1
|
Sahai E, Hickman J, Denman DJ. A Bioelectric Router for Adaptive Isochronous Neurostimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635122. [PMID: 39975050 PMCID: PMC11838292 DOI: 10.1101/2025.01.28.635122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Objective Multipolar intracranial electrical brain stimulation (iEBS) is a method that has potential to improve clinical applications of mono- and bipolar iEBS. Current tools for researching multipolar iEBS are proprietary, can have high entry costs, lack flexibility in managing different stimulation parameters and electrodes, and can include clinical features unnecessary for the requisite exploratory research. This is a factor limiting the progress in understanding and applying multipolar iEBS effectively. To address these challenges, we developed the Bioelectric Router for Adaptive Isochronous Neuro stimulation (BRAINS) board. Approach The BRAINS board is a cost-effective and customizable device designed to facilitate multipolar stimulation experiments across a 16-channel electrode array using common research electrode setups. The BRAINS board interfaces with a microcontroller, allowing users to configure each channel for cathodal or anodal input, establish a grounded connection, or maintain a floating state. The design prioritizes ease of integration by leveraging standard tools like a microcontroller and an analog signal isolators while providing options to customize setups according to experimental conditions. It also ensures output isolation, reduces noise, and supports remote configuration changes for rapid switching of electrode states. To test the efficacy of the board, we performed bench-top validation of monopolar, bipolar, and multipolar stimulation regimes. The same regimes were tested in vivo in mouse primary visual cortex and measured using Neuropixel recordings. Main Results The BRAINS board demonstrates no meaningful differences in Root Mean Square Error (RMSE) noise or signal-to-noise ratio compared to the baseline performance of the isolated stimulator alone. The board supports configuration changes at a rate of up to 600 Hz without introducing residual noise, enabling high-frequency switching necessary for temporally multiplexed multipolar stimulation. Significance The BRAINS board represents a significant advancement in exploratory brain stimulation research by providing a user-friendly, customizable, open source, and cost-effective tool capable of conducting sophisticated, reproducible, and finely controlled stimulation experiments. With a capacity for effectively real-time information processing and efficient parameter exploration the BRAINS board can enhance both exploratory research on iEBS and enable improved clinical use of multipolar and closed-loop iEBS.
Collapse
Affiliation(s)
- Eashan Sahai
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jordan Hickman
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Daniel J Denman
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
2
|
Hvingelby V, Khalil F, Massey F, Hoyningen A, Xu SS, Candelario-McKeown J, Akram H, Foltynie T, Limousin P, Zrinzo L, Krüger MT. Directional deep brain stimulation electrodes in Parkinson's disease: meta-analysis and systematic review of the literature. J Neurol Neurosurg Psychiatry 2025; 96:188-198. [PMID: 39304337 DOI: 10.1136/jnnp-2024-333947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/25/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Since their introduction in 2015, directional leads have practically replaced conventional leads for deep brain stimulation (DBS) in Parkinson's disease (PD). Yet, the benefits of directional DBS (dDBS) over omnidirectional DBS (oDBS) remain unclear. This meta-analysis and systematic review compares the literature on dDBS and oDBS for PD. METHODS Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed. Database searches included Pubmed, Cochrane (CENTRAL) and EmBase, using relevant keywords such as 'directional', 'segmented', 'brain stimulation' and 'neuromodulation'. The screening was based on the title and abstract. RESULTS 23 papers reporting on 1273 participants (1542 leads) were included. The therapeutic window was 0.70 mA wider when using dDBS (95% CI 0.13 to 1.26 mA, p=0.02), with a lower therapeutic current (0.41 mA, 95% CI 0.27 to 0.54 mA, p=0.01) and a higher side-effect threshold (0.56 mA, 95% CI 0.38 to 0.73 mA, p<0.01). However, there was no relevant difference in mean Unified Parkinson's Disease Rating Scale III change after dDBS (45.8%, 95% CI 30.7% to 60.9%) compared with oDBS (39.0%, 95% CI 36.9% to 41.2%, p=0.39), in the medication-OFF state. Median follow-up time for dDBS and oDBS studies was 6 months and 3 months, respectively (range 3-12 for both). The use of directionality often improves dyskinesia, dysarthria, dysesthesia and pyramidal side effects. Directionality was used in 55% of directional leads at 3-6 months, remaining stable over time (56% at a mean of 14.1 months). CONCLUSIONS These findings suggest that stimulation parameters favour dDBS. However, these do not appear to have a significant impact on motor scores, and the availability of long-term data is limited. dDBS is widely accepted, but clinical data justifying its increased complexity and cost are currently sparse. PROSPERO REGISTRATION NUMBER CRD42023438056.
Collapse
Affiliation(s)
- Victor Hvingelby
- Department of Clinical Medicine, Aarhus Universitet, Aarhus, Denmark
- Aarhus Universitetshospital, Aarhus, Denmark
| | - Fareha Khalil
- UCL Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Neurosurgery, Addenbrooke's Hospital, Cambridge, UK
| | - Flavia Massey
- University College London Medical School, London, UK
| | - Alexander Hoyningen
- Department of Neurosurgery, Kantonsspital St Gallen, Sankt Gallen, Switzerland
- Department of Basic Neuroscience, University of Geneva, Geneve, Switzerland
| | - San San Xu
- UCL Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Clinical and Movement Neurosciences, University College London, London, UK
| | | | - Harith Akram
- UCL Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
- Movement Disorders, University College London Hospitals NHS Foundation Trust National Hospital for Neurology and Neurosurgery, London, UK
| | - Thomas Foltynie
- Movement Disorders, University College London Hospitals NHS Foundation Trust National Hospital for Neurology and Neurosurgery, London, UK
| | - Patricia Limousin
- UCL Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - Ludvic Zrinzo
- UCL Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - Marie T Krüger
- UCL Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Functional Neurosurgery, Albert-Ludwigs-Universitat Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
3
|
Billoud T, Reinacher PC, Weigt M, von Elverfeldt D, Demerath T, Pichotka M. Detailed Images of Deep Brain Stimulation Leads Using Micro-CT. Stereotact Funct Neurosurg 2024; 103:69-74. [PMID: 39522506 DOI: 10.1159/000542015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION One of the challenges in directional deep brain stimulation (DBS) is to determine the orientation of implanted electrodes relative to targeted regions. Post-operative images must be aligned with a model of the implanted lead, usually a computer-based model provided by the manufacturer. This paper shows that models can alternatively be obtained by capturing images of individual leads using micro-CT, a high-resolution CT technique. Contrary to computer-aided design models, lead models generated this way provide realistic X-ray contrast and finer details. METHODS We scanned DBS leads from various vendors using a Bruker SkyScan 1276 micro-CT system. To reduce beam-hardening artefacts, samples were scanned at maximum X-ray tube voltage (100 kV) and with copper filtering. Images were made publicly available for download and 3D visualisation. CONCLUSION Detailed images of single DBS leads can be generated using standard micro-CT systems. Their use as reference models could improve lead orientation algorithms, in particular those dedicated to X-ray modalities. Furthermore, the possibility to share models online could broaden access for clinical research.
Collapse
Affiliation(s)
- Thomas Billoud
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Peter Christoph Reinacher
- Department of Stereotactic and Functional Neurosurgery, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Fraunhofer Institute for Laser Technology, Aachen, Germany
- Department of Neurosurgery, Kantonsspital St. Gallen, St Gallen, Switzerland
| | - Moritz Weigt
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Dominik von Elverfeldt
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Theo Demerath
- Department of Neuroradiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Martin Pichotka
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
4
|
Gharabaghi A, Cebi I, Leavitt D, Scherer M, Bookjans P, Brunnett B, Milosevic L, Weiss D. Randomized crossover trial on motor and non-motor outcome of directional deep brain stimulation in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:204. [PMID: 39461964 PMCID: PMC11513109 DOI: 10.1038/s41531-024-00812-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Deep brain stimulation (DBS) with electric field steering may avoid areas responsible for side effects. This prospective randomized cross-over trial compared omnidirectional (OS) and directional (DS) subthalamic DBS in 19 patients. Electromyographically measured rigidity was the primary outcome. Motor and non-motor scores were secondary outcomes. There were no significant differences between OS and DS. In the acute setting, both conditions improved motor scores compared to no stimulation. Motor symptoms improved after 3 weeks of OS relative to acute measurements, whereas they worsened under DS. The more ventral the active contact, and the less the motor improvement sweet spot was stimulated, the greater the benefit of DS over OS for executive function. Accurate OS of the dorsal subthalamic nucleus ensures motor and non-motor improvements. While DS can mitigate executive decline stemming from off-target stimulation, it may lead to worse motor outcomes. Larger, long-term studies are needed to confirm these findings. (Registration: subthalamic steering for therapy optimization in Parkinson's Disease ClinicalTrials.gov: NCT03548506, 2018-06-06).
Collapse
Affiliation(s)
- Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany.
- Center for Bionic Intelligence Tübingen Stuttgart (BITS), Tübingen, Germany.
- German Center for Mental Health (DZPG), Tübingen, Germany.
| | - Idil Cebi
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
- Center for Neurology, Department for Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| | - Dallas Leavitt
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
- Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
- Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Maximilian Scherer
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
- Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Patrick Bookjans
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
| | - Bastian Brunnett
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
| | - Luka Milosevic
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
- Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Daniel Weiss
- Center for Neurology, Department for Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Mishra A, Bajaj V, Fitzpatrick T, Watts J, Khojandi A, Ramdhani RA. Differential Responses to Low- and High-Frequency Subthalamic Nucleus Deep Brain Stimulation on Sensor-Measured Components of Bradykinesia in Parkinson's Disease. SENSORS (BASEL, SWITZERLAND) 2024; 24:4296. [PMID: 39001075 PMCID: PMC11244034 DOI: 10.3390/s24134296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/30/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
INTRODUCTION The current approach to assessing bradykinesia in Parkinson's Disease relies on the Unified Parkinson's Disease Rating Scale (UPDRS), which is a numeric scale. Inertial sensors offer the ability to probe subcomponents of bradykinesia: motor speed, amplitude, and rhythm. Thus, we sought to investigate the differential effects of high-frequency compared to low-frequency subthalamic nucleus (STN) deep brain stimulation (DBS) on these quantified facets of bradykinesia. METHODS We recruited advanced Parkinson's Disease subjects with a chronic bilateral subthalamic nucleus (STN) DBS implantation to a single-blind stimulation trial where each combination of medication state (OFF/ON), electrode contacts, and stimulation frequency (60 Hz/180 Hz) was assessed. The Kinesia One sensor system was used to measure upper limb bradykinesia. For each stimulation trial, subjects performed extremity motor tasks. Sensor data were recorded continuously. We identified STN DBS parameters that were associated with improved upper extremity bradykinesia symptoms using a mixed linear regression model. RESULTS We recruited 22 subjects (6 females) for this study. The 180 Hz STN DBS (compared to the 60 Hz STN DBS) and dopaminergic medications improved all subcomponents of upper extremity bradykinesia (motor speed, amplitude, and rhythm). For the motor rhythm subcomponent of bradykinesia, ventral contacts yielded improved symptom improvement compared to dorsal contacts. CONCLUSION The differential impact of high- and low-frequency STN DBS on the symptoms of bradykinesia may advise programming for these patients but warrants further investigation. Wearable sensors represent a valuable addition to the armamentarium that furthers our ability to conduct objective, quantitative clinical assessments.
Collapse
Affiliation(s)
- Akash Mishra
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 300 Community Drive, Manhasset, NY 11030, USA
| | - Vikram Bajaj
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 300 Community Drive, Manhasset, NY 11030, USA
| | - Toni Fitzpatrick
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 300 Community Drive, Manhasset, NY 11030, USA
| | - Jeremy Watts
- Department of Industrial and Systems Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Anahita Khojandi
- Department of Industrial and Systems Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Ritesh A. Ramdhani
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 300 Community Drive, Manhasset, NY 11030, USA
| |
Collapse
|
6
|
Lawson McLean A, Schwarz F. Directional Deep Brain Stimulation in Parkinson's Disease and Essential Tremor: A Retrospective Analysis. Neuromodulation 2024; 27:589-590. [PMID: 38569803 DOI: 10.1016/j.neurom.2023.02.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/09/2023] [Indexed: 04/05/2024]
Affiliation(s)
- Aaron Lawson McLean
- Department of Neurosurgery, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany.
| | - Falko Schwarz
- Department of Neurosurgery, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
7
|
Mishra A, Ramdhani RA. Response to: "Directional Deep Brain Stimulation in Parkinson's Disease and Essential Tremor: A Retrospective Analysis". Neuromodulation 2024; 27:591-592. [PMID: 38569804 DOI: 10.1016/j.neurom.2023.02.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 04/05/2024]
Affiliation(s)
- Akash Mishra
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA; Department of Neurology, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Ritesh A Ramdhani
- Department of Neurology, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA.
| |
Collapse
|
8
|
Unadkat P, Quevedo J, Soares J, Fenoy A. Opportunities and challenges for the use of deep brain stimulation in the treatment of refractory major depression. DISCOVER MENTAL HEALTH 2024; 4:9. [PMID: 38483709 PMCID: PMC10940557 DOI: 10.1007/s44192-024-00062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/08/2024] [Indexed: 03/17/2024]
Abstract
Major Depressive Disorder continues to remain one of the most prevalent psychiatric diseases globally. Despite multiple trials of conventional therapies, a subset of patients fail to have adequate benefit to treatment. Deep brain stimulation (DBS) is a promising treatment in this difficult to treat population and has shown strong antidepressant effects across multiple cohorts. Nearly two decades of work have provided insights into the potential for chronic focal stimulation in precise brain targets to modulate pathological brain circuits that are implicated in the pathogenesis of depression. In this paper we review the rationale that prompted the selection of various brain targets for DBS, their subsequent clinical outcomes and common adverse events reported. We additionally discuss some of the pitfalls and challenges that have prevented more widespread adoption of this technology as well as future directions that have shown promise in improving therapeutic efficacy of DBS in the treatment of depression.
Collapse
Affiliation(s)
- Prashin Unadkat
- Elmezzi Graduate School of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY, USA
| | - Joao Quevedo
- Center of Excellence On Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, (UT Health), Houston, TX, USA
| | - Jair Soares
- Center of Excellence On Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, (UT Health), Houston, TX, USA
| | - Albert Fenoy
- Elmezzi Graduate School of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY, USA.
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY, USA.
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine, Feinstein Institutes for Medical Research, Northwell Health, 805 Northern Boulevard, Suite 100, Great Neck, NY, 11021, USA.
| |
Collapse
|
9
|
Pereira FES, Jagatheesaperumal SK, Benjamin SR, Filho PCDN, Duarte FT, de Albuquerque VHC. Advancements in non-invasive microwave brain stimulation: A comprehensive survey. Phys Life Rev 2024; 48:132-161. [PMID: 38219370 DOI: 10.1016/j.plrev.2024.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
This survey provides a comprehensive insight into the world of non-invasive brain stimulation and focuses on the evolving landscape of deep brain stimulation through microwave research. Non-invasive brain stimulation techniques provide new prospects for comprehending and treating neurological disorders. We investigate the methods shaping the future of deep brain stimulation, emphasizing the role of microwave technology in this transformative journey. Specifically, we explore antenna structures and optimization strategies to enhance the efficiency of high-frequency microwave stimulation. These advancements can potentially revolutionize the field by providing a safer and more precise means of modulating neural activity. Furthermore, we address the challenges that researchers currently face in the realm of microwave brain stimulation. From safety concerns to methodological intricacies, this survey outlines the barriers that must be overcome to fully unlock the potential of this technology. This survey serves as a roadmap for advancing research in microwave brain stimulation, pointing out potential directions and innovations that promise to reshape the field.
Collapse
Affiliation(s)
| | - Senthil Kumar Jagatheesaperumal
- Department of Teleinformatics Engineering, Federal University of Ceará, Fortaleza, 60455-970, Ceará, Brazil; Department of Electronics and Communication Engineering, Mepco Schlenk Engineering College, Sivakasi, 626005, Tamilnadu, India
| | - Stephen Rathinaraj Benjamin
- Department of Pharmacology and Pharmacy, Laboratory of Behavioral Neuroscience, Faculty of Medicine, Federal University of Ceará, Fortaleza, 60430-160, Ceará, Brazil
| | | | | | | |
Collapse
|
10
|
Krauss P, Duarte-Batista P, Hart M, Avecillas-Chasin J, Bercu M, Hvingelby V, Massey F, Ackermans L, Kubben P, van der Gaag N, Krüger M. Directional electrodes in deep brain stimulation: Results of a survey by the European Association of Neurosurgical Societies (EANS). BRAIN & SPINE 2024; 4:102756. [PMID: 38510592 PMCID: PMC10951785 DOI: 10.1016/j.bas.2024.102756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/05/2024] [Accepted: 01/21/2024] [Indexed: 03/22/2024]
Abstract
Introduction Directional Leads (dLeads) represent a new technical tool in Deep Brain Stimulation (DBS), and a rapidly growing population of patients receive dLeads. Research question The European Association of Neurosurgical Societies(EANS) functional neurosurgery Task Force on dLeads conducted a survey of DBS specialists in Europe to evaluate their use, applications, advantages, and disadvantages. Material and methods EANS functional neurosurgery and European Society for Stereotactic and Functional Neurosurgery (ESSFN) members were asked to complete an online survey with 50 multiple-choice and open questions on their use of dLeads in clinical practice. Results Forty-nine respondents from 16 countries participated in the survey (n = 38 neurosurgeons, n = 8 neurologists, n = 3 DBS nurses). Five had not used dLeads. All users reported that dLeads provided an advantage (n = 23 minor, n = 21 major). Most surgeons (n = 35) stated that trajectory planning does not differ when implanting dLeads or conventional leads. Most respondents selected dLeads for the ability to optimize stimulation parameters (n = 41). However, the majority (n = 24), regarded time-consuming programming as the main disadvantage of this technology. Innovations that were highly valued by most participants included full 3T MRI compatibility, remote programming, and closed loop technology. Discussion and conclusion Directional leads are widely used by European DBS specialists. Despite challenges with programming time, users report that dLeads have had a positive impact and maintain an optimistic view of future technological advances.
Collapse
Affiliation(s)
- P. Krauss
- Department of Neurosurgery, University Hospital Augsburg, Augsburg, Germany
| | - P. Duarte-Batista
- Neurosurgery Department, North Lisbon University Hospital Centre, Lisbon, Portugal
| | - M.G. Hart
- St George's, University of London & St George's University Hospitals NHS Foundation Trust, Institute of Molecular and Clinical Sciences, Neurosciences Research Centre, Cranmer Terrace, London, United Kingdom
| | - J.M. Avecillas-Chasin
- Department of Neurosurgery. University of Nebraska Medical Center. Omaha, Nebraska, USA
| | - M.M. Bercu
- Department of Pediatric Neurosurgery, Helen DeVos Children's Hospital, Corewell, USA
| | - V. Hvingelby
- Department of Clinical Medicine - Nuclear Medicine and PET Center, Aarhus University, Aarhus, Denmark
| | - F. Massey
- Unit of Neurosurgery, National Hospital of Neurology and Neurosurgery, London, United Kingdom
| | - L. Ackermans
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - P.L. Kubben
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - N.A. van der Gaag
- Department of Neurosurgery, Haga Teaching Hospital, The Hague, the Netherlands
- Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands
| | - M.T. Krüger
- Unit of Neurosurgery, National Hospital of Neurology and Neurosurgery, London, United Kingdom
- Department of Neurosurgery, University Medical Centre Freiburg, Germany
| |
Collapse
|