1
|
Amaral A, Lister J, Rueckemann J, Wojnarowicz M, McGaughy J, Mokler D, Galler J, Rosene D, Rushmore R. Prenatal protein malnutrition decreases neuron numbers in the parahippocampal region but not prefrontal cortex in adult rats. Nutr Neurosci 2025; 28:333-346. [PMID: 39088448 PMCID: PMC11788924 DOI: 10.1080/1028415x.2024.2371256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
OBJECTIVE Prenatal protein malnutrition produces anatomical and functional changes in the developing brain that persist despite immediate postnatal nutritional rehabilitation. Brain networks of prenatally malnourished animals show diminished activation of prefrontal areas and an increased activation of hippocampal regions during an attentional task [1]. While a reduction in cell number has been documented in hippocampal subfield CA1, nothing is known about changes in neuron numbers in the prefrontal or parahippocampal cortices. METHODS In the present study, we used unbiased stereology to investigate the effect of prenatal protein malnutrition on the neuron numbers in the medial prefrontal cortex and the cortices of the parahippocampal region that comprise the larger functional network. RESULTS Results show that prenatal protein malnutrition does not cause changes in the neuronal population in the medial prefrontal cortex of adult rats, indicating that the decrease in functional activation during attentional tasks is not due to a reduction in the number of neurons. Results also show that prenatal protein malnutrition is associated with a reduction in neuron numbers in specific parahippocampal subregions: the medial entorhinal cortex and presubiculum. DISCUSSION The affected regions along with CA1 comprise a tightly interconnected circuit, suggesting that prenatal malnutrition confers a vulnerability to specific hippocampal circuits. These findings are consistent with the idea that prenatal protein malnutrition produces a reorganization of structural and functional networks, which may underlie observed alterations in attentional processes and capabilities.
Collapse
Affiliation(s)
- A.C. Amaral
- Department of Anatomy & Neurobiology,
Boston University Chobanian & Avedisian School of Medicine, Boston, MA
02118
| | - J.P. Lister
- Department of Anatomy & Neurobiology,
Boston University Chobanian & Avedisian School of Medicine, Boston, MA
02118
- Department of Pathology and Laboratory Medicine, University
of California Los Angeles, Los Angeles, CA 90095
| | - J.W. Rueckemann
- Department of Physiology and Biophysics, University of
Washington, Seattle, WA 98195
| | - M.W. Wojnarowicz
- Department of Pathology & Laboratory
Medicine, Boston University Chobanian & Avedisian School of
Medicine, Boston, MA 02118
| | - J.A. McGaughy
- Dept of Psychology, University of New Hampshire, Durham, NH
03824
| | - D.J. Mokler
- Dept of Biomedical Sciences, University of New England,
Biddeford, ME 04005
| | - J.R. Galler
- Department of Psychiatry, Harvard Medical School, Boston,
MA 02120
- Department of Pediatrics & Division of Gastroenterology
and Nutrition, MassGeneral Hospital for Children, Boston, MA
| | - D.L. Rosene
- Department of Anatomy & Neurobiology,
Boston University Chobanian & Avedisian School of Medicine, Boston, MA
02118
| | - R.J. Rushmore
- Department of Anatomy & Neurobiology,
Boston University Chobanian & Avedisian School of Medicine, Boston, MA
02118
- Psychiatry Neuroimaging Laboratory,
Department of Psychiatry, Brigham and Women’s Hospital, Boston, MA
02120
- Department of Psychiatry, Massachusetts General Hospital,
Boston, MA 02120
| |
Collapse
|
2
|
Calvin-Dunn KN, Mcneela A, Leisgang Osse A, Bhasin G, Ridenour M, Kinney JW, Hyman JM. Electrophysiological insights into Alzheimer's disease: A review of human and animal studies. Neurosci Biobehav Rev 2025; 169:105987. [PMID: 39732222 DOI: 10.1016/j.neubiorev.2024.105987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 11/16/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024]
Abstract
This review highlights the crucial role of neuroelectrophysiology in illuminating the mechanisms underlying Alzheimer's disease (AD) pathogenesis and progression, emphasizing its potential to inform the development of effective treatments. Electrophysiological techniques provide unparalleled precision in exploring the intricate networks affected by AD, offering insights into the synaptic dysfunction, network alterations, and oscillatory abnormalities that characterize the disease. We discuss a range of electrophysiological methods, from non-invasive clinical techniques like electroencephalography and magnetoencephalography to invasive recordings in animal models. By drawing on findings from these studies, we demonstrate how electrophysiological research has deepened our understanding of AD-related network disruptions, paving the way for targeted therapeutic interventions. Moreover, we underscore the potential of electrophysiological modalities to play a pivotal role in evaluating treatment efficacy. Integrating electrophysiological data with clinical neuroimaging and longitudinal studies holds promise for a more comprehensive understanding of AD, enabling early detection and the development of personalized treatment strategies. This expanded research landscape offers new avenues for unraveling the complexities of AD and advancing therapeutic approaches.
Collapse
Affiliation(s)
- Kirsten N Calvin-Dunn
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States; Cleveland Clinic Lou Ruvo Center for Brain Health, United States.
| | - Adam Mcneela
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States
| | - A Leisgang Osse
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States; Department of Brain Health, University of Nevada, Las Vegas, United States
| | - G Bhasin
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States; Department of Psychology, University of Nevada, Las Vegas, United States
| | - M Ridenour
- Department of Psychology, University of Nevada, Las Vegas, United States
| | - J W Kinney
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States; Department of Brain Health, University of Nevada, Las Vegas, United States
| | - J M Hyman
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States; Department of Psychology, University of Nevada, Las Vegas, United States
| |
Collapse
|
3
|
Reznik D, Margulies DS, Witter MP, Doeller CF. Evidence for convergence of distributed cortical processing in band-like functional zones in human entorhinal cortex. Curr Biol 2024; 34:5457-5469.e2. [PMID: 39488200 DOI: 10.1016/j.cub.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 11/04/2024]
Abstract
The wide array of cognitive functions associated with the hippocampus is supported through interactions with the cerebral cortex. However, most of the direct cortical input to the hippocampus originates in the entorhinal cortex, forming the hippocampal-entorhinal system. In humans, the role of the entorhinal cortex in mediating hippocampal-cortical interactions remains unknown. In this study, we used precision neuroimaging to examine the distributed cortical anatomy associated with the human hippocampal-entorhinal system. Consistent with animal anatomy, our results associate different subregions of the entorhinal cortex with different parts of the hippocampus long axis. Furthermore, we find that the entorhinal cortex comprises three band-like zones that are associated with functionally distinct cortical networks. Importantly, the entorhinal cortex bands traverse the proposed human homologs of rodent lateral and medial entorhinal cortices. Finally, we show that the entorhinal cortex is a major convergence area of distributed cortical processing and that the topography of cortical networks associated with the anterior medial temporal lobe mirrors the macroscale structure of high-order cortical processing.
Collapse
Affiliation(s)
- Daniel Reznik
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany.
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center, Centre National de la Recherche Scientifique (CNRS) and Université de Paris, 75016 Paris, France; Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, the Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, NTNU Norwegian University of Science and Technology, 7034 Trondheim, Norway
| | - Christian F Doeller
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany; Kavli Institute for Systems Neuroscience, the Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, NTNU Norwegian University of Science and Technology, 7034 Trondheim, Norway
| |
Collapse
|
4
|
Fu Y, Cao Z, Ye T, Yang H, Chu C, Lei C, Wen Y, Cai Z, Yuan Y, Guo X, Yang L, Sheng H, Cui D, Shao D, Chen M, Lai B, Zheng P. Projection neurons from medial entorhinal cortex to basolateral amygdala are critical for the retrieval of morphine withdrawal memory. iScience 2024; 27:110239. [PMID: 39021787 PMCID: PMC11253517 DOI: 10.1016/j.isci.2024.110239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/10/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
The medial entorhinal cortex (MEC) is crucial for contextual memory, yet its role in context-induced retrieval of morphine withdrawal memory remains unclear. This study investigated the role of the MEC and its projection neurons from MEC layer 5 to the basolateral amygdala (BLA) (MEC-BLA neurons) in context-induced retrieval of morphine withdrawal memory. Results show that context activates the MEC in morphine withdrawal mice, and the inactivation of the MEC inhibits context-induced retrieval of morphine withdrawal memory. At neural circuits, context activates MEC-BLA neurons in morphine withdrawal mice, and the inactivation of MEC-BLA neurons inhibits context-induced retrieval of morphine withdrawal memory. But MEC-BLA neurons are not activated by conditioning of context and morphine withdrawal, and the inhibition of MEC-BLA neurons do not influence the coupling of context and morphine withdrawal memory. These results suggest that MEC-BLA neurons are critical for the retrieval, but not for the formation, of morphine withdrawal memory.
Collapse
Affiliation(s)
- Yali Fu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zixuan Cao
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ting Ye
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hao Yang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chenshan Chu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chao Lei
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yaxian Wen
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhangyin Cai
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yu Yuan
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xinli Guo
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Li Yang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Huan Sheng
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Dongyang Cui
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Da Shao
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ming Chen
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bin Lai
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ping Zheng
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Medical College of China Three Gorges University, Yichang 443002, China
| |
Collapse
|
5
|
Aykan D, Genc M, Unal G. Environmental enrichment enhances the antidepressant effect of ketamine and ameliorates spatial memory deficits in adult rats. Pharmacol Biochem Behav 2024; 240:173790. [PMID: 38761992 DOI: 10.1016/j.pbb.2024.173790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Ketamine is a rapid-acting antidepressant associated with various cognitive side effects. To mitigate these side effects while enhancing efficacy, it can be co-administered with other antidepressants. In our study, we adopted a similar strategy by combining ketamine with environmental enrichment, a potent sensory-motor paradigm, in adult male Wistar rats. We divided the animals into four groups based on a combination of housing conditions and ketamine versus vehicle injections. The groups included those housed in standard cages or an enriched environment for 50 days, which encompassed a 13-day-long behavioral testing period. Each group received either two doses of ketamine (20 mg/kg, IP) or saline as a vehicle. We tested the animals in the novel object recognition test (NORT), forced swim test (FST), open field test (OFT), elevated plus maze (EPM), and Morris water maze (MWM), which was followed by ex vivo c-Fos immunohistochemistry. We observed that combining environmental enrichment with ketamine led to a synergistic antidepressant effect. Environmental enrichment also ameliorated the spatial memory deficits caused by ketamine in the MWM. There was enhanced neuronal activity in the habenula of the enrichment only group following the probe trial of the MWM. In contrast, no differential activity was observed in enriched animals that received ketamine injections. The present study showed how environmental enrichment can enhance the antidepressant properties of ketamine while reducing some of its side effects, highlighting the potential of combining pharmacological and sensory-motor manipulations in the treatment of mood disorders.
Collapse
Affiliation(s)
- Deren Aykan
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Mert Genc
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey.
| |
Collapse
|
6
|
Shao Q, Chen L, Li X, Li M, Cui H, Li X, Zhao X, Shi Y, Sun Q, Yan K, Wang G. A non-canonical visual cortical-entorhinal pathway contributes to spatial navigation. Nat Commun 2024; 15:4122. [PMID: 38750027 PMCID: PMC11096324 DOI: 10.1038/s41467-024-48483-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Visual information is important for accurate spatial coding and memory-guided navigation. As a crucial area for spatial cognition, the medial entorhinal cortex (MEC) harbors diverse spatially tuned cells and functions as the major gateway relaying sensory inputs to the hippocampus containing place cells. However, how visual information enters the MEC has not been fully understood. Here, we identify a pathway originating in the secondary visual cortex (V2) and directly targeting MEC layer 5a (L5a). L5a neurons served as a network hub for visual processing in the MEC by routing visual inputs from multiple V2 areas to other local neurons and hippocampal CA1. Interrupting this pathway severely impaired visual stimulus-evoked neural activity in the MEC and performance of mice in navigation tasks. These observations reveal a visual cortical-entorhinal pathway highlighting the role of MEC L5a in sensory information transmission, a function typically attributed to MEC superficial layers before.
Collapse
Affiliation(s)
- Qiming Shao
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Ligu Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaowan Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Miao Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Hui Cui
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaoyue Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Xinran Zhao
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Yuying Shi
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Qiang Sun
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Kaiyue Yan
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Guangfu Wang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
7
|
Herber CS, Pratt KJ, Shea JM, Villeda SA, Giocomo LM. Spatial Coding Dysfunction and Network Instability in the Aging Medial Entorhinal Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.588890. [PMID: 38659809 PMCID: PMC11042240 DOI: 10.1101/2024.04.12.588890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Across species, spatial memory declines with age, possibly reflecting altered hippocampal and medial entorhinal cortex (MEC) function. However, the integrity of cellular and network-level spatial coding in aged MEC is unknown. Here, we leveraged in vivo electrophysiology to assess MEC function in young, middle-aged, and aged mice navigating virtual environments. In aged grid cells, we observed impaired stabilization of context-specific spatial firing, correlated with spatial memory deficits. Additionally, aged grid networks shifted firing patterns often but with poor alignment to context changes. Aged spatial firing was also unstable in an unchanging environment. In these same mice, we identified 458 genes differentially expressed with age in MEC, 61 of which had expression correlated with spatial firing stability. These genes were enriched among interneurons and related to synaptic transmission. Together, these findings identify coordinated transcriptomic, cellular, and network changes in MEC implicated in impaired spatial memory in aging.
Collapse
Affiliation(s)
- Charlotte S. Herber
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - Karishma J.B. Pratt
- Department of Anatomy, University of California San Francisco, 513 Parnassus Avenue, Box 0452, San Francisco, CA, 94143, USA
- These authors contributed equally
| | - Jeremy M. Shea
- Department of Anatomy, University of California San Francisco, 513 Parnassus Avenue, Box 0452, San Francisco, CA, 94143, USA
- These authors contributed equally
| | - Saul A. Villeda
- Department of Anatomy, University of California San Francisco, 513 Parnassus Avenue, Box 0452, San Francisco, CA, 94143, USA
- Bakar Aging Research Institute, San Francisco, CA, 94143, USA
| | - Lisa M. Giocomo
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
- Lead contact
| |
Collapse
|
8
|
Hales JB, Olivas L, Abouchedid D, Blaser RE. Contribution of the medial entorhinal cortex to performance on the Traveling Salesperson Problem in rats. Behav Brain Res 2024; 463:114883. [PMID: 38281708 DOI: 10.1016/j.bbr.2024.114883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
In order to successfully navigate through space, animals must rely on multiple cognitive processes, including orientation in space, memory of object locations, and navigational decisions based on that information. Although highly-controlled behavioral tasks are valuable for isolating and targeting specific processes, they risk producing a narrow understanding of complex behavior in natural contexts. The Traveling Salesperson Problem (TSP) is an optimization problem that can be used to study naturalistic foraging behaviors, in which subjects select routes between multiple baited targets. Foraging is a spontaneous, yet complex, behavior, involving decision-making, attention, course planning, and memory. Previous research found that hippocampal lesions in rats impaired TSP task performance, particularly on measures of spatial memory. Although traditional laboratory tests have shown the medial entorhinal cortex (MEC) to play an important role in spatial memory, if and how the MEC is involved in finding efficient solutions to the TSP remains unknown. In the current study, rats were trained on the TSP, learning to retrieve bait from targets in a variety of spatial configurations. After recovering from either an MEC lesion or control sham surgery, the rats were tested on eight new configurations. Our results showed that, similar to rats with hippocampal lesions, MEC-lesioned rats were impaired on measures of spatial memory, but not spatial decision-making, with greatest impairments on configurations requiring a global navigational strategy for selecting the optimal route. These findings suggest that the MEC is important for effective spatial navigation, especially when global cue processing is required.
Collapse
Affiliation(s)
- Jena B Hales
- University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.
| | - Larissa Olivas
- University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA
| | | | - Rachel E Blaser
- University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.
| |
Collapse
|
9
|
Clark H, Nolan MF. Task-anchored grid cell firing is selectively associated with successful path integration-dependent behaviour. eLife 2024; 12:RP89356. [PMID: 38546203 PMCID: PMC10977970 DOI: 10.7554/elife.89356] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024] Open
Abstract
Grid firing fields have been proposed as a neural substrate for spatial localisation in general or for path integration in particular. To distinguish these possibilities, we investigate firing of grid and non-grid cells in the mouse medial entorhinal cortex during a location memory task. We find that grid firing can either be anchored to the task environment, or can encode distance travelled independently of the task reference frame. Anchoring varied between and within sessions, while spatial firing of non-grid cells was either coherent with the grid population, or was stably anchored to the task environment. We took advantage of the variability in task-anchoring to evaluate whether and when encoding of location by grid cells might contribute to behaviour. We find that when reward location is indicated by a visual cue, performance is similar regardless of whether grid cells are task-anchored or not, arguing against a role for grid representations when location cues are available. By contrast, in the absence of the visual cue, performance was enhanced when grid cells were anchored to the task environment. Our results suggest that anchoring of grid cells to task reference frames selectively enhances performance when path integration is required.
Collapse
Affiliation(s)
- Harry Clark
- Centre for Discovery Brain Sciences, Simons Initiative for the Developing Brain, Hugh Robson Building, University of EdinburghEdinburghUnited Kingdom
| | - Matthew F Nolan
- Centre for Discovery Brain Sciences, Simons Initiative for the Developing Brain, Hugh Robson Building, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
10
|
Aoun A, Shetler O, Raghuraman R, Rodriguez GA, Hussaini SA. Beyond correlation: optimal transport metrics for characterizing representational stability and remapping in neurons encoding spatial memory. Front Cell Neurosci 2024; 17:1273283. [PMID: 38303974 PMCID: PMC10831886 DOI: 10.3389/fncel.2023.1273283] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/05/2023] [Indexed: 02/03/2024] Open
Abstract
Introduction Spatial representations in the entorhinal cortex (EC) and hippocampus (HPC) are fundamental to cognitive functions like navigation and memory. These representations, embodied in spatial field maps, dynamically remap in response to environmental changes. However, current methods, such as Pearson's correlation coefficient, struggle to capture the complexity of these remapping events, especially when fields do not overlap, or transformations are non-linear. This limitation hinders our understanding and quantification of remapping, a key aspect of spatial memory function. Methods We propose a family of metrics based on the Earth Mover's Distance (EMD) as a versatile framework for characterizing remapping. Results The EMD provides a granular, noise-resistant, and rate-robust description of remapping. This approach enables the identification of specific cell types and the characterization of remapping in various scenarios, including disease models. Furthermore, the EMD's properties can be manipulated to identify spatially tuned cell types and to explore remapping as it relates to alternate information forms such as spatiotemporal coding. Discussion We present a feasible, lightweight approach that complements traditional methods. Our findings underscore the potential of the EMD as a powerful tool for enhancing our understanding of remapping in the brain and its implications for spatial navigation, memory studies and beyond.
Collapse
Affiliation(s)
- Andrew Aoun
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, United States
| | - Oliver Shetler
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, United States
| | - Radha Raghuraman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, United States
| | - Gustavo A. Rodriguez
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, United States
| | - S. Abid Hussaini
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
11
|
Aoun A, Shetler O, Raghuraman R, Rodriguez GA, Hussaini SA. Beyond Correlation: Optimal Transport Metrics For Characterizing Representational Stability and Remapping in Neurons Encoding Spatial Memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.11.548592. [PMID: 37503011 PMCID: PMC10369988 DOI: 10.1101/2023.07.11.548592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Spatial representations in the entorhinal cortex (EC) and hippocampus (HPC) are fundamental to cognitive functions like navigation and memory. These representations, embodied in spatial field maps, dynamically remap in response to environmental changes. However, current methods, such as Pearson's correlation coefficient, struggle to capture the complexity of these remapping events, especially when fields do not overlap, or transformations are non-linear. This limitation hinders our understanding and quantification of remapping, a key aspect of spatial memory function. To address this, we propose a family of metrics based on the Earth Mover's Distance (EMD) as a versatile framework for characterizing remapping. Applied to both normalized and unnormalized distributions, the EMD provides a granular, noise-resistant, and rate-robust description of remapping. This approach enables the identification of specific cell types and the characterization of remapping in various scenarios, including disease models. Furthermore, the EMD's properties can be manipulated to identify spatially tuned cell types and to explore remapping as it relates to alternate information forms such as spatiotemporal coding. By employing approximations of the EMD, we present a feasible, lightweight approach that complements traditional methods. Our findings underscore the potential of the EMD as a powerful tool for enhancing our understanding of remapping in the brain and its implications for spatial navigation, memory studies and beyond.
Collapse
Affiliation(s)
- Andrew Aoun
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
- Co-first author
| | - Oliver Shetler
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
- Co-first author
| | - Radha Raghuraman
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Gustavo A. Rodriguez
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - S. Abid Hussaini
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
12
|
Li CJ, Hui YQ, Zhang R, Zhou HY, Cai X, Lu L. A comparison of behavioral paradigms assessing spatial memory in tree shrews. Cereb Cortex 2023; 33:10303-10321. [PMID: 37642602 PMCID: PMC11640784 DOI: 10.1093/cercor/bhad283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/31/2023] Open
Abstract
Impairments in spatial navigation in humans can be preclinical signs of Alzheimer's disease. Therefore, cognitive tests that monitor deficits in spatial memory play a crucial role in evaluating animal models with early stage Alzheimer's disease. While Chinese tree shrews (Tupaia belangeri) possess many features suitable for Alzheimer's disease modeling, behavioral tests for assessing spatial cognition in this species are lacking. Here, we established reward-based paradigms using the radial-arm maze and cheeseboard maze for tree shrews, and tested spatial memory in a group of 12 adult males in both tasks, along with a control water maze test, before and after bilateral lesions to the hippocampus, the brain region essential for spatial navigation. Tree shrews memorized target positions during training, and task performance improved gradually until reaching a plateau in all 3 mazes. However, spatial learning was compromised post-lesion in the 2 newly developed tasks, whereas memory retrieval was impaired in the water maze task. These results indicate that the cheeseboard task effectively detects impairments in spatial memory and holds potential for monitoring progressive cognitive decline in aged or genetically modified tree shrews that develop Alzheimer's disease-like symptoms. This study may facilitate the utilization of tree shrew models in Alzheimer's disease research.
Collapse
Affiliation(s)
- Cheng-Ji Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan
Province, Kunming Institute of Zoology, Chinese Academy of
Sciences, Kunming, Yunnan 650201, China
- National Research Facility for Phenotypic & Genetic Analysis of Model
Animals (Primate Facility), Kunming Institute of Zoology,
Chinese Academy of Sciences, Kunming, Yunnan
650107, China
| | - Yi-Qing Hui
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan
Province, Kunming Institute of Zoology, Chinese Academy of
Sciences, Kunming, Yunnan 650201, China
| | - Rong Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan
Province, Kunming Institute of Zoology, Chinese Academy of
Sciences, Kunming, Yunnan 650201, China
- National Research Facility for Phenotypic & Genetic Analysis of Model
Animals (Primate Facility), Kunming Institute of Zoology,
Chinese Academy of Sciences, Kunming, Yunnan
650107, China
| | - Hai-Yang Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan
Province, Kunming Institute of Zoology, Chinese Academy of
Sciences, Kunming, Yunnan 650201, China
| | - Xing Cai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan
Province, Kunming Institute of Zoology, Chinese Academy of
Sciences, Kunming, Yunnan 650201, China
- National Research Facility for Phenotypic & Genetic Analysis of Model
Animals (Primate Facility), Kunming Institute of Zoology,
Chinese Academy of Sciences, Kunming, Yunnan
650107, China
| | - Li Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan
Province, Kunming Institute of Zoology, Chinese Academy of
Sciences, Kunming, Yunnan 650201, China
- National Research Facility for Phenotypic & Genetic Analysis of Model
Animals (Primate Facility), Kunming Institute of Zoology,
Chinese Academy of Sciences, Kunming, Yunnan
650107, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese
Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
13
|
Parra-Barrero E, Vijayabaskaran S, Seabrook E, Wiskott L, Cheng S. A map of spatial navigation for neuroscience. Neurosci Biobehav Rev 2023; 152:105200. [PMID: 37178943 DOI: 10.1016/j.neubiorev.2023.105200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Spatial navigation has received much attention from neuroscientists, leading to the identification of key brain areas and the discovery of numerous spatially selective cells. Despite this progress, our understanding of how the pieces fit together to drive behavior is generally lacking. We argue that this is partly caused by insufficient communication between behavioral and neuroscientific researchers. This has led the latter to under-appreciate the relevance and complexity of spatial behavior, and to focus too narrowly on characterizing neural representations of space-disconnected from the computations these representations are meant to enable. We therefore propose a taxonomy of navigation processes in mammals that can serve as a common framework for structuring and facilitating interdisciplinary research in the field. Using the taxonomy as a guide, we review behavioral and neural studies of spatial navigation. In doing so, we validate the taxonomy and showcase its usefulness in identifying potential issues with common experimental approaches, designing experiments that adequately target particular behaviors, correctly interpreting neural activity, and pointing to new avenues of research.
Collapse
Affiliation(s)
- Eloy Parra-Barrero
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Sandhiya Vijayabaskaran
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany
| | - Eddie Seabrook
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany
| | - Laurenz Wiskott
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Sen Cheng
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
14
|
Traub RD, Whittington MA, Cunningham MO. Simulation of oscillatory dynamics induced by an approximation of grid cell output. Rev Neurosci 2023; 34:517-532. [PMID: 36326795 PMCID: PMC10329426 DOI: 10.1515/revneuro-2022-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/06/2022] [Indexed: 07/20/2023]
Abstract
Grid cells, in entorhinal cortex (EC) and related structures, signal animal location relative to hexagonal tilings of 2D space. A number of modeling papers have addressed the question of how grid firing behaviors emerge using (for example) ideas borrowed from dynamical systems (attractors) or from coupled oscillator theory. Here we use a different approach: instead of asking how grid behavior emerges, we take as a given the experimentally observed intracellular potentials of superficial medial EC neurons during grid firing. Employing a detailed neural circuit model modified from a lateral EC model, we then ask how the circuit responds when group of medial EC principal neurons exhibit such potentials, simultaneously with a simulated theta frequency input from the septal nuclei. The model predicts the emergence of robust theta-modulated gamma/beta oscillations, suggestive of oscillations observed in an in vitro medial EC experimental model (Cunningham, M.O., Pervouchine, D.D., Racca, C., Kopell, N.J., Davies, C.H., Jones, R.S.G., Traub, R.D., and Whittington, M.A. (2006). Neuronal metabolism governs cortical network response state. Proc. Natl. Acad. Sci. U S A 103: 5597-5601). Such oscillations result because feedback interneurons tightly synchronize with each other - despite the varying phases of the grid cells - and generate a robust inhibition-based rhythm. The lack of spatial specificity of the model interneurons is consistent with the lack of spatial periodicity in parvalbumin interneurons observed by Buetfering, C., Allen, K., and Monyer, H. (2014). Parvalbumin interneurons provide grid cell-driven recurrent inhibition in the medial entorhinal cortex. Nat. Neurosci. 17: 710-718. If in vivo EC gamma rhythms arise during exploration as our model predicts, there could be implications for interpreting disrupted spatial behavior and gamma oscillations in animal models of Alzheimer's disease and schizophrenia. Noting that experimental intracellular grid cell potentials closely resemble cortical Up states and Down states, during which fast oscillations also occur during Up states, we propose that the co-occurrence of slow principal cell depolarizations and fast network oscillations is a general property of the telencephalon, in both waking and sleep states.
Collapse
Affiliation(s)
- Roger D. Traub
- AI Foundations, IBM T.J. Watson Research Center, Yorktown Heights, NY10598, USA
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104, USA
| | | | - Mark O. Cunningham
- Discipline of Physiology, School of Medicine, Trinity College Dublin, University of Dublin, 152-160 Pearse St., Dublin 2, Ireland
| |
Collapse
|
15
|
Topczewska A, Giacalone E, Pratt WS, Migliore M, Dolphin AC, Shah MM. T-type Ca 2+ and persistent Na + currents synergistically elevate ventral, not dorsal, entorhinal cortical stellate cell excitability. Cell Rep 2023; 42:112699. [PMID: 37368752 PMCID: PMC10687207 DOI: 10.1016/j.celrep.2023.112699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 03/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Dorsal and ventral medial entorhinal cortex (mEC) regions have distinct neural network firing patterns to differentially support functions such as spatial memory. Accordingly, mEC layer II dorsal stellate neurons are less excitable than ventral neurons. This is partly because the densities of inhibitory conductances are higher in dorsal than ventral neurons. Here, we report that T-type Ca2+ currents increase 3-fold along the dorsal-ventral axis in mEC layer II stellate neurons, with twice as much CaV3.2 mRNA in ventral mEC compared with dorsal mEC. Long depolarizing stimuli trigger T-type Ca2+ currents, which interact with persistent Na+ currents to elevate the membrane voltage and spike firing in ventral, not dorsal, neurons. T-type Ca2+ currents themselves prolong excitatory postsynaptic potentials (EPSPs) to enhance their summation and spike coupling in ventral neurons only. These findings indicate that T-type Ca2+ currents critically influence the dorsal-ventral mEC stellate neuron excitability gradient and, thereby, mEC dorsal-ventral circuit activity.
Collapse
Affiliation(s)
| | | | - Wendy S Pratt
- Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Michele Migliore
- Institute of Biophysics, National Research Council, 90146 Palermo, Italy
| | - Annette C Dolphin
- Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Mala M Shah
- Pharmacology, School of Pharmacy, University College London, London WC1N 4AX, UK.
| |
Collapse
|
16
|
Shi Y, Cui H, Li X, Chen L, Zhang C, Zhao X, Li X, Shao Q, Sun Q, Yan K, Wang G. Laminar and dorsoventral organization of layer 1 interneuronal microcircuitry in superficial layers of the medial entorhinal cortex. Cell Rep 2023; 42:112782. [PMID: 37436894 DOI: 10.1016/j.celrep.2023.112782] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/03/2023] [Accepted: 06/24/2023] [Indexed: 07/14/2023] Open
Abstract
Layer 1 (L1) interneurons (INs) participate in various brain functions by gating information flow in the neocortex, but their role in the medial entorhinal cortex (MEC) is still unknown, largely due to scant knowledge of MEC L1 microcircuitry. Using simultaneous triple-octuple whole-cell recordings and morphological reconstructions, we comprehensively depict L1IN networks in the MEC. We identify three morphologically distinct types of L1INs with characteristic electrophysiological properties. We dissect intra- and inter-laminar cell-type-specific microcircuits of L1INs, showing connectivity patterns different from those in the neocortex. Remarkably, motif analysis reveals transitive and clustered features of L1 networks, as well as over-represented trans-laminar motifs. Finally, we demonstrate the dorsoventral gradient of L1IN microcircuits, with dorsal L1 neurogliaform cells receiving fewer intra-laminar inputs but exerting more inhibition on L2 principal neurons. These results thus present a more comprehensive picture of L1IN microcircuitry, which is indispensable for deciphering the function of L1INs in the MEC.
Collapse
Affiliation(s)
- Yuying Shi
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Hui Cui
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaoyue Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ligu Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Chen Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xinran Zhao
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaowan Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Qiming Shao
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Qiang Sun
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Kaiyue Yan
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Guangfu Wang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
17
|
Osanai H, Nair IR, Kitamura T. Dissecting cell-type-specific pathways in medial entorhinal cortical-hippocampal network for episodic memory. J Neurochem 2023; 166:172-188. [PMID: 37248771 PMCID: PMC10538947 DOI: 10.1111/jnc.15850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023]
Abstract
Episodic memory, which refers to our ability to encode and recall past events, is essential to our daily lives. Previous research has established that both the entorhinal cortex (EC) and hippocampus (HPC) play a crucial role in the formation and retrieval of episodic memories. However, to understand neural circuit mechanisms behind these processes, it has become necessary to monitor and manipulate the neural activity in a cell-type-specific manner with high temporal precision during memory formation, consolidation, and retrieval in the EC-HPC networks. Recent studies using cell-type-specific labeling, monitoring, and manipulation have demonstrated that medial EC (MEC) contains multiple excitatory neurons that have differential molecular markers, physiological properties, and anatomical features. In this review, we will comprehensively examine the complementary roles of superficial layers of neurons (II and III) and the roles of deeper layers (V and VI) in episodic memory formation and recall based on these recent findings.
Collapse
Affiliation(s)
- Hisayuki Osanai
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Indrajith R Nair
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
18
|
Igarashi KM. Entorhinal cortex dysfunction in Alzheimer's disease. Trends Neurosci 2023; 46:124-136. [PMID: 36513524 PMCID: PMC9877178 DOI: 10.1016/j.tins.2022.11.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/31/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022]
Abstract
The entorhinal cortex (EC) is the brain region that often exhibits the earliest histological alterations in Alzheimer's disease (AD), including the formation of neurofibrillary tangles and cell death. Recently, brain imaging studies from preclinical AD patients and electrophysiological recordings from AD animal models have shown that impaired neuronal activity in the EC precedes neurodegeneration. This implies that memory impairments and spatial navigation deficits at the initial stage of AD are likely caused by activity dysfunction rather than by cell death. This review focuses on recent findings on EC dysfunction in AD, and discusses the potential pathways for mitigating AD progression by protecting the EC.
Collapse
Affiliation(s)
- Kei M Igarashi
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
19
|
Caputi A, Liu X, Fuchs EC, Liu YC, Monyer H. Medial entorhinal cortex commissural input regulates the activity of spatially and object-tuned cells contributing to episodic memory. Neuron 2022; 110:3389-3405.e7. [PMID: 36084654 DOI: 10.1016/j.neuron.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 07/14/2022] [Accepted: 08/08/2022] [Indexed: 10/14/2022]
Abstract
Extensive interhemispheric projections connect many homotopic brain regions, including the hippocampal formation, but little is known as to how information transfer affects the functions supported by the target area. Here, we studied whether the commissural projections connecting the medial entorhinal cortices contribute to spatial coding, object coding, and memory. We demonstrate that input from the contralateral medial entorhinal cortex targets all major cell types in the superficial medial entorhinal cortex, modulating their firing rate. Notably, a fraction of responsive cells displayed object tuning and exhibited a reduction in their firing rate upon the inhibition of commissural input. In line with this finding are behavioral results that revealed the contribution of commissural input to episodic-like memory retrieval.
Collapse
Affiliation(s)
- Antonio Caputi
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Xinghua Liu
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Elke C Fuchs
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Yu-Chao Liu
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
20
|
Valero M, Navas-Olive A, de la Prida LM, Buzsáki G. Inhibitory conductance controls place field dynamics in the hippocampus. Cell Rep 2022; 40:111232. [PMID: 36001959 PMCID: PMC9595125 DOI: 10.1016/j.celrep.2022.111232] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/30/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022] Open
Abstract
Hippocampal place cells receive a disparate collection of excitatory and inhibitory currents that endow them with spatially selective discharges and rhythmic activity. Using a combination of in vivo intracellular and extracellular recordings with opto/chemogenetic manipulations and computational modeling, we investigate the influence of inhibitory and excitatory inputs on CA1 pyramidal cell responses. At the cell bodies, inhibition leads and is stronger than excitation across the entire theta cycle. Pyramidal neurons fire on the ascending phase of theta when released from inhibition. Computational models equipped with the observed conductances reproduce these dynamics. In these models, place field properties are favored when the increased excitation is coupled with a reduction of inhibition within the field. As predicted by our simulations, firing rate within place fields and phase locking to theta are impaired by DREADDs activation of interneurons. Our results indicate that decreased inhibitory conductance is critical for place field expression. Valero et al. examine the influence of inhibition on place fields. They show that hippocampal neurons are dominated by inhibitory conductances during theta oscillations. A transient increase of excitation and drop of inhibition mediates place field emergence in simulations. Consistently, chemogenetic activation of interneurons deteriorates place cell properties in vivo.
Collapse
Affiliation(s)
- Manuel Valero
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA
| | - Andrea Navas-Olive
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avenue Doctor Arce 37, Madrid 28002, Spain
| | - Liset M de la Prida
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avenue Doctor Arce 37, Madrid 28002, Spain.
| | - György Buzsáki
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neurology, Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
21
|
The dysfunction of mGluRIIs is involved in the disorder of hippocampal neural network in diabetic mice model. Exp Brain Res 2022; 240:2491-2498. [PMID: 35994067 DOI: 10.1007/s00221-022-06433-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/02/2022] [Indexed: 11/04/2022]
Abstract
Cognitive dysfunction is a high incidence of diabetes mellitus (DM). However, the relationship between DM-induced cognitive defect and neuronal network oscillations is still unknown. In this study, adult male C57BL/6 J mice were intraperitoneally injected with streptozotocin (STZ) to duplicate DM. After 12 weeks, local field potentials were recorded in the perforant fiber pathway (PP) and dentate gyrus (DG) regions. Data showed that mice in the STZ group exhibited impairment of spatial learning and memory by the Morris Water Maze test. The low gamma (LG) and high gamma (HG) power were increased in the PP and DG areas of the STZ group. Moreover, the phase synchronization and the information flow at theta and LG rhythms between the PP and DG areas were decreased, and the theta-LG phase-amplitude coupling strength was markedly reduced in the PP region, DG region, and the PP-DG pathway in the STZ group. Additionally, the concentration of glutamate was increased by the high-performance liquid chromatography. Moreover, the NR2B and PSD95 expressions were markedly reduced, and the Akt/GSK-3β pathway was inhibited. Interestingly, the expressions of mGluRIIs (mGluR2 and mGluR3) were significantly decreased. The reduction of mGluRIIs may limit their function, such as restricting presynaptic glutamate release and reversing the dysfunction of NR2B via Akt/GSK-3β signaling pathway. In conclusion, our data suggest that DM alters the hippocampal neural network partly related to the dysfunction of mGluRIIs.
Collapse
|
22
|
Cooper TL, Thompson JJ, Turner SM, Watson C, Lubke KN, Logan CN, Maurer AP, Burke SN. Unilateral Perforant Path Transection Does Not Alter Lateral Entorhinal Cortical or Hippocampal CA3 Arc Expression. Front Syst Neurosci 2022; 16:920713. [PMID: 35844245 PMCID: PMC9279555 DOI: 10.3389/fnsys.2022.920713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
It is well established that degradation of perforant path fibers is associated with age-related cognitive dysfunction and CA3 hyperactivity. Whether this fiber loss triggers a cascade of other functional changes within the hippocampus circuit has not been causatively established, however. Thus, the current study evaluated the effect of perforant path fiber loss on neuronal activity in CA3 and layer II of the lateral entorhinal cortex (LEC) in relation to mnemonic similarity task performance. Expression of the immediate early gene Arc was quantified in rats that received a unilateral right hemisphere transection of the perforant path or sham surgery that cut the cortex but left the fibers intact. Behavior-related expression of Arc mRNA was measured to test the hypothesis that fiber loss leads to elevated activation of CA3 and LEC neurons, as previously observed in aged rats that were impaired on the mnemonic similarity task. Transection of perforant path fibers, which has previously been shown to lead to a decline in mnemonic similarity task performance, did not alter Arc expression. Arc expression in CA3, however, was correlated with task performance on the more difficult discrimination trials across both surgical groups. These observations further support a link between CA3 activity and mnemonic similarity task performance but suggest the reduced input from the entorhinal cortex to the hippocampus, as observed in old age, does not causatively elevate CA3 activity.
Collapse
Affiliation(s)
- Tara L. Cooper
- Department of Neuroscience, Evelyn F. McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Graduate Program in Biomedical Sciences, Neuroscience Concentration, University of Florida, Gainesville, FL, United States
| | - John J. Thompson
- Department of Neuroscience, Evelyn F. McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Sean M. Turner
- Department of Neuroscience, Evelyn F. McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Cory Watson
- Department of Neuroscience, Evelyn F. McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Katelyn N. Lubke
- Department of Neuroscience, Evelyn F. McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Carly N. Logan
- Department of Neuroscience, Evelyn F. McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Andrew P. Maurer
- Department of Neuroscience, Evelyn F. McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Sara N. Burke
- Department of Neuroscience, Evelyn F. McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
23
|
Situ J, Huang X, Zuo M, Huang Y, Ren B, Liu Q. Comparative Proteomic Analysis Reveals the Effect of Selenoprotein W Deficiency on Oligodendrogenesis in Fear Memory. Antioxidants (Basel) 2022; 11:antiox11050999. [PMID: 35624863 PMCID: PMC9138053 DOI: 10.3390/antiox11050999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
The essential trace element selenium plays an important role in maintaining brain function. Selenoprotein W (SELENOW), the smallest selenoprotein that has been identified in mammals, is sensitive to selenium levels and abundantly expressed in the brain. However, its biological role in the brain remains to be clarified. Here, we studied the morphological and functional changes in the brain caused by SELENOW deficiency using its gene knockout (KO) mouse models. Histomorphological alterations of the amygdala and hippocampus, specifically in the female SELENOW KO mice, were observed, ultimately resulting in less anxiety-like behavior and impaired contextual fear memory. Fear conditioning (FC) provokes rapidly intricate responses involving neuroplasticity and oligodendrogenesis. During this process, the females generally show stronger contextual FC than males. To characterize the effect of SELENOW deletion on FC, specifically in the female mice, a Tandem mass tag (TMT)-based comparative proteomic approach was applied. Notably, compared to the wildtype (WT) no shock (NS) mice, the female SELENOW KO NS mice shared lots of common differentially expressed proteins (DEPs) with the WT FC mice in the hippocampus, enriched in the biological process of ensheathment and oligodendrocyte differentiation. Immunostaining and Western blotting analyses further confirmed the proteomic results. Our work may provide a holistic perspective of gender-specific SELENOW function in the brain and highlighted its role in oligodendrogenesis during fear memory.
Collapse
Affiliation(s)
- Jiaxin Situ
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (J.S.); (X.H.); (M.Z.); (Y.H.)
| | - Xuelian Huang
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518000, China
| | - Mingyang Zuo
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (J.S.); (X.H.); (M.Z.); (Y.H.)
| | - Yingying Huang
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518000, China
| | - Bingyu Ren
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (J.S.); (X.H.); (M.Z.); (Y.H.)
- Shenzhen Bay Laboratory, Shenzhen 518000, China
- Correspondence: (B.R.); (Q.L.)
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (J.S.); (X.H.); (M.Z.); (Y.H.)
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518000, China
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China
- Correspondence: (B.R.); (Q.L.)
| |
Collapse
|
24
|
Jin T, Wang R, Peng S, Liu X, Zhang H, He X, Teng W, Teng X. Developmental Hypothyroidism Influences the Development of the Entorhinal-Dentate Gyrus Pathway of Rat Offspring. Endocrinol Metab (Seoul) 2022; 37:290-302. [PMID: 35390249 PMCID: PMC9081305 DOI: 10.3803/enm.2021.1343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/21/2022] [Accepted: 02/10/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Developmental hypothyroidism impairs learning and memory in offspring, which depend on extensive neuronal circuits in the entorhinal cortex, together with the hippocampus and neocortex. The entorhinal-dentate gyrus pathway is the main entrance of memory circuits. We investigated whether developmental hypothyroidism impaired the morphological development of the entorhinal-dentate gyrus pathway. METHODS We examined the structure and function of the entorhinal-dentate gyrus pathway in response to developmental hypothyroidism induced using 2-mercapto-1-methylimidazole. RESULTS 1,1´-Dioctadecyl-3,3,3´,3´-tetramethylindocarbocyanine perchlorate tract tracing indicated that entorhinal axons showed delayed growth in reaching the outer molecular layer of the dentate gyrus at postnatal days 2 and 4 in hypothyroid conditions. The proportion of fibers in the outer molecular layer was significantly smaller in the hypothyroid group than in the euthyroid group at postnatal day 4. At postnatal day 10, the pathway showed a layer-specific distribution in the outer molecular layer, similar to the euthyroid group. However, the projected area of entorhinal axons was smaller in the hypothyroid group than in the euthyroid group. An electrophysiological examination showed that hypothyroidism impaired the long-term potentiation of the perforant and the cornu ammonis 3-cornu ammonis 1 pathways. Many repulsive axon guidance molecules were involved in the formation of the entorhinaldentate gyrus pathway. The hypothyroid group had higher levels of erythropoietin-producing hepatocyte ligand A3 and semaphorin 3A than the euthyroid group. CONCLUSION We demonstrated that developmental hypothyroidism might influence the development of the entorhinal-dentate gyrus pathway, contributing to impaired long-term potentiation. These findings improve our understanding of neural mechanisms for memory function.
Collapse
Affiliation(s)
- Ting Jin
- Department of Endocrinology and Metabolism, Institute of Endocrinology, National Health Commission Key Laboratory of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ranran Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, National Health Commission Key Laboratory of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Endocrinology, Chifeng College Affiliated Hospital, Chifeng, China
| | - Shiqiao Peng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, National Health Commission Key Laboratory of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xin Liu
- Department of Endocrinology and Metabolism, Institute of Endocrinology, National Health Commission Key Laboratory of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hanyi Zhang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, National Health Commission Key Laboratory of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xue He
- Department of Endocrinology and Metabolism, Institute of Endocrinology, National Health Commission Key Laboratory of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, National Health Commission Key Laboratory of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaochun Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, National Health Commission Key Laboratory of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
25
|
Zutshi I, Valero M, Fernández-Ruiz A, Buzsáki G. Extrinsic control and intrinsic computation in the hippocampal CA1 circuit. Neuron 2022; 110:658-673.e5. [PMID: 34890566 PMCID: PMC8857017 DOI: 10.1016/j.neuron.2021.11.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/01/2021] [Accepted: 11/12/2021] [Indexed: 10/19/2022]
Abstract
In understanding circuit operations, a key problem is the extent to which neuronal spiking reflects local computation or responses to upstream inputs. We addressed this issue in the hippocampus by performing combined optogenetic and pharmacogenetic local and upstream inactivation. Silencing the medial entorhinal cortex (mEC) largely abolished extracellular theta and gamma currents in CA1 while only moderately affecting firing rates. In contrast, CA3 and local CA1 silencing strongly decreased firing of CA1 neurons without affecting theta currents. Each perturbation reconfigured the CA1 spatial map. However, the ability of the CA1 circuit to support place field activity persisted, maintaining the same fraction of spatially tuned place fields and reliable assembly expression as in the intact mouse. Thus, the CA1 network can induce and maintain coordinated cell assemblies with minimal reliance on its inputs, but these inputs can effectively reconfigure and assist in maintaining stability of the CA1 map.
Collapse
Affiliation(s)
- Ipshita Zutshi
- New York University Neuroscience Institute, New York University, New York, NY 10016, USA
| | - Manuel Valero
- New York University Neuroscience Institute, New York University, New York, NY 10016, USA
| | - Antonio Fernández-Ruiz
- New York University Neuroscience Institute, New York University, New York, NY 10016, USA
| | - György Buzsáki
- New York University Neuroscience Institute, New York University, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10016, USA.
| |
Collapse
|
26
|
Ying J, Keinath AT, Lavoie R, Vigneault E, El Mestikawy S, Brandon MP. Disruption of the grid cell network in a mouse model of early Alzheimer's disease. Nat Commun 2022; 13:886. [PMID: 35173173 PMCID: PMC8850598 DOI: 10.1038/s41467-022-28551-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/27/2022] [Indexed: 11/28/2022] Open
Abstract
Early-onset familial Alzheimer’s disease (AD) is marked by an aggressive buildup of amyloid beta (Aβ) proteins, yet the neural circuit operations impacted during the initial stages of Aβ pathogenesis remain elusive. Here, we report a coding impairment of the medial entorhinal cortex (MEC) grid cell network in the J20 transgenic mouse model of familial AD that over-expresses Aβ throughout the hippocampus and entorhinal cortex. Grid cells showed reduced spatial periodicity, spatial stability, and synchrony with interneurons and head-direction cells. In contrast, the spatial coding of non-grid cells within the MEC, and place cells within the hippocampus, remained intact. Grid cell deficits emerged at the earliest incidence of Aβ fibril deposition and coincided with impaired spatial memory performance in a path integration task. These results demonstrate that widespread Aβ-mediated damage to the entorhinal-hippocampal circuit results in an early impairment of the entorhinal grid cell network. It remains poorly understood how the onset of Alzheimer’s disease affects spatial cognition. Here, the authors report that spatial coding in grid cells deteriorates over time in a mouse model of Alzheimer’s disease during the early stages of pathology while place cell and head direction coding remain intact.
Collapse
Affiliation(s)
- Johnson Ying
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Alexandra T Keinath
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada
| | - Raphael Lavoie
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada
| | - Erika Vigneault
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada
| | - Salah El Mestikawy
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Mark P Brandon
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada. .,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
| |
Collapse
|
27
|
The Entorhinal Cortex as a Gateway for Amygdala Influences on Memory Consolidation. Neuroscience 2022; 497:86-96. [PMID: 35122874 DOI: 10.1016/j.neuroscience.2022.01.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/16/2022]
Abstract
The amygdala, specifically its basolateral nucleus (BLA), is a critical site integrating neuromodulatory influences on memory consolidation in other brain areas. Almost 20 years ago, we reported the first direct evidence that BLA activity is required for modulatory interventions in the entorhinal cortex (EC) to affect memory consolidation (Roesler, Roozendaal, and McGaugh, 2002). Since then, significant advances have been made in our understanding of how the EC participates in memory. For example, the characterization of grid cells specialized in processing spatial information in the medial EC (mEC) that act as major relayers of information to the hippocampus (HIP) has changed our view of memory processing by the EC; and the development of optogenetic technologies for manipulation of neuronal activity has recently enabled important new discoveries on the role of the BLA projections to the EC in memory. Here, we review the current evidence on interactions between the BLA and EC in synaptic plasticity and memory formation. The findings suggest that the EC may function as a gateway and mediator of modulatory influences from the BLA, which are then processed and relayed to the HIP. Through extensive reciprocal connections among the EC, HIP, and several cortical areas, information related to new memories is then consolidated by these multiple brain systems, through various molecular and cellular mechanisms acting in a distributed and highly concerted manner, during several hours after learning. A special note is made on the contribution by Ivan Izquierdo to our understanding of memory consolidation at the brain system level.
Collapse
|
28
|
Clipperton-Allen AE, Swick H, Botero V, Aceti M, Ellegood J, Lerch JP, Page DT. Pten haploinsufficiency causes desynchronized growth of brain areas involved in sensory processing. iScience 2022; 25:103796. [PMID: 35198865 PMCID: PMC8844819 DOI: 10.1016/j.isci.2022.103796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/25/2021] [Accepted: 01/18/2022] [Indexed: 01/16/2023] Open
Abstract
How changes in brain scaling relate to altered behavior is an important question in neurodevelopmental disorder research. Mice with germline Pten haploinsufficiency (Pten +/-) closely mirror the abnormal brain scaling and behavioral deficits seen in humans with macrocephaly/autism syndrome, which is caused by PTEN mutations. We explored whether deviation from normal patterns of growth can predict behavioral abnormalities. Brain regions associated with sensory processing (e.g., pons and inferior colliculus) had the biggest deviations from expected volume. While Pten +/- mice showed little or no abnormal behavior on most assays, both sexes showed sensory deficits, including impaired sensorimotor gating and hyporeactivity to high-intensity stimuli. Developmental analysis of this phenotype showed sexual dimorphism for hyporeactivity. Mapping behavioral phenotypes of Pten +/- mice onto relevant brain regions suggested abnormal behavior is likely when associated with relatively enlarged brain regions, while unchanged or relatively decreased brain regions have little predictive value.
Collapse
Affiliation(s)
| | - Hannah Swick
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Valentina Botero
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA,Doctoral Program in Chemical and Biological Sciences, The Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, Jupiter, FL 33458, USA
| | - Massimiliano Aceti
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
| | - Jason P. Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON M5T 3H7, Canada,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, Oxfordshire OX3 9DU, UK
| | - Damon T. Page
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA,Doctoral Program in Chemical and Biological Sciences, The Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, Jupiter, FL 33458, USA,Corresponding author
| |
Collapse
|
29
|
Wang D, Cao L, Pan S, Wang G, Wang L, Cao N, Hao X. Sirt3-mediated mitochondrial dysfunction is involved in fluoride-induced cognitive deficits. Food Chem Toxicol 2021; 158:112665. [PMID: 34780879 DOI: 10.1016/j.fct.2021.112665] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/17/2021] [Accepted: 11/04/2021] [Indexed: 01/11/2023]
Abstract
Excessive fluoride is capable of inducing cognitive deficits, but the mechanisms remain elusive. This study aimed to investigate the effects and underlying mechanisms of fluoride on mitochondrial dysfunction and neurobiological alterations, as well as cognitive impairment. C57BL/6 mice were orally administered 25, 50, and 100 mg/L NaF for 90 days. Cultured human neuroblastoma SH-SY5Y cells were exposed to NaF (110 mg/L) for 24 h in the presence or absence of Sirt3 overexpression. The results demonstrated that chronic exposure to high fluoride induced cognitive deficits and neural/synaptic injury in mice. Fluoride reduced mitochondrial antioxidant enzyme activities and elevated SOD2 acetylation by downregulating Sirt3 expression in the brains of mice and NaF-treated SH-SY5Y cells. Moreover, fluoride lowered mtDNA transcription and induced mitochondrial dysfunction along with increased FoxO3A acetylation in the brains of mice and NaF-treated SH-SY5Y cells. Subsequent experiments revealed that overexpression of Sirt3 significantly attenuated the adverse effects of fluoride on radical scavenging capabilities and mtDNA transcription, as well as mitochondrial function in SH-SY5Y cells. These results suggest that chronic long-term fluoride exposure evokes neural/synaptic injury and cognitive impairment through mitochondrial dysfunction and its associated oxidative stress, which is, at least partly, mediated by Sirt3 inhibition in the mouse brain.
Collapse
Affiliation(s)
- Dongmei Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Henan, Luoyang, 471003, China.
| | - Luyang Cao
- School of Basic Medical Sciences, Henan University of Science and Technology, Henan, Luoyang, 471003, China
| | - Shunji Pan
- School of Basic Medical Sciences, Henan University of Science and Technology, Henan, Luoyang, 471003, China
| | - Gang Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Henan, Luoyang, 471003, China
| | - Lewei Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Henan, Luoyang, 471003, China
| | - Ningyao Cao
- School of Basic Medical Sciences, Henan University of Science and Technology, Henan, Luoyang, 471003, China
| | - Xueqin Hao
- School of Basic Medical Sciences, Henan University of Science and Technology, Henan, Luoyang, 471003, China
| |
Collapse
|
30
|
Sebastian Y, Chen C. The boundary-spanning mechanisms of Nobel Prize winning papers. PLoS One 2021; 16:e0254744. [PMID: 34379631 PMCID: PMC8357150 DOI: 10.1371/journal.pone.0254744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/05/2021] [Indexed: 12/24/2022] Open
Abstract
The breakthrough potentials of research papers can be explained by their boundary-spanning qualities. Here, for the first time, we apply the structural variation analysis (SVA) model and its affiliated metrics to investigate the extent to which such qualities characterize a group of Nobel Prize winning papers. We find that these papers share remarkable boundary-spanning traits, marked by exceptional abilities to connect disparate and topically-diverse clusters of research papers. Further, their publications exert structural variations on a scale that significantly alters the betweenness centrality distributions in existing intellectual space. Overall, SVA not only provides a set of leading indicators for describing future Nobel Prize winning papers, but also broadens our understanding of similar prize-winning properties that may have been overlooked among other regular publications.
Collapse
Affiliation(s)
- Yakub Sebastian
- College of Engineering, IT & Environment, Charles Darwin University, Casuarina, Northern Territory, Australia
- * E-mail:
| | - Chaomei Chen
- College of Computing & Informatics, Drexel University, Philadelphia, PA, United States of America
| |
Collapse
|
31
|
Dave N, Vural AS, Piras IS, Winslow W, Surendra L, Winstone JK, Beach TG, Huentelman MJ, Velazquez R. Identification of retinoblastoma binding protein 7 (Rbbp7) as a mediator against tau acetylation and subsequent neuronal loss in Alzheimer's disease and related tauopathies. Acta Neuropathol 2021; 142:279-294. [PMID: 33978814 PMCID: PMC8270842 DOI: 10.1007/s00401-021-02323-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/14/2021] [Accepted: 05/01/2021] [Indexed: 12/14/2022]
Abstract
Evidence indicates that tau hyper-phosphorylation and subsequent neurofibrillary tangle formation contribute to the extensive neuronal death in Alzheimer's disease (AD) and related tauopathies. Recent work has identified that increased tau acetylation can promote tau phosphorylation. Tau acetylation occurs at lysine 280 resulting from increased expression of the lysine acetyltransferase p300. The exact upstream mechanisms mediating p300 expression remain elusive. Additional work highlights the role of the epigenome in tau pathogenesis, suggesting that dysregulation of epigenetic proteins may contribute to acetylation and hyper-phosphorylation of tau. Here, we identify and focus on the histone-binding subunit of the Nucleosome Remodeling and Deacetylase (NuRD) complex: Retinoblastoma-Binding Protein 7 (Rbbp7). Rbbp7 chaperones chromatin remodeling proteins to their nuclear histone substrates, including histone acetylases and deacetylases. Notably, Rbbp7 binds to p300, suggesting that it may play a role in modulating tau acetylation. We interrogated Rbbp7 in post-mortem brain tissue, cell lines and mouse models of AD. We found reduced Rbbp7 mRNA expression in AD cases, a significant negative correlation with CERAD (neuritic plaque density) and Braak Staging (pathogenic tau inclusions) and a significant positive correlation with post-mortem brain weight. We also found a neuron-specific downregulation of Rbbp7 mRNA in AD patients. Rbbp7 protein levels were significantly decreased in 3xTg-AD and PS19 mice compared to NonTg, but no decreases were found in APP/PS1 mice that lack tau pathology. In vitro, Rbbp7 overexpression rescued TauP301L-induced cytotoxicity in immortalized hippocampal cells and primary cortical neurons. In vivo, hippocampal Rbbp7 overexpression rescued neuronal death in the CA1 of PS19 mice. Mechanistically, we found that increased Rbbp7 reduced p300 levels, tau acetylation at lysine 280 and tau phosphorylation at AT8 and AT100 sites. Collectively, these data identify a novel role of Rbbp7, protecting against tau-related pathologies, and highlight its potential as a therapeutic target in AD and related tauopathies.
Collapse
Affiliation(s)
- Nikhil Dave
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Austin S Vural
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Ignazio S Piras
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Wendy Winslow
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Likith Surendra
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Joanna K Winstone
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Thomas G Beach
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Matthew J Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Ramon Velazquez
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA.
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA.
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
32
|
Poitreau J, Buttet M, Manrique C, Poucet B, Sargolini F, Save E. Navigation using global or local reference frames in rats with medial and lateral entorhinal cortex lesions. Behav Brain Res 2021; 413:113448. [PMID: 34246711 DOI: 10.1016/j.bbr.2021.113448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/18/2021] [Accepted: 07/06/2021] [Indexed: 11/28/2022]
Abstract
The medial (MEC) and the lateral (LEC) regions of the entorhinal cortex send a major input to the hippocampus and have been proposed to play a foremost role in combining spatial and non-spatial attributes of episodic memory. In addition, it has been recently suggested that the MEC is involved in the processing of information in a global reference frame and the LEC in the processing of information in a local reference frame. Whether these putative functions could be generalized to navigation contexts has not been established yet. To address this hypothesis, rats with MEC or LEC NMDA-induced lesions were trained in two versions of a navigation task in the water maze, a global cue condition in which they had to use distal room cues and a local cue condition in which they had to use 3 objects placed in the pool. In the global cue condition, MEC-lesioned rats exhibited slower acquisition and were not able to precisely locate the submerged platform during the probe trial. In contrast LEC-lesioned rats exhibited control-like performance. In the local cue condition, navigational abilities were spared in both lesion groups. In addition when the 3 different objects were replaced by 3 identical objects, all groups maintained their navigation accuracy suggesting that the identity of objects is not crucial for place navigation. Overall, the results indicate that the MEC is necessary for place navigation using a global reference frame. In contrast, navigation using a local reference frame does not require the LEC nor the MEC.
Collapse
Affiliation(s)
| | - Manon Buttet
- Laboratory of Cognitive Neuroscience, Marseille, France
| | | | - Bruno Poucet
- Laboratory of Cognitive Neuroscience, Marseille, France
| | | | - Etienne Save
- Laboratory of Cognitive Neuroscience, Marseille, France.
| |
Collapse
|
33
|
Hales JB, Reitz NT, Vincze JL, Ocampo AC, Leutgeb S, Clark RE. A role for medial entorhinal cortex in spatial and nonspatial forms of memory in rats. Behav Brain Res 2021; 407:113259. [PMID: 33775779 PMCID: PMC8143915 DOI: 10.1016/j.bbr.2021.113259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/04/2021] [Accepted: 03/20/2021] [Indexed: 12/14/2022]
Abstract
Many studies have focused on the role of the medial entorhinal cortex (MEC) in spatial memory and spatial processing. However, more recently, studies have suggested that the functions of the MEC may extend beyond the spatial domain and into the temporal aspects of memory processing. The current study examined the effect of MEC lesions on spatial and nonspatial tasks that require rats to learn and remember information about location or stimulus-stimulus associations across short temporal gaps. MEC- and sham-lesioned male rats were tested on a watermaze delayed match to position (DMP) task and trace fear conditioning (TFC). Rats with MEC lesions were impaired at remembering the platform location after both the shortest (1 min) and the longest (6 h) delays on the DMP task, never performing as precisely as sham rats under the easiest condition and performing poorly at the longest delay. On the TFC task, although MEC-lesioned rats were not impaired at remembering the conditioning context, they showed reduced freezing in response to the previously associated tone. These findings suggest that the MEC plays a role in bridging temporal delays during learning and memory that extend beyond its established role in spatial memory processing.
Collapse
Affiliation(s)
- Jena B Hales
- Department of Psychological Sciences, University of San Diego, San Diego, CA, 92110, USA.
| | - Nicole T Reitz
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Jonathan L Vincze
- Marian College of Osteopathic Medicine, Indianapolis, IN, 46222, USA
| | - Amber C Ocampo
- Department of Psychiatry, Yale University, New Haven, CT, 06511, USA
| | - Stefan Leutgeb
- Neurobiology Section and Center for Neural Circuits and Behavior, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA; Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Robert E Clark
- Department of Psychiatry 0603, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
34
|
Yang Y, Ji WG, Zhang YJ, Zhou LP, Chen H, Yang N, Zhu ZR. Riluzole ameliorates soluble Aβ 1-42-induced impairments in spatial memory by modulating the glutamatergic/GABAergic balance in the dentate gyrus. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110077. [PMID: 32818535 DOI: 10.1016/j.pnpbp.2020.110077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 01/21/2023]
Abstract
Soluble amyloid beta (Aβ) is believed to contribute to cognitive deficits in the early stages of Alzheimer's disease (AD). Increased soluble Aβ1-42 in the hippocampus is closely correlated with spatial learning and memory deficits in AD. Riluzole (RLZ), an FDA-approved drug for amyotrophic lateral sclerosis (ALS), has beneficial effects for AD. However, the mechanism underlying the effects remains unclear. In this study, its neuroprotective effect against soluble Aβ1-42-induced spatial cognitive deficits in rats was assessed. We found that intrahippocampal injection of soluble Aβ1-42 impaired spatial cognitive function and suppressed long-term potentiation (LTP) of the DG region, which was relevant to soluble Aβ1-42-induced shift of the hippocampal excitation/inhibition balance toward excitation. Interestingly, RLZ ameliorated Aβ1-42-induced behavioral and LTP impairments through rescuing the soluble Aβ1-42-induced excitation/inhibition imbalance. RLZ attenuated Aβ1-42-mediated facilitation of excitatory synaptic transmission by facilitating glutamate reuptake and decreasing presynaptic glutamate release. Meanwhile, RLZ attenuated the suppression of inhibitory synaptic transmission caused by Aβ1-42 by potentiating postsynaptic GABA receptor function. These results suggest that RLZ exerts a neuroprotective effect against soluble Aβ1-42-related spatial cognitive deficits through rescuing the excitation/inhibition imbalance, and it could be a potential therapy for AD.
Collapse
Affiliation(s)
- Yang Yang
- Department of Developmental Neuropsychology, Army Medical University, Chongqing 400038, China; Department of Urology, The Second Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Wei-Gang Ji
- Department of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Ying-Jie Zhang
- Department of Developmental Neuropsychology, Army Medical University, Chongqing 400038, China
| | - Li-Ping Zhou
- Department of Developmental Neuropsychology, Army Medical University, Chongqing 400038, China
| | - Hao Chen
- Department of Physiology, Army Medical University, Chongqing 400038, China
| | - Nian Yang
- Department of Physiology, Army Medical University, Chongqing 400038, China
| | - Zhi-Ru Zhu
- Department of Developmental Neuropsychology, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
35
|
Vandrey B, Duncan S, Ainge JA. Object and object-memory representations across the proximodistal axis of CA1. Hippocampus 2021; 31:881-896. [PMID: 33942429 DOI: 10.1002/hipo.23331] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 03/11/2021] [Accepted: 03/28/2021] [Indexed: 11/07/2022]
Abstract
Episodic memory requires information about objects to be integrated into a spatial framework. Place cells in the hippocampus encode spatial representations of objects that could be generated through signaling from the entorhinal cortex. Projections from lateral (LEC) and medial entorhinal cortex (MEC) to the hippocampus terminate in distal and proximal CA1, respectively. We recorded place cells in distal and proximal CA1 as rats explored an environment that contained objects. Place cells in distal CA1 demonstrated higher measures of spatial tuning, stability, and closer proximity of place fields to objects. Furthermore, remapping to object displacement was modulated by place field proximity to objects in distal, but not proximal CA1. Finally, representations of previous object locations were closer to those locations in distal CA1 than proximal CA1. Our data suggest that in cue-rich environments, LEC inputs to the hippocampus support spatial representations with higher spatial tuning, closer proximity to objects, and greater stability than those receiving inputs from MEC. This is consistent with functional segregation in the entorhinal-hippocampal circuits underlying object-place memory.
Collapse
Affiliation(s)
- Brianna Vandrey
- University of St Andrews, School of Psychology and Neuroscience, St Andrews, Fife, UK
- University of Edinburgh, Centre for Discovery Brain Sciences, Edinburgh, EH8 9XD, UK
| | - Stephen Duncan
- University of St Andrews, School of Psychology and Neuroscience, St Andrews, Fife, UK
| | - James A Ainge
- University of St Andrews, School of Psychology and Neuroscience, St Andrews, Fife, UK
| |
Collapse
|
36
|
Ohara S, Blankvoort S, Nair RR, Nigro MJ, Nilssen ES, Kentros C, Witter MP. Local projections of layer Vb-to-Va are more prominent in lateral than in medial entorhinal cortex. eLife 2021; 10:e67262. [PMID: 33769282 PMCID: PMC8051944 DOI: 10.7554/elife.67262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
The entorhinal cortex, in particular neurons in layer V, allegedly mediate transfer of information from the hippocampus to the neocortex, underlying long-term memory. Recently, this circuit has been shown to comprise a hippocampal output recipient layer Vb and a cortical projecting layer Va. With the use of in vitro electrophysiology in transgenic mice specific for layer Vb, we assessed the presence of the thus necessary connection from layer Vb-to-Va in the functionally distinct medial (MEC) and lateral (LEC) subdivisions; MEC, particularly its dorsal part, processes allocentric spatial information, whereas the corresponding part of LEC processes information representing elements of episodes. Using identical experimental approaches, we show that connections from layer Vb-to-Va neurons are stronger in dorsal LEC compared with dorsal MEC, suggesting different operating principles in these two regions. Although further in vivo experiments are needed, our findings imply a potential difference in how LEC and MEC mediate episodic systems consolidation.
Collapse
Grants
- endowment Kavli Foundation
- infrastructure grant NORBRAIN,#197467 Norwegian Research Council
- the Centre of Excellence scheme - Centre for Neural Computation,#223262 Norwegian Research Council
- research grant,# 227769 Norwegian Research Council
- KAKENHI,#19K06917 Ministry of Education, Culture, Sports, Science and Technology
- KAKENHI (#19K06917) Ministry of Education, Culture, Sports, Science and Technology
- #197467 Norwegian Research Council
- #223262 Norwegian Research Council
- #227769 Norwegian Research Council
Collapse
Affiliation(s)
- Shinya Ohara
- Kavli institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and TechnologyTrondheimNorway
- Laboratory of Systems Neuroscience, Tohoku University Graduate School of Life SciencesTohokuJapan
| | - Stefan Blankvoort
- Kavli institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Rajeevkumar Raveendran Nair
- Kavli institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Maximiliano J Nigro
- Kavli institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Eirik S Nilssen
- Kavli institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Clifford Kentros
- Kavli institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Menno P Witter
- Kavli institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
37
|
Lee SM, Jin SW, Park SB, Park EH, Lee CH, Lee HW, Lim HY, Yoo SW, Ahn JR, Shin J, Lee SA, Lee I. Goal-directed interaction of stimulus and task demand in the parahippocampal region. Hippocampus 2021; 31:717-736. [PMID: 33394547 PMCID: PMC8359334 DOI: 10.1002/hipo.23295] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/05/2020] [Accepted: 12/12/2020] [Indexed: 11/10/2022]
Abstract
The hippocampus and parahippocampal region are essential for representing episodic memories involving various spatial locations and objects, and for using those memories for future adaptive behavior. The “dual‐stream model” was initially formulated based on anatomical characteristics of the medial temporal lobe, dividing the parahippocampal region into two streams that separately process and relay spatial and nonspatial information to the hippocampus. Despite its significance, the dual‐stream model in its original form cannot explain recent experimental results, and many researchers have recognized the need for a modification of the model. Here, we argue that dividing the parahippocampal region into spatial and nonspatial streams a priori may be too simplistic, particularly in light of ambiguous situations in which a sensory cue alone (e.g., visual scene) may not allow such a definitive categorization. Upon reviewing evidence, including our own, that reveals the importance of goal‐directed behavioral responses in determining the relative involvement of the parahippocampal processing streams, we propose the Goal‐directed Interaction of Stimulus and Task‐demand (GIST) model. In the GIST model, input stimuli such as visual scenes and objects are first processed by both the postrhinal and perirhinal cortices—the postrhinal cortex more heavily involved with visual scenes and perirhinal cortex with objects—with relatively little dependence on behavioral task demand. However, once perceptual ambiguities are resolved and the scenes and objects are identified and recognized, the information is then processed through the medial or lateral entorhinal cortex, depending on whether it is used to fulfill navigational or non‐navigational goals, respectively. As complex sensory stimuli are utilized for both navigational and non‐navigational purposes in an intermixed fashion in naturalistic settings, the hippocampus may be required to then put together these experiences into a coherent map to allow flexible cognitive operations for adaptive behavior to occur.
Collapse
Affiliation(s)
- Su-Min Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Seung-Woo Jin
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Seong-Beom Park
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Eun-Hye Park
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Choong-Hee Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Hyun-Woo Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Heung-Yeol Lim
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Seung-Woo Yoo
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
| | - Jae Rong Ahn
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - Jhoseph Shin
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Sang Ah Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Inah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
38
|
Jacob PY, Van Cauter T, Poucet B, Sargolini F, Save E. Medial entorhinal cortex lesions induce degradation of CA1 place cell firing stability when self-motion information is used. Brain Neurosci Adv 2020; 4:2398212820953004. [PMID: 33088918 PMCID: PMC7545758 DOI: 10.1177/2398212820953004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/21/2020] [Indexed: 11/18/2022] Open
Abstract
The entorhinal–hippocampus network plays a central role in navigation and episodic memory formation. To investigate these interactions, we examined the effect of medial entorhinal cortex lesions on hippocampal place cell activity. Since the medial entorhinal cortex is suggested to play a role in the processing of self-motion information, we hypothesised that such processing would be necessary for maintaining stable place fields in the absence of environmental cues. Place cells were recorded as medial entorhinal cortex–lesioned rats explored a circular arena during five 16-min sessions comprising a baseline session with all sensory inputs available followed by four sessions during which environmental (i.e. visual, olfactory, tactile) cues were progressively reduced to the point that animals could rely exclusively on self-motion cues to maintain stable place fields. We found that place field stability and a number of place cell firing properties were affected by medial entorhinal cortex lesions in the baseline session. When rats were forced to rely exclusively on self-motion cues, within-session place field stability was dramatically decreased in medial entorhinal cortex rats relative to SHAM rats. These results support a major role of the medial entorhinal cortex in processing self-motion cues, with this information being conveyed to the hippocampus to help anchor and maintain a stable spatial representation during movement.
Collapse
Affiliation(s)
- Pierre-Yves Jacob
- Aix Marseille Université, CNRS, LNC, Laboratory of Cognitive Neuroscience, Marseille, France
| | - Tiffany Van Cauter
- Aix Marseille Université, CNRS, LNC, Laboratory of Cognitive Neuroscience, Marseille, France
| | - Bruno Poucet
- Aix Marseille Université, CNRS, LNC, Laboratory of Cognitive Neuroscience, Marseille, France
| | - Francesca Sargolini
- Aix Marseille Université, CNRS, LNC, Laboratory of Cognitive Neuroscience, Marseille, France
| | - Etienne Save
- Aix Marseille Université, CNRS, LNC, Laboratory of Cognitive Neuroscience, Marseille, France
| |
Collapse
|
39
|
Perez DM. α 1-Adrenergic Receptors in Neurotransmission, Synaptic Plasticity, and Cognition. Front Pharmacol 2020; 11:581098. [PMID: 33117176 PMCID: PMC7553051 DOI: 10.3389/fphar.2020.581098] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
α1-adrenergic receptors are G-Protein Coupled Receptors that are involved in neurotransmission and regulate the sympathetic nervous system through binding and activating the neurotransmitter, norepinephrine, and the neurohormone, epinephrine. There are three α1-adrenergic receptor subtypes (α1A, α1B, α1D) that are known to play various roles in neurotransmission and cognition. They are related to two other adrenergic receptor families that also bind norepinephrine and epinephrine, the β- and α2-, each with three subtypes (β1, β2, β3, α2A, α2B, α2C). Previous studies assessing the roles of α1-adrenergic receptors in neurotransmission and cognition have been inconsistent. This was due to the use of poorly-selective ligands and many of these studies were published before the characterization of the cloned receptor subtypes and the subsequent development of animal models. With the availability of more-selective ligands and the development of animal models, a clearer picture of their role in cognition and neurotransmission can be assessed. In this review, we highlight the significant role that the α1-adrenergic receptor plays in regulating synaptic efficacy, both short and long-term synaptic plasticity, and its regulation of different types of memory. We will also present evidence that the α1-adrenergic receptors, and particularly the α1A-adrenergic receptor subtype, are a potentially good target to treat a wide variety of neurological conditions with diminished cognition.
Collapse
Affiliation(s)
- Dianne M Perez
- The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
40
|
Heys JG, Wu Z, Allegra Mascaro AL, Dombeck DA. Inactivation of the Medial Entorhinal Cortex Selectively Disrupts Learning of Interval Timing. Cell Rep 2020; 32:108163. [PMID: 32966784 PMCID: PMC8719477 DOI: 10.1016/j.celrep.2020.108163] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/06/2020] [Accepted: 08/26/2020] [Indexed: 11/25/2022] Open
Abstract
The entorhinal-hippocampal circuit can encode features of elapsed time, but nearly all previous research focused on neural encoding of "implicit time." Recent research has revealed encoding of "explicit time" in the medial entorhinal cortex (MEC) as mice are actively engaged in an interval timing task. However, it is unclear whether the MEC is required for temporal perception and/or learning during such explicit timing tasks. We therefore optogenetically inactivated the MEC as mice learned an interval timing "door stop" task that engaged mice in immobile interval timing behavior and locomotion-dependent navigation behavior. We find that the MEC is critically involved in learning of interval timing but not necessary for estimating temporal duration after learning. Together with our previous research, these results suggest that activity of a subcircuit in the MEC that encodes elapsed time during immobility is necessary for learning interval timing behaviors.
Collapse
Affiliation(s)
- James G Heys
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Zihan Wu
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | | | - Daniel A Dombeck
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
41
|
Disrupted Place Cell Remapping and Impaired Grid Cells in a Knockin Model of Alzheimer's Disease. Neuron 2020; 107:1095-1112.e6. [PMID: 32697942 DOI: 10.1016/j.neuron.2020.06.023] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/13/2020] [Accepted: 06/22/2020] [Indexed: 11/24/2022]
Abstract
Patients with Alzheimer's disease (AD) suffer from spatial memory impairment and wandering behavior, but the brain circuit mechanisms causing such symptoms remain largely unclear. In healthy brains, spatially tuned hippocampal place cells and entorhinal grid cells exhibit distinct spike patterns in different environments, a circuit function called "remapping." We tested remapping in amyloid precursor protein knockin (APP-KI) mice with impaired spatial memory. CA1 neurons, including place cells, showed disrupted remapping, although their spatial tuning was only mildly diminished. Medial entorhinal cortex (MEC) neurons severely lost their spatial tuning and grid cells were almost absent. Fast gamma oscillatory coupling between the MEC and CA1 was also impaired. Mild disruption of MEC grid cells emerged in younger APP-KI mice, although the spatial memory and CA1 remapping of the animals remained intact. These results point to remapping impairment in the hippocampus, possibly linked to grid cell disruption, as circuit mechanisms underlying spatial memory impairment in AD.
Collapse
|
42
|
Kuruvilla MV, Wilson DIG, Ainge JA. Lateral entorhinal cortex lesions impair both egocentric and allocentric object-place associations. Brain Neurosci Adv 2020; 4:2398212820939463. [PMID: 32954005 PMCID: PMC7479866 DOI: 10.1177/2398212820939463] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/11/2020] [Indexed: 11/21/2022] Open
Abstract
During navigation, landmark processing is critical either for generating
an allocentric-based cognitive map or in facilitating egocentric-based
strategies. Increasing evidence from manipulation and single-unit
recording studies has highlighted the role of the entorhinal cortex in
processing landmarks. In particular, the lateral (LEC) and medial
(MEC) sub-regions of the entorhinal cortex have been shown to attend
to proximal and distal landmarks, respectively. Recent studies have
identified a further dissociation in cue processing between the LEC
and MEC based on spatial frames of reference. Neurons in the LEC
preferentially encode egocentric cues while those in the MEC encode
allocentric cues. In this study, we assessed the impact of disrupting
the LEC on landmark-based spatial memory in both egocentric and
allocentric reference frames. Animals that received excitotoxic
lesions of the LEC were significantly impaired, relative to controls,
on both egocentric and allocentric versions of an object–place
association task. Notably, LEC lesioned animals performed at chance on
the egocentric version but above chance on the allocentric version.
There was no significant difference in performance between the two
groups on an object recognition and spatial T-maze task. Taken
together, these results indicate that the LEC plays a role in feature
integration more broadly and in specifically processing spatial
information within an egocentric reference frame.
Collapse
Affiliation(s)
- Maneesh V Kuruvilla
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK.,Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - David I G Wilson
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - James A Ainge
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| |
Collapse
|
43
|
Ekstrom AD, Harootonian SK, Huffman DJ. Grid coding, spatial representation, and navigation: Should we assume an isomorphism? Hippocampus 2020; 30:422-432. [PMID: 31742364 PMCID: PMC7409510 DOI: 10.1002/hipo.23175] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/21/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
Abstract
Grid cells provide a compelling example of a link between cellular activity and an abstract and difficult to define concept like space. Accordingly, a representational perspective on grid coding argues that neural grid coding underlies a fundamentally spatial metric. Recently, some theoretical proposals have suggested extending such a framework to nonspatial cognition as well, such as category learning. Here, we provide a critique of the frequently employed assumption of an isomorphism between patterns of neural activity (e.g., grid cells), mental representation, and behavior (e.g., navigation). Specifically, we question the strict isomorphism between these three levels and suggest that human spatial navigation is perhaps best characterized by a wide variety of both metric and nonmetric strategies. We offer an alternative perspective on how grid coding might relate to human spatial navigation, arguing that grid coding is part of a much larger conglomeration of neural activity patterns that dynamically tune to accomplish specific behavioral outputs.
Collapse
Affiliation(s)
- Arne D Ekstrom
- Department of Psychology, University of Arizona, Tucson, Arizona
| | | | - Derek J Huffman
- Center for Neuroscience, University of California, Davis, California
| |
Collapse
|
44
|
Alexander AS, Carstensen LC, Hinman JR, Raudies F, Chapman GW, Hasselmo ME. Egocentric boundary vector tuning of the retrosplenial cortex. SCIENCE ADVANCES 2020; 6:eaaz2322. [PMID: 32128423 PMCID: PMC7035004 DOI: 10.1126/sciadv.aaz2322] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/27/2019] [Indexed: 05/17/2023]
Abstract
The retrosplenial cortex is reciprocally connected with multiple structures implicated in spatial cognition, and damage to the region itself produces numerous spatial impairments. Here, we sought to characterize spatial correlates of neurons within the region during free exploration in two-dimensional environments. We report that a large percentage of retrosplenial cortex neurons have spatial receptive fields that are active when environmental boundaries are positioned at a specific orientation and distance relative to the animal itself. We demonstrate that this vector-based location signal is encoded in egocentric coordinates, is localized to the dysgranular retrosplenial subregion, is independent of self-motion, and is context invariant. Further, we identify a subpopulation of neurons with this response property that are synchronized with the hippocampal theta oscillation. Accordingly, the current work identifies a robust egocentric spatial code in retrosplenial cortex that can facilitate spatial coordinate system transformations and support the anchoring, generation, and utilization of allocentric representations.
Collapse
Affiliation(s)
- Andrew S. Alexander
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave., Boston, MA 02215, USA
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA 02215, USA
- Corresponding author.
| | - Lucas C. Carstensen
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave., Boston, MA 02215, USA
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA 02215, USA
- Graduate Program for Neuroscience, Boston University, 610 Commonwealth Ave., Boston, MA 02215, USA
| | - James R. Hinman
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave., Boston, MA 02215, USA
| | - Florian Raudies
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave., Boston, MA 02215, USA
| | - G. William Chapman
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave., Boston, MA 02215, USA
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA 02215, USA
| | - Michael E. Hasselmo
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave., Boston, MA 02215, USA
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA 02215, USA
- Graduate Program for Neuroscience, Boston University, 610 Commonwealth Ave., Boston, MA 02215, USA
| |
Collapse
|
45
|
Jin W, Qin H, Zhang K, Chen X. Spatial Navigation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1284:63-90. [PMID: 32852741 DOI: 10.1007/978-981-15-7086-5_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hippocampus is critical for spatial navigation. In this review, we focus on the role of the hippocampus in three basic strategies used for spatial navigation: path integration, stimulus-response association, and map-based navigation. First, the hippocampus is not required for path integration unless the path of path integration is too long and complex. The hippocampus provides mnemonic support when involved in the process of path integration. Second, the hippocampus's involvement in stimulus-response association is dependent on how the strategy is conducted. The hippocampus is not required for the habit form of stimulus-response association. Third, while the hippocampus is fully engaged in map-based navigation, the shared characteristics of place cells, grid cells, head direction cells, and other spatial encoding cells, which are detected in the hippocampus and associated areas, offer a possibility that there is a stand-alone allocentric space perception (or mental representation) of the environment outside and independent of the hippocampus, and the spatially specific firing patterns of these spatial encoding cells are the unfolding of the intermediate stages of the processing of this allocentric spatial information when conveyed into the hippocampus for information storage or retrieval. Furthermore, the presence of all the spatially specific firing patterns in the hippocampus and the related neural circuits during the path integration and map-based navigation support such a notion that in essence, path integration is the same allocentric space perception provided with only idiothetic inputs. Taken together, the hippocampus plays a general mnemonic role in spatial navigation.
Collapse
Affiliation(s)
- Wenjun Jin
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China.
| | - Han Qin
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Kuan Zhang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| |
Collapse
|
46
|
Alexander AS, Robinson JC, Dannenberg H, Kinsky NR, Levy SJ, Mau W, Chapman GW, Sullivan DW, Hasselmo ME. Neurophysiological coding of space and time in the hippocampus, entorhinal cortex, and retrosplenial cortex. Brain Neurosci Adv 2020; 4:2398212820972871. [PMID: 33294626 PMCID: PMC7708714 DOI: 10.1177/2398212820972871] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/21/2020] [Indexed: 11/18/2022] Open
Abstract
Neurophysiological recordings in behaving rodents demonstrate neuronal response properties that may code space and time for episodic memory and goal-directed behaviour. Here, we review recordings from hippocampus, entorhinal cortex, and retrosplenial cortex to address the problem of how neurons encode multiple overlapping spatiotemporal trajectories and disambiguate these for accurate memory-guided behaviour. The solution could involve neurons in the entorhinal cortex and hippocampus that show mixed selectivity, coding both time and location. Some grid cells and place cells that code space also respond selectively as time cells, allowing differentiation of time intervals when a rat runs in the same location during a delay period. Cells in these regions also develop new representations that differentially code the context of prior or future behaviour allowing disambiguation of overlapping trajectories. Spiking activity is also modulated by running speed and head direction, supporting the coding of episodic memory not as a series of snapshots but as a trajectory that can also be distinguished on the basis of speed and direction. Recent data also address the mechanisms by which sensory input could distinguish different spatial locations. Changes in firing rate reflect running speed on long but not short time intervals, and few cells code movement direction, arguing against path integration for coding location. Instead, new evidence for neural coding of environmental boundaries in egocentric coordinates fits with a modelling framework in which egocentric coding of barriers combined with head direction generates distinct allocentric coding of location. The egocentric input can be used both for coding the location of spatiotemporal trajectories and for retrieving specific viewpoints of the environment. Overall, these different patterns of neural activity can be used for encoding and disambiguation of prior episodic spatiotemporal trajectories or for planning of future goal-directed spatiotemporal trajectories.
Collapse
Affiliation(s)
| | | | | | | | - Samuel J. Levy
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - William Mau
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | | | | | | |
Collapse
|
47
|
Vandrey B, Garden DLF, Ambrozova V, McClure C, Nolan MF, Ainge JA. Fan Cells in Layer 2 of the Lateral Entorhinal Cortex Are Critical for Episodic-like Memory. Curr Biol 2019; 30:169-175.e5. [PMID: 31839450 PMCID: PMC6947484 DOI: 10.1016/j.cub.2019.11.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/11/2019] [Accepted: 11/07/2019] [Indexed: 11/28/2022]
Abstract
Episodic memory requires different types of information to be bound together to generate representations of experiences. The lateral entorhinal cortex (LEC) and hippocampus are required for episodic-like memory in rodents [1, 2]. The LEC is critical for integrating spatial and contextual information about objects [2, 3, 4, 5, 6]. Further, LEC neurons encode objects in the environment and the locations where objects were previously experienced and generate representations of time during the encoding and retrieval of episodes [7, 8, 9, 10, 11, 12]. However, it remains unclear how specific populations of cells within the LEC contribute to the integration of episodic memory components. Layer 2 (L2) of LEC manifests early pathology in Alzheimer’s disease (AD) and related animal models [13, 14, 15, 16]. Projections to the hippocampus from L2 of LEC arise from fan cells in a superficial sub-layer (L2a) that are immunoreactive for reelin and project to the dentate gyrus [17, 18]. Here, we establish an approach for selectively targeting fan cells using Sim1:Cre mice. Whereas complete lesions of the LEC were previously found to abolish associative recognition memory [2, 3], we report that, after selective suppression of synaptic output from fan cells, mice can discriminate novel object-context configurations but are impaired in recognition of novel object-place-context associations. Our results suggest that memory functions are segregated between distinct LEC networks. Sim1:Cre mice provide access to DG-projecting fan cells in lateral entorhinal cortex Fan cells are not required for novel object or object-context recognition Fan cells are required to discriminate novel object-place-context configurations Episodic-like memory impairment is correlated with extent of fan-cell inactivation
Collapse
Affiliation(s)
- Brianna Vandrey
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh EH8 9XE, Scotland; School of Psychology & Neuroscience, University of St. Andrews, St. Mary's Quad, South Street, St. Andrews KY16 9JP, Scotland
| | - Derek L F Garden
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh EH8 9XE, Scotland
| | - Veronika Ambrozova
- School of Psychology & Neuroscience, University of St. Andrews, St. Mary's Quad, South Street, St. Andrews KY16 9JP, Scotland
| | - Christina McClure
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh EH8 9XE, Scotland
| | - Matthew F Nolan
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh EH8 9XE, Scotland.
| | - James A Ainge
- School of Psychology & Neuroscience, University of St. Andrews, St. Mary's Quad, South Street, St. Andrews KY16 9JP, Scotland.
| |
Collapse
|
48
|
Harvey RE, Berkowitz LE, Hamilton DA, Clark BJ. The effects of developmental alcohol exposure on the neurobiology of spatial processing. Neurosci Biobehav Rev 2019; 107:775-794. [PMID: 31526818 PMCID: PMC6876993 DOI: 10.1016/j.neubiorev.2019.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/02/2019] [Accepted: 09/11/2019] [Indexed: 01/20/2023]
Abstract
The consumption of alcohol during gestation is detrimental to the developing central nervous system. One functional outcome of this exposure is impaired spatial processing, defined as sensing and integrating information pertaining to spatial navigation and spatial memory. The hippocampus, entorhinal cortex, and anterior thalamus are brain regions implicated in spatial processing and are highly susceptible to the effects of developmental alcohol exposure. Some of the observed effects of alcohol on spatial processing may be attributed to changes at the synaptic to circuit level. In this review, we first describe the impact of developmental alcohol exposure on spatial behavior followed by a summary of the development of brain areas involved in spatial processing. We then provide an examination of the consequences of prenatal and early postnatal alcohol exposure in rodents on hippocampal, anterior thalamus, and entorhinal cortex-dependent spatial processing from the cellular to behavioral level. We conclude by highlighting several unanswered questions which may provide a framework for future investigation.
Collapse
Affiliation(s)
- Ryan E Harvey
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Laura E Berkowitz
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Derek A Hamilton
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
49
|
Doan TP, Lagartos-Donate MJ, Nilssen ES, Ohara S, Witter MP. Convergent Projections from Perirhinal and Postrhinal Cortices Suggest a Multisensory Nature of Lateral, but Not Medial, Entorhinal Cortex. Cell Rep 2019; 29:617-627.e7. [DOI: 10.1016/j.celrep.2019.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/06/2019] [Accepted: 08/30/2019] [Indexed: 10/25/2022] Open
|
50
|
Poulter S, Austen JM, Kosaki Y, Dachtler J, Lever C, McGregor A. En route to delineating hippocampal roles in spatial learning. Behav Brain Res 2019; 369:111936. [DOI: 10.1016/j.bbr.2019.111936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 11/30/2022]
|