, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences Institute, St. George's University of London, Cranmer Terrace, London, UK
| | - Susanne Motameny
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Reza Maroofian
- Molecular and Clinical Sciences Institute, St. George's University of London, Cranmer Terrace, London, UK
| | - Uluc Yis
- Department of Pediatric Neurology, Dokuz Eylül University, Izmir, Turkey
| | - Brunhilde Wirth
- Institute of Human Genetics and Institute of Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Center for Rare Diseases Cologne, University Hospital Cologne, Cologne, Germany
| | - Mert Karakaya
- Institute of Human Genetics and Institute of Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Center for Rare Diseases Cologne, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
4
|
Cirak S, Daimagüler HS, Moawia A, Koy A, Yis U. On the differential diagnosis of neuropathy in neurogenetic disorders. MED GENET-BERLIN 2020. [DOI: 10.1515/medgen-2020-2040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Neuropathy might be the presenting or accompanying sign in many neurogenetic and metabolic disorders apart from the classical-peripheral neuropathies or motor-neuron diseases. This causes a diagnostic challenge which is of particular relevance since a number of the underlying diseases could be treated. Thus, we attempt to give a clinical overview on the most common genetic diseases with clinically manifesting neuropathy.
Collapse
Affiliation(s)
- Sebahattin Cirak
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne , University of Cologne , Cologne , Germany
- Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne , University of Cologne , Cologne , Germany
| | - Hülya-Sevcan Daimagüler
- Division of Pediatrics Neurology, Department of Pediatrics, Faculty of Medicine , Dokuz Eylul University , Izmir , Turkey
| | - Abubakar Moawia
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne , University of Cologne , Cologne , Germany
| | - Anne Koy
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne , University of Cologne , Cologne , Germany
- Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne , University of Cologne , Cologne , Germany
| | - Uluc Yis
- Division of Pediatrics Neurology, Department of Pediatrics, Faculty of Medicine , Dokuz Eylul University , Izmir , Turkey
| |
Collapse
|