1
|
Zhu R, Xu Y, Li H, He C, Leung FP, Wang L, Wong WT. FKBP5 mediates glucocorticoid signaling in estrogen deficiency-associated endothelial dysfunction. Eur J Pharmacol 2025; 996:177598. [PMID: 40185321 DOI: 10.1016/j.ejphar.2025.177598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/15/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of mortality among postmenopausal women, with atherosclerosis being a major underlying factor. Endothelial dysfunction, a key initiating event in atherosclerosis, can be triggered by hormonal and metabolic changes. While estrogen deficiency has been linked to increased cardiovascular risk, the molecular mechanisms by which it exacerbates endothelial dysfunction, particularly in the presence of elevated glucocorticoid levels, remain poorly understood. This study aims to explore the role of FK506-binding protein 5 (FKBP5) in mediating glucocorticoid-induced endothelial dysfunction in estrogen-deficient females. METHODS Estrogen deficiency was developed in female mice by ovariectomy (OVX). Female mice and human umbilical vein endothelial cells (HUVECs) were treated with dexamethasone (DEX) to mimic elevated cortisol levels in vivo and vitro. Endothelial function of the mice aorta was assessed using wire myography. Oxidative stress and inflammation were evaluated through reactive oxygen species (ROS) detection, immunofluorescence and mRNA expression analysis. The selective FKBP5 inhibitor SAFit2 was used to study the functional role of FKBP5 in these processes. RESULTS Estrogen deficiency contributed to endothelial dysfunction in female mice, an effect exacerbated by elevated glucocorticoid levels. FKBP5 expression was upregulated in both ovariectomized mice aortas and DEX-treated endothelial cells. Inhibition of FKBP5 reversed endothelial dysfunction, reduced ROS levels, and suppressed the expression of pro-inflammatory mediators, including ICAM-1, IL-1β, TNF-α, and NF-κB. CONCLUSION FKBP5 mediates glucocorticoid-induced endothelial dysfunction under estrogen-deficient conditions. Inhibition of FKBP5 represents a promising therapeutic strategy to ameliorate endothelial dysfunction and improve vascular health in estrogen-deficient women.
Collapse
Affiliation(s)
- Ruiwen Zhu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yiyue Xu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Huixian Li
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Chufeng He
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Fung Ping Leung
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lin Wang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing Tak Wong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Raza ML. The stress-immune system axis: Exploring the interplay between stress and immunity. PROGRESS IN BRAIN RESEARCH 2025; 291:289-317. [PMID: 40222784 DOI: 10.1016/bs.pbr.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The chapter talks about how our body and mind respond to stress and how it affects our immune system. Stress reactions, especially the fight-or-flight reaction, are helpful at first but can be harmful if they last too long. Long-term stress, caused by hormones like cortisol and adrenaline, weakens the immune system and makes people more likely to get sick. Important brain chemicals like serotonin and norepinephrine help control how our immune system works. Also, the connection between our gut and brain is an important way that mental health affects how our immune system functions. Getting older and experiencing stress early in life can affect how our immune system works. Inflammation caused by stress is connected to health issues like heart disease, depression, and autoimmune diseases. There are ways to manage stress, like being mindful and having support from friends, are important for keeping your immune system healthy and lessening harm caused by stress.
Collapse
Affiliation(s)
- Muhammad Liaquat Raza
- Department of Infection Prevention & Control, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| |
Collapse
|
3
|
Kang J, Moser DK, Lennie TA, Chung ML, Thomas DT, Biddle MJ. Diet Quality Mediates the Relationship Between Chronic Stress and Inflammation in Patients With Metabolic Syndrome. J Cardiovasc Nurs 2025; 40:124-132. [PMID: 38192030 PMCID: PMC11231055 DOI: 10.1097/jcn.0000000000001072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
BACKGROUND Chronic stress is associated with promotion of inflammation and development of metabolic syndrome, as well as deterioration of diet quality. Inflammation can be modified by changes in dietary intake. OBJECTIVE The aim of this study was to test the hypothesis that diet quality mediates the relationship of chronic stress with inflammation in patients with metabolic syndrome. METHODS Participants with metabolic syndrome (n = 73, 62 ± 12 years old, 71% female) completed questionnaires on chronic stress (Perceived Stress Scale-10) and diet quality (Healthy Eating Index-2020). The Perceived Stress Scale-10 was dichotomized. The Healthy Eating Index-2020 score was used as a continuous variable, and higher scores indicate better diet quality. Inflammation was assessed using plasma high-sensitivity C-reactive protein (log-transformed). We used PROCESS in SPSS to test the hypothesis. RESULTS Patients in the higher stress group had lower Healthy Eating Index-2020 scores (worse diet quality) than those in the lower stress group (57 ± 13 vs 64 ± 10, P = .01). Diet quality mediated the relationship between chronic stress and inflammation (indirect effect, 0.211; 95% bootstrap confidence interval, 0.006-0.496). Higher stress was associated with lower diet quality (effect, -7.152; 95% confidence interval, -13.168 to -1.137) that was associated with increased inflammation (effect, -0.030; 95% confidence interval, -0.052 to -0.007). CONCLUSIONS Our findings show the important role of diet quality in the relationship of chronic stress with inflammation in patients with metabolic syndrome. Healthcare providers should encourage patients with higher stress to improve diet quality, which can decrease inflammation.
Collapse
Affiliation(s)
- JungHee Kang
- College of Nursing, University of Kentucky, 2201 Regency Rd, Suite 403, Lexington, KY 40503, USA
| | - Debra K. Moser
- College of Nursing, University of Kentucky, 2201 Regency Rd, Suite 403, Lexington, KY 40503, USA
| | - Terry A. Lennie
- College of Nursing, University of Kentucky, 751 Rose Street, Lexington, KY 40536, USA
| | - Misook L. Chung
- College of Nursing, University of Kentucky, 2201 Regency Rd, Suite 403, Lexington, KY 40503, USA
| | - D. Travis Thomas
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, 214D, Wethington Building, Lexington, KY 40536, USA
| | - Martha J. Biddle
- College of Nursing, University of Kentucky, 2201 Regency Rd, Suite 403, Lexington, KY 40503, USA
| |
Collapse
|
4
|
Lion M, Muller M, Ibrahim EC, El-Hage W, Lengvenyte A, Courtet P, Lefrere A, Belzeaux R. Role of depression, suicide attempt history and childhood trauma in neutrophil-to-lymphocyte ratio dynamics: A 30-week prospective study. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111227. [PMID: 39709173 DOI: 10.1016/j.pnpbp.2024.111227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Studying the biology of suicidal behaviour and developing blood-based biomarkers may help stratify individuals with suicidal behaviors into clinically relevant categories. Literature suggests that people diagnosed with mood disorders and suicidal behaviour show an increased neutrophil to lymphocyte ratio (NLR). For the first time, we investigated NLR variability in mood disorders, a critical aspect of biomarker development. Our study provides a result on the influence of our variables on the NLR and also on the intrinsic properties of the ratio. Consequently, our objective was to analyse the differences in NLR between healthy subjects and patients diagnosed with mood disorder with suicidal behaviour or mood disorder without suicidal attempt. A prospective study was conducted on 97 healthy subjects, 63 patients with mood disorder without suicidal behaviour and 61 patients with mood disorder with suicidal behaviour (mean age [SD] = 44.2 [14.31]; 66.1 % female). Participants were assessed four times over 30 weeks, where blood samples and clinical data were collected. After controlling for confounding factors such as smoking and medical history, we found that NLR stability was low but NLR was significantly associated with a history of suicide attempt (mixed linear model, F = 4.044; p = 0.018). We also observed a significant interaction between NLR values and childhood trauma (p = 0.002). Furthermore, our results demonstrate that NLR is influenced by childhood trauma, including in controls (p = 0.014). Finally, NLR expression differs between patients with and without suicidal behaviour, but only in those without a history of childhood trauma (p = 0.026). Despite its variability over time, our data suggest that NLR may be a promising biomarker for identifying individuals at high risk of suicidal behaviour among patients with mood disorders.
Collapse
Affiliation(s)
- M Lion
- Aix-Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
| | - M Muller
- Department of psychiatry and Neurosciences, CERVO Brain Research centre, Université Laval, Québec City, QC G1J 2G3, Canada
| | - E C Ibrahim
- Aix-Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France; Fondation FondaMental, Créteil, France
| | - W El-Hage
- CHRU de Tours, Pôle de Psychiatrie et d'Addictologie, 37044 Tours, France; UMR 1253, iBraiN, INSERM, Université de Tours, 37000 Tours, France
| | - A Lengvenyte
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France; Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France
| | - P Courtet
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France; Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France
| | - A Lefrere
- Aix-Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France; Pôle de Psychiatrie, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - R Belzeaux
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France; Departement of psychiatry, CHU Montpellier, Montpellier, France.
| |
Collapse
|
5
|
Wang X, Wu L, Liu J, Ma C, Liu J, Zhang Q. The neuroimmune mechanism of pain induced depression in psoriatic arthritis and future directions. Biomed Pharmacother 2025; 182:117802. [PMID: 39742638 DOI: 10.1016/j.biopha.2024.117802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
Patients suffering from psoriatic arthritis (PsA) often experience depression due to chronic joint pain, which significantly hinders their recovery process. However, the relationship between these two conditions is not well understood. Through a review of existing studies, we revealed that certain neuroendocrine hormones and neurotransmitters are involved in the neuroimmune interactions related to both PsA and depression. These include adrenocorticotropin-releasing hormone (CRH), adrenocorticotropin (ACTH), cortisol, monoamine neurotransmitters, and brain-derived neurotrophic factor (BDNF). Notably, the signalling pathway involving CRH, MCs, and Th17 cells plays a crucial role in linking PsA with depression; thus, this pathway may help clarify their connection. In this review, we outline the inflammatory immune changes associated with PsA and depression. Additionally, we explore how neuroendocrine hormones and neurotransmitters influence inflammatory responses in these two conditions. Finally, our focus will be on potential treatment strategies for patients with PsA and depression through the targeting of the CRH-MC-Th17 pathway. This review aims to provide a theoretical framework as well as new therapeutic targets for managing PsA alongside depression.
Collapse
Affiliation(s)
- Xiaoxu Wang
- Rheumatology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China.
| | - Lingjun Wu
- Shunyi Hospital of Beijing Traditional Chinese Medicine Hospital, Beijing 101300, China
| | - Jing Liu
- Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing 100010, China
| | - Cong Ma
- Rheumatology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Juan Liu
- Rheumatology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Qin Zhang
- Rheumatology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China.
| |
Collapse
|
6
|
Li L, Ren L, Li B, Liu C. Therapeutic effects of exercise on depression: The role of microglia. Brain Res 2025; 1846:149279. [PMID: 39406315 DOI: 10.1016/j.brainres.2024.149279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/06/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Major depressive disorderadversely affects mental health. Traditional therapeutic approaches, including medication, psychological intervention, and physical therapy, exert beneficial effects on depression. However, these approaches are associated with some limitations, such as high cost, adverse reactions, recurrent episodes, and low patient adherence. Previous studies have demonstrated that exercise therapy can effectively mitigate depressive symptoms, although the underlying mechanism has not been elucidated. Recent studies have suggested that depression is a microglial disease. Microglia regulate the inflammatory response, synaptic plasticity, neurogenesis, kynurenine pathway and the activation of hypothalamic-pituitary-adrenal axis, all of which affect depression. Exercise therapy is reported to shift the balance of microglial M1/M2 polarization in the hippocampus, frontal lobe, and striatum, suppressing the release of pro-inflammatory factors and consequently alleviating behavioral deficits in animal models of depression. Further studies are needed to examine the specific effects of different exercise regimens on microglia to identify the exercise regimen with the best therapeutic effect.
Collapse
Affiliation(s)
- Li Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Li Ren
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Bing Li
- Hebei Provincial Mental Health Center, Baoding, China; Hebei Key Laboratory of Major Mental and Behavioral Disorders, Baoding, China; The Sixth Clinical Medical College of Hebei University, Baoding, China.
| | - Chaomeng Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Jallouli S, Jallouli D, Damak M, Kallel C, Sakka S, Jaafar B, Mhiri C, de Marco G, Ayadi F, Hammouda O. Self-paced combined training alleviated oxidative stress, inflammatory responses and hyperlipidaemia in people living with multiple sclerosis: a randomised controlled trial. Arch Physiol Biochem 2024:1-13. [PMID: 39841659 DOI: 10.1080/13813455.2024.2440346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/26/2024] [Accepted: 12/04/2024] [Indexed: 01/24/2025]
Abstract
Objective: To examine the effects of self-paced combined high-intensity interval training and resistance training (HIIT-RT) on oxidative stress, inflammation lipid profile and body composition in people with multiple sclerosis (PwMS). Methods: Twenty-three PwMS were randomly assigned to either a control group (CG, n = 12) or a training group (TG, n = 11). The TG performed a 12-week self-paced HIIT-RT (3 times/week). Biomarkers of oxidative stress, inflammation, lipid profile and cellular damage as well as body composition were assessed pre- and post- intervention. Results: Comparatively with CG, the TG showed a decrease in advanced oxidation protein products (p = 0.002, Hedges'g (g) = 1.50) and total thiols (p = 0.0011, g = 1.57), as well as an increase in reduced glutathione (p = 0.03, g = 0.98). Neutrophils (p = 0.003, g = 1.38), lymphocytes (p = 0.038, g = 0.92) and low-density lipoprotein cholesterol (p < 0.001, g = 2.14) decreased in TG compared with CG. There was also a decrease in body weight (p = 0.003, g = 1.39), body mass index (p = 0.002, g = 1.45) and fat mass (p = 0.006, g = 1.27) in TG comparatively with CG. Conclusion: This study revealed the effectiviness of self-paced HIIT-RT in alleviating oxidative stress, inflammatory responses and hyperlipidaemia, as well as in improving body composition in PwMS. This combined training may be recommended to better counteract the damage related to multiple sclerosis.
Collapse
Affiliation(s)
- Sonda Jallouli
- Research laboratory: Evaluation and Management of Musculoskeletal System Pathologies, LR20ES09, Faculty of Medicine, University of Sfax, Sfax, Tunisia
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Dana Jallouli
- Laboratory of Biochemistry, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
- Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Mariem Damak
- Laboratory of Neurogenetics, Parkinson's Disease and Cerebrovascular Disease, LR12SP19, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Choumous Kallel
- Laboratory of Hematology, Habib Bourguiba University Hospital, Sfax, Tunisia
| | - Salma Sakka
- Laboratory of Neurogenetics, Parkinson's Disease and Cerebrovascular Disease, LR12SP19, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Bedreddine Jaafar
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Chokri Mhiri
- Laboratory of Neurogenetics, Parkinson's Disease and Cerebrovascular Disease, LR12SP19, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | | | - Fatma Ayadi
- Laboratory of Biochemistry, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
- Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Omar Hammouda
- Laboratory of Biochemistry, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
- LINP2, UFR STAPS, University of Paris Nanterre, Nanterre, France
| |
Collapse
|
8
|
Ploesser M, Silverman S, Diaz JDL, Zincke MT, Taylor MB. The link between traumatic stress and autoimmune rheumatic diseases: A systematic scoping review. Semin Arthritis Rheum 2024; 69:152558. [PMID: 39332061 DOI: 10.1016/j.semarthrit.2024.152558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND The impact of traumatic stress on autoimmune rheumatic diseases (ARDs) has been largely overlooked in existing research. This scoping review aimed to systematically examine the research literature relating to the relationship between traumatic stress and ARDs, by identifying study designs, methodologies, and gaps in the current research landscape. METHODS The following databases and search interfaces were searched on 15th December 2023: Embase (via Embase.com), Medline (via PubMed), and Web of Science. Additional references were identified via bibliographies of included studies. The following studies were included, with no publication date limit and language restricted to English: targeting the association between traumatic stress and ARDs, observational methodologies, including cohort, case-control, and cross-sectional studies, exclusively focusing on self-reported psychological trauma impacts, such as adverse childhood experiences (ACEs), Post-traumatic Stress Disorder (PTSD), or major life stressors. Two authors independently assessed the studies for inclusion criteria and extracted the data. RESULTS This scoping review revealed connections between traumatic stress and ARDs through an analysis of 21 included studies, highlighting the scarcity of research in this area. The studies, primarily from high-income countries and especially the USA, span from 2000 to 2023, indicating a growing interest in recent years and employing a range of methodologies. Traumas such as ACEs, PTSD, and major life events were frequently examined, showing a strong association with an increased risk and severity of ARDs, particularly rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). CONCLUSION This scoping review reveals a notable dearth in research on the impact of traumatic stress, such as ACEs, PTSD, and major life events, on ARDs, especially on rare diseases, yet underscores a significant association between trauma and ARD severity or incidence. It highlights the critical need for future investigations to broaden the scope of ARDs studied, extend research to less represented regions, and utilize diverse, standardized methodologies to deepen our understanding of the trauma-ARD association.
Collapse
Affiliation(s)
- Markus Ploesser
- Department of Psychiatry & Neuroscience, UC Riverside School of Medicine, 900 University Ave. Riverside, CA 92521, USA; University of British Columbia, Division of Forensic Psychiatry, Department of Psychiatry, Faculty of Medicine, Detwiller Pavilion. 2255 Wesbrook Mall. Vancouver, BC V6T 2A1, Canada.
| | - Stuart Silverman
- Cedars-Sinai Medical Center, Los Angeles and the OMC Clinical Research Center, Beverly Hills, CA, USA
| | | | | | | |
Collapse
|
9
|
Daniilidou M, Holleman J, Hagman G, Kåreholt I, Aspö M, Brinkmalm A, Zetterberg H, Blennow K, Solomon A, Kivipelto M, Sindi S, Matton A. Neuroinflammation, cerebrovascular dysfunction and diurnal cortisol biomarkers in a memory clinic cohort: Findings from the Co-STAR study. Transl Psychiatry 2024; 14:364. [PMID: 39251589 PMCID: PMC11385239 DOI: 10.1038/s41398-024-03072-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
Cortisol dysregulation, neuroinflammation, and cerebrovascular dysfunction are biological processes that have been separately shown to be affected in Alzheimer's disease (AD). Here, we aimed to identify biomarker signatures reflecting these pathways in 108 memory clinic patients with subjective cognitive decline (SCD, N = 40), mild cognitive impairment (MCI, N = 39), and AD (N = 29). Participants were from the well-characterized Cortisol and Stress in Alzheimer's Disease (Co-STAR) cohort, recruited at Karolinska University Hospital. Salivary diurnal cortisol measures and 41 CSF proteins were analyzed. Principal component analysis was applied to identify combined biosignatures related to AD pathology, synaptic loss, and neuropsychological assessments, in linear regressions adjusted for confounders, such as age, sex, education and diagnosis. We found increased CSF levels of C-reactive protein (CRP), interferon γ-inducible protein (IP-10), thymus and activation-regulated chemokine (TARC), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) in MCI patients. Further, markers of cortisol dysregulation (flattened salivary cortisol awakening response and flattened cortisol slope) correlated with increased levels of placental growth factor (PlGF), IP-10, and chitinase 3-like 1 (YKL-40) in the total cohort. A biosignature composed of cortisol awakening response, cortisol slope, and CSF IL-6 was downregulated in AD patients. Moreover, biomarker signatures reflecting overlapping pathophysiological processes of neuroinflammation and vascular injury were associated with AD pathology, synaptic loss, and worsened processing speed. Our findings suggest an early dysregulation of immune and cerebrovascular processes during the MCI stage and provide insights into the interrelationship of chronic stress and neuroinflammation in AD.
Collapse
Affiliation(s)
- Makrina Daniilidou
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
| | - Jasper Holleman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Göran Hagman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Ingemar Kåreholt
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Institute of Gerontology, School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Malin Aspö
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Alina Solomon
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, London, UK
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
| | - Miia Kivipelto
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, London, UK
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Shireen Sindi
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Anna Matton
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
10
|
Robledo-Montaña J, Díaz-García C, Martínez M, Ambrosio N, Montero E, Marín MJ, Virto L, Muñoz-López M, Herrera D, Sanz M, Leza JC, García-Bueno B, Figuero E, Martín-Hernández D. Microglial morphological/inflammatory phenotypes and endocannabinoid signaling in a preclinical model of periodontitis and depression. J Neuroinflammation 2024; 21:219. [PMID: 39245706 PMCID: PMC11382403 DOI: 10.1186/s12974-024-03213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Depression is a chronic psychiatric disease of multifactorial etiology, and its pathophysiology is not fully understood. Stress and other chronic inflammatory pathologies are shared risk factors for psychiatric diseases, and comorbidities are features of major depression. Epidemiological evidence suggests that periodontitis, as a source of low-grade chronic systemic inflammation, may be associated with depression, but the underlying mechanisms are not well understood. METHODS Periodontitis (P) was induced in Wistar: Han rats through oral gavage with the pathogenic bacteria Porphyromonas gingivalis and Fusobacterium nucleatum for 12 weeks, followed by 3 weeks of chronic mild stress (CMS) to induce depressive-like behavior. The following four groups were established (n = 12 rats/group): periodontitis and CMS (P + CMS+), periodontitis without CMS, CMS without periodontitis, and control. The morphology and inflammatory phenotype of microglia in the frontal cortex (FC) were studied using immunofluorescence and bioinformatics tools. The endocannabinoid (EC) signaling and proteins related to synaptic plasticity were analyzed in FC samples using biochemical and immunohistochemical techniques. RESULTS Ultrastructural and fractal analyses of FC revealed a significant increase in the complexity and heterogeneity of Iba1 + parenchymal microglia in the combined experimental model (P + CMS+) and increased expression of the proinflammatory marker inducible nitric oxide synthase (iNOS), while there were no changes in the expression of cannabinoid receptor 2 (CB2). In the FC protein extracts of the P + CMS + animals, there was a decrease in the levels of the EC metabolic enzymes N-acyl phosphatidylethanolamine-specific phospholipase D (NAPE-PLD), diacylglycerol lipase (DAGL), and monoacylglycerol lipase (MAGL) compared to those in the controls, which extended to protein expression in neurons and in FC extracts of cannabinoid receptor 1 (CB1) and to the intracellular signaling molecules phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt) and extracellular signal-regulated kinase 1/2 (ERK1/2). The protein levels of brain-derived neurotrophic factor (BDNF) and synaptophysin were also lower in P + CMS + animals than in controls. CONCLUSIONS The combined effects on microglial morphology and inflammatory phenotype, the EC signaling, and proteins related to synaptic plasticity in P + CMS + animals may represent relevant mechanisms explaining the association between periodontitis and depression. These findings highlight potential therapeutic targets that warrant further investigation.
Collapse
Affiliation(s)
- Javier Robledo-Montaña
- Department of Pharmacology and Toxicology, School of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - César Díaz-García
- Department of Pharmacology and Toxicology, School of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - María Martínez
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
- Department of Dental Clinical Specialties, School of Dentistry, Faculty of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Nagore Ambrosio
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
- Department of Dental Clinical Specialties, School of Dentistry, Faculty of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Eduardo Montero
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
- Department of Dental Clinical Specialties, School of Dentistry, Faculty of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
| | - María José Marín
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
| | - Leire Virto
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
- Department of Anatomy and Embryology, Faculty of Optics, Complutense University of Madrid, Madrid, Spain
| | - Marina Muñoz-López
- Department of Pharmacology and Toxicology, School of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - David Herrera
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
- Department of Dental Clinical Specialties, School of Dentistry, Faculty of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
- Department of Dental Clinical Specialties, School of Dentistry, Faculty of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Juan Carlos Leza
- Department of Pharmacology and Toxicology, School of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - Borja García-Bueno
- Department of Pharmacology and Toxicology, School of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - Elena Figuero
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain.
- Department of Dental Clinical Specialties, School of Dentistry, Faculty of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Madrid, 28040, Spain.
| | - David Martín-Hernández
- Department of Pharmacology and Toxicology, School of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Pza. Ramón y Cajal s/n, Madrid, 28040, Spain.
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
11
|
Meamar M, Raise-Abdullahi P, Rashidy-Pour A, Raeis-Abdollahi E. Coffee and mental disorders: How caffeine affects anxiety and depression. PROGRESS IN BRAIN RESEARCH 2024; 288:115-132. [PMID: 39168554 DOI: 10.1016/bs.pbr.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Caffeine, the main psychoactive component in coffee, has garnered significant attention for its potential impact on the most prevalent mental health conditions like anxiety and depression. This chapter comprehensively examines the neurobiological effects of caffeine, its influence on anxiety and depression, and relevant clinical studies. Caffeine exerts its psychostimulant effects primarily through antagonizing adenosine receptors, modulating neurotransmitter systems, and influencing intracellular calcium signaling in the brain. Caffeine exhibits dose-dependent effects. While moderate caffeine consumption is safe in healthy adults and may offer benefits for mental health, excessive intake is linked to adverse effects on neurological and psychiatric health and can aggravate symptoms, highlighting the importance of adjusting consumption patterns. High caffeine intake correlates with elevated anxiety levels, especially in individuals predisposed to anxiety disorders. However, the relationship between caffeine consumption and the risk of depression is intricate, with some studies suggesting a potential protective effect of moderate intake, while others find no significant association. Individual variations in caffeine metabolism, sensitivity, and genetic factors considerably impact responses to caffeine. The chapter also explores the therapeutic potential of caffeine as an adjunct treatment and outlines challenges and future research directions in elucidating caffeine's multifaceted role in mental health.
Collapse
Affiliation(s)
- Morvarid Meamar
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Clinical Research Development Unit, Kowsar Educational Research and Therapeutic Hospital, Semnan University of Medical Sciences, Semnan, Iran.
| | | | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ehsan Raeis-Abdollahi
- Applied Physiology Research Center, Qom Medical Sciences, Islamic Azad University, Qom, Iran; Department of Basic Medical Sciences, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran
| |
Collapse
|
12
|
Hasan ZW, Nguyen VT, Ashley NT. Effect of glucocorticoid blockade on inflammatory responses to acute sleep fragmentation in male mice. PeerJ 2024; 12:e17539. [PMID: 38952964 PMCID: PMC11216221 DOI: 10.7717/peerj.17539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/19/2024] [Indexed: 07/03/2024] Open
Abstract
The association between sleep and the immune-endocrine system is well recognized, but the nature of that relationship is not well understood. Sleep fragmentation induces a pro-inflammatory response in peripheral tissues and brain, but it also activates the hypothalamic-pituitary-adrenal (HPA) axis, releasing glucocorticoids (GCs) (cortisol in humans and corticosterone in mice). It is unclear whether this rapid release of glucocorticoids acts to potentiate or dampen the inflammatory response in the short term. The purpose of this study was to determine whether blocking or suppressing glucocorticoid activity will affect the inflammatory response from acute sleep fragmentation (ASF). Male C57BL/6J mice were injected i.p. with either 0.9% NaCl (vehicle 1), metyrapone (a glucocorticoid synthesis inhibitor, dissolved in vehicle 1), 2% ethanol in polyethylene glycol (vehicle 2), or mifepristone (a glucocorticoid receptor antagonist, dissolved in vehicle 2) 10 min before the start of ASF or no sleep fragmentation (NSF). After 24 h, samples were collected from brain (prefrontal cortex, hypothalamus, hippocampus) and periphery (liver, spleen, heart, and epididymal white adipose tissue (EWAT)). Proinflammatory gene expression (TNF-α and IL-1β) was measured, followed by gene expression analysis. Metyrapone treatment affected pro-inflammatory cytokine gene expression during ASF in some peripheral tissues, but not in the brain. More specifically, metyrapone treatment suppressed IL-1β expression in EWAT during ASF, which implies a pro-inflammatory effect of GCs. However, in cardiac tissue, metyrapone treatment increased TNF-α expression in ASF mice, suggesting an anti-inflammatory effect of GCs. Mifepristone treatment yielded more significant results than metyrapone, reducing TNF-α expression in liver (only NSF mice) and cardiac tissue during ASF, indicating a pro-inflammatory role. Conversely, in the spleen of ASF-mice, mifepristone increased pro-inflammatory cytokines (TNF-α and IL-1β), demonstrating an anti-inflammatory role. Furthermore, irrespective of sleep fragmentation, mifepristone increased pro-inflammatory cytokine gene expression in heart (IL-1β), pre-frontal cortex (IL-1β), and hypothalamus (IL-1β). The results provide mixed evidence for pro- and anti-inflammatory functions of corticosterone to regulate inflammatory responses to acute sleep loss.
Collapse
Affiliation(s)
- Zim Warda Hasan
- Department of Biology, Western Kentucky University, Bowling Green, KY, United States of America
| | - Van Thuan Nguyen
- Department of Biology, Western Kentucky University, Bowling Green, KY, United States of America
| | - Noah T. Ashley
- Department of Biology, Western Kentucky University, Bowling Green, KY, United States of America
| |
Collapse
|
13
|
Baskerville R, Castell L, Bermon S. Sports and Immunity, from the recreational to the elite athlete. Infect Dis Now 2024; 54:104893. [PMID: 38531477 DOI: 10.1016/j.idnow.2024.104893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
The pivotal role of the immune system in physical activity is well-established. While interactions are complex, they tend to constitute discrete immune responses. Moderate intensity exercise causes leukocytosis with a mild anti-inflammatory cytokine profile and immunoenhancement. Above a threshold of intensity, lactate-mediated IL-6 release causes a proinflammatory state followed by a depressed inflammatory state, which stimulates immune adaptation and longer term cardiometabolic enhancement. Exercise-related immune responses are modulated by sex, age and immunonutrition. At all ability levels, these factors collectively affect the immune balance between enhancement or overload and dysfunction. Excessive training, mental stress or insufficient recovery risks immune cell exhaustion and hypothalamic pituitary axis (HPA) stress responses causing immunodepression with negative impacts on performance or general health. Participation in sport provides additional immune benefits in terms of ensuring regularity, social inclusion, mental well-being and healthier life choices in terms of diet and reduced smoking and alcohol, thereby consolidating healthy lifestyles and longer term health. Significant differences exist between recreational and professional athletes in terms of inherent characteristics, training resilience and additional stresses arising from competition schedules, travel-related infections and stress. Exercise immunology examines the central role of immunity in exercise physiology and straddles multiple disciplines ranging from neuroendocrinology to nutrition and genetics, with the aim of guiding athletes to train optimally and safely. This review provides a brief outline of the main interactions of immunity and exercise, some influencing factors, and current guidance on maintaining immune health.
Collapse
Affiliation(s)
| | - Linda Castell
- Green Templeton College, University of Oxford, Oxford, UK
| | - Stéphane Bermon
- World Athletics Health and Science Department, Monaco and LAMHESS, University Côte d'Azur, Nice, France
| |
Collapse
|
14
|
Niwa M, Lockhart S, Wood DJ, Yang K, Francis-Oliveira J, Kin K, Ahmed A, Wand GS, Kano SI, Payne JL, Sawa A. Prolonged HPA axis dysregulation in postpartum depression associated with adverse early life experiences: A cross-species translational study. NATURE. MENTAL HEALTH 2024; 2:593-604. [PMID: 38736646 PMCID: PMC11087073 DOI: 10.1038/s44220-024-00217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/21/2024] [Indexed: 05/14/2024]
Abstract
Childhood and adolescent stress increase the risk of postpartum depression (PPD), often providing an increased probability of treatment refractoriness. Nevertheless, the mechanisms linking childhood/adolescent stress to PPD remain unclear. Our study investigated the longitudinal effects of adolescent stress on the hypothalamic-pituitary-adrenal (HPA) axis and postpartum behaviors in mice and humans. Adolescent social isolation prolonged glucocorticoid elevation, leading to long-lasting postpartum behavioral changes in female mice. These changes were unresponsive to current PPD treatments but improved with post-delivery glucocorticoid receptor antagonist treatment. Childhood/adolescent stress significantly impacted HPA axis dysregulation and PPD in human females. Repurposing glucocorticoid receptor antagonists for some cases of treatment-resistant PPD may be considered.
Collapse
Affiliation(s)
- Minae Niwa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- Department of Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- Department of Biomedical Engineering, University of Alabama at Birmingham School of Engineering, Birmingham, AL, USA
| | - Sedona Lockhart
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel J. Wood
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kun Yang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jose Francis-Oliveira
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Kyohei Kin
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Adeel Ahmed
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Gary S. Wand
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shin-ichi Kano
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- Department of Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Jennifer L. Payne
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlotte, VA, USA
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
15
|
Sun L, Wilke Saliba S, Apweiler M, Akmermer K, Herlan C, Grathwol C, de Oliveira ACP, Normann C, Jung N, Bräse S, Fiebich BL. Anti-Neuroinflammatory Effects of a Macrocyclic Peptide-Peptoid Hybrid in Lipopolysaccharide-Stimulated BV2 Microglial Cells. Int J Mol Sci 2024; 25:4462. [PMID: 38674048 PMCID: PMC11049839 DOI: 10.3390/ijms25084462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Inflammation processes of the central nervous system (CNS) play a vital role in the pathogenesis of several neurological and psychiatric disorders like depression. These processes are characterized by the activation of glia cells, such as microglia. Clinical studies showed a decrease in symptoms associated with the mentioned diseases after the treatment with anti-inflammatory drugs. Therefore, the investigation of novel anti-inflammatory drugs could hold substantial potential in the treatment of disorders with a neuroinflammatory background. In this in vitro study, we report the anti-inflammatory effects of a novel hexacyclic peptide-peptoid hybrid in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. The macrocyclic compound X15856 significantly suppressed Interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), c-c motif chemokine ligand 2 (CCL2), CCL3, C-X-C motif chemokine ligand 2 (CXCL2), and CXCL10 expression and release in LPS-treated BV2 microglial cells. The anti-inflammatory effects of the compound are partially explained by the modulation of the phosphorylation of p38 mitogen-activated protein kinases (MAPK), p42/44 MAPK (ERK 1/2), protein kinase C (PKC), and the nuclear factor (NF)-κB, respectively. Due to its remarkable anti-inflammatory properties, this compound emerges as an encouraging option for additional research and potential utilization in disorders influenced by inflammation, such as depression.
Collapse
Affiliation(s)
- Lu Sun
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Soraya Wilke Saliba
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Matthias Apweiler
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Kamil Akmermer
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany; (K.A.); (C.H.); (S.B.)
| | - Claudine Herlan
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany; (K.A.); (C.H.); (S.B.)
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany
| | - Christoph Grathwol
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany
| | | | - Claus Normann
- Mechanisms of Depression Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Nicole Jung
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany; (K.A.); (C.H.); (S.B.)
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany; (K.A.); (C.H.); (S.B.)
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany
| | - Bernd L. Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
16
|
Kumari R, Verma V, Singaravel M. Simulated Chronic Jet Lag Affects the Structural and Functional Complexity of Hippocampal Neurons in Mice. Neuroscience 2024; 543:1-12. [PMID: 38354900 DOI: 10.1016/j.neuroscience.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/21/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
There has been a long history that chronic circadian disruption such as jet lag or shift work negatively affects brain and body physiology. Studies have shown that circadian misalignment act as a risk factor for developing anxiety and mood-related depression-like behavior. Till date, most studies focused on simulating jet lag in model animals under laboratory conditions by repeated phase advances or phase delay only, while the real-life conditions may differ. In the present study, adult male mice were subjected to simulated chronic jet lag (CJL) by alternately advancing and delaying the ambient light-dark (LD) cycle by 9 h every 2 days, thereby covering a total of 24 days. The effect of CJL was then examined for a range of stress and depression-related behavioral and physiological responses. The results showed that mice exposed to CJL exhibited depression-like behavior, such as anhedonia. In the open field and elevated plus maze test, CJL-exposed mice showed increased anxiety behavior compared to LD control. In addition, CJL-exposed mice showed an increased level of serum corticosterone and proinflammatory cytokine, TNF-α in both serum and hippocampus. Moreover, CJL-exposed mice exhibited a reduction in structural complexity of hippocampal CA1 neurons along with decreased expression of neurotrophic growth factors, BDNF and NGF in the hippocampus compared to LD control. Taken together, our findings suggest that simulated chronic jet lag adversely affects structural and functional complexity in hippocampal neurons along with interrelated endocrine and inflammatory responses, ultimately leading to stress, anxiety, and depression-like behavior in mice.
Collapse
Affiliation(s)
- Ruchika Kumari
- Chronobiology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vivek Verma
- Chronobiology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Muniyandi Singaravel
- Chronobiology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
17
|
Stepanichev MY, Mamedova DI, Gulyaeva NV. Hippocampus under Pressure: Molecular Mechanisms of Development of Cognitive Impairments in SHR Rats. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:711-725. [PMID: 38831507 DOI: 10.1134/s0006297924040102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 11/20/2023] [Accepted: 03/14/2024] [Indexed: 06/05/2024]
Abstract
Data from clinical trials and animal experiments demonstrate relationship between chronic hypertension and development of cognitive impairments. Here, we review structural and biochemical alterations in the hippocampus of SHR rats with genetic hypertension, which are used as a model of essential hypertension and vascular dementia. In addition to hypertension, dysfunction of the hypothalamic-pituitary-adrenal system observed in SHR rats already at an early age may be a key factor of changes in the hippocampus at the structural and molecular levels. Global changes at the body level, such as hypertension and neurohumoral dysfunction, are associated with the development of vascular pathology and impairment of the blood-brain barrier. Changes in multiple biochemical glucocorticoid-dependent processes in the hippocampus, including dysfunction of steroid hormones receptors, impairments of neurotransmitter systems, BDNF deficiency, oxidative stress, and neuroinflammation are accompanied by the structural alterations, such as cellular signs of neuroinflammation micro- and astrogliosis, impairments of neurogenesis in the subgranular neurogenic zone, and neurodegenerative processes at the level of synapses, axons, and dendrites up to the death of neurons. The consequence of this is dysfunction of hippocampus, a key structure of the limbic system necessary for cognitive functions. Taking into account the available results at various levels starting from the body and brain structure (hippocampus) levels to molecular one, we can confirm translational validity of SHR rats for modeling mechanisms of vascular dementia.
Collapse
Affiliation(s)
- Mikhail Yu Stepanichev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia.
| | - Diana I Mamedova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| |
Collapse
|
18
|
Yi L, Lin X, She X, Gao W, Wu M. Chronic stress as an emerging risk factor for the development and progression of glioma. Chin Med J (Engl) 2024; 137:394-407. [PMID: 38238191 PMCID: PMC10876262 DOI: 10.1097/cm9.0000000000002976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Indexed: 02/21/2024] Open
Abstract
ABSTRACT Gliomas tend to have a poor prognosis and are the most common primary malignant tumors of the central nervous system. Compared with patients with other cancers, glioma patients often suffer from increased levels of psychological stress, such as anxiety and fear. Chronic stress (CS) is thought to impact glioma profoundly. However, because of the complex mechanisms underlying CS and variability in individual tolerance, the role of CS in glioma remains unclear. This review suggests a new proposal to redivide the stress system into two parts. Neuronal activity is dominant upstream. Stress-signaling molecules produced by the neuroendocrine system are dominant downstream. We discuss the underlying molecular mechanisms by which CS impacts glioma. Potential pharmacological treatments are also summarized from the therapeutic perspective of CS.
Collapse
Affiliation(s)
- Lan Yi
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiang Lin
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Xiaoling She
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Wei Gao
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Minghua Wu
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
19
|
Mattson MP, Leak RK. The hormesis principle of neuroplasticity and neuroprotection. Cell Metab 2024; 36:315-337. [PMID: 38211591 DOI: 10.1016/j.cmet.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/06/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
Animals live in habitats fraught with a range of environmental challenges to their bodies and brains. Accordingly, cells and organ systems have evolved stress-responsive signaling pathways that enable them to not only withstand environmental challenges but also to prepare for future challenges and function more efficiently. These phylogenetically conserved processes are the foundation of the hormesis principle, in which single or repeated exposures to low levels of environmental challenges improve cellular and organismal fitness and raise the probability of survival. Hormetic principles have been most intensively studied in physical exercise but apply to numerous other challenges known to improve human health (e.g., intermittent fasting, cognitive stimulation, and dietary phytochemicals). Here we review the physiological mechanisms underlying hormesis-based neuroplasticity and neuroprotection. Approaching natural resilience from the lens of hormesis may reveal novel methods for optimizing brain function and lowering the burden of neurological disorders.
Collapse
Affiliation(s)
- Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Petruso F, Giff A, Milano B, De Rossi M, Saccaro L. Inflammation and emotion regulation: a narrative review of evidence and mechanisms in emotion dysregulation disorders. Neuronal Signal 2023; 7:NS20220077. [PMID: 38026703 PMCID: PMC10653990 DOI: 10.1042/ns20220077] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Emotion dysregulation (ED) describes a difficulty with the modulation of which emotions are felt, as well as when and how these emotions are experienced or expressed. It is a focal overarching symptom in many severe and prevalent neuropsychiatric diseases, including bipolar disorders (BD), attention deficit/hyperactivity disorder (ADHD), and borderline personality disorder (BPD). In all these disorders, ED can manifest through symptoms of depression, anxiety, or affective lability. Considering the many symptomatic similarities between BD, ADHD, and BPD, a transdiagnostic approach is a promising lens of investigation. Mounting evidence supports the role of peripheral inflammatory markers and stress in the multifactorial aetiology and physiopathology of BD, ADHD, and BPD. Of note, neural circuits that regulate emotions appear particularly vulnerable to inflammatory insults and peripheral inflammation, which can impact the neuroimmune milieu of the central nervous system. Thus far, few studies have examined the link between ED and inflammation in BD, ADHD, and BPD. To our knowledge, no specific work has provided a critical comparison of the results from these disorders. To fill this gap in the literature, we review the known associations and mechanisms linking ED and inflammation in general, and clinically, in BD, ADHD, and BD. Our narrative review begins with an examination of the routes linking ED and inflammation, followed by a discussion of disorder-specific results accounting for methodological limitations and relevant confounding factors. Finally, we critically discuss both correspondences and discrepancies in the results and comment on potential vulnerability markers and promising therapeutic interventions.
Collapse
Affiliation(s)
| | - Alexis E. Giff
- Department of Neuroscience, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Beatrice A. Milano
- Sant’Anna School of Advanced Studies, Pisa, Italy
- University of Pisa, Pisa, Italy
| | | | - Luigi Francesco Saccaro
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Switzerland
- Department of Psychiatry, Geneva University Hospital, Switzerland
| |
Collapse
|
21
|
Mueller B. Episodic Migraine and POTS. Curr Pain Headache Rep 2023; 27:757-763. [PMID: 37804458 DOI: 10.1007/s11916-023-01173-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/09/2023]
Abstract
PURPOSE OF REVIEW Migraine is prevalent in patients with postural orthostatic tachycardia syndrome (POTS). The purpose of this review is to summarize and interpret studies that examine stress response systems in patients with migraine, focusing on their relevance to the pathologies associated with POTS. Important structural and functional components of the stress response network are also reviewed. RECENT FINDINGS In patients with migraine, studies examining the autonomic nervous system have demonstrated interictal sympathetic hypofunction and ictal sympathetic hyperfunction, while those focusing on the hypothalamic-pituitary-adrenal axis have demonstrated elevated responsivity. There is evidence that activation of these stress response systems during a migraine episode may exacerbate vascular dysfunction and play a role in the development of central sensitization. Activation of the stress response systems during an episode of migraine has the potential to exacerbate the pathology of POTS. Treatment approaches for the patient with comorbid episodic migraine and POTS should consider the etiology of POTS.
Collapse
Affiliation(s)
- Bridget Mueller
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 5 East 98th Street, Box 1139, New York, NY, 10029, USA.
| |
Collapse
|
22
|
Darwish Y, Willeford S, Mahesh K, Van S. Ketamine for atypical facial pain and hormonal dysregulation: a case report. Reg Anesth Pain Med 2023; 48:572-574. [PMID: 37419510 DOI: 10.1136/rapm-2023-104482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Ketamine has garnered increased interest for its promising applications in chronic pain treatment, particularly in cases where conventional therapies have proven insufficient. Nevertheless, despite its potential advantages, ketamine remains classified as a third-line medication for pain management. While there are well-documented reactions to ketamine such as hypertension and tachycardia, not much is known about its relationship to cortisol. In this case report, we explicate the administration of ketamine in a patient presenting with atypical facial pain, examining its multifaceted effects on cortisol levels and concurrent pain management. CASE PRESENTATION A patient with a history of Cushing's disease underwent multiple resections of a pituitary tumor. Afterwards, the patient began experiencing a burning-like pain on the left side of the face. The discomfort was initially treated with a variety of neuromodulatory and anti-inflammatory medications, which caused intolerable side effects and were not effective for pain. As a final recourse, we initiated a regimen of oral compounded ketamine at 5-10 mg three times daily as needed. The patient exhibited marked amelioration in their pain symptoms; however, there was an elevation in their baseline cortisol. In view of the potential risk of inducing Cushing's syndrome, the administration of daily ketamine was discontinued. CONCLUSION While ketamine is primarily known to control pain through the antagonization of N-methyl-D-aspartate receptors, its effects on cortisol may also contribute to its analgesic properties. Physicians should be aware of the potential for these interactions, particularly when treating patients with a predisposition to hormonal imbalances.
Collapse
Affiliation(s)
- Yousef Darwish
- Department of Physical Medicine and Rehabilitation, Johns Hopkins Medical Center, Baltimore, Maryland, USA
| | - Sierra Willeford
- Department of Physical Medicine and Rehabilitation, Johns Hopkins Medical Center, Baltimore, Maryland, USA
| | - Krithika Mahesh
- Department of Physical Medicine and Rehabilitation, Johns Hopkins Medical Center, Baltimore, Maryland, USA
| | - Stephanie Van
- Department of Physical Medicine and Rehabilitation, Johns Hopkins Medical Center, Baltimore, Maryland, USA
| |
Collapse
|
23
|
McConn BR, Kpodo KR, Rivier JE, Behan DP, Richert BT, Radcliffe JS, Lay DC, Johnson JS. Interactions between corticotropin releasing factor signaling and prophylactic antibiotics on measures of intestinal function in weaned and transported pigs. Front Physiol 2023; 14:1266409. [PMID: 37908333 PMCID: PMC10615255 DOI: 10.3389/fphys.2023.1266409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/29/2023] [Indexed: 11/02/2023] Open
Abstract
The study objective was to evaluate the interaction between corticotrophin releasing factor (CRF) receptor signaling and prophylactic antibiotic administration on intestinal physiology in newly weaned and transported pigs. Pigs (n = 56; 5.70 ± 1.05 kg) were weaned (20.49 ± 0.64 d), a blood sample was taken, and then pigs were given an intraperitoneal injection of saline (SAL; n = 28 pigs) or a CRF receptor antagonist (CRFA; n = 28 pigs; 30 μg/kg body weight; Astressin B), and then were transported in a livestock trailer for 12 h and 49 min. A second and third intraperitoneal injection was given at 4 h 42 min and 11 h 36 min into the transport process, respectively. Following transport, 4 SAL and 4 CRFA pigs were blood sampled and euthanized. The remaining 48 pigs were individually housed and given dietary antibiotics [AB; n = 12 SAL and 12 CRFA pigs; chlortetracycline (441 ppm) + tiamulin (38.6 ppm)] or no dietary antibiotics (NAB; n = 12 SAL and 12 CRFA pigs) for 14 d post-transport. Blood was collected at 12 h and on d 3, 7, and 14, and then pigs were euthanized on d 7 (n = 24) and d 14 (n = 24) post-weaning and transport. Circulating cortisol was reduced (p = 0.05) in CRFA pigs when compared to SAL pigs post-weaning and transport. On d 7, jejunal villus height and crypt depth was greater overall (p < 0.05) in AB-fed pigs versus NAB-fed pigs. On d 14, ileal crypt depth was reduced (p = 0.02) in CRFA pigs when compared to SAL pigs. Jejunal CRF mRNA abundance tended to be reduced (p = 0.09) on d 7 in CRFA pigs versus SAL pigs. On d 14, jejunal tumor necrosis factor-alpha was reduced (p = 0.01) in AB-fed pigs versus NAB-fed pigs. On d 7, change in glucose short-circuit current tended to be increased (p = 0.07) in CRFA pigs fed the AB diet when compared to CRFA pigs fed the NAB diet. In conclusion, CRFA pigs and pigs fed AB had some similar biological intestinal function measures post-weaning and transport.
Collapse
Affiliation(s)
- Betty R. McConn
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, United States
| | | | - Jean E. Rivier
- Sentia Medical Sciences Inc, San Diego, CA, United States
| | | | | | | | - Donald C. Lay
- Livestock Behavior Research Unit, Agricultural Research Service (USDA), West Lafayette, IN, United States
| | - Jay S. Johnson
- Livestock Behavior Research Unit, Agricultural Research Service (USDA), West Lafayette, IN, United States
| |
Collapse
|
24
|
Mázala-de-Oliveira T, Silva BT, Campello-Costa P, Carvalho VF. The Role of the Adrenal-Gut-Brain Axis on Comorbid Depressive Disorder Development in Diabetes. Biomolecules 2023; 13:1504. [PMID: 37892186 PMCID: PMC10604999 DOI: 10.3390/biom13101504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/15/2023] [Accepted: 08/26/2023] [Indexed: 10/29/2023] Open
Abstract
Diabetic patients are more affected by depression than non-diabetics, and this is related to greater treatment resistance and associated with poorer outcomes. This increase in the prevalence of depression in diabetics is also related to hyperglycemia and hypercortisolism. In diabetics, the hyperactivity of the HPA axis occurs in parallel to gut dysbiosis, weakness of the intestinal permeability barrier, and high bacterial-product translocation into the bloodstream. Diabetes also induces an increase in the permeability of the blood-brain barrier (BBB) and Toll-like receptor 4 (TLR4) expression in the hippocampus. Furthermore, lipopolysaccharide (LPS)-induced depression behaviors and neuroinflammation are exacerbated in diabetic mice. In this context, we propose here that hypercortisolism, in association with gut dysbiosis, leads to an exacerbation of hippocampal neuroinflammation, glutamatergic transmission, and neuronal apoptosis, leading to the development and aggravation of depression and to resistance to treatment of this mood disorder in diabetic patients.
Collapse
Affiliation(s)
- Thalita Mázala-de-Oliveira
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (T.M.-d.-O.); (B.T.S.)
| | - Bruna Teixeira Silva
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (T.M.-d.-O.); (B.T.S.)
- Programa de Pós-Graduação em Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24210-201, Brazil;
| | - Paula Campello-Costa
- Programa de Pós-Graduação em Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24210-201, Brazil;
| | - Vinicius Frias Carvalho
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (T.M.-d.-O.); (B.T.S.)
- Programa de Pós-Graduação em Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24210-201, Brazil;
- Laboratório de Inflamação, Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação—INCT-NIM, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| |
Collapse
|
25
|
Jurcau A, Andronie-Cioara FL, Nistor-Cseppento DC, Pascalau N, Rus M, Vasca E, Jurcau MC. The Involvement of Neuroinflammation in the Onset and Progression of Parkinson's Disease. Int J Mol Sci 2023; 24:14582. [PMID: 37834030 PMCID: PMC10573049 DOI: 10.3390/ijms241914582] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Parkinson's disease is a neurodegenerative disease exhibiting the fastest growth in incidence in recent years. As with most neurodegenerative diseases, the pathophysiology is incompletely elucidated, but compelling evidence implicates inflammation, both in the central nervous system and in the periphery, in the initiation and progression of the disease, although it is not yet clear what triggers this inflammatory response and where it begins. Gut dysbiosis seems to be a likely candidate for the initiation of the systemic inflammation. The therapies in current use provide only symptomatic relief, but do not interfere with the disease progression. Nonetheless, animal models have shown promising results with therapies that target various vicious neuroinflammatory cascades. Translating these therapeutic strategies into clinical trials is still in its infancy, and a series of issues, such as the exact timing, identifying biomarkers able to identify Parkinson's disease in early and pre-symptomatic stages, or the proper indications of genetic testing in the population at large, will need to be settled in future guidelines.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Delia Carmen Nistor-Cseppento
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Nicoleta Pascalau
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Marius Rus
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Elisabeta Vasca
- Department of Oral Rehabilitation, Faculty of Medicine “Vasile Goldis” Arad, 310025 Arad, Romania
| | | |
Collapse
|
26
|
Wilson JB, Epstein M, Lopez B, Brown AK, Lutfy K, Friedman TC. The role of Neurochemicals, Stress Hormones and Immune System in the Positive Feedback Loops between Diabetes, Obesity and Depression. Front Endocrinol (Lausanne) 2023; 14:1224612. [PMID: 37664841 PMCID: PMC10470111 DOI: 10.3389/fendo.2023.1224612] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) and depression are significant public health and socioeconomic issues. They commonly co-occur, with T2DM occurring in 11.3% of the US population, while depression has a prevalence of about 9%, with higher rates among youths. Approximately 31% of patients with T2DM suffer from depressive symptoms, with 11.4% having major depressive disorders, which is twice as high as the prevalence of depression in patients without T2DM. Additionally, over 80% of people with T2DM are overweight or obese. This review describes how T2DM and depression can enhance one another, using the same molecular pathways, by synergistically altering the brain's structure and function and reducing the reward obtained from eating. In this article, we reviewed the evidence that eating, especially high-caloric foods, stimulates the limbic system, initiating Reward Deficiency Syndrome. Analogous to other addictive behaviors, neurochemical changes in those with depression and/or T2DM are thought to cause individuals to increase their food intake to obtain the same reward leading to binge eating, weight gain and obesity. Treating the symptoms of T2DM, such as lowering HbA1c, without addressing the underlying pathways has little chance of eliminating the disease. Targeting the immune system, stress circuit, melatonin, and other alterations may be more effective.
Collapse
Affiliation(s)
- Julian B. Wilson
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Ma’ayan Epstein
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- Psychiatric Emergency Room, Olive View – University of California, Los Angeles (UCLA) Medical Center, Sylmar, CA, United States
| | - Briana Lopez
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- Friends Research Institute, Cerritos, CA, United States
| | - Amira K. Brown
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Kabirullah Lutfy
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Theodore C. Friedman
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- Friends Research Institute, Cerritos, CA, United States
| |
Collapse
|
27
|
Kuang N, Liu Z, Yu G, Wu X, Becker B, Fan H, Peng S, Zhang K, Zhao J, Kang J, Dong G, Zhao X, Sahakian BJ, Robbins TW, Cheng W, Feng J, Schumann G, Palaniyappan L, Zhang J. Neurodevelopmental risk and adaptation as a model for comorbidity among internalizing and externalizing disorders: genomics and cell-specific expression enriched morphometric study. BMC Med 2023; 21:291. [PMID: 37542243 PMCID: PMC10403847 DOI: 10.1186/s12916-023-02920-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/01/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Comorbidity is the rule rather than the exception for childhood and adolescent onset mental disorders, but we cannot predict its occurrence and do not know the neural mechanisms underlying comorbidity. We investigate if the effects of comorbid internalizing and externalizing disorders on anatomical differences represent a simple aggregate of the effects on each disorder and if these comorbidity-associated cortical surface differences relate to a distinct genetic underpinning. METHODS We studied the cortical surface area (SA) and thickness (CT) of 11,878 preadolescents (9-10 years) from the Adolescent Brain and Cognitive Development Study. Linear mixed models were implemented in comparative and association analyses among internalizing (dysthymia, major depressive disorder, disruptive mood dysregulation disorder, agoraphobia, panic disorder, specific phobia, separation anxiety disorder, social anxiety disorder, generalized anxiety disorder, post-traumatic stress disorder), externalizing (attention-deficit/hyperactivity disorder, oppositional defiant disorder, conduct disorder) diagnostic groups, a group with comorbidity of the two and a healthy control group. Genome-wide association analysis (GWAS) and cell type specificity analysis were performed on 4468 unrelated European participants from this cohort. RESULTS Smaller cortical surface area but higher thickness was noted across patient groups when compared to controls. Children with comorbid internalizing and externalizing disorders had more pronounced areal reduction than those without comorbidity, indicating an additive burden. In contrast, cortical thickness had a non-linear effect with comorbidity: the comorbid group had no significant CT differences, while those patient groups without comorbidity had significantly higher thickness compare to healthy controls. Distinct biological pathways were implicated in regional SA and CT differences. Specifically, CT differences were associated with immune-related processes implicating astrocytes and oligodendrocytes, while SA-related differences related mainly to inhibitory neurons. CONCLUSION The emergence of comorbidity across distinct clusters of psychopathology is unlikely to be due to a simple additive neurobiological effect alone. Distinct developmental risk moderated by immune-related adaptation processes, with unique genetic and cell-specific factors, may contribute to underlying SA and CT differences. Children with the highest risk but lowest resilience, both captured in their developmental morphometry, may develop a comorbid illness pattern.
Collapse
Affiliation(s)
- Nanyu Kuang
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Ministry of Education, Fudan University, Beijing, People's Republic of China
| | - Zhaowen Liu
- School of Computer Science, Northwestern Polytechnical University, Xi'an, Shanxin, People's Republic of China
| | - Gechang Yu
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Ministry of Education, Fudan University, Beijing, People's Republic of China
| | - Xinran Wu
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Ministry of Education, Fudan University, Beijing, People's Republic of China
| | - Benjamin Becker
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Huaxin Fan
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Ministry of Education, Fudan University, Beijing, People's Republic of China
| | - Songjun Peng
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Ministry of Education, Fudan University, Beijing, People's Republic of China
| | - Kai Zhang
- Institute of Computer Science and Technology, East China Normal University, Shanghai, People's Republic of China
| | - Jiajia Zhao
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Ministry of Education, Fudan University, Beijing, People's Republic of China
| | - Jujiao Kang
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, People's Republic of China
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Guiying Dong
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, People's Republic of China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China
| | - Xingming Zhao
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, People's Republic of China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China
- Zhangjiang Fudan International Innovation Center, Shanghai, 200433, People's Republic of China
| | - Barbara J Sahakian
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, People's Republic of China
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Trevor W Robbins
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, People's Republic of China
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Wei Cheng
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Ministry of Education, Fudan University, Beijing, People's Republic of China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, 321004, China
- Shanghai Medical College and Zhongshan Hospital Immunotherapy Technology Transfer Center, Shanghai, 200032, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Ministry of Education, Fudan University, Beijing, People's Republic of China
- Shanghai Center for Mathematical Sciences, Shanghai, 200433, People's Republic of China
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
- Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200433, People's Republic of China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, People's Republic of China
| | - Gunter Schumann
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, People's Republic of China.
- PONS Research Group, Department of Psychiatry and 20 Psychotherapy, Humboldt University, Berlin and Leibniz Institute for Neurobiology, Campus Charite Mitte, Magdeburg, Germany.
| | - Lena Palaniyappan
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Robarts Research Institute, University of Western Ontario, London, ON, Canada.
- Department of Medical Biophysica, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | - Jie Zhang
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, People's Republic of China.
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Ministry of Education, Fudan University, Beijing, People's Republic of China.
| |
Collapse
|
28
|
Newbury JB, Arseneault L, Moffitt TE, Odgers CL, Howe LD, Bakolis I, Reuben A, Danese A, Sugden K, Williams B, Rasmussen LJH, Trotta A, Ambler AP, Fisher HL. Socioenvironmental Adversity and Adolescent Psychotic Experiences: Exploring Potential Mechanisms in a UK Longitudinal Cohort. Schizophr Bull 2023; 49:1042-1054. [PMID: 36934309 PMCID: PMC10318878 DOI: 10.1093/schbul/sbad017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
Abstract
BACKGROUND AND HYPOTHESIS Children exposed to socioenvironmental adversities (eg, urbanicity, pollution, neighborhood deprivation, crime, and family disadvantage) are more likely to subsequently develop subclinical psychotic experiences during adolescence (eg, hearing voices, paranoia). However, the pathways through which this occurs have not been previously investigated. We hypothesized that cognitive ability and inflammation would partly explain this association. STUDY DESIGN Data were utilized from the Environmental-Risk Longitudinal Twin Study, a cohort of 2232 children born in 1994-1995 in England and Wales and followed to age 18. Socioenvironmental adversities were measured from birth to age 10 and classified into physical risk (defined by high urbanicity and air pollution) and socioeconomic risk (defined by high neighborhood deprivation, neighborhood disorder, and family disadvantage). Cognitive abilities (overall, crystallized, fluid, and working memory) were assessed at age 12; and inflammatory markers (C-reactive protein, interleukin-6, soluble urokinase plasminogen activator receptor) were measured at age 18 from blood samples. Participants were interviewed at age 18 regarding psychotic experiences. STUDY RESULTS Higher physical risk and socioeconomic risk were associated with increased odds of psychotic experiences in adolescence. The largest mediation pathways were from socioeconomic risk via overall cognitive ability and crystallized ability, which accounted for ~11% and ~19% of the association with psychotic experiences, respectively. No statistically significant pathways were found via inflammatory markers in exploratory (partially cross-sectional) analyses. CONCLUSIONS Cognitive ability, especially crystallized ability, may partly explain the association between childhood socioenvironmental adversity and adolescent psychotic experiences. Interventions to support cognitive development among children living in disadvantaged settings could buffer them against developing subclinical psychotic phenomena.
Collapse
Affiliation(s)
- Joanne B Newbury
- King’s College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Louise Arseneault
- King’s College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Terrie E Moffitt
- King’s College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Centre for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Candice L Odgers
- Social Science Research Institute, Duke University, Durham, NC, USA
- Department of Psychological Science, School of Social Ecology, University of California, Irvine, Irvine, CA, USA
| | - Laura D Howe
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ioannis Bakolis
- King’s College London, Centre for Implementation Science, Department of Health Service and Population Research, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- King’s College London, Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Aaron Reuben
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Andrea Danese
- King’s College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- King’s College London, Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- National and Specialist CAMHS Clinic for Trauma, Anxiety, and Depression, South London and Maudsley NHS Foundation Trust, London, UK
| | - Karen Sugden
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Benjamin Williams
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Line J H Rasmussen
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Antonella Trotta
- King’s College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- School of Health and Social Care, University of Essex, Colchester, UK
| | - Antony P Ambler
- King’s College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Helen L Fisher
- King’s College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- ESRC Centre for Society and Mental Health, King’s College London, London, UK
| |
Collapse
|
29
|
Sapolsky R. 2022 ISPNE Bruce McEwen Lifetime Achievement award: Stress, from molecules to societies. Psychoneuroendocrinology 2023; 154:106274. [PMID: 37163880 DOI: 10.1016/j.psyneuen.2023.106274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The International Society for Psychoneuroendocrinology meeting in Chicago in 2022 was thrilled to recognize Dr. Robert Sapolsky with the Bruce McEwen Lifetime Achievement award. This is the second year for the award to be named to honor Bruce McEwen and it marks the completion of a special issue edited by Blazej Miziak and Robert Paul Juster in the journal Psychoneuroendocrinology dedicated to Bruce's legacy and the unfathomable contribution of Allostatic Load to the stress field. Yet, as our award winner writes, Bruce's legacy is more than scientific as he was well known for mentorship and being an exemplary person, theorist, and scientist. Perhaps understandably for a career favored by humble introverts and shy reclusives, the science shines in the spotlight and personal reflections are cut to accommodate word count limits. For scholars entering the field, stargazing at larger than life luminaries in the field is thrilling yet intimidating as it feels impossible that these experts have the same doubts and distractions as the rest of us primates. Thus, Psychoneuroendocrinology is thrilled to kick off the first perspectives piece in the Cell to Selves series with Dr. Robert Sapolsky sharing that, like his Baboon troops in Kenya, he too sometimes has a bad-hair day. This paper is a written version of a lecture I gave on September 8th, 2022, when receiving the first Bruce McEwen Lifetime Achievement Award from the ISPNE. This was a bittersweet honor; Bruce was my graduate advisor at Rockefeller University and over the next forty years, he was my mentor, teacher and father figure. His death in 2020 left a hole in my life.
Collapse
Affiliation(s)
- Robert Sapolsky
- Departments of Biology, Neurology and Neurosurgery, Stanford University, Stanford, CA 94305-5020, USA.
| |
Collapse
|
30
|
Li J, Tong L, Schock BC, Ji LL. Post-traumatic Stress Disorder: Focus on Neuroinflammation. Mol Neurobiol 2023; 60:3963-3978. [PMID: 37004607 DOI: 10.1007/s12035-023-03320-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/09/2023] [Indexed: 04/04/2023]
Abstract
Post-traumatic stress disorder (PTSD), gaining increasing attention, is a multifaceted psychiatric disorder that occurs following a stressful or traumatic event or series of events. Recently, several studies showed a close relationship between PTSD and neuroinflammation. Neuroinflammation, a defense response of the nervous system, is associated with the activation of neuroimmune cells such as microglia and astrocytes and with changes in inflammatory markers. In this review, we first analyzed the relationship between neuroinflammation and PTSD: the effect of stress-derived activation of the hypothalamic-pituitary-adrenal (HPA) axis on the main immune cells in the brain and the effect of stimulated immune cells in the brain on the HPA axis. We then summarize the alteration of inflammatory markers in brain regions related to PTSD. Astrocytes are neural parenchymal cells that protect neurons by regulating the ionic microenvironment around neurons. Microglia are macrophages of the brain that coordinate the immunological response. Recent studies on these two cell types provided new insight into neuroinflammation in PTSD. These contribute to promoting comprehension of neuroinflammation, which plays a pivotal role in the pathogenesis of PTSD.
Collapse
Affiliation(s)
- Jimeng Li
- Department of 2nd Clinical College, China Medical University, Shenyang, Liaoning, China
| | - Lei Tong
- Department of Anatomy, College of Basic Sciences, China Medical University, Shenyang, Liaoning, China
| | - Bettina C Schock
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast Faculty of Medicine Health and Life Sciences, Belfast, UK
| | - Li-Li Ji
- Department of Anatomy, College of Basic Sciences, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
31
|
Vezzani A, Di Sapia R, Kebede V, Balosso S, Ravizza T. Neuroimmunology of status epilepticus. Epilepsy Behav 2023; 140:109095. [PMID: 36753859 DOI: 10.1016/j.yebeh.2023.109095] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/14/2023] [Indexed: 02/09/2023]
Abstract
Status epilepticus (SE) is a very heterogeneous clinical condition often refractory to available treatment options. Evidence in animal models shows that neuroinflammation arises in the brain during SE due to the activation of innate immune mechanisms in brain parenchyma cells. Intervention studies in animal models support the involvement of neuroinflammation in SE onset, duration, and severity, refractoriness to treatments, and long-term neurological consequences. Clinical evidence shows that neuroinflammation occurs in patients with SE of diverse etiologies likely representing a common phenomenon, thus broadening the involvement of the immune system beyond the infective and autoimmune etiologies. There is urgent need for novel therapies for refractory SE that rely upon a better understanding of the basic mechanisms underlying this clinical condition. Preclinical and clinical evidence encourage consideration of specific anti-inflammatory treatments for controlling SE and its consequences in patients.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy.
| | - Rossella Di Sapia
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | - Valentina Kebede
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | - Silvia Balosso
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | - Teresa Ravizza
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| |
Collapse
|
32
|
Delayed TBI-Induced Neuronal Death in the Ipsilateral Hippocampus and Behavioral Deficits in Rats: Influence of Corticosterone-Dependent Survivorship Bias? Int J Mol Sci 2023; 24:ijms24054542. [PMID: 36901972 PMCID: PMC10003069 DOI: 10.3390/ijms24054542] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Acute and chronic corticosterone (CS) elevations after traumatic brain injury (TBI) may be involved in distant hippocampal damage and the development of late posttraumatic behavioral pathology. CS-dependent behavioral and morphological changes were studied 3 months after TBI induced by lateral fluid percussion in 51 male Sprague-Dawley rats. CS was measured in the background 3 and 7 days and 1, 2 and 3 months after TBI. Tests including open field, elevated plus maze, object location, new object recognition tests (NORT) and Barnes maze with reversal learning were used to assess behavioral changes in acute and late TBI periods. The elevation of CS on day 3 after TBI was accompanied by early CS-dependent objective memory impairments detected in NORT. Blood CS levels > 860 nmol/L predicted delayed mortality with an accuracy of 0.947. Ipsilateral neuronal loss in the hippocampal dentate gyrus, microgliosis in the contralateral dentate gyrus and bilateral thinning of hippocampal cell layers as well as delayed spatial memory deficits in the Barnes maze were revealed 3 months after TBI. Because only animals with moderate but not severe posttraumatic CS elevation survived, we suggest that moderate late posttraumatic morphological and behavioral deficits may be at least partially masked by CS-dependent survivorship bias.
Collapse
|
33
|
Saco Y, Bassols A. Acute phase proteins in cattle and swine: A review. Vet Clin Pathol 2023; 52 Suppl 1:50-63. [PMID: 36526287 DOI: 10.1111/vcp.13220] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/30/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022]
Abstract
The major acute phase proteins (APPs) in cattle are haptoglobin (Hp) and serum amyloid A (SAA), and in swine, are Hp, SAA, C-reactive protein (CRP), and Pig major acute phase protein (Pig-MAP). Many methodologic assays are presently available to measure these parameters, which are still being improved to increase their specificity, sensitivity, user-friendliness, and economic availability. In cattle, the main applications are the diagnosis and monitoring of frequent diseases such as mastitis and metritis in dairy cows and respiratory problems in young calves. In pigs, APPs are useful in the control of bacterial and viral infections, and they may be used at the slaughterhouse to monitor subclinical pathologies and improve food safety. The utility of APP in animal production must not be forgotten; optimization of protocols to improve performance, welfare, and nutrition may benefit from the use of APPs. Other sample types besides serum or plasma have potential uses; APP determination in milk is a powerful tool in the control of mastitis, saliva is a non-invasive sample type, and meat juice is easily obtained at the slaughterhouse. Increasing our knowledge of reference intervals and the influence of variables such as age, breed, sex, and the season is important. Finally, worldwide harmonization and standardization of analytical procedures will help to expand the use of APPs.
Collapse
Affiliation(s)
- Yolanda Saco
- Departament de Bioquímica i Biologia Molecular, Servei de Bioquímica Clínica Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Anna Bassols
- Departament de Bioquímica i Biologia Molecular, Servei de Bioquímica Clínica Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
34
|
Bhatt S, Dhar AK, Samanta MK, Suttee A. Effects of Current Psychotropic Drugs on Inflammation and Immune System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:407-434. [PMID: 36949320 DOI: 10.1007/978-981-19-7376-5_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The immune system and inflammation are involved in the pathological progression of various psychiatric disorders such as depression or major depressive disorder (MDD), generalized anxiety disorder (GAD) or anxiety, schizophrenia, Alzheimer's disease (AD), and Huntington's disease. It is observed that levels of inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and other markers are highly increased in the abovementioned disorders. The inflammation and immune component also lead to enhance the oxidative stress. The oxidative stress and increased production of reactive oxygen species (ROS) are considered as important factors that are involved in pathological progression of psychiatric disorders. Increase production of ROS is associated with excessive inflammation followed by cell necrosis and death. The psychotropic drugs are mainly work through modulations of neurotransmitter system. However, it is evident that inflammation and immune modulation are also having important role in the progression of psychiatric disorders. Rationale of the use of current psychotropic drugs is modulation of immune system by them. However, the effects of psychotropic drugs on the immune system and how these might contribute to their efficacy remain largely unclear. The drugs may act through modification of inflammation and related markers. The main purpose of this book chapter is to address the role of current psychotropic drugs on inflammation and immune system. Moreover, it will also address the role of inflammation in the progression of psychiatric disorders.
Collapse
Affiliation(s)
- Shvetank Bhatt
- School of Pharmacy, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra, India
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, India
| | | | | | - Ashish Suttee
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
35
|
Pivac N, Vuic B, Sagud M, Nedic Erjavec G, Nikolac Perkovic M, Konjevod M, Tudor L, Svob Strac D, Uzun S, Kozumplik O, Uzun S, Mimica N. PTSD, Immune System, and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:225-262. [PMID: 36949313 DOI: 10.1007/978-981-19-7376-5_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a severe trauma and stress-related disorder associated with different somatic comorbidities, especially cardiovascular and metabolic disorders, and with chronic low-grade inflammation. Altered balance of the hypothalamic-pituitary-adrenal (HPA) axis, cytokines and chemokines, C-reactive protein, oxidative stress markers, kynurenine pathways, and gut microbiota might be involved in the alterations of certain brain regions regulating fear conditioning and memory processes, that are all altered in PTSD. In addition to the HPA axis, the gut microbiota maintains the balance and interaction of the immune, CNS, and endocrine pathways forming the gut-brain axis. Disbalance in the HPA axis, gut-brain axis, oxidative stress pathways and kynurenine pathways, altered immune signaling and disrupted homeostasis, as well as the association of the PTSD with the inflammation and disrupted cognition support the search for novel strategies for treatment of PTSD. Besides potential anti-inflammatory treatment, dietary interventions or the use of beneficial bacteria, such as probiotics, can potentially improve the composition and the function of the bacterial community in the gut. Therefore, bacterial supplements and controlled dietary changes, with exercise, might have beneficial effects on the psychological and cognitive functions in patients with PTSD. These new treatments should be aimed to attenuate inflammatory processes and consequently to reduce PTSD symptoms but also to improve cognition and reduce cardio-metabolic disorders associated so frequently with PTSD.
Collapse
Affiliation(s)
- Nela Pivac
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia.
| | - Barbara Vuic
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marina Sagud
- Department of Psychiatry, University Hospital Center Zagreb, Zagreb, Croatia
- University of Zagreb School of Medicine, Zagreb, Croatia
| | - Gordana Nedic Erjavec
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Matea Nikolac Perkovic
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marcela Konjevod
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Lucija Tudor
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Dubravka Svob Strac
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Suzana Uzun
- University of Zagreb School of Medicine, Zagreb, Croatia
- University Psychiatric Hospital Vrapce, Zagreb, Croatia
| | | | - Sandra Uzun
- Department for Anesthesiology, Reanimatology, and Intensive Care, University Hospital Center Zagreb, Zagreb, Croatia
| | - Ninoslav Mimica
- University of Zagreb School of Medicine, Zagreb, Croatia
- University Psychiatric Hospital Vrapce, Zagreb, Croatia
| |
Collapse
|
36
|
Gilstrap SR, Hobson JM, Owens MA, White DM, Sammy MJ, Ballinger S, Sorge RE, Goodin BR. Mitochondrial reactivity following acute exposure to experimental pain testing in people with HIV and chronic pain. Mol Pain 2023; 19:17448069231195975. [PMID: 37542365 PMCID: PMC10467217 DOI: 10.1177/17448069231195975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/06/2023] [Accepted: 08/03/2023] [Indexed: 08/06/2023] Open
Abstract
Background: Physical stressors can cause a physiological response that can contribute to an increase in mitochondrial dysfunction and Mitochondrial DNA damage (mtDNA damage). People living with HIV (PWH) are more likely to suffer from chronic pain and may be more susceptible to mitochondrial dysfunction following exposure to a stressor. We used Quantitative Sensory Testing (QST) as an acute painful stressor in order to investigate whether PWH with/without chronic pain show differential mitochondrial physiological responses. Methods: The current study included PWH with (n = 26), and without (n = 29), chronic pain. Participants completed a single session that lasted approximately 180 min, including QST. Blood was taken prior to and following the QST battery for assays measuring mtDNA damage, mtDNA copy number, and mtDNA damage-associated molecular pattern (DAMP) levels (i.e., ND1 and ND6). Results: We examined differences between those with and without pain on various indicators of mitochondrial reactivity following exposure to QST. However, only ND6 and mtDNA damage were shown to be statistically significant between pain groups. Conclusion: PWH with chronic pain showed greater mitochondrial reactivity to laboratory stressors. Consequently, PWH and chronic pain may be more susceptible to conditions in which mitochondrial damage/dysfunction play a central role, such as cognitive decline.
Collapse
Affiliation(s)
- Shannon R Gilstrap
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joanna M Hobson
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael A Owens
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Dyan M White
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Melissa J Sammy
- Bio-Analytical Research Biology (BARB) Core, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Scott Ballinger
- Bio-Analytical Research Biology (BARB) Core, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert E Sorge
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Burel R Goodin
- Department of Anesthesiology, Washington University, St Louis, MO, USA
| |
Collapse
|
37
|
Komoltsev IG, Frankevich SO, Shirobokova NI, Kostyunina OV, Volkova AA, Bashkatova DA, Shalneva DV, Kostrukov PA, Salyp OY, Novikova MR, Gulyaeva NV. Acute Corticosterone Elevation and Immediate Seizure Expression in Rats Depends on the Time of the Day When Lateral Fluid Percussion Brain Injury Has Been Applied. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
38
|
Srinivasan M, Walker C. Circadian Clock, Glucocorticoids and NF-κB Signaling in Neuroinflammation- Implicating Glucocorticoid Induced Leucine Zipper as a Molecular Link. ASN Neuro 2022; 14:17590914221120190. [PMID: 36317290 PMCID: PMC9629546 DOI: 10.1177/17590914221120190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Inflammation including neuroinflammation is considered a protective response and is directed to repair, regenerate, and restore damaged tissues in the central nervous system. Persistent inflammation due to chronic stress, age related accrual of free radicals, subclinical infections or other factors lead to reduced survival and increased neuronal death. Circadian abnormalities secondary to altered sleep/wake cycles is one of the earliest signs of neurodegenerative diseases. Brain specific or global deficiency of core circadian trans-activator brain and muscle ARNT (Arylhydrocarbon Receptor Nuclear Translocator)-like protein 1 (BMAL1) or that of the transrepressor REV-ERBα, impaired neural function and cognitive performance in rodents. Consistently, transcripts of inflammatory cytokines and host immune responses have been shown to exhibit diurnal variation, in parallel with the disruption of the circadian rhythm. Glucocorticoids that exhibit both a circadian rhythm similar to that of the core clock transactivator BMAL1 and tissue specific ultradian rhythm are critical in the control of neuroinflammation and re-establishment of homeostasis. It is widely accepted that the glucocorticoids suppress nuclear factor-kappa B (NF-κB) mediated transactivation and suppress inflammation. Recent mechanistic elucidations suggest that the core clock components also modulate NF-κB mediated transactivation in the brain and peripheral tissues. In this review we discuss evidence for interactions between the circadian clock components, glucocorticoids and NF-κB signaling responses in the brain and propose glucocorticoid induced leucine zipper (GILZ) encoded by Tsc22d3, as a molecular link that connect all three pathways in the maintenance of CNS homeostasis as well as in the pathogenesis of neuroinflammation-neurodegeneration.
Collapse
Affiliation(s)
- Mythily Srinivasan
- Department of Oral Pathology, Medicine and Radiology, Indiana University School of Dentistry, Indiana University Purdue University at Indianapolis, Indiana, USA,Provaidya LLC, Indiana Center for Biomedical Innovation, Indianapolis, Indiana, USA,Mythily Srinivasan, Oral Pathology, Radiology and Medicine, Indiana University School of Dentistry, Indianapolis, Indiana, United States; Provaidya LLC, Indiana Center for Biomedical Innovation, 1800 North Capitol Av, Indianapolis, IN 46202, United States.
;
| | - Chandler Walker
- Department of Oral Pathology, Medicine and Radiology, Indiana University School of Dentistry, Indiana University Purdue University at Indianapolis, Indiana, USA,Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indiana University Purdue University at Indianapolis, Indiana, USA
| |
Collapse
|
39
|
Lorkiewicz P, Waszkiewicz N. Is SARS-CoV-2 a Risk Factor of Bipolar Disorder?-A Narrative Review. J Clin Med 2022; 11:6060. [PMID: 36294388 PMCID: PMC9604904 DOI: 10.3390/jcm11206060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
For 2.5 years we have been facing the coronavirus disease (COVID-19) and its health, social and economic effects. One of its known consequences is the development of neuropsychiatric diseases such as anxiety and depression. However, reports of manic episodes related to COVID-19 have emerged. Mania is an integral part of the debilitating illness-bipolar disorder (BD). Due to its devastating effects, it is therefore important to establish whether SARS-CoV-2 infection is a causative agent of this severe mental disorder. In this narrative review, we discuss the similarities between the disorders caused by SARS-CoV-2 and those found in patients with BD, and we also try to answer the question of whether SARS-CoV-2 infection may be a risk factor for the development of this affective disorder. Our observation shows that disorders in COVID-19 showing the greatest similarity to those in BD are cytokine disorders, tryptophan metabolism, sleep disorders and structural changes in the central nervous system (CNS). These changes, especially intensified in severe infections, may be a trigger for the development of BD in particularly vulnerable people, e.g., with family history, or cause an acute episode in patients with a pre-existing BD.
Collapse
Affiliation(s)
- Piotr Lorkiewicz
- Department of Psychiatry, Medical University of Bialystok, Wołodyjowskiego 2, 15-272 Białystok, Poland
| | | |
Collapse
|
40
|
Gano A, Lebonville CL, Becker HC. TLR3 activation with poly I:C exacerbates escalated alcohol consumption in dependent male C57BL/6J mice. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2022:1-12. [PMID: 36095319 DOI: 10.1080/00952990.2022.2092492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Background: Activation of TLR3 receptors, which are sensitive to viral infection, has emerged as a possible mechanism that increases alcohol intake in rodents.Objectives: These studies examined whether a history of ethanol dependence exacerbated the increase in drinking driven by the TLR3 agonist poly I:C.Methods: Male C57BL/6J mice (>10 per group) were given access to ethanol (20% v/v) 2 hours a day following a history of home cage drinking or after having been rendered ethanol-dependent using a chronic intermittent ethanol (CIE) vapor model. After testing multiple doses, a 5 mg/kg repeated poly I:C challenge was used to probe the effects of repeated immune challenge, alone or in conjunction with repeated cycles of CIE, on voluntary drinking. An ethanol (12% v/v) operant self-administration model was used to test the effects of poly I:C on stress-induced reinstatement of ethanol seeking and consumption.Results: Poly I:C in naive animals resulted in transient, modest increases in ethanol intake in the home cage and in self-administration (p < 0.05). However, poly I:C challenge resulted in sensitized stress-induced ethanol consumption and evoked a strong and persistent escalation of drinking in mice with a history of dependence (p < 0.05 for both).Conclusion: Activation of viral immune defense may affect ethanol consumption in dependence and sensitivity to future stressors. As patients who suffer from alcohol use disorder are at a heightened risk for viral infection, this interaction could generate risk factors for exacerbating behaviors associated with Alcohol Use Disorders via an immune mechanism.
Collapse
Affiliation(s)
- Anny Gano
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Christina L Lebonville
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- RHJ Department of Veterans Affairs Medical Center, Charleston, SC, USA
| |
Collapse
|
41
|
Boero G, Tyler RE, O’Buckley TK, Balan I, Besheer J, Morrow AL. (3α,5α)3-Hydroxypregnan-20-one (3α,5α-THP) Regulation of the HPA Axis in the Context of Different Stressors and Sex. Biomolecules 2022; 12:1134. [PMID: 36009028 PMCID: PMC9406198 DOI: 10.3390/biom12081134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 12/27/2022] Open
Abstract
Corticotropin-releasing factor (CRF) regulates the stress response in the hypothalamus and modulates neurotransmission across the brain through CRF receptors. Acute stress increases hypothalamic CRF and the GABAergic neurosteroid (3α,5α)3-hydroxypregnan-20-one (3α,5α-THP). We previously showed that 3α,5α-THP regulation of CRF is sex and brain region dependent. In this study, we investigated 3α,5α-THP regulation of stress-induced hypothalamic CRF, CRF receptor type 1 (CRFR1), CRF binding protein (CRFBP), pro-opiomelanocortin (POMC), and glucocorticoid receptor (GR) by western blot and circulating corticosterone (CORT) by enzyme-linked immunosorbent assay (ELISA) in male and female Sprague Dawley rats. Tissue was collected after rats were injected with 3α,5α-THP (15 mg/kg, IP) or vehicle 15 min prior to 30 min of restraint stress (RS), or 10 min of forced swim stress (FSS) and 20 min recovery. The initial exposure to a stress stimulus increased circulating CORT levels in both males and females, but 3α,5α-THP attenuated the CORT response only in females after RS. 3α,5α-THP reduced GR levels in male and females, but differently between stressors. 3α,5α-THP decreased the CRF stress response after FSS in males and females, but after RS, only in female rats. 3α,5α-THP reduced the CRFR1, CRFBP, and POMC increases after RS and FSS in males, but in females only after FSS. Our results showed different stress responses following different types of stressors: 3α,5α-THP regulated the HPA axis at different levels, depending on sex.
Collapse
Affiliation(s)
- Giorgia Boero
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ryan E. Tyler
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA
| | - Todd K. O’Buckley
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA
| | - Irina Balan
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA
| | - Joyce Besheer
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - A. Leslie Morrow
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
42
|
Bidirectional relations between depression symptoms and chronic kidney disease. J Affect Disord 2022; 311:224-230. [PMID: 35605709 DOI: 10.1016/j.jad.2022.05.104] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Depression and chronic kidney disease (CKD) often coexist. However, both the relations of depression with CKD development and CKD with depression risk were still elusive. We aimed to investigate the bidirectional relations between renal function and depression in a cohort of young and middle-aged adults. METHODS Using data from the Coronary Artery Risk Development in Young Adults study, the analysis of depressive symptoms and incident CKD (analysis 1) was performed in 3,731 participants without CKD, and the analysis of renal function and incident depression (analysis 2) was performed in 2,994 participants without depression. Depressive symptoms were measured using the Center for Epidemiologic Studies Depression Scale (-CES-D), and depression was defined as CES-D scores ≥16 or self-reported history of depression or antidepressant medication use. CKD was defined as estimated glomerular filtration rate <60 ml/min/1.73 m2 or urinary albumin to creatinine ratio ≥30 mg/g. RESULTS In analysis 1, 485 participants developed incident CKD during 61,202 person-years of follow-up, and CES-D scores (≥16 vs. <16; adjusted HR, 1.28; 95% CI, 1.04 to 1.59) were significant positive associated with incident CKD. In analysis 2, 1,029 participants developed incident depression during 42,927 person-years of follow-up, and CKD was significantly associated with a 36% increased risk of incident depression compared to non-CKD (HR, 1.36; 95% CI, 1.05 to 1.76). LIMITATIONS Depressive symptoms were only assessed using CES-D score, which is not the gold standard for the clinical diagnosis of depression. CONCLUSIONS This prospective cohort study monitored over 20 years indicated a bidirectional association between depression and CKD.
Collapse
|
43
|
Kim IB, Lee JH, Park SC. The Relationship between Stress, Inflammation, and Depression. Biomedicines 2022; 10:1929. [PMID: 36009476 PMCID: PMC9405608 DOI: 10.3390/biomedicines10081929] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 12/18/2022] Open
Abstract
A narrative review about the relationship between stress, inflammation, and depression is made as follows: Chronic stress leads to various stress-related diseases such as depression. Although most human diseases are related to stress exposure, the common pathways between stress and pathophysiological processes of different disorders are still debatable. Chronic inflammation is a crucial component of chronic diseases, including depression. Both experimental and clinical studies have demonstrated that an increase in the levels of pro-inflammatory cytokines and stress hormones, such as glucocorticoids, substantially contributes to the behavioral alterations associated with depression. Evidence suggests that inflammation plays a key role in the pathology of stress-related diseases; however, this link has not yet been completely explored. In this study, we aimed to determine the role of inflammation in stress-induced diseases and whether a common pathway for depression exists. Recent studies support pharmacological and non-pharmacological treatment approaches significantly associated with ameliorating depression-related inflammation. In addition, major depression can be associated with an activated immune system, whereas antidepressants can exert immunomodulatory effects. Moreover, non-pharmacological treatments for major depression (i.e., exercise) may be mediated by anti-inflammatory actions. This narrative review highlights the mechanisms underlying inflammation and provides new insights into the prevention and treatment of stress-related diseases, particularly depression.
Collapse
Affiliation(s)
- Il-Bin Kim
- Department of Psychiatry, Hanyang University Guri Hospital, Guri 11923, Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jae-Hon Lee
- Department of Psychiatry, Schulich of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Seon-Cheol Park
- Department of Psychiatry, Hanyang University Guri Hospital, Guri 11923, Korea
- Department of Psychiatry, Hanyang University College of Medicine, Seoul 04763, Korea
| |
Collapse
|
44
|
Mitochondrial oxidative phosphorylation response overrides glucocorticoid-induced stress in a reptile. J Comp Physiol B 2022; 192:765-774. [PMID: 35922677 DOI: 10.1007/s00360-022-01454-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 10/16/2022]
Abstract
Stress hormones and their impacts on whole organism metabolic rates are usually considered as appropriate proxies for animal energy budget that is the foundation of numerous concepts and models aiming at predicting individual and population responses to environmental stress. However, the dynamics of energy re-allocation under stress make the link between metabolism and corticosterone complex and still unclear. Using ectopic application of corticosterone for 3, 11 and 21 days, we estimated a time effect of stress in a lizard (Zootoca vivipara). We then investigated whole organism metabolism, muscle cellular O2 consumption and liver mitochondrial oxidative phosphorylation processes (O2 consumption and ATP production) and ROS production. The data showed that while skeletal muscle is not impacted, stress regulates the liver mitochondrial functionality in a time-dependent manner with opposing pictures between the different time expositions to corticosterone. While 3 days exposition is characterized by lower ATP synthesis rate and high H2O2 release with no change in the rate of oxygen consumption, the 11 days exposition reduced all three fluxes of about 50%. Oxidative phosphorylation capacities in liver mitochondria of lizard treated with corticosterone for 21 days was similar to the hepatic mitochondrial capacities in lizards that received no corticosterone treatment but with 40% decrease in H2O2 production. This new mitochondrial functioning allows a better capacity to respond to the energetic demands imposed by the environment but do not influence whole organism metabolism. In conclusion, global mitochondrial functioning has to be considered to better understand the proximal causes of the energy budget under stressful periods.
Collapse
|
45
|
Weil ZM, White B, Whitehead B, Karelina K. The role of the stress system in recovery after traumatic brain injury: A tribute to Bruce S. McEwen. Neurobiol Stress 2022; 19:100467. [PMID: 35720260 PMCID: PMC9201063 DOI: 10.1016/j.ynstr.2022.100467] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
Traumatic brain injury (TBI) represents a major public health concern. Although the majority of individuals that suffer mild-moderate TBI recover relatively quickly, a substantial subset of individuals experiences prolonged and debilitating symptoms. An exacerbated response to physiological and psychological stressors after TBI may mediate poor functional recovery. Individuals with TBI can suffer from poor stress tolerance, impairments in the ability to evaluate stressors, and poor initiation (and cessation) of neuroendocrine stress responses, all of which can exacerbate TBI-mediated dysfunction. Here, we pay tribute to the pioneering neuroendocrinologist Dr. Bruce McEwen by discussing the ways in which his work on stress physiology and allostatic loading impacts the TBI patient population both before and after their injuries. Specifically, we will discuss the modulatory role of hypothalamic-pituitary-adrenal axis responses immediately after TBI and later in recovery. We will also consider the impact of stressors and stress responses in promoting post-concussive syndrome and post-traumatic stress disorders, two common sequelae of TBI. Finally, we will explore the role of early life stressors, prior to brain injuries, as modulators of injury outcomes.
Collapse
Affiliation(s)
- Zachary M. Weil
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, 108 Biomedical Rd, Morgantown, WV, 26506, USA
| | - Brishti White
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, 108 Biomedical Rd, Morgantown, WV, 26506, USA
| | - Bailey Whitehead
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, 108 Biomedical Rd, Morgantown, WV, 26506, USA
| | - Kate Karelina
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, 108 Biomedical Rd, Morgantown, WV, 26506, USA
| |
Collapse
|
46
|
Zhou L, Wang T, Yu Y, Li M, Sun X, Song W, Wang Y, Zhang C, Fu F. The etiology of poststroke-depression: a hypothesis involving HPA axis. Biomed Pharmacother 2022; 151:113146. [PMID: 35643064 DOI: 10.1016/j.biopha.2022.113146] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/06/2022] [Accepted: 05/15/2022] [Indexed: 11/30/2022] Open
Abstract
Approximately, one in three ischemic stroke survivors suffered from depression, namely, post-stroke depression (PSD). PSD affects functional rehabilitation and may lead to poor quality of life of patients. There are numerous explanations about the etiologies of PSD. Here, we speculated that PSD are likely to be the result of specific changes in brain pathology. We hypothesized that the stroke-induced hyperactivity of hypothalamic-pituitary-adrenal (HPA) axis plays an important role in PSD. Stroke initiates a complex sequence of events in neuroendocrine system including HPA axis. The HPA axis is involved in the pathophysiology of depression, especially, the overactivity of the HPA axis occurs in major depressive disorder. This review summarizes the possible etiologies of PSD, focusing on the stroke-induced activation of HPA axis, mainly including the stress followed by severe brain damage and the proinflammatory cytokines release. The role of hyperactive of HPA axis in PSD was discussed in detail, which includes the role of high level corticotropin-releasing hormone in PSD, the effects of glucocorticoids on the alterations in specific brain structures, the expression of enzymes, excitotoxicity, the change in intestinal permeability, and the activation of microglia. The relationship between neuroendocrine regulation and inflammation was also described. Finally, the therapy of PSD by regulating HPA axis, neuroendocrine, and immunity was discussed briefly. Nevertheless, the change of HPA axis and the occurring of PSD maybe interact and promote on each other, and future investigations should explore this hypothesis in more depth.
Collapse
Affiliation(s)
- Lin Zhou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Yawen Yu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Mingan Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Xiaohui Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Wenhao Song
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Yunjie Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Ce Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Fenghua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China.
| |
Collapse
|
47
|
Kim S, Park ES, Chen PR, Kim E. Dysregulated Hypothalamic–Pituitary–Adrenal Axis Is Associated With Increased Inflammation and Worse Outcomes After Ischemic Stroke in Diabetic Mice. Front Immunol 2022; 13:864858. [PMID: 35784349 PMCID: PMC9243263 DOI: 10.3389/fimmu.2022.864858] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/09/2022] [Indexed: 01/08/2023] Open
Abstract
Diabetic patients have larger infarcts, worse neurological deficits, and higher mortality rate after an ischemic stroke. Evidence shows that in diabetes, the hypothalamic–pituitary–adrenal (HPA) axis was dysregulated and levels of cortisol increased. Based on the role of the HPA axis in immunity, we hypothesized that diabetes-dysregulated stress response exacerbates stroke outcomes via regulation of inflammation. To test this hypothesis, we assessed the regulation of the HPA axis in diabetic mice before and after stroke and determined its relevance in the regulation of post-stroke injury and inflammation. Diabetes was induced in C57BL/6 mice by feeding a high-fat diet and intraperitoneal injection of streptozotocin (STZ), and then the mice were subjected to 30 min of middle cerebral artery occlusion (MCAO). Infarct volume and neurological scores were measured in the ischemic mice. The inflammatory cytokine and chemokine levels were also determined in the ischemic brain. To assess the effect of diabetes on the stroke-modulated HPA axis, we measured the expression of components in the HPA axis including corticotropin-releasing hormone (CRH) in the hypothalamus, proopiomelanocortin (POMC) in the pituitary, and plasma adrenocorticotropic hormone (ACTH) and corticosterone. Diabetic mice had larger infarcts and worse neurological scores after stroke. The exacerbated stroke outcomes in diabetic mice were accompanied by the upregulated expression of inflammatory factors (including IL-1β, TNF-α, IL-6, CCR2, and MCP-1) in the ischemic brain. We also confirmed increased levels of hypothalamic CRH, pituitary POMC, and plasma corticosterone in diabetic mice before and after stroke, suggesting the hyper-activated HPA axis in diabetic conditions. Finally, we confirmed that post-stroke treatment of metyrapone (an inhibitor of glucocorticoid synthesis) reduced IL-6 expression and the infarct size in the ischemic brain of diabetic mice. These results elucidate the mechanisms in which the HPA axis in diabetes exacerbates ischemic stroke. Maintaining an optimal level of the stress response by regulating the HPA axis may be an effective approach to improving stroke outcomes in patients with diabetes.
Collapse
|
48
|
Gan YL, Wang CY, He RH, Hsu PC, Yeh HH, Hsieh TH, Lin HC, Cheng MY, Jeng CJ, Huang MC, Lee YH. FKBP51 mediates resilience to inflammation-induced anxiety through regulation of glutamic acid decarboxylase 65 expression in mouse hippocampus. J Neuroinflammation 2022; 19:152. [PMID: 35705957 PMCID: PMC9198626 DOI: 10.1186/s12974-022-02517-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/05/2022] [Indexed: 12/28/2022] Open
Abstract
Background Inflammation is a potential risk factor of mental disturbance. FKBP5 that encodes FK506-binding protein 51 (FKBP51), a negative cochaperone of glucocorticoid receptor (GR), is a stress-inducible gene and has been linked to psychiatric disorders. Yet, the role of FKBP51 in the inflammatory stress-associated mental disturbance remained unclear. Methods Fkbp5-deficient (Fkbp5-KO) mice were used to study inflammatory stress by a single intraperitoneal injection of lipopolysaccharide (LPS). The anxiety-like behaviors, neuroimaging, immunofluorescence staining, immunohistochemistry, protein and mRNA expression analysis of inflammation- and neurotransmission-related mediators were evaluated. A dexamethasone drinking model was also applied to examine the effect of Fkbp5-KO in glucocorticoid-induced stress. Results LPS administration induced FKBP51 elevation in the liver and hippocampus accompanied with transient sickness. Notably, Fkbp5-KO but not wild-type (WT) mice showed anxiety-like behaviors 7 days after LPS injection (LPS-D7). LPS challenge rapidly increased peripheral and central immune responses and hippocampal microglial activation followed by a delayed GR upregulation on LPS-D7, and these effects were attenuated in Fkbp5-KO mice. Whole-brain [18F]-FEPPA neuroimaging, which target translocator protein (TSPO) to indicate neuroinflammation, showed that Fkbp5-KO reduced LPS-induced neuroinflammation in various brain regions including hippocampus. Interestingly, LPS elevated glutamic acid decarboxylase 65 (GAD65), the membrane-associated GABA-synthesizing enzyme, in the hippocampus of WT but not Fkbp5-KO mice on LPS-D7. This FKBP51-dependent GAD65 upregulation was observed in the ventral hippocampal CA1 accompanied by the reduction of c-Fos-indicated neuronal activity, whereas both GAD65 and neuronal activity were reduced in dorsal CA1 in a FKBP51-independent manner. GC-induced anxiety was also examined, which was attenuated in Fkbp5-KO and hippocampal GAD65 expression was unaffected. Conclusions These results suggest that FKBP51/FKBP5 is involved in the systemic inflammation-induced neuroinflammation and hippocampal GR activation, which may contribute to the enhancement of GAD65 expression for GABA synthesis in the ventral hippocampus, thereby facilitating resilience to inflammation-induced anxiety. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02517-8.
Collapse
Affiliation(s)
- Yu-Ling Gan
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Chen-Yu Wang
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Rong-Heng He
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Pei-Chien Hsu
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Hsin-Hsien Yeh
- Brain Research Center, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Tsung-Han Hsieh
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Hui-Ching Lin
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Ming-Yen Cheng
- Department of Mathematics, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tsai, Hong Kong, China
| | - Chung-Jiuan Jeng
- Brain Research Center, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan.,Department and Institute of Anatomy and Cell Biology, College of Medicine, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Ming-Chyi Huang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, 309 Song-De Street, Taipei, 110, Taiwan. .,Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Xing Street, Taipei, 110, Taiwan. .,Psychiatric Research Center, Taipei Medical University Hospital, 252 Wu-Xing Street,, Taipei, 110, Taiwan.
| | - Yi-Hsuan Lee
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan. .,Brain Research Center, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan.
| |
Collapse
|
49
|
Maikoo S, Wilkins A, Qulu L. The effect of oxytocin and an enriched environment on anxiety-like behaviour and corticosterone levels in a prenatally stressed febrile seizure rat model. IBRO Neurosci Rep 2022; 13:47-56. [PMID: 36590100 PMCID: PMC9795298 DOI: 10.1016/j.ibneur.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023] Open
Abstract
Background Febrile seizures (FS) are a neurological abnormality which occur following a fever that has resulted from a systemic infection and are characterised by convulsions. These convulsions occur due to abnormally increased signalling of interleukin-1 beta, resulting in increased neuronal hyper-excitability. Furthermore, exposure to prenatal stress has been shown to exacerbate seizure duration, elicit anxiety-like behaviour and corticosterone levels. Oxytocin is a neuropeptide with anxiolytic, social bonding, and stress regulation effects. Therefore, the aim of the study was to assess whether oxytocin can attenuate the anxiety-like behaviour and increased corticosterone in rat offspring exposed to prenatal stress and FS. Method Sprague Dawley rats were mated. On GND14, prenatal stress was induced on pregnant dams for 1 hr/7 days. On PND 14, rat pups were injected with lipopolysaccharide (LPS, 200 μg/kg, i.p.) followed 2.5 h later by an i.p. injection of kainic acid (KA, 1.75 mg/kg). Oxytocin (1 mg/kg) was induced via different routes (intraperitoneal or intranasal) as well an enriched environment between PND 22-26. The enriched environment included larger cages (1560 cm2) with only 4 pups per cage, compared to those groups not receiving enrichment (646 cm2), as well as cardboard rolls and plastic toys. On PND 27-33 the light/dark box and elevated plus maze were used to assess anxiety-like behaviour. On PND 34 all rats were euthanized using a sharp guillotine, trunk blood and hypothalamic tissue were collected for neurochemical analysis (ELISA kit). Results Our findings confirmed that exposure to both prenatal stress and febrile seizures resulted anxiety-like behaviour and significantly higher plasma corticosterone concentrations compared to their counterparts. Environmental enrichment was significantly effective in attenuating the increased basal corticosterone levels and anxiety-like behaviour seen in the prenatally stressed FS rat. Although direct administration of oxytocin showed higher significance in reducing corticosterone plasma levels when compared to the enriched environment. Furthermore, hypothalamic oxytocin levels were not significant in rat exposed to environmental enrichment while oxytocin treatment showed a significant effect when compared to their counterparts. Conclusion Therefore, oxytocin administration during early postnatal development shows great potential in reversing the effects of prenatal stress and its subsequent exacerbation of FS.
Collapse
Affiliation(s)
- Shreyal Maikoo
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Andria Wilkins
- University of KwaZulu-Natal, College of Health Sciences, Department of Human Physiology, Durban, South Africa
| | - Lihle Qulu
- Stellenbosch University - Tygerberg Campus: Stellenbosch University Faculty of Medicine and Health Sciences, Capetown, South Africa,Corresponding author.
| |
Collapse
|
50
|
Komoltsev IG, Gulyaeva NV. Brain Trauma, Glucocorticoids and Neuroinflammation: Dangerous Liaisons for the Hippocampus. Biomedicines 2022; 10:biomedicines10051139. [PMID: 35625876 PMCID: PMC9138485 DOI: 10.3390/biomedicines10051139] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/30/2022] [Accepted: 05/13/2022] [Indexed: 12/02/2022] Open
Abstract
Glucocorticoid-dependent mechanisms of inflammation-mediated distant hippocampal damage are discussed with a focus on the consequences of traumatic brain injury. The effects of glucocorticoids on specific neuronal populations in the hippocampus depend on their concentration, duration of exposure and cell type. Previous stress and elevated level of glucocorticoids prior to pro-inflammatory impact, as well as long-term though moderate elevation of glucocorticoids, may inflate pro-inflammatory effects. Glucocorticoid-mediated long-lasting neuronal circuit changes in the hippocampus after brain trauma are involved in late post-traumatic pathology development, such as epilepsy, depression and cognitive impairment. Complex and diverse actions of the hypothalamic–pituitary–adrenal axis on neuroinflammation may be essential for late post-traumatic pathology. These mechanisms are applicable to remote hippocampal damage occurring after other types of focal brain damage (stroke, epilepsy) or central nervous system diseases without obvious focal injury. Thus, the liaisons of excessive glucocorticoids/dysfunctional hypothalamic–pituitary–adrenal axis with neuroinflammation, dangerous to the hippocampus, may be crucial to distant hippocampal damage in many brain diseases. Taking into account that the hippocampus controls both the cognitive functions and the emotional state, further research on potential links between glucocorticoid signaling and inflammatory processes in the brain and respective mechanisms is vital.
Collapse
Affiliation(s)
- Ilia G. Komoltsev
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117465 Moscow, Russia;
- Moscow Research and Clinical Center for Neuropsychiatry, 115419 Moscow, Russia
| | - Natalia V. Gulyaeva
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117465 Moscow, Russia;
- Moscow Research and Clinical Center for Neuropsychiatry, 115419 Moscow, Russia
- Correspondence: ; Tel.: +7-495-9524007 or +7-495-3347020
| |
Collapse
|