1
|
Susanto TT, Hung V, Levine AG, Chen Y, Kerr CH, Yoo Y, Oses-Prieto JA, Fromm L, Zhang Z, Lantz TC, Fujii K, Wernig M, Burlingame AL, Ruggero D, Barna M. RAPIDASH: Tag-free enrichment of ribosome-associated proteins reveals composition dynamics in embryonic tissue, cancer cells, and macrophages. Mol Cell 2024; 84:3545-3563.e25. [PMID: 39260367 PMCID: PMC11460945 DOI: 10.1016/j.molcel.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/25/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
Ribosomes are emerging as direct regulators of gene expression, with ribosome-associated proteins (RAPs) allowing ribosomes to modulate translation. Nevertheless, a lack of technologies to enrich RAPs across sample types has prevented systematic analysis of RAP identities, dynamics, and functions. We have developed a label-free methodology called RAPIDASH to enrich ribosomes and RAPs from any sample. We applied RAPIDASH to mouse embryonic tissues and identified hundreds of potential RAPs, including Dhx30 and Llph, two forebrain RAPs important for neurodevelopment. We identified a critical role of LLPH in neural development linked to the translation of genes with long coding sequences. In addition, we showed that RAPIDASH can identify ribosome changes in cancer cells. Finally, we characterized ribosome composition remodeling during immune cell activation and observed extensive changes post-stimulation. RAPIDASH has therefore enabled the discovery of RAPs in multiple cell types, tissues, and stimuli and is adaptable to characterize ribosome remodeling in several contexts.
Collapse
Affiliation(s)
- Teodorus Theo Susanto
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Victoria Hung
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew G Levine
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Yuxiang Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Craig H Kerr
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yongjin Yoo
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lisa Fromm
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Zijian Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Travis C Lantz
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kotaro Fujii
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Davide Ruggero
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| | - Maria Barna
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
A transducible nuclear/nucleolar protein, mLLP, regulates neuronal morphogenesis and synaptic transmission. Sci Rep 2016; 6:22892. [PMID: 26961175 PMCID: PMC4790632 DOI: 10.1038/srep22892] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/23/2016] [Indexed: 12/03/2022] Open
Abstract
Cell-permeable proteins are emerging as unconventional regulators of signal transduction and providing a potential for therapeutic applications. However, only a few of them are identified and studied in detail. We identify a novel cell-permeable protein, mouse LLP homolog (mLLP), and uncover its roles in regulating neural development. We found that mLLP is strongly expressed in developing nervous system and that mLLP knockdown or overexpression during maturation of cultured neurons affected the neuronal growth and synaptic transmission. Interestingly, extracellular addition of mLLP protein enhanced dendritic arborization, demonstrating the non-cell-autonomous effect of mLLP. Moreover, mLLP interacts with CCCTC-binding factor (CTCF) as well as transcriptional machineries and modulates gene expression involved in neuronal growth. Together, these results illustrate the characteristics and roles of previously unknown cell-permeable protein mLLP in modulating neural development.
Collapse
|
3
|
Lee YS. Genes and signaling pathways involved in memory enhancement in mutant mice. Mol Brain 2014; 7:43. [PMID: 24894914 PMCID: PMC4050447 DOI: 10.1186/1756-6606-7-43] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/27/2014] [Indexed: 11/10/2022] Open
Abstract
Mutant mice have been used successfully as a tool for investigating the mechanisms of memory at multiple levels, from genes to behavior. In most cases, manipulating a gene expressed in the brain impairs cognitive functions such as memory and their underlying cellular mechanisms, including synaptic plasticity. However, a remarkable number of mutations have been shown to enhance memory in mice. Understanding how to improve a system provides valuable insights into how the system works under normal conditions, because this involves understanding what the crucial components are. Therefore, more can be learned about the basic mechanisms of memory by studying mutant mice with enhanced memory. This review will summarize the genes and signaling pathways that are altered in the mutants with enhanced memory, as well as their roles in synaptic plasticity. Finally, I will discuss how knowledge of memory-enhancing mechanisms could be used to develop treatments for cognitive disorders associated with impaired plasticity.
Collapse
Affiliation(s)
- Yong-Seok Lee
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul 156-756, Republic of Korea.
| |
Collapse
|
4
|
Cyriac A, Holmes G, Lass J, Belchenko D, Calin-Jageman RJ, Calin-Jageman IE. An Aplysia Egr homolog is rapidly and persistently regulated by long-term sensitization training. Neurobiol Learn Mem 2013; 102:43-51. [PMID: 23567107 DOI: 10.1016/j.nlm.2013.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/21/2013] [Accepted: 03/24/2013] [Indexed: 02/03/2023]
Abstract
The Egr family of transcription factors plays a key role in long-term plasticity and memory in a number of vertebrate species. Here we identify and characterize ApEgr (GenBank: KC608221), an Egr homolog in the marine mollusk Aplysia californica. ApEgr codes for a predicted 593-amino acid protein with the highly conserved trio of zinc-fingered domains in the C-terminus that characterizes the Egr family of transcription factors. Promoter analysis shows that the ApEgr protein selectively recognizes the GSG motif recognized by vertebrate Egrs. Like mammalian Egrs, ApEgr is constitutively expressed in a range of tissues, including the CNS. Moreover, expression of ApEgr is bi-directionally regulated by changes in neural activity. Of most interest, the association between ApEgr function and memory may be conserved in Aplysia, as we observe rapid and long-lasting up-regulation of expression after long-term sensitization training. Taken together, our results suggest that Egrs may have memory functions that are conserved from mammals to mollusks.
Collapse
Affiliation(s)
- Ashly Cyriac
- Neuroscience Program, Dominican University, 7900 West Division Street, River Forest, IL 60305, United States
| | | | | | | | | | | |
Collapse
|
5
|
AU-rich element-binding protein negatively regulates CCAAT enhancer-binding protein mRNA stability during long-term synaptic plasticity in Aplysia. Proc Natl Acad Sci U S A 2012; 109:15520-5. [PMID: 22949683 DOI: 10.1073/pnas.1116224109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The consolidation of long-term memory for sensitization and synaptic facilitation in Aplysia requires synthesis of new mRNA including the immediate early gene Aplysia CCAAT enhancer-binding protein (ApC/EBP). After the rapid induction of ApC/EBP expression in response to repeated treatments of 5-hydroxytryptamine (5-HT), ApC/EBP mRNA is temporarily expressed in sensory neurons of sensory-to-motor synapses. However, the molecular mechanism underlying the rapid degradation of ApC/EBP transcript is not known. Here, we cloned an AU-rich element (ARE)-binding protein, ApAUF1, which functions as a destabilizing factor for ApC/EBP mRNA. ApAUF1 was found to bind to the 3' UTR of ApC/EBP mRNA that contains AREs and subsequently reduces the expression of ApC/EBP 3' UTR-containing reporter genes. Moreover, overexpression of ApAUF1 inhibited the induction of ApC/EBP mRNA in sensory neurons and also impaired long-term facilitation of sensory-to-motor synapses by repetitive 5-HT treatments. These results provide evidence for a critical role of the posttranscriptional modification of ApC/EBP mRNA during the consolidation of synaptic plasticity.
Collapse
|
6
|
Sun Y, Monje FJ, Pollak DD, Lubec G. A first partial Aplysia californica proteome. Amino Acids 2010; 41:955-68. [PMID: 21069399 DOI: 10.1007/s00726-010-0795-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 10/20/2010] [Indexed: 11/28/2022]
Abstract
Aplysia proteins have not been studied systematically and it was therefore the aim of the study to carry out protein profiling in ganglia from Aplysia californica (AC). AC ganglia were extirpated, proteins extracted and run on 2DE with subsequent in-gel digestion, followed by identification of proteins by nano-LC-ESI-MS/MS on an ion trap. Proteins were identified based upon a public Aplysia EST database. Out of 408 picked spots, 276 spots were identified corresponding to 172 ESTs and 118 individual proteins. The range of sequence coverage was between 14 and 80% and the average amount of peptides used for the identification of proteins was 9 (from 3 to 24). Mean score for protein identification was 516. Comparison of protein levels between cerebral, pleural, pedal and abdominal ganglia revealed a series of significant differences including: signaling, metabolism, cytoskeleton and structural, redox, chaperone, replication/transcription and electron/proton transport proteins. The generation of a protein map complements transcriptional studies carried out in AC ganglia. The findings provide the basis for investigation into post-translational modifications, splice variants and assist in the generation of antibodies against AC proteins. Moreover, differences in protein expression between ganglia may be valuable for the design of future studies in neurobiology of AC.
Collapse
Affiliation(s)
- Yanwei Sun
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | | | | | | |
Collapse
|
7
|
Paik JC, Wang B, Liu K, Lue JK, Lin WC. Regulation of E2F1-induced apoptosis by the nucleolar protein RRP1B. J Biol Chem 2009; 285:6348-63. [PMID: 20040599 DOI: 10.1074/jbc.m109.072074] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Regulation of the E2F family of transcription factors is important in control of cellular proliferation; dysregulation of the E2Fs is a hallmark of many cancers. One member of the E2F family, E2F1, also has the paradoxical ability to induce apoptosis; however, the mechanisms underlying this selectivity are not fully understood. We now identify a nucleolar protein, RRP1B, as an E2F1-specific transcriptional target. We characterize the RRP1B promoter and demonstrate its selective response to E2F1. Consistent with the activation of E2F1 activity upon DNA damage, RRP1B is induced by several DNA-damaging agents. Importantly, RRP1B is required for the expression of certain E2F1 proapoptotic target genes and the induction of apoptosis by DNA-damaging agents. This activity is mediated in part by complex formation between RRP1B and E2F1 on selective E2F1 target gene promoters. Interaction between RRP1B and E2F1 can be found inside the nucleolus and diffuse nucleoplasmic punctates. Thus, E2F1 makes use of its transcriptional target RRP1B to activate other genes directly involved in apoptosis. Our data also suggest an underappreciated role for nucleolar proteins in transcriptional regulation.
Collapse
Affiliation(s)
- Jason C Paik
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | |
Collapse
|
8
|
Identification of a serotonin receptor coupled to adenylyl cyclase involved in learning-related heterosynaptic facilitation in Aplysia. Proc Natl Acad Sci U S A 2009; 106:14634-9. [PMID: 19706550 DOI: 10.1073/pnas.0907502106] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Serotonin (5-HT) plays a critical role in modulating synaptic plasticity in the marine mollusc Aplysia and in the mammalian nervous system. In Aplysia sensory neurons, 5-HT can activate several signal cascades, including PKA and PKC, presumably via distinct types of G protein-coupled receptors. However, the molecular identities of these receptors have not yet been identified. We here report the cloning and functional characterization of a 5-HT receptor that is positively coupled to adenylyl cyclase in Aplysia neurons. The cloned receptor, 5-HT(apAC1), stimulates the production of cAMP in HEK293T cells and in Xenopus oocytes. Moreover, the knockdown of 5-HT(apAC1) expression by RNA interference blocked 5-HT-induced cAMP production in Aplysia sensory neurons and blocked synaptic facilitation in nondepressed or partially depressed sensory-to-motor neuron synapses. These data implicate 5-HT(apAC1) as a major modulator of learning related synaptic facilitation in the direct sensory to motor neuron pathway of the gill withdrawal reflex.
Collapse
|
9
|
Lee N, Rim Y, Kaang B. Effects of protease treatment and animal behavior on the dissociative culture ofaplysianeurons. Anim Cells Syst (Seoul) 2009. [DOI: 10.1080/19768354.2009.9647218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
10
|
Watanabe S, Kirino Y, Gelperin A. Neural and molecular mechanisms of microcognition in Limax. Learn Mem 2008; 15:633-42. [DOI: 10.1101/lm920908] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Lee YS, Bailey CH, Kandel ER, Kaang BK. Transcriptional regulation of long-term memory in the marine snail Aplysia. Mol Brain 2008; 1:3. [PMID: 18803855 PMCID: PMC2546398 DOI: 10.1186/1756-6606-1-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 06/17/2008] [Indexed: 12/05/2022] Open
Abstract
Whereas the induction of short-term memory involves only covalent modifications of constitutively expressed preexisting proteins, the formation of long-term memory requires gene expression, new RNA, and new protein synthesis. On the cellular level, transcriptional regulation is thought to be the starting point for a series of molecular steps necessary for both the initiation and maintenance of long-term synaptic facilitation (LTF). The core molecular features of transcriptional regulation involved in the long-term process are evolutionally conserved in Aplysia, Drosophila, and mouse, and indicate that gene regulation by the cyclic AMP response element binding protein (CREB) acting in conjunction with different combinations of transcriptional factors is critical for the expression of many forms of long-term memory. In the marine snail Aplysia, the molecular mechanisms that underlie the storage of long-term memory have been extensively studied in the monosynaptic connections between identified sensory neuron and motor neurons of the gill-withdrawal reflex. One tail shock or one pulse of serotonin (5-HT), a modulatory transmitter released by tail shocks, produces a transient facilitation mediated by the cAMP-dependent protein kinase leading to covalent modifications in the sensory neurons that results in an enhancement of transmitter release and a strengthening of synaptic connections lasting minutes. By contrast, repeated pulses of 5-hydroxytryptamine (5-HT) induce a transcription- and translation-dependent long-term facilitation (LTF) lasting more than 24 h and trigger the activation of a family of transcription factors in the presynaptic sensory neurons including ApCREB1, ApCREB2 and ApC/EBP. In addition, we have recently identified novel transcription factors that modulate the expression of ApC/EBP and also are critically involved in LTF. In this review, we examine the roles of these transcription factors during consolidation of LTF induced by different stimulation paradigms.
Collapse
Affiliation(s)
- Yong-Seok Lee
- National Creative Research Initiative Center for Memory, Department of Biological Sciences, Seoul National University, Korea
| | | | | | | |
Collapse
|
12
|
Matsuo R, Misawa K, Ito E. Genomic structure of nitric oxide synthase in the terrestrial slug is highly conserved. Gene 2008; 415:74-81. [DOI: 10.1016/j.gene.2008.02.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 12/05/2007] [Accepted: 02/26/2008] [Indexed: 01/10/2023]
|
13
|
Liu J, Song J. A novel nucleolar transcriptional activator ApLLP for long-term memory formation is intrinsically unstructured but functionally active. Biochem Biophys Res Commun 2007; 366:585-91. [PMID: 18078811 DOI: 10.1016/j.bbrc.2007.12.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2007] [Accepted: 12/04/2007] [Indexed: 11/20/2022]
Abstract
A novel Aplysia nucleolar protein ApLLP has been recently characterized to be a transcriptional activator that binds to the cAMP-response element (CRE) and thus induces ApC/EBP expression required for establishing long-term memory. So far, no structural information is available for both ApLLP and its homologs. Here, we expressed the entire ApLLP and its two dissected fragments, followed by structural and binding studies using CD and NMR spectroscopy. The study leads to two interesting findings: (1) all three ApLLP proteins are highly disordered, owning no predominant secondary and tertiary structures; (2) ApLLP is capable of binding the CRE DNA element but this induces no significant change in its secondary and tertiary structures. Intriguingly, it appears that the DNA-binding residues are mainly located on the C-half of the ApLLP molecule. Taken together, our results define ApLLP as an intrinsically unstructured protein and may bear important implications in understanding the molecular mechanism underlying ApLLP functions.
Collapse
Affiliation(s)
- Jingxian Liu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| | | |
Collapse
|
14
|
Lee SH, Lim CS, Park H, Lee JA, Han JH, Kim H, Cheang YH, Lee SH, Lee YS, Ko HG, Jang DH, Kim H, Miniaci MC, Bartsch D, Kim E, Bailey CH, Kandel ER, Kaang BK. Nuclear translocation of CAM-associated protein activates transcription for long-term facilitation in Aplysia. Cell 2007; 129:801-12. [PMID: 17512412 DOI: 10.1016/j.cell.2007.03.041] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2005] [Revised: 06/20/2006] [Accepted: 03/05/2007] [Indexed: 11/25/2022]
Abstract
Repeated pulses of serotonin (5-HT) induce long-term facilitation (LTF) of the synapses between sensory and motor neurons of the gill-withdrawal reflex in Aplysia. To explore how apCAM downregulation at the plasma membrane and CREB-mediated transcription in the nucleus, both of which are required for the formation of LTF, might relate to each other, we cloned an apCAM-associated protein (CAMAP) by yeast two-hybrid screening. We found that 5-HT signaling at the synapse activates PKA which in turn phosphorylates CAMAP to induce the dissociation of CAMAP from apCAM and the subsequent translocation of CAMAP into the nucleus of sensory neurons. In the nucleus, CAMAP acts as a transcriptional coactivator for CREB1 and is essential for the activation of ApC/EBP required for the initiation of LTF. Combined, our data suggest that CAMAP is a retrograde signaling component that translocates from activated synapses to the nucleus during synapse-specific LTF.
Collapse
Affiliation(s)
- Seung-Hee Lee
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, RIO, College of Natural Sciences, Seoul National University, San 56-1 Silim-dong Gwanak-gu, Seoul 151-747, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lee JA, Lee SH, Lee C, Chang DJ, Lee Y, Kim H, Cheang YH, Ko HG, Lee YS, Jun H, Bartsch D, Kandel ER, Kaang BK. PKA-activated ApAF-ApC/EBP heterodimer is a key downstream effector of ApCREB and is necessary and sufficient for the consolidation of long-term facilitation. ACTA ACUST UNITED AC 2006; 174:827-38. [PMID: 16966424 PMCID: PMC2064337 DOI: 10.1083/jcb.200512066] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long-term memory requires transcriptional regulation by a combination of positive and negative transcription factors. Aplysia activating factor (ApAF) is known to be a positive transcription factor that forms heterodimers with ApC/EBP and ApCREB2. How these heterodimers are regulated and how they participate in the consolidation of long-term facilitation (LTF) has not, however, been characterized. We found that the functional activation of ApAF required phosphorylation of ApAF by PKA on Ser-266. In addition, ApAF lowered the threshold of LTF by forming a heterodimer with ApCREB2. Moreover, once activated by PKA, the ApAF-ApC/EBP heterodimer transactivates enhancer response element-containing genes and can induce LTF in the absence of CRE- and CREB-mediated gene expression. Collectively, these results suggest that PKA-activated ApAF-ApC/EBP heterodimer is a core downstream effector of ApCREB in the consolidation of LTF.
Collapse
Affiliation(s)
- Jin-A Lee
- Institute of Molecular Biology and Genetics, RIO, Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Eckel-Mahan KL, Storm DR. Rookie snail protein LAPS veteran C/EBP: net transcriptional proceeds for long-term facilitation. Neuron 2006; 49:645-6. [PMID: 16504938 DOI: 10.1016/j.neuron.2006.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Long-term changes in synaptic plasticity require new protein synthesis. This preview discusses data from Kim et al. (this issues of Neuron) that demonstrate the requirement of a novel, nucleolar protein, LLP (LAPS18-like protein), for the formation of long-term facilitation in Aplysia. LLP binds to and transcriptionally activates C/EBP, thereby promoting the formation of long-term facilitation and behavioral sensitization.
Collapse
Affiliation(s)
- Kristin L Eckel-Mahan
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|