1
|
Li Z, Lyu C, Xu C, Hu Y, Luginbuhl DJ, Lehovic AB, Priest JM, Özkan E, Luo L. Repulsive interactions instruct synaptic partner matching in an olfactory circuit. RESEARCH SQUARE 2025:rs.3.rs-6099208. [PMID: 40162214 PMCID: PMC11952656 DOI: 10.21203/rs.3.rs-6099208/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Neurons exhibit extraordinary precision in selecting synaptic partners. Whereas cell-surface proteins (CSPs) mediating attractive interactions between developing axons and dendrites have been shown to instruct synaptic partner matching1,2, it is less clear the degree to which repulsive interactions play a role. Here, using a genetic screen guided by single cell transcriptomes3,4, we identified three CSP pairs-Toll2-Ptp10D, Fili-Kek1, and Hbs/Sns-Kirre-in mediating repulsive interactions between non-partner olfactory receptor neuron (ORN) axons and projection neuron (PN) dendrites in the developing Drosophila olfactory circuit. Each CSP pair exhibits inverse expression patterns in the select PN-ORN partners. Loss of each CSP in ORNs led to similar synaptic partner matching deficits as the loss of its partner CSP in PNs, and mistargeting phenotypes caused by overexpressing one CSP could be suppressed by loss of its partner CSP. Each CSP pair is also differentially expressed in other brain regions. Together, our data reveal that multiple repulsive CSP pairs work together to ensure precise synaptic partner matching during development by preventing neurons from forming connections with non-cognate partners.
Collapse
Affiliation(s)
- Zhuoran Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
- These authors contributed equally
| | - Cheng Lyu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- These authors contributed equally
| | - Chuanyun Xu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Ying Hu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - David J. Luginbuhl
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Asaf B. Lehovic
- Department of Biochemistry and Molecular Biology, The Neuroscience Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Jessica M. Priest
- Department of Biochemistry and Molecular Biology, The Neuroscience Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, The Neuroscience Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Li Z, Lyu C, Xu C, Hu Y, Luginbuhl DJ, Caspi-Lebovic AB, Priest JM, Özkan E, Luo L. Repulsive interactions instruct synaptic partner matching in an olfactory circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.01.640985. [PMID: 40060423 PMCID: PMC11888401 DOI: 10.1101/2025.03.01.640985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Neurons exhibit extraordinary precision in selecting synaptic partners. Whereas cell-surface proteins (CSPs) mediating attractive interactions between developing axons and dendrites have been shown to instruct synaptic partner matching1,2, it is less clear the degree to which repulsive interactions play a role. Here, using a genetic screen guided by single cell transcriptomes3,4, we identified three CSP pairs-Toll2-Ptp10D, Fili-Kek1, and Hbs/Sns-Kirre-in mediating repulsive interactions between non-partner olfactory receptor neuron (ORN) axons and projection neuron (PN) dendrites in the developing Drosophila olfactory circuit. Each CSP pair exhibits inverse expression patterns in the select PN-ORN partners. Loss of each CSP in ORNs led to similar synaptic partner matching deficits as the loss of its partner CSP in PNs, and mistargeting phenotypes caused by overexpressing one CSP could be suppressed by loss of its partner CSP. Each CSP pair is also differentially expressed in other brain regions. Together, our data reveal that multiple repulsive CSP pairs work together to ensure precise synaptic partner matching during development by preventing neurons from forming connections with non-cognate partners.
Collapse
Affiliation(s)
- Zhuoran Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
- These authors contributed equally
| | - Cheng Lyu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- These authors contributed equally
| | - Chuanyun Xu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Ying Hu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - David J. Luginbuhl
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Asaf B. Caspi-Lebovic
- Department of Biochemistry and Molecular Biology, The Neuroscience Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Jessica M. Priest
- Department of Biochemistry and Molecular Biology, The Neuroscience Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, The Neuroscience Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Jing J, Hu M, Ngodup T, Ma Q, Lau SNN, Ljungberg MC, McGinley MJ, Trussell LO, Jiang X. Molecular logic for cellular specializations that initiate the auditory parallel processing pathways. Nat Commun 2025; 16:489. [PMID: 39788966 PMCID: PMC11717940 DOI: 10.1038/s41467-024-55257-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
The cochlear nuclear complex (CN), the starting point for all central auditory processing, encompasses a suite of neuronal cell types highly specialized for neural coding of acoustic signals. However, the molecular logic governing these specializations remains unknown. By combining single-nucleus RNA sequencing and Patch-seq analysis, we reveal a set of transcriptionally distinct cell populations encompassing all previously observed types and discover multiple hitherto unknown subtypes with anatomical and physiological identity. The resulting comprehensive cell-type taxonomy reconciles anatomical position, morphological, physiological, and molecular criteria, enabling the determination of the molecular basis of the specialized cellular phenotypes in the CN. In particular, CN cell-type identity is encoded in a transcriptional architecture that orchestrates functionally congruent expression across a small set of gene families to customize projection patterns, input-output synaptic communication, and biophysical features required for encoding distinct aspects of acoustic signals. This high-resolution account of cellular heterogeneity from the molecular to the circuit level reveals the molecular logic driving cellular specializations, thus enabling the genetic dissection of auditory processing and hearing disorders with a high specificity.
Collapse
Affiliation(s)
- Junzhan Jing
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Ming Hu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Tenzin Ngodup
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR, USA
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-HNS, University of Washington, Seattle, WA, USA
| | - Qianqian Ma
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shu-Ning Natalie Lau
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - M Cecilia Ljungberg
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Matthew J McGinley
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| | - Laurence O Trussell
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR, USA.
| | - Xiaolong Jiang
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
4
|
Thornton-Kolbe EM, Ahmed M, Gordon FR, Sieriebriennikov B, Williams DL, Kurmangaliyev YZ, Clowney EJ. Spatial constraints and cell surface molecule depletion structure a randomly connected learning circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603956. [PMID: 39071296 PMCID: PMC11275898 DOI: 10.1101/2024.07.17.603956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The brain can represent almost limitless objects to "categorize an unlabeled world" (Edelman, 1989). This feat is supported by expansion layer circuit architectures, in which neurons carrying information about discrete sensory channels make combinatorial connections onto much larger postsynaptic populations. Combinatorial connections in expansion layers are modeled as randomized sets. The extent to which randomized wiring exists in vivo is debated, and how combinatorial connectivity patterns are generated during development is not understood. Non-deterministic wiring algorithms could program such connectivity using minimal genomic information. Here, we investigate anatomic and transcriptional patterns and perturb partner availability to ask how Kenyon cells, the expansion layer neurons of the insect mushroom body, obtain combinatorial input from olfactory projection neurons. Olfactory projection neurons form their presynaptic outputs in an orderly, predictable, and biased fashion. We find that Kenyon cells accept spatially co-located but molecularly heterogeneous inputs from this orderly map, and ask how Kenyon cell surface molecule expression impacts partner choice. Cell surface immunoglobulins are broadly depleted in Kenyon cells, and we propose that this allows them to form connections with molecularly heterogeneous partners. This model can explain how developmentally identical neurons acquire diverse wiring identities.
Collapse
Affiliation(s)
- Emma M. Thornton-Kolbe
- Neurosciences Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maria Ahmed
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Finley R. Gordon
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | | - Donnell L. Williams
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | | - E. Josephine Clowney
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Bustillo ME, Douthit J, Astigarraga S, Treisman JE. Two distinct mechanisms of Plexin A function in Drosophila optic lobe lamination and morphogenesis. Development 2024; 151:dev202237. [PMID: 38738602 PMCID: PMC11190435 DOI: 10.1242/dev.202237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 04/28/2024] [Indexed: 05/14/2024]
Abstract
Visual circuit development is characterized by subdivision of neuropils into layers that house distinct sets of synaptic connections. We find that, in the Drosophila medulla, this layered organization depends on the axon guidance regulator Plexin A. In Plexin A null mutants, synaptic layers of the medulla neuropil and arborizations of individual neurons are wider and less distinct than in controls. Analysis of semaphorin function indicates that Semaphorin 1a, acting in a subset of medulla neurons, is the primary partner for Plexin A in medulla lamination. Removal of the cytoplasmic domain of endogenous Plexin A has little effect on the formation of medulla layers; however, both null and cytoplasmic domain deletion mutations of Plexin A result in an altered overall shape of the medulla neuropil. These data suggest that Plexin A acts as a receptor to mediate morphogenesis of the medulla neuropil, and as a ligand for Semaphorin 1a to subdivide it into layers. Its two independent functions illustrate how a few guidance molecules can organize complex brain structures by each playing multiple roles.
Collapse
Affiliation(s)
- Maria E. Bustillo
- Department of Cell Biology, New York University Grossman School of Medicine, 435 E. 30th Street, New York, NY 10016, USA
| | - Jessica Douthit
- Department of Cell Biology, New York University Grossman School of Medicine, 435 E. 30th Street, New York, NY 10016, USA
| | - Sergio Astigarraga
- Department of Cell Biology, New York University Grossman School of Medicine, 435 E. 30th Street, New York, NY 10016, USA
| | - Jessica E. Treisman
- Department of Cell Biology, New York University Grossman School of Medicine, 435 E. 30th Street, New York, NY 10016, USA
| |
Collapse
|
6
|
Bustillo ME, Douthit J, Astigarraga S, Treisman JE. Two distinct mechanisms of Plexin A function in Drosophila optic lobe lamination and morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.552282. [PMID: 37609142 PMCID: PMC10441316 DOI: 10.1101/2023.08.07.552282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Visual circuit development is characterized by subdivision of neuropils into layers that house distinct sets of synaptic connections. We find that in the Drosophila medulla, this layered organization depends on the axon guidance regulator Plexin A. In plexin A null mutants, synaptic layers of the medulla neuropil and arborizations of individual neurons are wider and less distinct than in controls. Analysis of Semaphorin function indicates that Semaphorin 1a, provided by cells that include Tm5 neurons, is the primary partner for Plexin A in medulla lamination. Removal of the cytoplasmic domain of endogenous Plexin A does not disrupt the formation of medulla layers; however, both null and cytoplasmic domain deletion mutations of plexin A result in an altered overall shape of the medulla neuropil. These data suggest that Plexin A acts as a receptor to mediate morphogenesis of the medulla neuropil, and as a ligand for Semaphorin 1a to subdivide it into layers. Its two independent functions illustrate how a few guidance molecules can organize complex brain structures by each playing multiple roles. Summary statement The axon guidance molecule Plexin A has two functions in Drosophila medulla development; morphogenesis of the neuropil requires its cytoplasmic domain, but establishing synaptic layers through Semaphorin 1a does not.
Collapse
|
7
|
Cortés E, Pak JS, Özkan E. Structure and evolution of neuronal wiring receptors and ligands. Dev Dyn 2023; 252:27-60. [PMID: 35727136 PMCID: PMC10084454 DOI: 10.1002/dvdy.512] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/04/2023] Open
Abstract
One of the fundamental properties of a neuronal circuit is the map of its connections. The cellular and developmental processes that allow for the growth of axons and dendrites, selection of synaptic targets, and formation of functional synapses use neuronal surface receptors and their interactions with other surface receptors, secreted ligands, and matrix molecules. Spatiotemporal regulation of the expression of these receptors and cues allows for specificity in the developmental pathways that wire stereotyped circuits. The families of molecules controlling axon guidance and synapse formation are generally conserved across animals, with some important exceptions, which have consequences for neuronal connectivity. Here, we summarize the distribution of such molecules across multiple taxa, with a focus on model organisms, evolutionary processes that led to the multitude of such molecules, and functional consequences for the diversification or loss of these receptors.
Collapse
Affiliation(s)
- Elena Cortés
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Joseph S Pak
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
8
|
Özel MN, Gibbs CS, Holguera I, Soliman M, Bonneau R, Desplan C. Coordinated control of neuronal differentiation and wiring by sustained transcription factors. Science 2022; 378:eadd1884. [PMID: 36480601 DOI: 10.1126/science.add1884] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The large diversity of cell types in nervous systems presents a challenge in identifying the genetic mechanisms that encode it. Here, we report that nearly 200 distinct neurons in the Drosophila visual system can each be defined by unique combinations of on average 10 continuously expressed transcription factors. We show that targeted modifications of this terminal selector code induce predictable conversions of neuronal fates that appear morphologically and transcriptionally complete. Cis-regulatory analysis of open chromatin links one of these genes to an upstream patterning factor that specifies neuronal fates in stem cells. Experimentally validated network models describe the synergistic regulation of downstream effectors by terminal selectors and ecdysone signaling during brain wiring. Our results provide a generalizable framework of how specific fates are implemented in postmitotic neurons.
Collapse
Affiliation(s)
| | - Claudia Skok Gibbs
- Flatiron Institute, Center for Computational Biology, Simons Foundation, New York, NY 10010, USA.,Center for Data Science, New York University, New York, NY 10003, USA
| | - Isabel Holguera
- Department of Biology, New York University, New York, NY 10003, USA
| | - Mennah Soliman
- Department of Biology, New York University, New York, NY 10003, USA
| | - Richard Bonneau
- Department of Biology, New York University, New York, NY 10003, USA.,Flatiron Institute, Center for Computational Biology, Simons Foundation, New York, NY 10010, USA.,Center for Data Science, New York University, New York, NY 10003, USA
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA.,New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| |
Collapse
|
9
|
Lobb-Rabe M, DeLong K, Salazar RJ, Zhang R, Wang Y, Carrillo RA. Dpr10 and Nocte are required for Drosophila motor axon pathfinding. Neural Dev 2022; 17:10. [PMID: 36271407 PMCID: PMC9585758 DOI: 10.1186/s13064-022-00165-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
The paths axons travel to reach their targets and the subsequent synaptic connections they form are highly stereotyped. How cell surface proteins (CSPs) mediate these processes is not completely understood. The Drosophila neuromuscular junction (NMJ) is an ideal system to study how pathfinding and target specificity are accomplished, as the axon trajectories and innervation patterns are known and easily visualized. Dpr10 is a CSP required for synaptic partner choice in the neuromuscular and visual circuits and for axon pathfinding in olfactory neuron organization. In this study, we show that Dpr10 is also required for motor axon pathfinding. To uncover how Dpr10 mediates this process, we used immunoprecipitation followed by mass spectrometry to identify Dpr10 associated proteins. One of these, Nocte, is an unstructured, intracellular protein implicated in circadian rhythm entrainment. We mapped nocte expression in larvae and found it widely expressed in neurons, muscles, and glia. Cell-specific knockdown suggests nocte is required presynaptically to mediate motor axon pathfinding. Additionally, we found that nocte and dpr10 genetically interact to control NMJ assembly, suggesting that they function in the same molecular pathway. Overall, these data reveal novel roles for Dpr10 and its newly identified interactor, Nocte, in motor axon pathfinding and provide insight into how CSPs regulate circuit assembly.
Collapse
Affiliation(s)
- Meike Lobb-Rabe
- Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
- Program in Cell and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Katherine DeLong
- Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
| | - Rio J Salazar
- Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
- Program in Cell and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Ruiling Zhang
- Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Yupu Wang
- Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Robert A Carrillo
- Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, IL, 60637, USA.
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA.
- Program in Cell and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
10
|
Duhart JC, Mosca TJ. Genetic regulation of central synapse formation and organization in Drosophila melanogaster. Genetics 2022; 221:6597078. [PMID: 35652253 DOI: 10.1093/genetics/iyac078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/29/2022] [Indexed: 01/04/2023] Open
Abstract
A goal of modern neuroscience involves understanding how connections in the brain form and function. Such a knowledge is essential to inform how defects in the exquisite complexity of nervous system growth influence neurological disease. Studies of the nervous system in the fruit fly Drosophila melanogaster enabled the discovery of a wealth of molecular and genetic mechanisms underlying development of synapses-the specialized cell-to-cell connections that comprise the essential substrate for information flow and processing in the nervous system. For years, the major driver of knowledge was the neuromuscular junction due to its ease of examination. Analogous studies in the central nervous system lagged due to a lack of genetic accessibility of specific neuron classes, synaptic labels compatible with cell-type-specific access, and high resolution, quantitative imaging strategies. However, understanding how central synapses form remains a prerequisite to understanding brain development. In the last decade, a host of new tools and techniques extended genetic studies of synapse organization into central circuits to enhance our understanding of synapse formation, organization, and maturation. In this review, we consider the current state-of-the-field. We first discuss the tools, technologies, and strategies developed to visualize and quantify synapses in vivo in genetically identifiable neurons of the Drosophila central nervous system. Second, we explore how these tools enabled a clearer understanding of synaptic development and organization in the fly brain and the underlying molecular mechanisms of synapse formation. These studies establish the fly as a powerful in vivo genetic model that offers novel insights into neural development.
Collapse
Affiliation(s)
- Juan Carlos Duhart
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Timothy J Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
11
|
Palu RAS, Owings KG, Garces JG, Nicol A. A natural genetic variation screen identifies insulin signaling, neuronal communication, and innate immunity as modifiers of hyperglycemia in the absence of Sirt1. G3 (BETHESDA, MD.) 2022; 12:jkac090. [PMID: 35435227 PMCID: PMC9157059 DOI: 10.1093/g3journal/jkac090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022]
Abstract
Variation in the onset, progression, and severity of symptoms associated with metabolic disorders such as diabetes impairs the diagnosis and treatment of at-risk patients. Diabetes symptoms, and patient variation in these symptoms, are attributed to a combination of genetic and environmental factors, but identifying the genes and pathways that modify diabetes in humans has proven difficult. A greater understanding of genetic modifiers and the ways in which they interact with metabolic pathways could improve the ability to predict a patient's risk for severe symptoms, as well as enhance the development of individualized therapeutic approaches. In this study, we use the Drosophila Genetic Reference Panel to identify genetic variation influencing hyperglycemia associated with loss of Sirt1 function. Through analysis of individual candidate functions, physical interaction networks, and gene set enrichment analysis, we identify not only modifiers involved in canonical glucose metabolism and insulin signaling, but also genes important for neuronal signaling and the innate immune response. Furthermore, reducing the expression of several of these candidates suppressed hyperglycemia, making them potential candidate therapeutic targets. These analyses showcase the diverse processes contributing to glucose homeostasis and open up several avenues of future investigation.
Collapse
Affiliation(s)
- Rebecca A S Palu
- Department of Biological Sciences, Purdue University-Fort Wayne, Fort Wayne, IN 46818, USA
| | - Katie G Owings
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - John G Garces
- Department of Biological Sciences, Purdue University-Fort Wayne, Fort Wayne, IN 46818, USA
| | - Audrey Nicol
- Department of Biological Sciences, Purdue University-Fort Wayne, Fort Wayne, IN 46818, USA
| |
Collapse
|
12
|
Wang Y, Lobb-Rabe M, Ashley J, Chatterjee P, Anand V, Bellen HJ, Kanca O, Carrillo RA. Systematic expression profiling of Dpr and DIP genes reveals cell surface codes in Drosophila larval motor and sensory neurons. Development 2022; 149:dev200355. [PMID: 35502740 PMCID: PMC9188756 DOI: 10.1242/dev.200355] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/20/2022] [Indexed: 07/26/2023]
Abstract
In complex nervous systems, neurons must identify their correct partners to form synaptic connections. The prevailing model to ensure correct recognition posits that cell-surface proteins (CSPs) in individual neurons act as identification tags. Thus, knowing what cells express which CSPs would provide insights into neural development, synaptic connectivity, and nervous system evolution. Here, we investigated expression of Dpr and DIP genes, two CSP subfamilies belonging to the immunoglobulin superfamily, in Drosophila larval motor neurons (MNs), muscles, glia and sensory neurons (SNs) using a collection of GAL4 driver lines. We found that Dpr genes are more broadly expressed than DIP genes in MNs and SNs, and each examined neuron expresses a unique combination of Dpr and DIP genes. Interestingly, many Dpr and DIP genes are not robustly expressed, but are found instead in gradient and temporal expression patterns. In addition, the unique expression patterns of Dpr and DIP genes revealed three uncharacterized MNs. This study sets the stage for exploring the functions of Dpr and DIP genes in Drosophila MNs and SNs and provides genetic access to subsets of neurons.
Collapse
Affiliation(s)
- Yupu Wang
- Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, IL 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60637, USA
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Meike Lobb-Rabe
- Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, IL 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60637, USA
- Program in Cell and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - James Ashley
- Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, IL 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60637, USA
| | - Purujit Chatterjee
- Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, IL 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60637, USA
| | - Veera Anand
- Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, IL 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60637, USA
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics and Jan and Dan Duncan Neurobiological Research Institute, Baylor College of Medicine (BCM), Houston, TX 77030, USA
- Department of Neuroscience and Howard Hughes Medical Institute, Baylor College of Medicine (BCM), Houston, TX 77030, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics and Jan and Dan Duncan Neurobiological Research Institute, Baylor College of Medicine (BCM), Houston, TX 77030, USA
| | - Robert A. Carrillo
- Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, IL 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60637, USA
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
- Program in Cell and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
13
|
Shields EJ, Sorida M, Sheng L, Sieriebriennikov B, Ding L, Bonasio R. Genome annotation with long RNA reads reveals new patterns of gene expression and improves single-cell analyses in an ant brain. BMC Biol 2021; 19:254. [PMID: 34838024 PMCID: PMC8626913 DOI: 10.1186/s12915-021-01188-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/10/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Functional genomic analyses rely on high-quality genome assemblies and annotations. Highly contiguous genome assemblies have become available for a variety of species, but accurate and complete annotation of gene models, inclusive of alternative splice isoforms and transcription start and termination sites, remains difficult with traditional approaches. RESULTS Here, we utilized full-length isoform sequencing (Iso-Seq), a long-read RNA sequencing technology, to obtain a comprehensive annotation of the transcriptome of the ant Harpegnathos saltator. The improved genome annotations include additional splice isoforms and extended 3' untranslated regions for more than 4000 genes. Reanalysis of RNA-seq experiments using these annotations revealed several genes with caste-specific differential expression and tissue- or caste-specific splicing patterns that were missed in previous analyses. The extended 3' untranslated regions afforded great improvements in the analysis of existing single-cell RNA-seq data, resulting in the recovery of the transcriptomes of 18% more cells. The deeper single-cell transcriptomes obtained with these new annotations allowed us to identify additional markers for several cell types in the ant brain, as well as genes differentially expressed across castes in specific cell types. CONCLUSIONS Our results demonstrate that Iso-Seq is an efficient and effective approach to improve genome annotations and maximize the amount of information that can be obtained from existing and future genomic datasets in Harpegnathos and other organisms.
Collapse
Affiliation(s)
- Emily J Shields
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Urology and Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Masato Sorida
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Lihong Sheng
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Bogdan Sieriebriennikov
- Department of Biology, New York University, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Long Ding
- Department of Biology, New York University, New York, NY, USA
| | - Roberto Bonasio
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Herrera SC, Sainz de la Maza D, Grmai L, Margolis S, Plessel R, Burel M, O'Connor M, Amoyel M, Bach EA. Proliferative stem cells maintain quiescence of their niche by secreting the Activin inhibitor Follistatin. Dev Cell 2021; 56:2284-2294.e6. [PMID: 34363758 PMCID: PMC8387025 DOI: 10.1016/j.devcel.2021.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/14/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022]
Abstract
Aging causes stem cell dysfunction as a result of extrinsic and intrinsic changes. Decreased function of the stem cell niche is an important contributor to this dysfunction. We use the Drosophila testis to investigate what factors maintain niche cells. The testis niche comprises quiescent “hub” cells and supports two mitotic stem cell pools: germline stem cells and somatic cyst stem cells (CySCs). We identify the cell-cycle-responsive Dp/E2f1 transcription factor as a crucial non-autonomous regulator required in CySCs to maintain hub cell quiescence. Dp/E2f1 inhibits local Activin ligands through production of the Activin antagonist Follistatin (Fs). Inactivation of Dp/E2f1 or Fs in CySCs or promoting Activin receptor signaling in hub cells causes transdifferentiation of hub cells into fully functional CySCs. This Activin-dependent communication between CySCs and hub regulates the physiological decay of the niche with age and demonstrates that hub cell quiescence results from signals from surrounding stem cells. Dp/E2f1 is required in stem cells to non-autonomously maintain niche quiescence Dp/E2f1 promotes niche quiescence through Fs, an Activin antagonist Activin signaling in niche cells causes transdifferentiation into functional stem cells Fs in stem cells regulates the physiological decay of the niche with age
Collapse
Affiliation(s)
- Salvador C Herrera
- Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain
| | - Diego Sainz de la Maza
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Lydia Grmai
- Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Shally Margolis
- Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Rebecca Plessel
- Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Michael Burel
- Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Michael O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marc Amoyel
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Erika A Bach
- Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
15
|
Drosophila Fezf functions as a transcriptional repressor to direct layer-specific synaptic connectivity in the fly visual system. Proc Natl Acad Sci U S A 2021; 118:2025530118. [PMID: 33766917 PMCID: PMC8020669 DOI: 10.1073/pnas.2025530118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Functionally relevant neuronal connections are often organized within discrete layers of neuropil to ensure proper connectivity and information processing. While layer-specific assembly of neuronal connectivity is a dynamic process involving stepwise interactions between different neuron types, the mechanisms underlying this critical developmental process are not well understood. Here, we investigate the role of the transcription factor dFezf in layer selection within the Drosophila visual system, which is important for synaptic specificity. Our findings show that dFezf functions as a transcriptional repressor governing the precise temporal expression pattern of downstream genes, including other transcription factors required for proper connectivity. Layer-specific assembly of neuronal connectivity in the fly visual system is thus orchestrated by precise, temporally controlled transcriptional cascades. The layered compartmentalization of synaptic connections, a common feature of nervous systems, underlies proper connectivity between neurons and enables parallel processing of neural information. However, the stepwise development of layered neuronal connections is not well understood. The medulla neuropil of the Drosophila visual system, which comprises 10 discrete layers (M1 to M10), where neural computations underlying distinct visual features are processed, serves as a model system for understanding layered synaptic connectivity. The first step in establishing layer-specific connectivity in the outer medulla (M1 to M6) is the innervation by lamina (L) neurons of one of two broad, primordial domains that will subsequently expand and transform into discrete layers. We previously found that the transcription factor dFezf cell-autonomously directs L3 lamina neurons to their proper primordial broad domain before they form synapses within the developing M3 layer. Here, we show that dFezf controls L3 broad domain selection through temporally precise transcriptional repression of the transcription factor slp1 (sloppy paired 1). In wild-type L3 neurons, slp1 is transiently expressed at a low level during broad domain selection. When dFezf is deleted, slp1 expression is up-regulated, and ablation of slp1 fully rescues the defect of broad domain selection in dFezf-null L3 neurons. Although the early, transient expression of slp1 is expendable for broad domain selection, it is surprisingly necessary for the subsequent L3 innervation of the M3 layer. DFezf thus functions as a transcriptional repressor to coordinate the temporal dynamics of a transcriptional cascade that orchestrates sequential steps of layer-specific synapse formation.
Collapse
|
16
|
Heckman EL, Doe CQ. Establishment and Maintenance of Neural Circuit Architecture. J Neurosci 2021; 41:1119-1129. [PMID: 33568445 PMCID: PMC7888231 DOI: 10.1523/jneurosci.1143-20.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/29/2020] [Accepted: 12/09/2020] [Indexed: 02/03/2023] Open
Abstract
The ability to sense the world, process information, and navigate the environment depends on the assembly and continuous function of neural circuits in the brain. Within the past two decades, new technologies have rapidly advanced our understanding of how neural circuits are wired during development and how they are stably maintained, often for years. Electron microscopy reconstructions of model organism connectomes have provided a map of the stereotyped (and variable) connections in the brain; advanced light microscopy techniques have enabled direct observation of the cellular dynamics that underlie circuit construction and maintenance; transcriptomic and proteomic surveys of both developing and mature neurons have provided insights into the molecular and genetic programs governing circuit establishment and maintenance; and advanced genetic techniques have allowed for high-throughput discovery of wiring regulators. These tools have empowered scientists to rapidly generate and test hypotheses about how circuits establish and maintain connectivity. Thus, the set of principles governing circuit formation and maintenance have been expanded. These principles are discussed in this review.
Collapse
Affiliation(s)
- Emily L Heckman
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, Oregon 97403
| | - Chris Q Doe
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
17
|
McLaughlin CN, Brbić M, Xie Q, Li T, Horns F, Kolluru SS, Kebschull JM, Vacek D, Xie A, Li J, Jones RC, Leskovec J, Quake SR, Luo L, Li H. Single-cell transcriptomes of developing and adult olfactory receptor neurons in Drosophila. eLife 2021; 10:e63856. [PMID: 33555999 PMCID: PMC7870146 DOI: 10.7554/elife.63856] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Recognition of environmental cues is essential for the survival of all organisms. Transcriptional changes occur to enable the generation and function of the neural circuits underlying sensory perception. To gain insight into these changes, we generated single-cell transcriptomes of Drosophila olfactory- (ORNs), thermo-, and hygro-sensory neurons at an early developmental and adult stage using single-cell and single-nucleus RNA sequencing. We discovered that ORNs maintain expression of the same olfactory receptors across development. Using receptor expression and computational approaches, we matched transcriptomic clusters corresponding to anatomically and physiologically defined neuron types across multiple developmental stages. We found that cell-type-specific transcriptomes partly reflected axon trajectory choices in development and sensory modality in adults. We uncovered stage-specific genes that could regulate the wiring and sensory responses of distinct ORN types. Collectively, our data reveal transcriptomic features of sensory neuron biology and provide a resource for future studies of their development and physiology.
Collapse
Affiliation(s)
- Colleen N McLaughlin
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Maria Brbić
- Department of Computer Science, Stanford UniversityStanfordUnited States
| | - Qijing Xie
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
- Neurosciences Graduate Program, Stanford UniversityStanfordUnited States
| | - Tongchao Li
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Felix Horns
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Biophysics Graduate Program, Stanford UniversityStanfordUnited States
| | - Sai Saroja Kolluru
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Chan Zuckerberg BiohubStanfordUnited States
| | - Justus M Kebschull
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - David Vacek
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Anthony Xie
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Jiefu Li
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
- Biology Graduate Program, Stanford UniversityStanfordUnited States
| | - Robert C Jones
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Jure Leskovec
- Department of Computer Science, Stanford UniversityStanfordUnited States
| | - Stephen R Quake
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Chan Zuckerberg BiohubStanfordUnited States
- Department of Applied Physics, Stanford UniversityStanfordUnited States
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Hongjie Li
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| |
Collapse
|
18
|
Quiquand M, Rimesso G, Qiao N, Suo S, Zhao C, Slattery M, White KP, Han JJ, Baker NE. New regulators of Drosophila eye development identified from temporal transcriptome changes. Genetics 2021; 217:6117222. [PMID: 33681970 DOI: 10.1093/genetics/iyab007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 12/28/2020] [Indexed: 11/12/2022] Open
Abstract
In the last larval instar, uncommitted progenitor cells in the Drosophila eye primordium start to adopt individual retinal cell fates, arrest their growth and proliferation, and initiate terminal differentiation into photoreceptor neurons and other retinal cell types. To explore the regulation of these processes, we have performed mRNA-Seq studies of the larval eye and antennal primordial at multiple developmental stages. A total of 10,893 fly genes were expressed during these stages and could be adaptively clustered into gene groups, some of whose expression increases or decreases in parallel with the cessation of proliferation and onset of differentiation. Using in situ hybridization of a sample of 98 genes to verify spatial and temporal expression patterns, we estimate that 534 genes or more are transcriptionally upregulated during retinal differentiation, and 1367 or more downregulated as progenitor cells differentiate. Each group of co-expressed genes is enriched for regulatory motifs recognized by co-expressed transcription factors, suggesting that they represent coherent transcriptional regulatory programs. Using available mutant strains, we describe novel roles for the transcription factors SoxNeuro (SoxN), H6-like homeobox (Hmx), CG10253, without children (woc), Structure specific recognition protein (Ssrp), and multisex combs (mxc).
Collapse
Affiliation(s)
- Manon Quiquand
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gerard Rimesso
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Nan Qiao
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shengbao Suo
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chunyu Zhao
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Matthew Slattery
- Institute for Genomics & Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Kevin P White
- Institute for Genomics & Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jackie J Han
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
19
|
DeAngelis MW, Coolon JD, Johnson RI. Comparative transcriptome analyses of the Drosophila pupal eye. G3-GENES GENOMES GENETICS 2021; 11:5995320. [PMID: 33561221 PMCID: PMC8043229 DOI: 10.1093/g3journal/jkaa003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/08/2020] [Indexed: 12/04/2022]
Abstract
Tissue function is dependent on correct cellular organization and behavior. As a result, the identification and study of genes that contribute to tissue morphogenesis is of paramount importance to the fields of cell and developmental biology. Many of the genes required for tissue patterning and organization are highly conserved between phyla. This has led to the emergence of several model organisms and developmental systems that are used to study tissue morphogenesis. One such model is the Drosophila melanogaster pupal eye that has a highly stereotyped arrangement of cells. In addition, the pupal eye is postmitotic that allows for the study of tissue morphogenesis independent from any effects of proliferation. While the changes in cell morphology and organization that occur throughout pupal eye development are well documented, less is known about the corresponding transcriptional changes that choreograph these processes. To identify these transcriptional changes, we dissected wild-type Canton S pupal eyes and performed RNA-sequencing. Our analyses identified differential expression of many loci that are documented regulators of pupal eye morphogenesis and contribute to multiple biological processes including signaling, axon projection, adhesion, and cell survival. We also identified differential expression of genes not previously implicated in pupal eye morphogenesis such as components of the Toll pathway, several non-classical cadherins, and components of the muscle sarcomere, which could suggest these loci function as novel patterning factors.
Collapse
Affiliation(s)
- Miles W DeAngelis
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| | - Joseph D Coolon
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| | - Ruth I Johnson
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| |
Collapse
|
20
|
Xie Q, Brbic M, Horns F, Kolluru SS, Jones RC, Li J, Reddy AR, Xie A, Kohani S, Li Z, McLaughlin CN, Li T, Xu C, Vacek D, Luginbuhl DJ, Leskovec J, Quake SR, Luo L, Li H. Temporal evolution of single-cell transcriptomes of Drosophila olfactory projection neurons. eLife 2021; 10:e63450. [PMID: 33427646 PMCID: PMC7870145 DOI: 10.7554/elife.63450] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/05/2021] [Indexed: 12/18/2022] Open
Abstract
Neurons undergo substantial morphological and functional changes during development to form precise synaptic connections and acquire specific physiological properties. What are the underlying transcriptomic bases? Here, we obtained the single-cell transcriptomes of Drosophila olfactory projection neurons (PNs) at four developmental stages. We decoded the identity of 21 transcriptomic clusters corresponding to 20 PN types and developed methods to match transcriptomic clusters representing the same PN type across development. We discovered that PN transcriptomes reflect unique biological processes unfolding at each stage-neurite growth and pruning during metamorphosis at an early pupal stage; peaked transcriptomic diversity during olfactory circuit assembly at mid-pupal stages; and neuronal signaling in adults. At early developmental stages, PN types with adjacent birth order share similar transcriptomes. Together, our work reveals principles of cellular diversity during brain development and provides a resource for future studies of neural development in PNs and other neuronal types.
Collapse
Affiliation(s)
- Qijing Xie
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
- Neurosciences Graduate Program, Stanford UniversityStanfordUnited States
| | - Maria Brbic
- Department of Computer Science, Stanford UniversityStanfordUnited States
| | - Felix Horns
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Biophysics Graduate Program, Stanford UniversityStanfordUnited States
| | | | - Robert C Jones
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Jiefu Li
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Anay R Reddy
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Anthony Xie
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Sayeh Kohani
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Zhuoran Li
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Colleen N McLaughlin
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Tongchao Li
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Chuanyun Xu
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - David Vacek
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - David J Luginbuhl
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Jure Leskovec
- Department of Computer Science, Stanford UniversityStanfordUnited States
| | - Stephen R Quake
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Department of Applied Physics, Stanford UniversityStanfordUnited States
- Chan Zuckerberg BiohubStanfordUnited States
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Hongjie Li
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| |
Collapse
|
21
|
Araki T, Osaka J, Kato Y, Shimozono M, Kawamura H, Iwanaga R, Hakeda-Suzuki S, Suzuki T. Systematic identification of genes regulating synaptic remodeling in the Drosophila visual system. Genes Genet Syst 2020; 95:101-110. [PMID: 32493879 DOI: 10.1266/ggs.19-00066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In many animals, neural activity contributes to the adaptive refinement of synaptic properties, such as firing frequency and the number of synapses, for learning, memorizing and adapting for survival. However, the molecular mechanisms underlying such activity-dependent synaptic remodeling remain largely unknown. In the synapses of Drosophila melanogaster, the presynaptic active zone (AZ) forms a T-shaped presynaptic density comprising AZ proteins, including Bruchpilot (Brp). In a previous study, we found that the signal from a fusion protein molecular marker consisting of Brp and mCherry becomes diffuse under continuous light over three days (LL), reflecting disassembly of the AZ, while remaining punctate under continuous darkness. To identify the molecular players controlling this synaptic remodeling, we used the fusion protein molecular marker and performed RNAi screening against 208 neuron-related transmembrane genes that are highly expressed in the Drosophila visual system. Second analyses using the STaR (synaptic tagging with recombination) technique, which showed a decrease in synapse number under the LL condition, and subsequent mutant and overexpression analysis confirmed that five genes are involved in the activity-dependent AZ disassembly. This work demonstrates the feasibility of identifying genes involved in activity-dependent synaptic remodeling in Drosophila, and also provides unexpected insight into the molecular mechanisms involved in cholesterol metabolism and biosynthesis of the insect molting hormone ecdysone.
Collapse
Affiliation(s)
- Tomohiro Araki
- Graduate School of Life Science and Technology, Tokyo Institute of Technology
| | - Jiro Osaka
- Graduate School of Life Science and Technology, Tokyo Institute of Technology
| | - Yuya Kato
- Graduate School of Life Science and Technology, Tokyo Institute of Technology
| | - Mai Shimozono
- Graduate School of Life Science and Technology, Tokyo Institute of Technology
| | - Hinata Kawamura
- Graduate School of Life Science and Technology, Tokyo Institute of Technology
| | - Riku Iwanaga
- Graduate School of Life Science and Technology, Tokyo Institute of Technology
| | | | - Takashi Suzuki
- Graduate School of Life Science and Technology, Tokyo Institute of Technology
| |
Collapse
|
22
|
Rushton E, Kopke DL, Broadie K. Extracellular heparan sulfate proteoglycans and glycan-binding lectins orchestrate trans-synaptic signaling. J Cell Sci 2020; 133:133/15/jcs244186. [PMID: 32788209 DOI: 10.1242/jcs.244186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The exceedingly narrow synaptic cleft (<20 nm) and adjacent perisynaptic extracellular space contain an astonishing array of secreted and membrane-anchored glycoproteins. A number of these extracellular molecules regulate intercellular trans-synaptic signaling by binding to ligands, acting as co-receptors or modulating ligand-receptor interactions. Recent work has greatly expanded our understanding of extracellular proteoglycan and glycan-binding lectin families as key regulators of intercellular signaling at the synapse. These secreted proteins act to regulate the compartmentalization of glycoprotein ligands and receptors, crosslink dynamic extracellular and cell surface lattices, modulate both exocytosis and endocytosis vesicle cycling, and control postsynaptic receptor trafficking. Here, we focus closely on the Drosophila glutamatergic neuromuscular junction (NMJ) as a model synapse for understanding extracellular roles of the many heparan sulfate proteoglycan (HSPG) and lectin proteins that help determine synaptic architecture and neurotransmission strength. We particularly concentrate on the roles of extracellular HSPGs and lectins in controlling trans-synaptic signaling, especially that mediated by the Wnt and BMP pathways. These signaling mechanisms are causally linked to a wide spectrum of neurological disease states that impair coordinated movement and cognitive functions.
Collapse
Affiliation(s)
- Emma Rushton
- Department of Biological Sciences, Brain Institute, and Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Danielle L Kopke
- Department of Biological Sciences, Brain Institute, and Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Brain Institute, and Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
23
|
Sanes JR, Zipursky SL. Synaptic Specificity, Recognition Molecules, and Assembly of Neural Circuits. Cell 2020; 181:536-556. [DOI: 10.1016/j.cell.2020.04.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 01/02/2023]
|
24
|
Abstract
Convergent extension is a conserved mechanism for elongating tissues. In the Drosophila embryo, convergent extension is driven by planar polarized cell intercalation and is a paradigm for understanding the cellular, molecular, and biophysical mechanisms that establish tissue structure. Studies of convergent extension in Drosophila have provided key insights into the force-generating molecules that promote convergent extension in epithelial tissues, as well as the global systems of spatial information that systematically organize these cell behaviors. A general framework has emerged in which asymmetrically localized proteins involved in cytoskeletal tension and cell adhesion direct oriented cell movements, and spatial signals provided by the Toll, Tartan, and Teneurin receptor families break planar symmetry to establish and coordinate planar cell polarity throughout the tissue. In this chapter, we describe the cellular, molecular, and biophysical mechanisms that regulate cell intercalation in the Drosophila embryo, and discuss how research in this system has revealed conserved biological principles that control the organization of multicellular tissues and animal body plans.
Collapse
Affiliation(s)
- Adam C Paré
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States.
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, United States.
| |
Collapse
|
25
|
Bali N, Zinn K. Visualization of binding patterns for five Leucine-rich repeat proteins in the Drosophila embryo. MICROPUBLICATION BIOLOGY 2019; 2019. [PMID: 32550403 PMCID: PMC7252235 DOI: 10.17912/micropub.biology.000199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Namrata Bali
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
| | - Kai Zinn
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
| |
Collapse
|
26
|
Menon KP, Kulkarni V, Takemura SY, Anaya M, Zinn K. Interactions between Dpr11 and DIP-γ control selection of amacrine neurons in Drosophila color vision circuits. eLife 2019; 8:e48935. [PMID: 31692445 PMCID: PMC6879306 DOI: 10.7554/elife.48935] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022] Open
Abstract
Drosophila R7 UV photoreceptors (PRs) are divided into yellow (y) and pale (p) subtypes. yR7 PRs express the Dpr11 cell surface protein and are presynaptic to Dm8 amacrine neurons (yDm8) that express Dpr11's binding partner DIP-γ, while pR7 PRs synapse onto DIP-γ-negative pDm8. Dpr11 and DIP-γ expression patterns define 'yellow' and 'pale' color vision circuits. We examined Dm8 neurons in these circuits by electron microscopic reconstruction and expansion microscopy. DIP-γ and dpr11 mutations affect the morphologies of yDm8 distal ('home column') dendrites. yDm8 neurons are generated in excess during development and compete for presynaptic yR7 PRs, and interactions between Dpr11 and DIP-γ are required for yDm8 survival. These interactions also allow yDm8 neurons to select yR7 PRs as their appropriate home column partners. yDm8 and pDm8 neurons do not normally compete for survival signals or R7 partners, but can be forced to do so by manipulation of R7 subtype fate.
Collapse
Affiliation(s)
- Kaushiki P Menon
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
| | - Vivek Kulkarni
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
| | - Shin-ya Takemura
- Janelia Research CampusHoward Hughes Medical InstituteAshburnUnited States
| | - Michael Anaya
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
| | - Kai Zinn
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
| |
Collapse
|
27
|
Paré AC, Naik P, Shi J, Mirman Z, Palmquist KH, Zallen JA. An LRR Receptor-Teneurin System Directs Planar Polarity at Compartment Boundaries. Dev Cell 2019; 51:208-221.e6. [PMID: 31495696 DOI: 10.1016/j.devcel.2019.08.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/25/2019] [Accepted: 08/02/2019] [Indexed: 12/28/2022]
Abstract
Epithelial cells dynamically self-organize in response to extracellular spatial cues relayed by cell-surface receptors. During convergent extension in Drosophila, Toll-related receptors direct planar polarized cell rearrangements that elongate the head-to-tail axis. However, many cells establish polarity in the absence of Toll receptor activity, indicating the presence of additional spatial cues. Here we demonstrate that the leucine-rich-repeat receptor Tartan and the teneurin Ten-m provide critical polarity signals at epithelial compartment boundaries. The Tartan and Ten-m extracellular domains interact in vitro, and Tartan promotes Ten-m localization to compartment boundaries in vivo. We show that Tartan and Ten-m are necessary for the planar polarity and organization of compartment boundary cells. Moreover, ectopic stripes of Tartan and Ten-m are sufficient to induce myosin accumulation at stripe boundaries. These results demonstrate that the Tartan/Ten-m and Toll receptor systems together create a high-resolution network of spatial cues that guides cell behavior during convergent extension.
Collapse
Affiliation(s)
- Adam C Paré
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Pooja Naik
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Jay Shi
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Zachary Mirman
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Karl H Palmquist
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| |
Collapse
|
28
|
Abstract
The morphology of male genitalia evolves rapidly, probably driven by sexual selection. However, little is known about the genes underlying genitalia differences between species. Identifying these genes is key to understanding how sexual selection acts to produce rapid phenotypic change. We have found that the gene tartan underlies differences between male Drosophila mauritiana and Drosophila simulans in the size and bristle number of the claspers—genital projections that grasp the female during copulation. Moreover, since tartan encodes a protein that is involved in cell interactions, this may represent an alternative developmental mechanism for morphological change. Therefore, our study provides insights into the genetic and developmental bases for the rapid evolution of male genitalia and organ size more generally. Male genital structures are among the most rapidly evolving morphological traits and are often the only features that can distinguish closely related species. This process is thought to be driven by sexual selection and may reinforce species separation. However, while the genetic bases of many phenotypic differences have been identified, we still lack knowledge about the genes underlying evolutionary differences in male genital organs and organ size more generally. The claspers (surstyli) are periphallic structures that play an important role in copulation in insects. Here, we show that divergence in clasper size and bristle number between Drosophila mauritiana and Drosophila simulans is caused by evolutionary changes in tartan (trn), which encodes a transmembrane leucine-rich repeat domain protein that mediates cell–cell interactions and affinity. There are no fixed amino acid differences in trn between D. mauritiana and D. simulans, but differences in the expression of this gene in developing genitalia suggest that cis-regulatory changes in trn underlie the evolution of clasper morphology in these species. Finally, analyses of reciprocal hemizygotes that are genetically identical, except for the species from which the functional allele of trn originates, determined that the trn allele of D. mauritiana specifies larger claspers with more bristles than the allele of D. simulans. Therefore, we have identified a gene underlying evolutionary change in the size of a male genital organ, which will help to better understand not only the rapid diversification of these structures, but also the regulation and evolution of organ size more broadly.
Collapse
|
29
|
Williams-Simon PA, Posey C, Mitchell S, Ng'oma E, Mrkvicka JA, Zars T, King EG. Multiple genetic loci affect place learning and memory performance in Drosophila melanogaster. GENES, BRAIN, AND BEHAVIOR 2019; 18:e12581. [PMID: 31095869 PMCID: PMC6718298 DOI: 10.1111/gbb.12581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 12/25/2022]
Abstract
Learning and memory are critical functions for all animals, giving individuals the ability to respond to changes in their environment. Within populations, individuals vary, however the mechanisms underlying this variation in performance are largely unknown. Thus, it remains to be determined what genetic factors cause an individual to have high learning ability and what factors determine how well an individual will remember what they have learned. To genetically dissect learning and memory performance, we used the Drosophila synthetic population resource (DSPR), a multiparent mapping resource in the model system Drosophila melanogaster, consisting of a large set of recombinant inbred lines (RILs) that naturally vary in these and other traits. Fruit flies can be trained in a "heat box" to learn to remain on one side of a chamber (place learning) and can remember this (place memory) over short timescales. Using this paradigm, we measured place learning and memory for ~49 000 individual flies from over 700 DSPR RILs. We identified 16 different loci across the genome that significantly affect place learning and/or memory performance, with 5 of these loci affecting both traits. To identify transcriptomic differences associated with performance, we performed RNA-Seq on pooled samples of seven high performing and seven low performing RILs for both learning and memory and identified hundreds of genes with differences in expression in the two sets. Integrating our transcriptomic results with the mapping results allowed us to identify nine promising candidate genes, advancing our understanding of the genetic basis underlying natural variation in learning and memory performance.
Collapse
Affiliation(s)
| | - Christopher Posey
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| | - Samuel Mitchell
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| | - Enoch Ng'oma
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| | - James A Mrkvicka
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| | - Troy Zars
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| | - Elizabeth G King
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
30
|
Kim B. Evolutionarily conserved and divergent functions for cell adhesion molecules in neural circuit assembly. J Comp Neurol 2019; 527:2061-2068. [PMID: 30779135 DOI: 10.1002/cne.24666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 12/17/2022]
Abstract
The developing nervous system generates remarkably precise synaptic connections between neurons and their postsynaptic target cells. Numerous neural cell adhesion proteins have been identified to mediate cell recognition between synaptic partners in several model organisms. Here, I review the role of protein interactions of cell adhesion molecules in neural circuit assembly and address how these interactions are utilized to form different neural circuitries in different species. The emerging evidence suggests that the extracellular trans-interactions of cell adhesion proteins for neural wiring are evolutionarily conserved across taxa, but they are often used in different steps of circuit assembly. I also highlight how these conserved protein interactions work together as a group to specify neural connectivity.
Collapse
Affiliation(s)
- Byunghyuk Kim
- Department of Life Science, Dongguk University Seoul, Goyang, Republic of Korea
| |
Collapse
|
31
|
Shimozono M, Osaka J, Kato Y, Araki T, Kawamura H, Takechi H, Hakeda-Suzuki S, Suzuki T. Cell surface molecule, Klingon, mediates the refinement of synaptic specificity in the Drosophila visual system. Genes Cells 2019; 24:496-510. [PMID: 31124270 DOI: 10.1111/gtc.12703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/04/2019] [Accepted: 05/19/2019] [Indexed: 11/29/2022]
Abstract
In the Drosophila brain, neurons form genetically specified synaptic connections with defined neuronal targets. It is proposed that each central nervous system neuron expresses specific cell surface proteins, which act as identification tags. Through an RNAi screen of cell surface molecules in the Drosophila visual system, we found that the cell adhesion molecule Klingon (Klg) plays an important role in repressing the ectopic formation of extended axons, preventing the formation of excessive synapses. Cell-specific manipulation of klg showed that Klg is required in both photoreceptors and the glia, suggesting that the balanced homophilic interaction between photoreceptor axons and the glia is required for normal synapse formation. Previous studies suggested that Klg binds to cDIP and our genetic analyses indicate that cDIP is required in glia for ectopic synaptic repression. These data suggest that Klg play a critical role together with cDIP in refining synaptic specificity and preventing unnecessary connections in the brain.
Collapse
Affiliation(s)
- Mai Shimozono
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokahama, Kanagawa, Japan
| | - Jiro Osaka
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokahama, Kanagawa, Japan
| | - Yuya Kato
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokahama, Kanagawa, Japan
| | - Tomohiro Araki
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokahama, Kanagawa, Japan
| | - Hinata Kawamura
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokahama, Kanagawa, Japan
| | - Hiroki Takechi
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokahama, Kanagawa, Japan
| | - Satoko Hakeda-Suzuki
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokahama, Kanagawa, Japan
| | - Takashi Suzuki
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokahama, Kanagawa, Japan
| |
Collapse
|
32
|
Brennan JJ, Gilmore TD. Evolutionary Origins of Toll-like Receptor Signaling. Mol Biol Evol 2019; 35:1576-1587. [PMID: 29590394 DOI: 10.1093/molbev/msy050] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Toll-like receptors (TLRs) are transmembrane pattern recognition receptors that are best known for their roles in innate immunity for the detection of and defense against microbial pathogens. However, TLRs also have roles in many nonimmune processes, most notably development. TLRs direct both immune and developmental programs by activation of downstream signaling pathways, often by activation of the NF-κB pathway. There are two primary TLR subtypes: 1) TLRs with multiple cysteine clusters in their ectodomain (mccTLRs) and 2) TLRs with a single cysteine cluster in their ectodomain (sccTLRs). For some time, it has been known that TLRs and the biological processes that they control are conserved in organisms from insects to mammals. However, genome and transcriptome sequencing has revealed that many basal metazoans also have TLRs and downstream NF-κB signaling components. In this review, we discuss what is known about the structure, biological function, and downstream signaling pathways of TLRs found in phyla from Porifera through Annelida. From these analyses, we hypothesize that mccTLRs emerged in the phylum Cnidaria, that sccTLRs evolved in the phylum Mollusca, and that TLRs have dual immune and developmental biological functions in organisms as ancient as cnidarians.
Collapse
|
33
|
Schöneberg T, Prömel S. Latrophilins and Teneurins in Invertebrates: No Love for Each Other? Front Neurosci 2019; 13:154. [PMID: 30914910 PMCID: PMC6422961 DOI: 10.3389/fnins.2019.00154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/11/2019] [Indexed: 01/08/2023] Open
Abstract
Transsynaptic connections enabling cell–cell adhesion and cellular communication are a vital part of synapse formation, maintenance and function. A recently discovered interaction between the Adhesion GPCRs Latrophilins and the type II single transmembrane proteins Teneurins at mammalian synapses is vital for synapse formation and dendrite branching. While the understanding of the effects and the molecular interplay of this Latrophilin-Teneurin partnership is not entirely understood, its significance is highlighted by behavioral and neurological phenotypes in various animal models. As both groups of molecules, Latrophilins and Teneurins, are generally highly conserved, have overlapping expression and often similar functions across phyla, it can be speculated that this interaction, which has been proven essential in mammalian systems, also occurs in invertebrates to control shaping of synapses. Knowledge of the generality of this interaction is especially of interest due to its possible involvement in neuropathologies. Further, several invertebrates serve as model organisms for addressing various neurobiological research questions. So far, an interaction of Latrophilins and Teneurins has not been observed in invertebrates, but our knowledge on both groups of molecules is by far not complete. In this review, we give an overview on existing experimental evidence arguing for as well as against a potential Latrophilin-Teneurin interaction beyond mammals. By combining these insights with evolutionary aspects on each of the interaction partners we provide and discuss a comprehensive picture on the functions of both molecules in invertebrates and the likeliness of an evolutionary conservation of their interaction.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | - Simone Prömel
- Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, Leipzig, Germany
| |
Collapse
|
34
|
DePew AT, Aimino MA, Mosca TJ. The Tenets of Teneurin: Conserved Mechanisms Regulate Diverse Developmental Processes in the Drosophila Nervous System. Front Neurosci 2019; 13:27. [PMID: 30760977 PMCID: PMC6363694 DOI: 10.3389/fnins.2019.00027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/11/2019] [Indexed: 01/26/2023] Open
Abstract
To successfully integrate a neuron into a circuit, a myriad of developmental events must occur correctly and in the correct order. Neurons must be born and grow out toward a destination, responding to guidance cues to direct their path. Once arrived, each neuron must segregate to the correct sub-region before sorting through a milieu of incorrect partners to identify the correct partner with which they can connect. Finally, the neuron must make a synaptic connection with their correct partner; a connection that needs to be broadly maintained throughout the life of the animal while remaining responsive to modes of plasticity and pruning. Though many intricate molecular mechanisms have been discovered to regulate each step, recent work showed that a single family of proteins, the Teneurins, regulates a host of these developmental steps in Drosophila – an example of biological adaptive reuse. Teneurins first influence axon guidance during early development. Once neurons arrive in their target regions, Teneurins enable partner matching and synapse formation in both the central and peripheral nervous systems. Despite these diverse processes and systems, the Teneurins use conserved mechanisms to achieve these goals, as defined by three tenets: (1) transsynaptic interactions with each other, (2) membrane stabilization via an interaction with and regulation of the cytoskeleton, and (3) a role for presynaptic Ten-a in regulating synaptic function. These processes are further distinguished by (1) the nature of the transsynaptic interaction – homophilic interactions (between the same Teneurins) to engage partner matching and heterophilic interactions (between different Teneurins) to enable synaptic connectivity and the proper apposition of pre- and postsynaptic sites and (2) the location of cytoskeletal regulation (presynaptic cytoskeletal regulation in the CNS and postsynaptic regulation of the cytoskeleton at the NMJ). Thus, both the roles and the mechanisms governing them are conserved across processes and synapses. Here, we will highlight the contributions of Drosophila synaptic biology to our understanding of the Teneurins, discuss the mechanistic conservation that allows the Teneurins to achieve common neurodevelopmental goals, and present new data in support of these points. Finally, we will posit the next steps for understanding how this remarkably versatile family of proteins functions to control multiple distinct events in the creation of a nervous system.
Collapse
Affiliation(s)
- Alison T DePew
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| | - Michael A Aimino
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| | - Timothy J Mosca
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
35
|
A Gene Expression Screen in Drosophila melanogaster Identifies Novel JAK/STAT and EGFR Targets During Oogenesis. G3-GENES GENOMES GENETICS 2019; 9:47-60. [PMID: 30385460 PMCID: PMC6325903 DOI: 10.1534/g3.118.200786] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) and epidermal growth factor receptor (EGFR) signaling pathways are conserved regulators of tissue patterning, morphogenesis, and other cell biological processes. During Drosophila oogenesis, these pathways determine the fates of epithelial follicle cells (FCs). JAK/STAT and EGFR together specify a population of cells called the posterior follicle cells (PFCs), which signal to the oocyte to establish the embryonic axes. In this study, whole genome expression analysis was performed to identify genes activated by JAK/STAT and/or EGFR. We observed that 317 genes were transcriptionally upregulated in egg chambers with ectopic JAK/STAT and EGFR activity in the FCs. The list was enriched for genes encoding extracellular matrix (ECM) components and ECM-associated proteins. We tested 69 candidates for a role in axis establishment using RNAi knockdown in the FCs. We report that the signaling protein Semaphorin 1b becomes enriched in the PFCs in response to JAK/STAT and EGFR. We also identified ADAM metallopeptidase with thrombospondin type 1 motif A (AdamTS-A) as a novel target of JAK/STAT in the FCs that regulates egg chamber shape. AdamTS-A mRNA becomes enriched at the anterior and posterior poles of the egg chamber at stages 6 to 7 and is regulated by JAK/STAT. Altering AdamTS-A expression in the poles or middle of the egg chamber produces rounder egg chambers. We propose that AdamTS-A regulates egg shape by remodeling the basement membrane.
Collapse
|
36
|
Ashley J, Sorrentino V, Lobb-Rabe M, Nagarkar-Jaiswal S, Tan L, Xu S, Xiao Q, Zinn K, Carrillo RA. Transsynaptic interactions between IgSF proteins DIP-α and Dpr10 are required for motor neuron targeting specificity. eLife 2019; 8:42690. [PMID: 30714906 PMCID: PMC6391064 DOI: 10.7554/elife.42690] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/31/2019] [Indexed: 12/27/2022] Open
Abstract
The Drosophila larval neuromuscular system provides an ideal context in which to study synaptic partner choice, because it contains a small number of pre- and postsynaptic cells connected in an invariant pattern. The discovery of interactions between two subfamilies of IgSF cell surface proteins, the Dprs and the DIPs, provided new candidates for cellular labels controlling synaptic specificity. Here we show that DIP-α is expressed by two identified motor neurons, while its binding partner Dpr10 is expressed by postsynaptic muscle targets. Removal of either DIP-α or Dpr10 results in loss of specific axonal branches and NMJs formed by one motor neuron, MNISN-1s, while other branches of the MNISN-1s axon develop normally. The temporal and spatial expression pattern of dpr10 correlates with muscle innervation by MNISN-1s during embryonic development. We propose a model whereby DIP-α and Dpr10 on opposing synaptic partners interact with each other to generate proper motor neuron connectivity.
Collapse
Affiliation(s)
- James Ashley
- Department of Molecular Genetics and Cell BiologyUniversity of ChicagoChicagoUnited States
| | - Violet Sorrentino
- Department of Molecular Genetics and Cell BiologyUniversity of ChicagoChicagoUnited States
| | - Meike Lobb-Rabe
- Department of Molecular Genetics and Cell BiologyUniversity of ChicagoChicagoUnited States,Graduate Program in Cell and Molecular BiologyUniversity of ChicagoChicagoUnited States
| | - Sonal Nagarkar-Jaiswal
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUnited States
| | - Liming Tan
- Department of Biological ChemistryUniversity of California, Los AngelesLos AngelesUnited States
| | - Shuwa Xu
- Department of Biological ChemistryUniversity of California, Los AngelesLos AngelesUnited States
| | - Qi Xiao
- Department of Biological ChemistryUniversity of California, Los AngelesLos AngelesUnited States
| | - Kai Zinn
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
| | - Robert A Carrillo
- Department of Molecular Genetics and Cell BiologyUniversity of ChicagoChicagoUnited States,Graduate Program in Cell and Molecular BiologyUniversity of ChicagoChicagoUnited States
| |
Collapse
|
37
|
Pei J, Kinch LN, Grishin NV. FlyXCDB—A Resource for Drosophila Cell Surface and Secreted Proteins and Their Extracellular Domains. J Mol Biol 2018; 430:3353-3411. [DOI: 10.1016/j.jmb.2018.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/31/2018] [Accepted: 06/02/2018] [Indexed: 02/06/2023]
|
38
|
The Molecular and Genetic Characterization of Second Chromosome Balancers in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2018; 8:1161-1171. [PMID: 29420191 PMCID: PMC5873907 DOI: 10.1534/g3.118.200021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Balancer chromosomes are multiply inverted and rearranged chromosomes used in Drosophila melanogaster for many tasks, such as maintaining mutant alleles in stock and complex stock construction. Balancers were created before molecular characterization of their breakpoints was possible, so the precise locations of many of these breakpoints are unknown. Here, we report or confirm the positions of the 14 euchromatic breakpoints on the 2nd chromosome balancers SM1, SM5, CyO, and SM6a This total includes three breakpoints involved in a complex rearrangement on SM5 that is associated with the duplication of two genomic regions. Unbiased sequencing of several balancers allowed us to identify stocks with incorrectly identified balancers as well as single and double crossover events that had occurred between 2nd chromosome balancers and their homologs. The confirmed crossover events that we recovered were at least 2 Mb from the closest inversion breakpoint, consistent with observations from other balancer chromosomes. Balancer chromosomes differ from one another both by large tracts of sequence diversity generated by recombination and by small differences, such as single nucleotide polymorphisms (SNPs). Therefore, we also report loss-of-function mutations carried by these chromosomes and unique SNP and InDel polymorphisms present on only single balancers. These findings provide valuable information about the structure of commonly used 2nd chromosome balancers and extend recent work examining the structure of X and 3rd chromosome balancers. Finally, these observations provide new insights into how the sequences of individual balancers have diverged over time.
Collapse
|
39
|
Thapliyal S, Vasudevan A, Dong Y, Bai J, Koushika SP, Babu K. The C-terminal of CASY-1/Calsyntenin regulates GABAergic synaptic transmission at the Caenorhabditis elegans neuromuscular junction. PLoS Genet 2018. [PMID: 29529030 PMCID: PMC5864096 DOI: 10.1371/journal.pgen.1007263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The C. elegans ortholog of mammalian calsyntenins, CASY-1, is an evolutionarily conserved type-I transmembrane protein that is highly enriched in the nervous system. Mammalian calsyntenins are strongly expressed at inhibitory synapses, but their role in synapse development and function is still elusive. Here, we report a crucial role for CASY-1 in regulating GABAergic synaptic transmission at the C. elegans neuromuscular junction (NMJ). The shorter isoforms of CASY-1; CASY-1B and CASY-1C, express and function in GABA motor neurons where they regulate GABA neurotransmission. Using pharmacological, behavioral, electrophysiological, optogenetic and imaging approaches we establish that GABA release is compromised at the NMJ in casy-1 mutants. Further, we demonstrate that CASY-1 is required to modulate the transport of GABAergic synaptic vesicle (SV) precursors through a possible interaction with the SV motor protein, UNC-104/KIF1A. This study proposes a possible evolutionarily conserved model for the regulation of GABA synaptic functioning by calsyntenins. GABA acts as a major inhibitory neurotransmitter in both vertebrate and invertebrate nervous systems. Despite the potential deregulation of GABA signaling in several neurological disorders, our understanding of the genetic factors that regulate GABAergic synaptic transmission has just started to evolve. Here, we identify a role for a cell adhesion molecule, CASY-1, in regulating GABA signaling at the C. elegans NMJ. We show that the mutants in casy-1 have reduced number of GABA vesicles at the synapse resulting in less GABA release from the presynaptic GABAergic motor neurons. Further, we show that the shorter isoforms of the casy-1 gene; casy-1b and casy-1c that carry a potential kinesin-motor binding domain are responsible for maintaining GABAergic signaling at the synapse. We show a novel interaction of the CASY-1 isoforms with the C- terminal of the UNC-104/KIF1A motor protein that mediates the trafficking of GABAergic synaptic vesicle precursors to the synapse, thus maintaining normal inhibitory signaling at the NMJ.
Collapse
Affiliation(s)
- Shruti Thapliyal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli, Punjab, India
| | - Amruta Vasudevan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
| | - Yongming Dong
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 and Department of Biochemistry, University of Washington, Seattle, WA, United Sttaes of America
| | - Jihong Bai
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 and Department of Biochemistry, University of Washington, Seattle, WA, United Sttaes of America
| | - Sandhya P. Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
| | - Kavita Babu
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli, Punjab, India
- * E-mail: ,
| |
Collapse
|
40
|
Peng J, Santiago IJ, Ahn C, Gur B, Tsui CK, Su Z, Xu C, Karakhanyan A, Silies M, Pecot MY. Drosophila Fezf coordinates laminar-specific connectivity through cell-intrinsic and cell-extrinsic mechanisms. eLife 2018. [PMID: 29513217 PMCID: PMC5854465 DOI: 10.7554/elife.33962] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Laminar arrangement of neural connections is a fundamental feature of neural circuit organization. Identifying mechanisms that coordinate neural connections within correct layers is thus vital for understanding how neural circuits are assembled. In the medulla of the Drosophila visual system neurons form connections within ten parallel layers. The M3 layer receives input from two neuron types that sequentially innervate M3 during development. Here we show that M3-specific innervation by both neurons is coordinated by Drosophila Fezf (dFezf), a conserved transcription factor that is selectively expressed by the earlier targeting input neuron. In this cell, dFezf instructs layer specificity and activates the expression of a secreted molecule (Netrin) that regulates the layer specificity of the other input neuron. We propose that employment of transcriptional modules that cell-intrinsically target neurons to specific layers, and cell-extrinsically recruit other neurons is a general mechanism for building layered networks of neural connections.
Collapse
Affiliation(s)
- Jing Peng
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Ivan J Santiago
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Curie Ahn
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Burak Gur
- European Neuroscience Institute, Göttingen, Germany
| | - C Kimberly Tsui
- Department of Genetics, Stanford University, Stanford, United States
| | - Zhixiao Su
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Chundi Xu
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Aziz Karakhanyan
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | | | - Matthew Y Pecot
- Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
41
|
Wang Q, Wang Y, Yu F. Yif1 associates with Yip1 on Golgi and regulates dendrite pruning in sensory neurons during Drosophila metamorphosis. Development 2018; 145:dev.164475. [DOI: 10.1242/dev.164475] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/09/2018] [Indexed: 01/21/2023]
Abstract
Pruning that selectively removes unnecessary neurites without causing neuronal death is essential for sculpting the mature nervous system during development. In Drosophila, ddaC sensory neurons specifically prune their larval dendrites with intact axons during metamorphosis. However, it remains unknown about an important role of ER-to-Golgi transport in dendrite pruning. Here, in a clonal screen we identified Yif1, an uncharacterized Drosophila homologue of Yif1p that is known as a regulator of ER-to-Golgi transport in yeast. We show that Yif1 is required for dendrite pruning of ddaC neurons but not for apoptosis of ddaF neurons. We further identified the Yif1-binding partner Yip1 which is also crucial for dendrite pruning. Yif1 forms a protein complex with Yip1 in S2 cells and ddaC neurons. Yip1 and Yif1 colocalize on ER/Golgi and are required for the integrity of Golgi apparatus and outposts. Moreover, we show that two GTPases Rab1 and Sar1, known to regulate ER-to-Golgi transport, are essential for dendrite pruning of ddaC neurons. Finally, our data reveal that ER-to-Golgi transport promotes endocytosis and downregulation of cell adhesion molecule Neuroglian and thereby dendrite pruning.
Collapse
Affiliation(s)
- Qiwei Wang
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore 117604
| | - Yan Wang
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore 117604
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, Singapore 117456
| | - Fengwei Yu
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore 117604
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, Singapore 117456
- Neuroscience and Behavioral Disorder Program, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore 169857
| |
Collapse
|
42
|
Li H, Horns F, Wu B, Xie Q, Li J, Li T, Luginbuhl DJ, Quake SR, Luo L. Classifying Drosophila Olfactory Projection Neuron Subtypes by Single-Cell RNA Sequencing. Cell 2017; 171:1206-1220.e22. [PMID: 29149607 DOI: 10.1016/j.cell.2017.10.019] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/05/2017] [Accepted: 10/12/2017] [Indexed: 11/19/2022]
Abstract
The definition of neuronal type and how it relates to the transcriptome are open questions. Drosophila olfactory projection neurons (PNs) are among the best-characterized neuronal types: different PN classes target dendrites to distinct olfactory glomeruli, while PNs of the same class exhibit indistinguishable anatomical and physiological properties. Using single-cell RNA sequencing, we comprehensively characterized the transcriptomes of most PN classes and unequivocally mapped transcriptomes to specific olfactory function for six classes. Transcriptomes of closely related PN classes exhibit the largest differences during circuit assembly but become indistinguishable in adults, suggesting that neuronal subtype diversity peaks during development. Transcription factors and cell-surface molecules are the most differentially expressed genes between classes and are highly informative in encoding cell identity, enabling us to identify a new lineage-specific transcription factor that instructs PN dendrite targeting. These findings establish that neuronal transcriptomic identity corresponds with anatomical and physiological identity defined by connectivity and function.
Collapse
Affiliation(s)
- Hongjie Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Felix Horns
- Biophysics Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Bing Wu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Qijing Xie
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Jiefu Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Tongchao Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - David J Luginbuhl
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Stephen R Quake
- Departments of Bioengineering and Applied Physics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, Stanford, CA 94305, USA.
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
43
|
Richier B, Vijandi CDM, Mackensen S, Salecker I. Lapsyn controls branch extension and positioning of astrocyte-like glia in the Drosophila optic lobe. Nat Commun 2017; 8:317. [PMID: 28827667 PMCID: PMC5567088 DOI: 10.1038/s41467-017-00384-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 06/21/2017] [Indexed: 11/09/2022] Open
Abstract
Astrocytes have diverse, remarkably complex shapes in different brain regions. Their branches closely associate with neurons. Despite the importance of this heterogeneous glial cell type for brain development and function, the molecular cues controlling astrocyte branch morphogenesis and positioning during neural circuit assembly remain largely unknown. We found that in the Drosophila visual system, astrocyte-like medulla neuropil glia (mng) variants acquire stereotypic morphologies with columnar and layered branching patterns in a stepwise fashion from mid-metamorphosis onwards. Using knockdown and loss-of-function analyses, we uncovered a previously unrecognized role for the transmembrane leucine-rich repeat protein Lapsyn in regulating mng development. lapsyn is expressed in mng and cell-autonomously required for branch extension into the synaptic neuropil and anchoring of cell bodies at the neuropil border. Lapsyn works in concert with the fibroblast growth factor (FGF) pathway to promote branch morphogenesis, while correct positioning is essential for mng survival mediated by gliotrophic FGF signaling. How glial cells, such as astrocytes, acquire their characteristic morphology during development is poorly understood. Here the authors describe the morphogenesis of astrocyte-like glia in the Drosophila optic lobe, and through a RNAi screen, they identify a transmembrane LRR protein–Lapsyn–that plays a critical role in this process.
Collapse
Affiliation(s)
- Benjamin Richier
- The Francis Crick Institute, Visual Circuit Assembly Laboratory, 1 Midland Road, London, NW1 1AT, UK.,The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | | | - Stefanie Mackensen
- The Francis Crick Institute, Visual Circuit Assembly Laboratory, 1 Midland Road, London, NW1 1AT, UK.,University of Münster, Institute of Neuro- and Behavioral Biology, Badestr. 9, 48149, Muenster, Germany
| | - Iris Salecker
- The Francis Crick Institute, Visual Circuit Assembly Laboratory, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
44
|
Li H, Watson A, Olechwier A, Anaya M, Sorooshyari SK, Harnett DP, Lee HKP, Vielmetter J, Fares MA, Garcia KC, Özkan E, Labrador JP, Zinn K. Deconstruction of the beaten Path-Sidestep interaction network provides insights into neuromuscular system development. eLife 2017; 6:28111. [PMID: 28829740 PMCID: PMC5578738 DOI: 10.7554/elife.28111] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/28/2017] [Indexed: 12/16/2022] Open
Abstract
An ‘interactome’ screen of all Drosophila cell-surface and secreted proteins containing immunoglobulin superfamily (IgSF) domains discovered a network formed by paralogs of Beaten Path (Beat) and Sidestep (Side), a ligand-receptor pair that is central to motor axon guidance. Here we describe a new method for interactome screening, the Bio-Plex Interactome Assay (BPIA), which allows identification of many interactions in a single sample. Using the BPIA, we ‘deorphanized’ four more members of the Beat-Side network. We confirmed interactions using surface plasmon resonance. The expression patterns of beat and side genes suggest that Beats are neuronal receptors for Sides expressed on peripheral tissues. side-VI is expressed in muscle fibers targeted by the ISNb nerve, as well as at growth cone choice points and synaptic targets for the ISN and TN nerves. beat-V genes, encoding Side-VI receptors, are expressed in ISNb and ISN motor neurons. Within every organ of the body, cells must be able to recognise and communicate with one another in order to work together to perform a particular role. Each cell has a specific protein on its surface that acts like a molecular identity card, and which can form weak bonds with a complementary protein on another cell. There are thousands of different cell surface proteins, and the interactions between them – known collectively as the interactome – dictate the how cells interact with one another. Many cell surface proteins are similar across species. Humans and fruit flies, for example, both possess a family of cell surface proteins that contain a region called the Immunoglobulin Superfamily domain. This family can be further divided into subfamilies, two of which are known as “Beats” and “Sides” for short. As the nervous system develops, nerve cells carrying a particular Beat protein interact with nerve or muscle cells carrying a corresponding Side protein. Yet while experiments have matched up many Beats and Sides, the partners of others remain unknown. Li et al. have now developed a new technique called the Bio-Plex Interactome Assay to rapidly screen for interactions between multiple cell surface proteins in a single sample. Applying the technique to cells from fruit flies revealed new binding partners within the Beats and the Sides. After verifying several of these interactions, Li et al. explored the role of various Beats and Sides in the developing nervous system of fruit fly embryos by mapping the cells that display them on their surfaces. This increased knowledge of the Beat-Side binding network should provide further insights into how connections form between nerve cells. The new screening technique could also eventually be used to map the cell surface protein interactome in humans. A number of key drugs, including the breast cancer drug Herceptin, target cell surface proteins. Identifying interactions among cell surface proteins could thus provide additional leads for developing new therapies.
Collapse
Affiliation(s)
- Hanqing Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Ash Watson
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.,Institute of Neuroscience, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Agnieszka Olechwier
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - Michael Anaya
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | | | - Dermott P Harnett
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.,Institute of Neuroscience, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Hyung-Kook Peter Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Jost Vielmetter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Mario A Fares
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.,Department of Abiotic Stress, Group of Integrative and Systems Biology, Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Valencia, Spain
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States.,Department of Structural Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - Juan-Pablo Labrador
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.,Institute of Neuroscience, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Kai Zinn
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
45
|
McKerrow WH, Savva YA, Rezaei A, Reenan RA, Lawrence CE. Predicting RNA hyper-editing with a novel tool when unambiguous alignment is impossible. BMC Genomics 2017; 18:522. [PMID: 28693467 PMCID: PMC5502491 DOI: 10.1186/s12864-017-3898-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/22/2017] [Indexed: 12/13/2022] Open
Abstract
Background Repetitive elements are now known to have relevant cellular functions, including self-complementary sequences that form double stranded (ds) RNA. There are numerous pathways that determine the fate of endogenous dsRNA, and misregulation of endogenous dsRNA is a driver of autoimmune disease, particularly in the brain. Unfortunately, the alignment of high-throughput, short-read sequences to repeat elements poses a dilemma: Such sequences may align equally well to multiple genomic locations. In order to differentiate repeat elements, current alignment methods depend on sequence variation in the reference genome. Reads are discarded when no such variations are present. However, RNA hyper-editing, a possible fate for dsRNA, introduces enough variation to distinguish between repeats that are otherwise identical. Results To take advantage of this variation, we developed a new algorithm, RepProfile, that simultaneously aligns reads and predicts novel variations. RepProfile accurately aligns hyper-edited reads that other methods discard. In particular we predict hyper-editing of Drosophila melanogaster repeat elements in vivo at levels previously described only in vitro, and provide validation by Sanger sequencing sixty-two individual cloned sequences. We find that hyper-editing is concentrated in genes involved in cell-cell communication at the synapse, including some that are associated with neurodegeneration. We also find that hyper-editing tends to occur in short runs. Conclusions Previous studies of RNA hyper-editing discarded ambiguously aligned reads, ignoring hyper-editing in long, perfect dsRNA – the perfect substrate for hyper-editing. We provide a method that simulation and Sanger validation show accurately predicts such RNA editing, yielding a superior picture of hyper-editing. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3898-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wilson H McKerrow
- Division of Applied Mathematics, Brown University, Providence, 02912, RI, USA.
| | - Yiannis A Savva
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, 02912, RI, USA
| | - Ali Rezaei
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, 02912, RI, USA
| | - Robert A Reenan
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, 02912, RI, USA
| | - Charles E Lawrence
- Division of Applied Mathematics, Brown University, Providence, 02912, RI, USA
| |
Collapse
|
46
|
TMEM184b Promotes Axon Degeneration and Neuromuscular Junction Maintenance. J Neurosci 2017; 36:4681-9. [PMID: 27122027 DOI: 10.1523/jneurosci.2893-15.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 03/07/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Complex nervous systems achieve proper connectivity during development and must maintain these connections throughout life. The processes of axon and synaptic maintenance and axon degeneration after injury are jointly controlled by a number of proteins within neurons, including ubiquitin ligases and mitogen activated protein kinases. However, our understanding of these molecular cascades is incomplete. Here we describe the phenotype resulting from mutation of TMEM184b, a protein identified in a screen for axon degeneration mediators. TMEM184b is highly expressed in the mouse nervous system and is found in recycling endosomes in neuronal cell bodies and axons. Disruption of TMEM184b expression results in prolonged maintenance of peripheral axons following nerve injury, demonstrating a role for TMEM184b in axon degeneration. In contrast to this protective phenotype in axons, uninjured mutant mice have anatomical and functional impairments in the peripheral nervous system. Loss of TMEM184b causes swellings at neuromuscular junctions that become more numerous with age, demonstrating that TMEM184b is critical for the maintenance of synaptic architecture. These swellings contain abnormal multivesicular structures similar to those seen in patients with neurodegenerative disorders. Mutant animals also show abnormal sensory terminal morphology. TMEM184b mutant animals are deficient on the inverted screen test, illustrating a role for TMEM184b in sensory-motor function. Overall, we have identified an important function for TMEM184b in peripheral nerve terminal structure, function, and the axon degeneration pathway. SIGNIFICANCE STATEMENT Our work has identified both neuroprotective and neurodegenerative roles for a previously undescribed protein, TMEM184b. TMEM184b mutation causes delayed axon degeneration following peripheral nerve injury, indicating that it participates in the degeneration process. Simultaneously, TMEM184b mutation causes progressive structural abnormalities at neuromuscular synapses and swellings within sensory terminals, and animals with this mutation display profound weakness. Thus, TMEM184b is necessary for normal peripheral nerve terminal morphology and maintenance. Loss of TMEM184b results in accumulation of autophagosomal structures in vivo, fitting with emerging studies that have linked autophagy disruption and neurological disease. Our work recognizes TMEM184b as a new player in the maintenance of the nervous system.
Collapse
|
47
|
Zinn K, Özkan E. Neural immunoglobulin superfamily interaction networks. Curr Opin Neurobiol 2017; 45:99-105. [PMID: 28558267 DOI: 10.1016/j.conb.2017.05.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/24/2017] [Accepted: 05/15/2017] [Indexed: 12/31/2022]
Abstract
The immunoglobulin superfamily (IgSF) encompasses hundreds of cell surface proteins containing multiple immunoglobulin-like (Ig) domains. Among these are neural IgCAMs, which are cell adhesion molecules that mediate interactions between cells in the nervous system. IgCAMs in some vertebrate IgSF subfamilies bind to each other homophilically and heterophilically, forming small interaction networks. In Drosophila, a global 'interactome' screen identified two larger networks in which proteins in one IgSF subfamily selectively interact with proteins in a different subfamily. One of these networks, the 'Dpr-ome', includes 30 IgSF proteins, each of which is expressed in a unique subset of neurons. Recent evidence shows that one interacting protein pair within the Dpr-ome network is required for development of the brain and neuromuscular system.
Collapse
Affiliation(s)
- Kai Zinn
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, United States
| |
Collapse
|
48
|
Paracuellos P, Kalamajski S, Bonna A, Bihan D, Farndale RW, Hohenester E. Structural and functional analysis of two small leucine-rich repeat proteoglycans, fibromodulin and chondroadherin. Matrix Biol 2017; 63:106-116. [PMID: 28215822 PMCID: PMC5618690 DOI: 10.1016/j.matbio.2017.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 02/07/2023]
Abstract
The small leucine-rich proteoglycans (SLRPs) are important regulators of extracellular matrix assembly and cell signalling. We have determined crystal structures at ~ 2.2 Å resolution of human fibromodulin and chondroadherin, two collagen-binding SLRPs. Their overall fold is similar to that of the prototypical SLRP, decorin, but unlike decorin neither fibromodulin nor chondroadherin forms a stable dimer. A previously identified binding site for integrin α2β1 maps to an α-helix in the C-terminal cap region of chondroadherin. Interrogation of the Collagen Toolkits revealed a unique binding site for chondroadherin in collagen II, and no binding to collagen III. A triple-helical peptide containing the sequence GAOGPSGFQGLOGPOGPO (O is hydroxyproline) forms a stable complex with chondroadherin in solution. In fibrillar collagen I and II, this sequence is aligned with the collagen cross-linking site KGHR, suggesting a role for chondroadherin in cross-linking. The crystal structures of fibromodulin and chondroadherin have been determined. Fibromodulin and chondroadherin are monomeric in solution. Chondroadherin binds to a unique site in type II collagen that contains the sequence GAOGPSGFQGLOGPOGPO (O, hydroxyproline). In collagen fibres, the chondroadherin binding site is adjacent to the cross-linking site, KGHR.
Collapse
Affiliation(s)
| | | | - Arkadiusz Bonna
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Dominique Bihan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Richard W Farndale
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Erhard Hohenester
- Department of Life Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
49
|
Hessinger C, Technau GM, Rogulja-Ortmann A. The Drosophila Hox gene Ultrabithorax acts in both muscles and motoneurons to orchestrate formation of specific neuromuscular connections. Development 2016; 144:139-150. [PMID: 27913640 PMCID: PMC5278631 DOI: 10.1242/dev.143875] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/17/2016] [Indexed: 12/29/2022]
Abstract
Hox genes are known to specify motoneuron pools in the developing vertebrate spinal cord and to control motoneuronal targeting in several species. However, the mechanisms controlling axial diversification of muscle innervation patterns are still largely unknown. We present data showing that the Drosophila Hox gene Ultrabithorax (Ubx) acts in the late embryo to establish target specificity of ventrally projecting RP motoneurons. In abdominal segments A2 to A7, RP motoneurons innervate the ventrolateral muscles VL1-4, with VL1 and VL2 being innervated in a Wnt4-dependent manner. In Ubx mutants, these motoneurons fail to make correct contacts with muscle VL1, a phenotype partially resembling that of the Wnt4 mutant. We show that Ubx regulates expression of Wnt4 in muscle VL2 and that it interacts with the Wnt4 response pathway in the respective motoneurons. Ubx thus orchestrates the interaction between two cell types, muscles and motoneurons, to regulate establishment of the ventrolateral neuromuscular network. Summary: Ultrabithorax controls correct innervation of ventrolateral muscles by coordinating Wnt4 ligand expression in muscles with the signalling pathway response in motoneurons.
Collapse
|
50
|
Yoo SK, Pascoe HG, Pereira T, Kondo S, Jacinto A, Zhang X, Hariharan IK. Plexins function in epithelial repair in both Drosophila and zebrafish. Nat Commun 2016; 7:12282. [PMID: 27452696 PMCID: PMC4962468 DOI: 10.1038/ncomms12282] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/17/2016] [Indexed: 12/20/2022] Open
Abstract
In most multicellular organisms, homeostasis is contingent upon maintaining epithelial integrity. When unanticipated insults breach epithelial barriers, dormant programmes of tissue repair are immediately activated. However, many of the mechanisms that repair damaged epithelia remain poorly characterized. Here we describe a role for Plexin A (PlexA), a protein with particularly well-characterized roles in axonal pathfinding, in the healing of damaged epithelia in Drosophila. Semaphorins, which are PlexA ligands, also regulate tissue repair. We show that Drosophila PlexA has GAP activity for the Rap1 GTPase, which is known to regulate the stability of adherens junctions. Our observations suggest that the inhibition of Rap1 activity by PlexA in damaged Drosophila epithelia allows epithelial remodelling, thus facilitating wound repair. We also demonstrate a role for Plexin A1, a zebrafish orthologue of Drosophila PlexA, in epithelial repair in zebrafish tail fins. Thus, plexins function in epithelial wound healing in diverse taxa. Plexins are semaphorin receptors and are well known for their roles in neuronal pathfinding. Here the authors describe a role for Plexin A in healing damaged epithelia in Drosophila and zebrafish. In Drosophila, Plexin A inhibits the GTPase Rap1 to allow epithelial remodelling to facilitate wound repair.
Collapse
Affiliation(s)
- Sa Kan Yoo
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.,The Miller Institute, University of California, Berkeley, California 94720, USA.,Physiological Genetics Laboratory, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Heath G Pascoe
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Telmo Pereira
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal.,CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, 130, 1169-056 Lisboa, Portugal
| | - Shu Kondo
- Genetic Strains Research Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Antonio Jacinto
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, 130, 1169-056 Lisboa, Portugal
| | - Xuewu Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|