1
|
Gustus KC, Li L, Chander P, Weick JP, Wilson MC, Cunningham LA. Genetic inactivation of synaptosomal-associated protein 25 (SNAP-25) in adult hippocampal neural progenitors impairs pattern discrimination learning but not survival or structural maturation of newborn dentate granule cells. Hippocampus 2019; 28:735-744. [PMID: 29995325 DOI: 10.1002/hipo.23008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/07/2018] [Accepted: 06/29/2018] [Indexed: 12/12/2022]
Abstract
Adult neurogenesis is necessary for proper cognition and behavior, however, the mechanisms that underlie the integration and maturation of newborn neurons into the pre-existing hippocampal circuit are not entirely known. In this study, we sought to determine the role of action potential (AP)-dependent synaptic transmission by adult-generated dentate granule cells (DGCs) in their survival and function within the existing circuitry. We used a triple transgenic mouse (NestinCreERT2 :Snap25fl/fl : tdTomato) to inducibly inactivate AP-dependent synaptic transmission within adult hippocampal progenitors and their progeny. Behavioral testing in a hippocampal-dependent A/B contextual fear-discrimination task revealed impaired discrimination learning in mice harboring SNAP-25-deficient adult-generated dentate granule cells (DGCs). Despite poor performance on this neurogenesis-dependent task, the production and survival of newborn DGCs was quantitatively unaltered in tamoxifen-treated NestinCreERT2 :Snap25fl/fl : tdTomato SNAP compared to tamoxifen-treated NestinCreERT2 :Snap25wt/wt : tdTomato control mice. Although SNAP-25-deficient adult DGCs displayed a small but statistically significant enhancement in proximal dendritic branching, their overall dendritic length and distal branching complexity was unchanged. SNAP-25-deficient newborn DGCs also displayed robust efferent mossy fiber output to CA3, with normal linear density of large mossy fiber terminals (LMTs). These studies suggest that AP-dependent neurotransmitter release by newborn DGCs is not essential for their survival or rudimentary structural maturation within the adult hippocampus.
Collapse
Affiliation(s)
- Kymberly C Gustus
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Lu Li
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Praveen Chander
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Jason P Weick
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Michael C Wilson
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Lee Anna Cunningham
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
2
|
Valente P, Lignani G, Medrihan L, Bosco F, Contestabile A, Lippiello P, Ferrea E, Schachner M, Benfenati F, Giovedì S, Baldelli P. Cell adhesion molecule L1 contributes to neuronal excitability regulating the function of voltage-gated Na+ channels. J Cell Sci 2016; 129:1878-91. [PMID: 26985064 DOI: 10.1242/jcs.182089] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/08/2016] [Indexed: 02/05/2023] Open
Abstract
L1 (also known as L1CAM) is a trans-membrane glycoprotein mediating neuron-neuron adhesion through homophilic and heterophilic interactions. Although experimental evidence has implicated L1 in axonal outgrowth, fasciculation and pathfinding, its contribution to voltage-gated Na(+) channel function and membrane excitability has remained unknown. Here, we show that firing rate, single cell spiking frequency and Na(+) current density are all reduced in hippocampal excitatory neurons from L1-deficient mice both in culture and in slices owing to an overall reduced membrane expression of Na(+) channels. Remarkably, normal firing activity was restored when L1 was reintroduced into L1-deficient excitatory neurons, indicating that abnormal firing patterns are not related to developmental abnormalities, but are a direct consequence of L1 deletion. Moreover, L1 deficiency leads to impairment of action potential initiation, most likely due to the loss of the interaction of L1 with ankyrin G that produces the delocalization of Na(+) channels at the axonal initial segment. We conclude that L1 contributes to functional expression and localization of Na(+) channels to the neuronal plasma membrane, ensuring correct initiation of action potential and normal firing activity.
Collapse
Affiliation(s)
- Pierluigi Valente
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, Genova 16132, Italy
| | - Gabriele Lignani
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Lucian Medrihan
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Federica Bosco
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, Genova 16132, Italy
| | - Andrea Contestabile
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Pellegrino Lippiello
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, Genova 16132, Italy
| | - Enrico Ferrea
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, China
| | - Fabio Benfenati
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, Genova 16132, Italy Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Silvia Giovedì
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, Genova 16132, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, Genova 16132, Italy Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| |
Collapse
|
3
|
Abstract
The networks that generate rhythmic motor patterns in invertebrates and vertebrates are ideal for studying the mechanisms by which functional circuits are formed during development. Rhythmic motor patterns and movements are seen embryonically, before they are needed for behavior; recent work suggests that activity in immature spinal cord networks is important for circuit formation and transmitter specification. Despite significant advances in describing the patterns of transcription factor expression in both invertebrate nervous systems and vertebrate spinal cord, a real understanding of how central pattern generators develop is hindered by our lack of knowledge of the organization of these circuits in adults.
Collapse
Affiliation(s)
- Eve Marder
- Volen Center, Biology Department, Brandeis University, Waltham, Massachusetts 02454-9110, USA.
| | | |
Collapse
|