1
|
Vishnivetskiy SA, Paul T, Gurevich EV, Gurevich VV. The Role of Individual Residues in the N-Terminus of Arrestin-1 in Rhodopsin Binding. Int J Mol Sci 2025; 26:715. [PMID: 39859432 PMCID: PMC11765510 DOI: 10.3390/ijms26020715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Sequences and three-dimensional structures of the four vertebrate arrestins are very similar, yet in sharp contrast to other subtypes, arrestin-1 demonstrates exquisite selectivity for the active phosphorylated form of its cognate receptor, rhodopsin. The N-terminus participates in receptor binding and serves as the anchor of the C-terminus, the release of which facilitates arrestin transition into a receptor-binding state. We tested the effects of substitutions of fourteen residues in the N-terminus of arrestin-1 on the binding to phosphorylated and unphosphorylated light-activated rhodopsin of wild-type protein and its enhanced mutant with C-terminal deletion that demonstrates higher binding to both functional forms of rhodopsin. Profound effects of mutations identified lysine-15 as the main phosphate sensor and phenylalanine-13 as the key anchor of the C-terminus. These residues are conserved in all arrestin subtypes. Substitutions of five other residues reduced arrestin-1 selectivity for phosphorylated rhodopsin, indicating that wild-type residues participate in fine-tuning of arrestin-1 binding. Differential effects of numerous substitutions in wild-type and an enhanced mutant arrestin-1 suggest that these two proteins bind rhodopsin differently.
Collapse
Affiliation(s)
- Sergey A. Vishnivetskiy
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (S.A.V.); (E.V.G.)
| | - Trishita Paul
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA;
| | - Eugenia V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (S.A.V.); (E.V.G.)
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (S.A.V.); (E.V.G.)
| |
Collapse
|
2
|
Gurevich VV. Arrestins: A Small Family of Multi-Functional Proteins. Int J Mol Sci 2024; 25:6284. [PMID: 38892473 PMCID: PMC11173308 DOI: 10.3390/ijms25116284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The first member of the arrestin family, visual arrestin-1, was discovered in the late 1970s. Later, the other three mammalian subtypes were identified and cloned. The first described function was regulation of G protein-coupled receptor (GPCR) signaling: arrestins bind active phosphorylated GPCRs, blocking their coupling to G proteins. It was later discovered that receptor-bound and free arrestins interact with numerous proteins, regulating GPCR trafficking and various signaling pathways, including those that determine cell fate. Arrestins have no enzymatic activity; they function by organizing multi-protein complexes and localizing their interaction partners to particular cellular compartments. Today we understand the molecular mechanism of arrestin interactions with GPCRs better than the mechanisms underlying other functions. However, even limited knowledge enabled the construction of signaling-biased arrestin mutants and extraction of biologically active monofunctional peptides from these multifunctional proteins. Manipulation of cellular signaling with arrestin-based tools has research and likely therapeutic potential: re-engineered proteins and their parts can produce effects that conventional small-molecule drugs cannot.
Collapse
|
3
|
Feizy N, Leuchtenberg SF, Steiner C, Würtz B, Fliegner L, Huber A. In vivo identification of Drosophila rhodopsin interaction partners by biotin proximity labeling. Sci Rep 2024; 14:1986. [PMID: 38263196 PMCID: PMC10805788 DOI: 10.1038/s41598-024-52041-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024] Open
Abstract
Proteins exert their function through protein-protein interactions. In Drosophila, G protein-coupled receptors like rhodopsin (Rh1) interact with a G protein to activate visual signal transduction and with arrestins to terminate activation. Also, membrane proteins like Rh1 engage in protein-protein interactions during folding within the endoplasmic reticulum, during their vesicular transport and upon removal from the cell surface and degradation. Here, we expressed a Rh1-TurboID fusion protein (Rh1::TbID) in Drosophila photoreceptors to identify in vivo Rh1 interaction partners by biotin proximity labeling. We show that Rh1::TbID forms a functional rhodopsin that mediates biotinylation of arrestin 2 in conditions where arrestin 2 interacts with rhodopsin. We also observed biotinylation of Rh1::TbID and native Rh1 as well as of most visual signal transduction proteins. These findings indicate that the signaling components in the rhabdomere approach rhodopsin closely, within a range of ca. 10 nm. Furthermore, we have detected proteins engaged in the maturation of rhodopsin and elements responsible for the trafficking of membrane proteins, resembling potential interaction partners of Rh1. Among these are chaperons of the endoplasmic reticulum, proteins involved in Clathrin-mediated endocytosis as well as previously unnoticed contributors to rhodopsin transportation, such as Rab32, Vap33, or PIP82.
Collapse
Affiliation(s)
- Nilofar Feizy
- Department of Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | | | - Christine Steiner
- Department of Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Berit Würtz
- Mass Spectrometry Unit, Core Facility Hohenheim, University of Hohenheim, Stuttgart, Germany
| | - Leo Fliegner
- Department of Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Armin Huber
- Department of Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
4
|
Shieh BH, Sun W, Ferng D. A conventional PKC critical for both the light-dependent and the light-independent regulation of the actin cytoskeleton in Drosophila photoreceptors. J Biol Chem 2023:104822. [PMID: 37201584 DOI: 10.1016/j.jbc.2023.104822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023] Open
Abstract
Pkc53E is the second conventional protein kinase C (PKC) gene expressed in Drosophila photoreceptors; it encodes at least six transcripts generating four distinct protein isoforms including Pkc53E-B whose mRNA is preferentially expressed in photoreceptors. By characterizing transgenic lines expressing Pkc53E-B-GFP we show Pkc53E-B is localized in the cytosol and rhabdomeres of photoreceptors, and the rhabdomeric localization appears dependent on the diurnal rhythm. A loss of function of pkc53E-B leads to light-dependent retinal degeneration. Interestingly, the knockdown of pkc53E also impacted the actin cytoskeleton of rhabdomeres in a light-independent manner. Here the Actin-GFP reporter is mislocalized and accumulated at the base of the rhabdomere, suggesting that Pkc53E regulates depolymerization of the actin microfilament. We explored the light-dependent regulation of Pkc53E and demonstrated that activation of Pkc53E can be independent of the phospholipase C PLCβ4/NorpA as degeneration of norpAP24 photoreceptors was enhanced by a reduced Pkc53E activity. We further show that the activation of Pkc53E may involve the activation of Plc21C by Gqα. Taken together, Pkc53E-B appears to exert both constitutive and light-regulated activity to promote the maintenance of photoreceptors possibly by regulating the actin cytoskeleton.
Collapse
Affiliation(s)
- Bih-Hwa Shieh
- Department of Pharmacology, Center for Molecular Neuroscience and Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN 37232, USA.
| | - Wesley Sun
- Department of Pharmacology, Center for Molecular Neuroscience and Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Darwin Ferng
- Department of Pharmacology, Center for Molecular Neuroscience and Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
5
|
Bai Y, Suzuki T. Activity-dependent circuitry plasticity via the regulation of the histamine receptor level in the Drosophila visual system. Mol Cell Neurosci 2022; 119:103703. [PMID: 35122941 DOI: 10.1016/j.mcn.2022.103703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/19/2021] [Accepted: 01/27/2022] [Indexed: 10/19/2022] Open
Abstract
Activity-dependent synaptic plasticity is crucial for responses to the environment. Although the plasticity mechanisms of presynaptic photoreceptor neurons in the Drosophila visual system have been well studied, postsynaptic modifications remain elusive. In addition, further studies on the adaption of the visual system to different light experiences at a circuitry scale are required. Using the modified transcriptional reporter of intracellular Ca2+ method, we describe a way to visualize circuitry changes according to different light experiences. We found enhanced postsynaptic neuronal activity responses in lamina monopolar neuron L2 after prolonged light treatment. Although L1 also has connections with photoreceptors, there were no enhanced activity responses in L1. We also report in this study that activity-dependent transcriptional downregulation of inhibitory histamine receptor (HR), Ort, occurs in postsynaptic neuron L2, but not in L1, during continuous light conditions. We produced exogenous Ort proteins in L2 neurons and found that it attenuated the enhanced activity response caused by constant light exposure. These findings, together with the fact that histamine is the main inhibitory neurotransmitter released by photoreceptors in the Drosophila visual system, confirmed our hypothesis that the activity-dependent transcriptional downregulation of HR is responsible for the constant light exposure-induced circuitry response changes in L2. The results successfully demonstrated the selective circuit change after synaptic remodeling evoked by long-term activation and provided in vivo evidence of circuitry plasticity upon long-term environmental stimulation.
Collapse
Affiliation(s)
- Yiming Bai
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-0026, Japan
| | - Takashi Suzuki
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-0026, Japan.
| |
Collapse
|
6
|
Dewett D, Labaf M, Lam-Kamath K, Zarringhalam K, Rister J. Vitamin A deficiency affects gene expression in the Drosophila melanogaster head. G3 (BETHESDA, MD.) 2021; 11:jkab297. [PMID: 34849795 PMCID: PMC8527478 DOI: 10.1093/g3journal/jkab297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022]
Abstract
Insufficient dietary intake of vitamin A causes various human diseases. For instance, chronic vitamin A deprivation causes blindness, slow growth, impaired immunity, and an increased risk of mortality in children. In contrast to these diverse effects of vitamin A deficiency (VAD) in mammals, chronic VAD in flies neither causes obvious developmental defects nor lethality. As in mammals, VAD in flies severely affects the visual system: it impairs the synthesis of the retinal chromophore, disrupts the formation of the visual pigments (Rhodopsins), and damages the photoreceptors. However, the molecular mechanisms that respond to VAD remain poorly understood. To identify genes and signaling pathways that are affected by VAD, we performed RNA-sequencing and differential gene expression analysis in Drosophila melanogaster. We found an upregulation of genes that are essential for the synthesis of the retinal chromophore, specific aminoacyl-tRNA synthetases, and major nutrient reservoir proteins. We also discovered that VAD affects several genes that are required for the termination of the light response: for instance, we found a downregulation of both arrestin genes that are essential for the inactivation of Rhodopsin. A comparison of the VAD-responsive genes with previously identified blue light stress-responsive genes revealed that the two types of environmental stress trigger largely nonoverlapping transcriptome responses. Yet, both stresses increase the expression of seven genes with poorly understood functions. Taken together, our transcriptome analysis offers insights into the molecular mechanisms that respond to environmental stresses.
Collapse
Affiliation(s)
- Deepshe Dewett
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Maryam Labaf
- Department of Mathematics, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Khanh Lam-Kamath
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Kourosh Zarringhalam
- Department of Mathematics, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Jens Rister
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| |
Collapse
|
7
|
Huang HW, Ryoo HD. Drosophila fabp is required for light-dependent Rhodopsin-1 clearance and photoreceptor survival. PLoS Genet 2021; 17:e1009551. [PMID: 34714826 PMCID: PMC8580249 DOI: 10.1371/journal.pgen.1009551] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 11/10/2021] [Accepted: 10/20/2021] [Indexed: 12/30/2022] Open
Abstract
Rhodopsins are light-detecting proteins coupled with retinal chromophores essential for visual function. Coincidentally, dysfunctional Rhodopsin homeostasis underlies retinal degeneration in humans and model organisms. Drosophila ninaEG69D mutant is one such example, where the encoded Rh1 protein imposes endoplasmic reticulum (ER) stress and causes light-dependent retinal degeneration. The underlying reason for such light-dependency remains unknown. Here, we report that Drosophila fatty acid binding protein (fabp) is a gene induced in ninaEG69D/+ photoreceptors, and regulates light-dependent Rhodopsin-1 (Rh1) protein clearance and photoreceptor survival. Specifically, our photoreceptor-specific gene expression profiling study in ninaEG69D/+ flies revealed increased expression of fabp together with other genes that control light-dependent Rh1 protein degradation. fabp induction in ninaEG69D photoreceptors required vitamin A and its transporter genes. In flies reared under light, loss of fabp caused an accumulation of Rh1 proteins in cytoplasmic vesicles. The increase in Rh1 levels under these conditions was dependent on Arrestin2 that mediates feedback inhibition of light-activated Rh1. fabp mutants exhibited light-dependent retinal degeneration, a phenotype also found in other mutants that block light-induced Rh1 degradation. These observations reveal a previously unrecognized link between light-dependent Rh1 proteostasis and the ER-stress imposing ninaEG69D mutant that cause retinal degeneration.
Collapse
Affiliation(s)
- Huai-Wei Huang
- Department of Cell Biology NYU Grossman School of Medicine New York, New York, United States of America
| | - Hyung Don Ryoo
- Department of Cell Biology NYU Grossman School of Medicine New York, New York, United States of America
| |
Collapse
|
8
|
Photoreceptor cKO of OTX2 Enhances OTX2 Intercellular Transfer in the Retina and Causes Photophobia. eNeuro 2021; 8:ENEURO.0229-21.2021. [PMID: 34475267 PMCID: PMC8496205 DOI: 10.1523/eneuro.0229-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 11/21/2022] Open
Abstract
In the mature mouse retina, Otx2 is expressed in both retinal pigmented epithelium (RPE) and photoreceptor (PR) cells, and Otx2 knock-out (KO) in the RPE alone results in PR degeneration. To study the cell-autonomous function of OTX2 in PRs, we performed PR-specific Otx2 KO (cKO) in adults. As expected, the protein disappears completely from PR nuclei but is still observed in PR inner and outer segments while its level concomitantly decreases in the RPE, suggesting a transfer of OTX2 from RPE to PRs in response to Otx2 ablation in PRs. The ability of OTX2 to transfer from RPE to PRs was verified by viral expression of tagged-OTX2 in the RPE. Transferred OTX2 distributed across the PR cytoplasm, suggesting functions distinct from nuclear transcription regulation. PR-specific Otx2 cKO did not alter the structure of the retina but impaired the translocation of PR arrestin-1 on illumination changes, making mice photophobic. RNA-seq analyses following Otx2 KO revealed downregulation of genes involved in the cytoskeleton that might account for the arrestin-1 translocation defect, and of genes involved in extracellular matrix (ECM) and signaling factors that may participate in the enhanced transfer of OTX2. Interestingly, several RPE-specific OTX2 target genes involved in melanogenesis were downregulated, lending weight to a decrease of OTX2 levels in the RPE following PR-specific Otx2 cKO. Our study reveals a new role of endogenous OTX2 in PR light adaptation and demonstrates the existence of OTX2 transfer from RPE to PR cells, which is increased on PR-specific Otx2 ablation and might participate in PR neuroprotection.
Collapse
|
9
|
Smylla TK, Wagner K, Huber A. Application of Fluorescent Proteins for Functional Dissection of the Drosophila Visual System. Int J Mol Sci 2021; 22:8930. [PMID: 34445636 PMCID: PMC8396179 DOI: 10.3390/ijms22168930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 11/22/2022] Open
Abstract
The Drosophila eye has been used extensively to study numerous aspects of biological systems, for example, spatio-temporal regulation of differentiation, visual signal transduction, protein trafficking and neurodegeneration. Right from the advent of fluorescent proteins (FPs) near the end of the millennium, heterologously expressed fusion proteins comprising FPs have been applied in Drosophila vision research not only for subcellular localization of proteins but also for genetic screens and analysis of photoreceptor function. Here, we summarize applications for FPs used in the Drosophila eye as part of genetic screens, to study rhodopsin expression patterns, subcellular protein localization, membrane protein transport or as genetically encoded biosensors for Ca2+ and phospholipids in vivo. We also discuss recently developed FPs that are suitable for super-resolution or correlative light and electron microscopy (CLEM) approaches. Illustrating the possibilities provided by using FPs in Drosophila photoreceptors may aid research in other sensory or neuronal systems that have not yet been studied as well as the Drosophila eye.
Collapse
Affiliation(s)
- Thomas K. Smylla
- Department of Biochemistry, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany; (K.W.); (A.H.)
| | | | | |
Collapse
|
10
|
Ogueta M, Hardie RC, Stanewsky R. Light Sampling via Throttled Visual Phototransduction Robustly Synchronizes the Drosophila Circadian Clock. Curr Biol 2020; 30:2551-2563.e3. [PMID: 32502413 DOI: 10.1016/j.cub.2020.04.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/07/2020] [Accepted: 04/24/2020] [Indexed: 01/19/2023]
Abstract
The daily changes of light and dark exemplify a prominent cue for the synchronization of circadian clocks with the environment. The match between external and internal time is crucial for the fitness of organisms, and desynchronization has been linked to numerous physical and mental health problems. Organisms therefore developed complex and not fully understood mechanisms to synchronize their circadian clock to light. In mammals and in Drosophila, both the visual system and non-image-forming photoreceptors contribute to circadian clock resetting. In Drosophila, light-dependent degradation of the clock protein TIMELESS by the blue light photoreceptor Cryptochrome is considered the main mechanism for clock synchronization, although the visual system also contributes. To better understand the visual system contribution, we generated a genetic variant exhibiting extremely slow phototransduction kinetics, yet normal sensitivity. In this variant, the visual system is able to contribute its full share to circadian clock entrainment, both with regard to behavioral and molecular light synchronization. This function depends on an alternative phospholipase C-β enzyme, encoded by PLC21C, presumably playing a dedicated role in clock resetting. We show that this pathway requires the ubiquitin ligase CULLIN-3, possibly mediating CRY-independent degradation of TIMELESS during light:dark cycles. Our results suggest that the PLC21C-mediated contribution to circadian clock entrainment operates on a drastically slower timescale compared with fast, norpA-dependent visual phototransduction. Our findings are therefore consistent with the general idea that the visual system samples light over prolonged periods of time (h) in order to reliably synchronize their internal clocks with the external time.
Collapse
Affiliation(s)
- Maite Ogueta
- Institute of Neuro and Behavioral Biology, Westfälische Wilhelms University, 48149 Münster, Germany
| | - Roger C Hardie
- Department of Physiology, Development, and Neuroscience, Cambridge University, Cambridge CB2 3EG, UK
| | - Ralf Stanewsky
- Institute of Neuro and Behavioral Biology, Westfälische Wilhelms University, 48149 Münster, Germany.
| |
Collapse
|
11
|
Rapid Release of Ca 2+ from Endoplasmic Reticulum Mediated by Na +/Ca 2+ Exchange. J Neurosci 2020; 40:3152-3164. [PMID: 32156830 DOI: 10.1523/jneurosci.2675-19.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 11/21/2022] Open
Abstract
Phototransduction in Drosophila is mediated by phospholipase C (PLC) and Ca2+-permeable TRP channels, but the function of endoplasmic reticulum (ER) Ca2+ stores in this important model for Ca2+ signaling remains obscure. We therefore expressed a low affinity Ca2+ indicator (ER-GCaMP6-150) in the ER, and measured its fluorescence both in dissociated ommatidia and in vivo from intact flies of both sexes. Blue excitation light induced a rapid (tau ∼0.8 s), PLC-dependent decrease in fluorescence, representing depletion of ER Ca2+ stores, followed by a slower decay, typically reaching ∼50% of initial dark-adapted levels, with significant depletion occurring under natural levels of illumination. The ER stores refilled in the dark within 100-200 s. Both rapid and slow store depletion were largely unaffected in InsP3 receptor mutants, but were much reduced in trp mutants. Strikingly, rapid (but not slow) depletion of ER stores was blocked by removing external Na+ and in mutants of the Na+/Ca2+ exchanger, CalX, which we immuno-localized to ER membranes in addition to its established localization in the plasma membrane. Conversely, overexpression of calx greatly enhanced rapid depletion. These results indicate that rapid store depletion is mediated by Na+/Ca2+ exchange across the ER membrane induced by Na+ influx via the light-sensitive channels. Although too slow to be involved in channel activation, this Na+/Ca2+ exchange-dependent release explains the decades-old observation of a light-induced rise in cytosolic Ca2+ in photoreceptors exposed to Ca2+-free solutions.SIGNIFICANCE STATEMENT Phototransduction in Drosophila is mediated by phospholipase C, which activates TRP cation channels by an unknown mechanism. Despite much speculation, it is unknown whether endoplasmic reticulum (ER) Ca2+ stores play any role. We therefore engineered flies expressing a genetically encoded Ca2+ indicator in the photoreceptor ER. Although NCX Na+/Ca2+ exchangers are classically believed to operate only at the plasma membrane, we demonstrate a rapid light-induced depletion of ER Ca2+ stores mediated by Na+/Ca2+ exchange across the ER membrane. This NCX-dependent release was too slow to be involved in channel activation, but explains the decades-old observation of a light-induced rise in cytosolic Ca2+ in photoreceptors bathed in Ca2+-free solutions.
Collapse
|
12
|
Ca2+ Signaling in Drosophila Photoreceptor Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:857-879. [DOI: 10.1007/978-3-030-12457-1_34] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Ogi S, Matsuda A, Otsuka Y, Liu Z, Satoh T, Satoh AK. Syndapin constricts microvillar necks to form a united rhabdomere in Drosophila photoreceptors. Development 2019; 146:dev.169292. [PMID: 31371377 DOI: 10.1242/dev.169292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/22/2019] [Indexed: 01/24/2023]
Abstract
Drosophila photoreceptors develop from polarized epithelial cells that have apical and basolateral membranes. During morphogenesis, the apical membranes subdivide into a united bundle of photosensory microvilli (rhabdomeres) and a surrounding supporting membrane (stalk). By EMS-induced mutagenesis screening, we found that the F-Bin/Amphiphysin/Rvs (F-BAR) protein syndapin is essential for apical membrane segregation. The analysis of the super-resolution microscopy, STORM and the electron microscopy suggest that syndapin localizes to the neck of the microvilli at the base of the rhabdomere. Syndapin and moesin are required to constrict the neck of the microvilli to organize the membrane architecture at the base of the rhabdomere, to exclude the stalk membrane. Simultaneous loss of syndapin along with the microvilli adhesion molecule chaoptin significantly enhanced the disruption of stalk-rhabdomere segregation. However, loss of the factors involving endocytosis do not interfere. These results indicated syndapin is most likely functioning through its membrane curvature properties, and not through endocytic processes for stalk-rhabdomere segregation. Elucidation of the mechanism of this unconventional domain formation will provide novel insights into the field of cell biology.
Collapse
Affiliation(s)
- Sakiko Ogi
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1, Kagamiyama, Higashi-hiroshima, Hiroshima 739-8521, Japan
| | - Atsushi Matsuda
- National Institute of Information and Communications Technology, Advanced ICT Research Institute, 588-2, Iwaoka, Nishi-ku, Kobe 651-2492, Japan
| | - Yuna Otsuka
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1, Kagamiyama, Higashi-hiroshima, Hiroshima 739-8521, Japan
| | - Ziguang Liu
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1, Kagamiyama, Higashi-hiroshima, Hiroshima 739-8521, Japan.,Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Xuefu Road No. 368, Nangang District, Harbin, Heilongjiang 150-086, China
| | - Takunori Satoh
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1, Kagamiyama, Higashi-hiroshima, Hiroshima 739-8521, Japan
| | - Akiko K Satoh
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1, Kagamiyama, Higashi-hiroshima, Hiroshima 739-8521, Japan
| |
Collapse
|
14
|
Katz B, Minke B. The Drosophila light-activated TRP and TRPL channels - Targets of the phosphoinositide signaling cascade. Prog Retin Eye Res 2018; 66:200-219. [DOI: 10.1016/j.preteyeres.2018.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 01/28/2023]
|
15
|
Ogueta M, Hardie RC, Stanewsky R. Non-canonical Phototransduction Mediates Synchronization of the Drosophila melanogaster Circadian Clock and Retinal Light Responses. Curr Biol 2018; 28:1725-1735.e3. [PMID: 29779871 PMCID: PMC5988559 DOI: 10.1016/j.cub.2018.04.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/23/2018] [Accepted: 04/04/2018] [Indexed: 12/28/2022]
Abstract
The daily light-dark cycles represent a key signal for synchronizing circadian clocks. Both insects and mammals possess dedicated "circadian" photoreceptors but also utilize the visual system for clock resetting. In Drosophila, circadian clock resetting is achieved by the blue-light photoreceptor cryptochrome (CRY), which is expressed within subsets of the brain clock neurons. In addition, rhodopsin-expressing photoreceptor cells contribute to light synchronization. Light resets the molecular clock by CRY-dependent degradation of the clock protein Timeless (TIM), although in specific subsets of key circadian pacemaker neurons, including the small ventral lateral neurons (s-LNvs), TIM and Period (PER) oscillations can be synchronized by light independent of CRY and canonical visual Rhodopsin phototransduction. Here, we show that at least three of the seven Drosophila rhodopsins can utilize an alternative transduction mechanism involving the same α-subunit of the heterotrimeric G protein operating in canonical visual phototransduction (Gq). Surprisingly, in mutants lacking the canonical phospholipase C-β (PLC-β) encoded by the no receptor potential A (norpA) gene, we uncovered a novel transduction pathway using a different PLC-β encoded by the Plc21C gene. This novel pathway is important for behavioral clock resetting to semi-natural light-dark cycles and mediates light-dependent molecular synchronization within the s-LNv clock neurons. The same pathway appears to be responsible for norpA-independent light responses in the compound eye. We show that Rhodopsin 5 (Rh5) and Rh6, present in the R8 subset of retinal photoreceptor cells, drive both the long-term circadian and rapid light responses in the eye.
Collapse
Affiliation(s)
- Maite Ogueta
- Institute of Neuro- and Behavioral Biology, Westfälische Wilhelms University, 48149 Münster, Germany
| | - Roger C Hardie
- Department of Physiology, Development, and Neuroscience, Cambridge University, Cambridge CB2 3DY, UK
| | - Ralf Stanewsky
- Institute of Neuro- and Behavioral Biology, Westfälische Wilhelms University, 48149 Münster, Germany.
| |
Collapse
|
16
|
Liu CH, Bollepalli MK, Long SV, Asteriti S, Tan J, Brill JA, Hardie RC. Genetic dissection of the phosphoinositide cycle in Drosophila photoreceptors. J Cell Sci 2018; 131:jcs.214478. [PMID: 29567856 DOI: 10.1242/jcs.214478] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/16/2018] [Indexed: 11/20/2022] Open
Abstract
Phototransduction in Drosophila is mediated by phospholipase C-dependent hydrolysis of PIP2-, and is an important model for phosphoinositide signalling. Although generally assumed to operate by generic machinery conserved from yeast to mammals, some key elements of the phosphoinositide cycle have yet to be identified in Drosophila photoreceptors. Here, we used transgenic flies expressing fluorescently tagged probes (P4M and TbR332H), which allow in vivo quantitative measurements of PI4P and PIP2 dynamics in photoreceptors of intact living flies. Using mutants and RNA interference for candidate genes potentially involved in phosphoinositide turnover, we identified Drosophila PI4KIIIα (CG10260) as the PI4-kinase responsible for PI4P synthesis in the photoreceptor membrane. Our results also indicate that PI4KIIIα activity requires rbo (the Drosophila orthologue of Efr3) and CG8325 (orthologue of YPP1), both of which are implicated as scaffolding proteins necessary for PI4KIIIα activity in yeast and mammals. However, our evidence indicates that the recently reported central role of dPIP5K59B (CG3682) in PIP2 synthesis in the rhabdomeres should be re-evaluated; although PIP2 resynthesis was suppressed by RNAi directed against dPIP5K59B, little or no defect was detected in a reportedly null mutant (dPIP5K18 ).
Collapse
Affiliation(s)
- Che-Hsiung Liu
- Department of Physiology, Development and Neuroscience, Cambridge University, Downing St, Cambridge CB2 3EG, United Kingdom
| | - Murali K Bollepalli
- Department of Physiology, Development and Neuroscience, Cambridge University, Downing St, Cambridge CB2 3EG, United Kingdom
| | - Samuel V Long
- Department of Physiology, Development and Neuroscience, Cambridge University, Downing St, Cambridge CB2 3EG, United Kingdom
| | - Sabrina Asteriti
- Department of Physiology, Development and Neuroscience, Cambridge University, Downing St, Cambridge CB2 3EG, United Kingdom
| | - Julie Tan
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Room 15.9716, Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Room 4396, Medical Sciences Building, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Julie A Brill
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Room 15.9716, Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Room 4396, Medical Sciences Building, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Roger C Hardie
- Department of Physiology, Development and Neuroscience, Cambridge University, Downing St, Cambridge CB2 3EG, United Kingdom
| |
Collapse
|
17
|
Stavenga DG, Wehling MF, Belušič G. Functional interplay of visual, sensitizing and screening pigments in the eyes of Drosophila and other red-eyed dipteran flies. J Physiol 2017; 595:5481-5494. [PMID: 28295348 PMCID: PMC5556166 DOI: 10.1113/jp273674] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/10/2017] [Indexed: 12/20/2022] Open
Abstract
Several fly species have distinctly red-coloured eyes, meaning that the screening pigments that provide a restricted angular sensitivity of the photoreceptors may perform poorly in the longer wavelength range. The functional reasons for the red transparency and possible negative visual effects of the spectral properties of the eye-colouring screening pigments are discussed within the context of the photochemistry, arrestin binding and turnover of the visual pigments located in the various photoreceptor types. A phylogenetic survey of the spectral properties of the main photoreceptors of the Diptera indicates that the transition of the brown eye colour of the Nematocera and lower Brachycera to a much redder eye colour of the higher Brachycera occurred around the emergence of the Tabanidae family.
Collapse
Affiliation(s)
- D. G. Stavenga
- Computational Physics, Zernike Institute for Advanced MaterialsUniversity of GroningenGroningenNL9747AGThe Netherlands
| | - M. F. Wehling
- Air Force Research LaboratoryEglin Air Force BaseFL32542‐6810USA
| | - G. Belušič
- Biotechnical FacultyUniversity of LjubljanaVečna pot 1111000LjubljanaSlovenia
| |
Collapse
|
18
|
Matsuo R, Takatori Y, Hamada S, Koyanagi M, Matsuo Y. Expression and light-dependent translocation of β-arrestin in the visual system of the terrestrial slug Limax valentianus. ACTA ACUST UNITED AC 2017; 220:3301-3314. [PMID: 28687596 DOI: 10.1242/jeb.162701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/05/2017] [Indexed: 11/20/2022]
Abstract
Vertebrates, cephalopods and arthropods are equipped with eyes that have the highest spatiotemporal resolution among the animal phyla. In parallel, only animals in these three phyla have visual arrestin specialized for the termination of visual signaling triggered by opsin, in addition to ubiquitously expressed β-arrestin that serves in terminating general G protein-coupled receptor signaling. Indeed, visual arrestin in Drosophila and rodents translocates to the opsin-rich subcellular region in response to light to reduce the overall sensitivity of photoreceptors in an illuminated environment (i.e. light adaptation). We thus hypothesized that, during evolution, visual arrestin has taken over the role of β-arrestin in those animals with eyes of high spatiotemporal resolution. If this is true, it is expected that β-arrestin plays a role similar to visual arrestin in those animals with low-resolution eyes. In the present study, we focused on the terrestrial mollusk Limax valentianus, a species related to cephalopods but that has only β-arrestin, and generated antibodies against β-arrestin. We found that β-arrestin is highly expressed in photosensory neurons, and translocates into the microvilli of the rhabdomere within 30 min in response to short wavelength light (400 nm), to which the Limax eye exhibits a robust response. These observations suggest that β-arrestin functions in the visual system of those animals that do not have visual arrestin. We also exploited anti-β-arrestin antibody to visualize the optic nerve projecting to the brain, and demonstrated its usefulness for tracing a visual ascending pathway.
Collapse
Affiliation(s)
- Ryota Matsuo
- Department of Environmental Sciences, International College of Arts and Sciences, Fukuoka Women's University, Fukuoka 813-8529, Japan
| | - Yuka Takatori
- Department of Environmental Sciences, International College of Arts and Sciences, Fukuoka Women's University, Fukuoka 813-8529, Japan
| | - Shun Hamada
- Department of Nutrition and Health Sciences, International College of Arts and Sciences, Fukuoka Women's University, Fukuoka 813-8529, Japan
| | - Mitsumasa Koyanagi
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | - Yuko Matsuo
- Department of Environmental Sciences, International College of Arts and Sciences, Fukuoka Women's University, Fukuoka 813-8529, Japan
| |
Collapse
|
19
|
Phototransduction in Drosophila Is Compromised by Gal4 Expression but not by InsP 3 Receptor Knockdown or Mutation. eNeuro 2017; 4:eN-NWR-0143-17. [PMID: 28660247 PMCID: PMC5483600 DOI: 10.1523/eneuro.0143-17.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/15/2017] [Indexed: 01/18/2023] Open
Abstract
Drosophila phototransduction is mediated by phospholipase C, leading to activation of transient receptor potential (TRP) and TRP-like (TRPL) channels by mechanisms that are unresolved. A role for InsP3 receptors (IP3Rs) had been excluded because IP3R mutants (itpr) appeared to have normal light responses; however, this was recently challenged by Kohn et al. (“Functional cooperation between the IP3 receptor and phospholipase C secures the high sensitivity to light of Drosophila photoreceptors in vivo,” Journal of Neuroscience 35:2530), who reported defects in phototransduction after IP3R-RNAi knockdown. They concluded that InsP3-induced Ca2+ release plays a critical role in facilitating channel activation, and that previous failure to detect IP3R phenotypes resulted from trace Ca2+ in electrodes substituting for InsP3-induced Ca2+ release. In an attempt to confirm this, we performed electroretinograms, whole-cell recordings, and GCaMP6f Ca2+ imaging from both IP3R-RNAi flies and itpr-null mutants. Like Kohn et al., we used GMRGal4 to drive expression of UAS-IP3R-RNAi, but we also used controls expressing GMRGal4 alone. We describe several GMRGal4 phenotypes suggestive of compromised development, including reductions in sensitivity, dark noise, potassium currents, and cell size and capacitance, as well as extreme variations in sensitivity between cells. However, we found no effect of IP3R RNAi or mutation on photoreceptor responses or Ca2+ signals, indicating that the IP3R plays little or no role in Drosophila phototransduction.
Collapse
|
20
|
Asteriti S, Liu CH, Hardie RC. Calcium signalling in Drosophila photoreceptors measured with GCaMP6f. Cell Calcium 2017; 65:40-51. [PMID: 28238353 PMCID: PMC5472182 DOI: 10.1016/j.ceca.2017.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 11/30/2022]
Abstract
Drosophila phototransduction is mediated by phospholipase C leading to activation of cation channels (TRP and TRPL) in the 30000 microvilli forming the light-absorbing rhabdomere. The channels mediate massive Ca2+ influx in response to light, but whether Ca2+ is released from internal stores remains controversial. We generated flies expressing GCaMP6f in their photoreceptors and measured Ca2+ signals from dissociated cells, as well as in vivo by imaging rhabdomeres in intact flies. In response to brief flashes, GCaMP6f signals had latencies of 10-25ms, reached 50% Fmax with ∼1200 effectively absorbed photons and saturated (ΔF/F0∼10-20) with 10000-30000 photons. In Ca2+ free bath, smaller (ΔF/F0 ∼4), long latency (∼200ms) light-induced Ca2+ rises were still detectable. These were unaffected in InsP3 receptor mutants, but virtually eliminated when Na+ was also omitted from the bath, or in trpl;trp mutants lacking light-sensitive channels. Ca2+ free rises were also eliminated in Na+/Ca2+ exchanger mutants, but greatly accelerated in flies over-expressing the exchanger. These results show that Ca2+ free rises are strictly dependent on Na+ influx and activity of the exchanger, suggesting they reflect re-equilibration of Na+/Ca2+ exchange across plasma or intracellular membranes following massive Na+ influx. Any tiny Ca2+ free rise remaining without exchanger activity was equivalent to <10nM (ΔF/F0 ∼0.1), and unlikely to play any role in phototransduction.
Collapse
Affiliation(s)
- Sabrina Asteriti
- Cambridge University, Department of Physiology Development and Neuroscience, Downing Street, Cambridge, CB2 3EG, UK
| | - Che-Hsiung Liu
- Cambridge University, Department of Physiology Development and Neuroscience, Downing Street, Cambridge, CB2 3EG, UK
| | - Roger C Hardie
- Cambridge University, Department of Physiology Development and Neuroscience, Downing Street, Cambridge, CB2 3EG, UK.
| |
Collapse
|
21
|
Dau A, Friederich U, Dongre S, Li X, Bollepalli MK, Hardie RC, Juusola M. Evidence for Dynamic Network Regulation of Drosophila Photoreceptor Function from Mutants Lacking the Neurotransmitter Histamine. Front Neural Circuits 2016; 10:19. [PMID: 27047343 PMCID: PMC4801898 DOI: 10.3389/fncir.2016.00019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 03/07/2016] [Indexed: 11/13/2022] Open
Abstract
Synaptic feedback from interneurons to photoreceptors can help to optimize visual information flow by balancing its allocation on retinal pathways under changing light conditions. But little is known about how this critical network operation is regulated dynamically. Here, we investigate this question by comparing signaling properties and performance of wild-type Drosophila R1-R6 photoreceptors to those of the hdc (JK910) mutant, which lacks the neurotransmitter histamine and therefore cannot transmit information to interneurons. Recordings show that hdc (JK910) photoreceptors sample similar amounts of information from naturalistic stimulation to wild-type photoreceptors, but this information is packaged in smaller responses, especially under bright illumination. Analyses reveal how these altered dynamics primarily resulted from network overload that affected hdc (JK910) photoreceptors in two ways. First, the missing inhibitory histamine input to interneurons almost certainly depolarized them irrevocably, which in turn increased their excitatory feedback to hdc (JK910) R1-R6s. This tonic excitation depolarized the photoreceptors to artificially high potentials, reducing their operational range. Second, rescuing histamine input to interneurons in hdc (JK910) mutant also restored their normal phasic feedback modulation to R1-R6s, causing photoreceptor output to accentuate dynamic intensity differences at bright illumination, similar to the wild-type. These results provide mechanistic explanations of how synaptic feedback connections optimize information packaging in photoreceptor output and novel insight into the operation and design of dynamic network regulation of sensory neurons.
Collapse
Affiliation(s)
- An Dau
- Department of Biomedical Science, University of Sheffield Sheffield, UK
| | - Uwe Friederich
- Department of Biomedical Science, University of Sheffield Sheffield, UK
| | - Sidhartha Dongre
- Department of Biomedical Science, University of Sheffield Sheffield, UK
| | - Xiaofeng Li
- Department of Biomedical Science, University of Sheffield Sheffield, UK
| | - Murali K Bollepalli
- Department of Physiology Development and Neuroscience, Cambridge University Cambridge, UK
| | - Roger C Hardie
- Department of Physiology Development and Neuroscience, Cambridge University Cambridge, UK
| | - Mikko Juusola
- Department of Biomedical Science, University of SheffieldSheffield, UK; National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal UniversityBeijing, China
| |
Collapse
|
22
|
Hardie RC, Liu CH, Randall AS, Sengupta S. In vivo tracking of phosphoinositides in Drosophila photoreceptors. J Cell Sci 2015; 128:4328-40. [PMID: 26483384 PMCID: PMC4712823 DOI: 10.1242/jcs.180364] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/12/2015] [Indexed: 01/26/2023] Open
Abstract
In order to monitor phosphoinositide turnover during phospholipase C (PLC)-mediated Drosophila phototransduction, fluorescently tagged lipid probes were expressed in photoreceptors and imaged both in dissociated cells, and in eyes of intact living flies. Of six probes tested, Tb(R332H) (a mutant of the Tubby protein pleckstrin homology domain) was judged the best reporter for phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P2], and the P4M domain from Legionella SidM for phosphatidylinositol 4-phosphate (PtdIns4P). Using accurately calibrated illumination, we found that only ∼50% of PtdIns(4,5)P2 and very little PtdIns4P were depleted by full daylight intensities in wild-type flies, but both were severely depleted by ∼100-fold dimmer intensities in mutants lacking Ca(2+)-permeable transient receptor potential (TRP) channels or protein kinase C (PKC). Resynthesis of PtdIns4P (t½ ∼12 s) was faster than PtdIns(4,5)P2 (t½ ∼40 s), but both were greatly slowed in mutants of DAG kinase (rdgA) or PtdIns transfer protein (rdgB). The results indicate that Ca(2+)- and PKC-dependent inhibition of PLC is required for enabling photoreceptors to maintain phosphoinositide levels despite high rates of hydrolysis by PLC, and suggest that phosphorylation of PtdIns4P to PtdIns(4,5)P2 is the rate-limiting step of the cycle.
Collapse
Affiliation(s)
- Roger C Hardie
- Department of Physiology Development and Neuroscience, Cambridge University, Cambridge CB2 3EG, UK
| | - Che-Hsiung Liu
- Department of Physiology Development and Neuroscience, Cambridge University, Cambridge CB2 3EG, UK
| | - Alexander S Randall
- Department of Physiology Development and Neuroscience, Cambridge University, Cambridge CB2 3EG, UK
| | - Sukanya Sengupta
- Department of Physiology Development and Neuroscience, Cambridge University, Cambridge CB2 3EG, UK
| |
Collapse
|
23
|
Jaiswal M, Haelterman NA, Sandoval H, Xiong B, Donti T, Kalsotra A, Yamamoto S, Cooper TA, Graham BH, Bellen HJ. Impaired Mitochondrial Energy Production Causes Light-Induced Photoreceptor Degeneration Independent of Oxidative Stress. PLoS Biol 2015; 13:e1002197. [PMID: 26176594 PMCID: PMC4503542 DOI: 10.1371/journal.pbio.1002197] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/10/2015] [Indexed: 11/19/2022] Open
Abstract
Two insults often underlie a variety of eye diseases including glaucoma, optic atrophy, and retinal degeneration--defects in mitochondrial function and aberrant Rhodopsin trafficking. Although mitochondrial defects are often associated with oxidative stress, they have not been linked to Rhodopsin trafficking. In an unbiased forward genetic screen designed to isolate mutations that cause photoreceptor degeneration, we identified mutations in a nuclear-encoded mitochondrial gene, ppr, a homolog of human LRPPRC. We found that ppr is required for protection against light-induced degeneration. Its function is essential to maintain membrane depolarization of the photoreceptors upon repetitive light exposure, and an impaired phototransduction cascade in ppr mutants results in excessive Rhodopsin1 endocytosis. Moreover, loss of ppr results in a reduction in mitochondrial RNAs, reduced electron transport chain activity, and reduced ATP levels. Oxidative stress, however, is not induced. We propose that the reduced ATP level in ppr mutants underlies the phototransduction defect, leading to increased Rhodopsin1 endocytosis during light exposure, causing photoreceptor degeneration independent of oxidative stress. This hypothesis is bolstered by characterization of two other genes isolated in the screen, pyruvate dehydrogenase and citrate synthase. Their loss also causes a light-induced degeneration, excessive Rhodopsin1 endocytosis and reduced ATP without concurrent oxidative stress, unlike many other mutations in mitochondrial genes that are associated with elevated oxidative stress and light-independent photoreceptor demise.
Collapse
Affiliation(s)
- Manish Jaiswal
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, United States of America
- Howard Hughes Medical Institute, BCM, Houston, Texas, United States of America
| | - Nele A. Haelterman
- Program in Developmental Biology, BCM, Houston, Texas, United States of America
| | - Hector Sandoval
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, United States of America
| | - Bo Xiong
- Program in Developmental Biology, BCM, Houston, Texas, United States of America
| | - Taraka Donti
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, United States of America
| | - Auinash Kalsotra
- Department of Pathology and Immunology, BCM, Houston, Texas, United States of America
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, United States of America
- Program in Developmental Biology, BCM, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital (TCH), Houston, Texas, United States of America
| | - Thomas A. Cooper
- Program in Developmental Biology, BCM, Houston, Texas, United States of America
- Department of Pathology and Immunology, BCM, Houston, Texas, United States of America
| | - Brett H. Graham
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, United States of America
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, United States of America
- Howard Hughes Medical Institute, BCM, Houston, Texas, United States of America
- Program in Developmental Biology, BCM, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital (TCH), Houston, Texas, United States of America
- Department of Neuroscience, BCM, Houston, Texas, United States of America
| |
Collapse
|
24
|
Speed and sensitivity of phototransduction in Drosophila depend on degree of saturation of membrane phospholipids. J Neurosci 2015; 35:2731-46. [PMID: 25673862 DOI: 10.1523/jneurosci.1150-14.2015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Drosophila phototransduction is mediated via a G-protein-coupled PLC cascade. Recent evidence, including the demonstration that light evokes rapid contractions of the photoreceptors, suggested that the light-sensitive channels (TRP and TRPL) may be mechanically gated, together with protons released by PLC-mediated PIP2 hydrolysis. If mechanical gating is involved we predicted that the response to light should be influenced by altering the physical properties of the membrane. To achieve this, we used diet to manipulate the degree of saturation of membrane phospholipids. In flies reared on a yeast diet, lacking polyunsaturated fatty acids (PUFAs), mass spectrometry showed that the proportion of polyunsaturated phospholipids was sevenfold reduced (from 38 to ∼5%) but rescued by adding a single species of PUFA (linolenic or linoleic acid) to the diet. Photoreceptors from yeast-reared flies showed a 2- to 3-fold increase in latency and time to peak of the light response, without affecting quantum bump waveform. In the absence of Ca(2+) influx or in trp mutants expressing only TRPL channels, sensitivity to light was reduced up to ∼10-fold by the yeast diet, and essentially abolished in hypomorphic G-protein mutants (Gαq). PLC activity appeared little affected by the yeast diet; however, light-induced contractions measured by atomic force microscopy or the activation of ectopic mechanosensitive gramicidin channels were also slowed ∼2-fold. The results are consistent with mechanosensitive gating and provide a striking example of how dietary fatty acids can profoundly influence sensory performance in a classical G-protein-coupled signaling cascade.
Collapse
|
25
|
Gurevich VV, Gurevich EV. Arrestins: Critical Players in Trafficking of Many GPCRs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:1-14. [PMID: 26055052 PMCID: PMC5841159 DOI: 10.1016/bs.pmbts.2015.02.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Arrestins specifically bind active phosphorylated G protein-coupled receptors (GPCRs). Receptor binding induces the release of the arrestin C-tail, which in non-visual arrestins contains high-affinity binding sites for clathrin and its adaptor AP2. Thus, serving as a physical link between the receptor and key components of the internalization machinery of the coated pit is the best-characterized function of non-visual arrestins in GPCR trafficking. However, arrestins also regulate GPCR trafficking less directly by orchestrating their ubiquitination and deubiquitination. Several reports suggest that arrestins play additional roles in receptor trafficking. Non-visual arrestins appear to be required for the recycling of internalized GPCRs, and the mechanisms of their function in this case remain to be elucidated. Moreover, visual and non-visual arrestins were shown to directly bind N-ethylmaleimide-sensitive factor, an important ATPase involved in vesicle trafficking, but neither molecular details nor the biological role of these interactions is clear. Considering how many different proteins arrestins appear to bind, we can confidently expect the elucidation of additional trafficking-related functions of these versatile signaling adaptors.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
26
|
Satoh T, Ohba A, Liu Z, Inagaki T, Satoh AK. dPob/EMC is essential for biosynthesis of rhodopsin and other multi-pass membrane proteins in Drosophila photoreceptors. eLife 2015; 4. [PMID: 25715730 PMCID: PMC4341237 DOI: 10.7554/elife.06306] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 01/26/2015] [Indexed: 12/22/2022] Open
Abstract
In eukaryotes, most integral membrane proteins are synthesized, integrated into the membrane, and folded properly in the endoplasmic reticulum (ER). We screened the mutants affecting rhabdomeric expression of rhodopsin 1 (Rh1) in the Drosophila photoreceptors and found that dPob/EMC3, EMC1, and EMC8/9, Drosophila homologs of subunits of ER membrane protein complex (EMC), are essential for stabilization of immature Rh1 in an earlier step than that at which another Rh1-specific chaperone (NinaA) acts. dPob/EMC3 localizes to the ER and associates with EMC1 and calnexin. Moreover, EMC is required for the stable expression of other multi-pass transmembrane proteins such as minor rhodopsins Rh3 and Rh4, transient receptor potential, and Na+K+-ATPase, but not for a secreted protein or type I single-pass transmembrane proteins. Furthermore, we found that dPob/EMC3 deficiency induces rhabdomere degeneration in a light-independent manner. These results collectively indicate that EMC is a key factor in the biogenesis of multi-pass transmembrane proteins, including Rh1, and its loss causes retinal degeneration. DOI:http://dx.doi.org/10.7554/eLife.06306.001 The membranes that surround cells contain many proteins, and those that span the entire width of the membrane are known as transmembrane proteins. Rhodopsin is one such transmembrane protein that is found in the light-sensitive ‘photoreceptor’ cells of the eye, where it plays an essential role in vision. Transmembrane proteins are made inside the cell and are inserted into the membrane surrounding a compartment called the endoplasmic reticulum. Here, they mature and ‘fold’ into their correct three-dimensional shape with help from chaperone proteins. Once correctly folded, the transmembrane proteins can be transported to the cell membrane. Incorrect folding of proteins can have severe consequences; if rhodopsin is incorrectly folded the photoreceptor cells can die, leading to blindness in humans and other animals. Experiments carried out in zebrafish have shown that the chaperone protein Pob is required for the survival of photoreceptor cells. Pob is part of a group or ‘complex’ of chaperone proteins in the endoplasmic reticulum called the EMC complex. This suggests that the EMC complex may be involved in folding rhodopsin, but the details remain unclear. Here, Satoh et al. studied the role of the EMC complex in the folding of rhodopsin in fruit flies. This involved examining hundreds of flies that carried a variety of genetic mutations and that also had low levels of rhodopsin. The experiments show that dPob—the fly version of Pob—and two other proteins in the EMC complex are required for newly-made rhodopsin to be stabilized. If photoreceptor cells are missing proteins from the complex, the light-sensitive structures in the eye degenerate. Rhodopsin is known as a ‘multi-pass’ membrane protein because it crosses the membrane multiple times. Satoh et al. found that the EMC complex is also required for the folding of other multi-pass membrane proteins in photoreceptor cells. The next challenge will be to reveal how the EMC complex is able to specifically target this type of transmembrane protein. DOI:http://dx.doi.org/10.7554/eLife.06306.002
Collapse
Affiliation(s)
- Takunori Satoh
- Graduate School of Integrated Arts and Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Aya Ohba
- Graduate School of Integrated Arts and Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Ziguang Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Tsuyoshi Inagaki
- Graduate School of Integrated Arts and Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Akiko K Satoh
- Graduate School of Integrated Arts and Science, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
27
|
Sommer ME, Hofmann KP, Heck M. Not just signal shutoff: the protective role of arrestin-1 in rod cells. Handb Exp Pharmacol 2014; 219:101-16. [PMID: 24292826 DOI: 10.1007/978-3-642-41199-1_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The retinal rod cell is an exquisitely sensitive single-photon detector that primarily functions in dim light (e.g., moonlight). However, rod cells must routinely survive light intensities more than a billion times greater (e.g., bright daylight). One serious challenge to rod cell survival in daylight is the massive amount of all-trans-retinal that is released by Meta II, the light-activated form of the photoreceptor rhodopsin. All-trans-retinal is toxic, and its condensation products have been implicated in disease. Our recent work has developed the concept that rod arrestin (arrestin-1), which terminates Meta II signaling, has an additional role in protecting rod cells from the consequences of bright light by limiting free all-trans-retinal. In this chapter we will elaborate upon the molecular mechanisms by which arrestin-1 serves as both a single-photon response quencher as well as an instrument of rod cell survival in bright light. This discussion will take place within the framework of three distinct functional modules of vision: signal transduction, the retinoid cycle, and protein translocation.
Collapse
Affiliation(s)
- Martha E Sommer
- Institut für Medizinische Physik und Biophysik (CC2), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany,
| | | | | |
Collapse
|
28
|
Abstract
G-protein-coupled receptors (GPCRs) are the primary interaction partners for arrestins. The visual arrestins, arrestin1 and arrestin4, physiologically bind to only very few receptors, i.e., rhodopsin and the color opsins, respectively. In contrast, the ubiquitously expressed nonvisual variants β-arrestin1 and 2 bind to a large number of receptors in a fairly nonspecific manner. This binding requires two triggers, agonist activation and receptor phosphorylation by a G-protein-coupled receptor kinase (GRK). These two triggers are mediated by two different regions of the arrestins, the "phosphorylation sensor" in the core of the protein and a less well-defined "activation sensor." Binding appears to occur mostly in a 1:1 stoichiometry, involving the N-terminal domain of GPCRs, but in addition a second GPCR may loosely bind to the C-terminal domain when active receptors are abundant.Arrestin binding initially uncouples GPCRs from their G-proteins. It stabilizes receptors in an active conformation and also induces a conformational change in the arrestins that involves a rotation of the two domains relative to each other plus changes in the polar core. This conformational change appears to permit the interaction with further downstream proteins. The latter interaction, demonstrated mostly for β-arrestins, triggers receptor internalization as well as a number of nonclassical signaling pathways.Open questions concern the exact stoichiometry of the interaction, possible specificity with regard to the type of agonist and of GRK involved, selective regulation of downstream signaling (=biased signaling), and the options to use these mechanisms as therapeutic targets.
Collapse
Affiliation(s)
- Martin J Lohse
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078, Würzburg, Germany,
| | | |
Collapse
|
29
|
Xiong B, Bellen HJ. Rhodopsin homeostasis and retinal degeneration: lessons from the fly. Trends Neurosci 2013; 36:652-60. [PMID: 24012059 DOI: 10.1016/j.tins.2013.08.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 08/02/2013] [Accepted: 08/12/2013] [Indexed: 11/16/2022]
Abstract
Rhodopsins (Rh) are G protein-coupled receptors that function as light-sensors in photoreceptors. In humans, Rh mutations cause retinitis pigmentosa (RP), a degenerative disease that ultimately results in blindness. Studies in Drosophila have provided many insights into basic Rh biology and have identified pathways that lead to retinal degeneration. It has been shown that, because Rh is very abundant in photoreceptors, its accumulation in numerous organelles induces severe stress and results in degeneration of these cells. Moreover, genetic lesions that affect proper activation of membrane-bound Rh lead to disruption in Ca(2+) homeostasis which also causes photoreceptor degeneration. We review here the molecular signals involved in Rh homeostasis and the mechanisms underlying retinal degeneration in flies, and discuss possible links to human diseases.
Collapse
Affiliation(s)
- Bo Xiong
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
30
|
Satoh T, Inagaki T, Liu Z, Watanabe R, Satoh AK. GPI biosynthesis is essential for rhodopsin sorting at the trans-Golgi network in Drosophila photoreceptors. Development 2013; 140:385-94. [PMID: 23250212 DOI: 10.1242/dev.083683] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Sorting of integral membrane proteins plays crucial roles in establishing and maintaining the polarized structures of epithelial cells and neurons. However, little is known about the sorting mechanisms of newly synthesized membrane proteins at the trans-Golgi network (TGN). To identify which genes are essential for these sorting mechanisms, we screened mutants in which the transport of Rhodopsin 1 (Rh1), an apical integral membrane protein in Drosophila photoreceptors, was affected. We found that deficiencies in glycosylphosphatidylinositol (GPI) synthesis and attachment processes cause loss of the apical transport of Rh1 from the TGN and mis-sorting to the endolysosomal system. Moreover, Na(+)K(+)-ATPase, a basolateral membrane protein, and Crumbs (Crb), a stalk membrane protein, were mistransported to the apical rhabdomeric microvilli in GPI-deficient photoreceptors. These results indicate that polarized sorting of integral membrane proteins at the TGN requires the synthesis and anchoring of GPI-anchored proteins. Little is known about the cellular biological consequences of GPI deficiency in animals in vivo. Our results provide new insights into the importance of GPI synthesis and aid the understanding of pathologies involving GPI deficiency.
Collapse
Affiliation(s)
- Takunori Satoh
- Division of Life Science, Graduate School of Integral Arts and Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-hiroshima 739-8521, Japan
| | | | | | | | | |
Collapse
|
31
|
Loss of retinoschisin (RS1) cell surface protein in maturing mouse rod photoreceptors elevates the luminance threshold for light-driven translocation of transducin but not arrestin. J Neurosci 2012; 32:13010-21. [PMID: 22993419 DOI: 10.1523/jneurosci.1913-12.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Loss of retinoschisin (RS1) in Rs1 knock-out (Rs1-KO) retina produces a post-photoreceptor phenotype similar to X-linked retinoschisis in young males. However, Rs1 is expressed strongly in photoreceptors, and Rs1-KO mice have early reduction in the electroretinogram a-wave. We examined light-activated transducin and arrestin translocation in young Rs1-KO mice as a marker for functional abnormalities in maturing rod photoreceptors. We found a progressive reduction in luminance threshold for transducin translocation in wild-type (WT) retinas between postnatal days P18 and P60. At P21, the threshold in Rs1-KO retinas was 10-fold higher than WT, but it decreased to <2.5-fold higher by P60. Light-activated arrestin translocation and re-translocation of transducin in the dark were not affected. Rs1-KO rod outer segment (ROS) length was significantly shorter than WT at P21 but was comparable with WT at P60. These findings suggested a delay in the structural and functional maturation of Rs1-KO ROS. Consistent with this, transcription factors CRX and NRL, which are fundamental to maturation of rod protein expression, were reduced in ROS of Rs1-KO mice at P21 but not at P60. Expression of transducin was 15-30% lower in P21 Rs1-KO ROS and transducin GTPase hydrolysis was nearly twofold faster, reflecting a 1.7- to 2.5-fold increase in RGS9 (regulator of G-protein signaling) level. Transduction protein expression and activity levels were similar to WT at P60. Transducin translocation threshold elevation indicates photoreceptor functional abnormalities in young Rs1-KO mice. Rapid reduction in threshold coupled with age-related changes in transduction protein levels and transcription factor expression are consistent with delayed maturation of Rs1-KO photoreceptors.
Collapse
|
32
|
Abstract
Arrestins belong to a family of multifunctional adaptor proteins that regulate internalization of diverse receptors including G-protein-coupled receptors (GPCRs). Defects associated with endocytosis of GPCRs have been linked to human diseases. We used enhanced green fluorescent protein-tagged arrestin 2 (Arr2) to monitor the turnover of the major rhodopsin (Rh1) in live Drosophila. We demonstrate that during degeneration of norpA(P24) photoreceptors the loss of Rh1 is parallel to the disappearance of rhabdomeres, the specialized visual organelle that houses Rh1. The cause of degeneration in norpA(P24) is the failure to activate CaMKII (Ca(2+)/calmodulin-dependent protein kinase II) and retinal degeneration C (RDGC) because of a loss of light-dependent Ca(2+) entry. A lack of activation in CaMKII, which phosphorylates Arr2, leads to hypophosphorylated Arr2, while a lack of activation of RDGC, which dephosphorylates Rh1, results in hyperphosphorylated Rh1. We investigated how reversible phosphorylation of Rh1 and Arr2 contributes to photoreceptor degeneration. To uncover the consequence underlying a lack of CaMKII activation, we characterized ala(1) flies in which CaMKII was suppressed by an inhibitory peptide, and showed that morphology of rhabdomeres was not affected. In contrast, we found that expression of phosphorylation-deficient Rh1s, which either lack the C terminus or contain Ala substitution in the phosphorylation sites, was able to prevent degeneration of norpA(P24) photoreceptors. This suppression is not due to a loss of Arr2 interaction. Importantly, co-expression of these modified Rh1s offered protective effects, which greatly delayed photoreceptor degeneration. Together, we conclude that phosphorylation of Rh1 is the major determinant that orchestrates its internalization leading to retinal degeneration.
Collapse
|
33
|
|
34
|
Regulation of arrestin translocation by Ca2+ and myosin III in Drosophila photoreceptors. J Neurosci 2012; 32:9205-16. [PMID: 22764229 DOI: 10.1523/jneurosci.0924-12.2012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Upon illumination several phototransduction proteins translocate between cell body and photosensory compartments. In Drosophila photoreceptors arrestin (Arr2) translocates from cell body to the microvillar rhabdomere down a diffusion gradient created by binding of Arr2 to photo-isomerized metarhodopsin. Translocation is profoundly slowed in mutants of key phototransduction proteins including phospholipase C (PLC) and the Ca(2+)-permeable transient receptor potential channel (TRP), but how the phototransduction cascade accelerates Arr2 translocation is unknown. Using real-time fluorescent imaging of Arr2-green fluorescent protein translocation in dissociated ommatidia, we show that translocation is profoundly slowed in Ca(2+)-free solutions. Conversely, in a blind PLC mutant with ∼100-fold slower translocation, rapid translocation was rescued by the Ca(2+) ionophore, ionomycin. In mutants lacking NINAC (calmodulin [CaM] binding myosin III) in the cell body, translocation remained rapid even in Ca(2+)-free solutions. Immunolabeling revealed that Arr2 in the cell body colocalized with NINAC in the dark. In intact eyes, the impaired translocation found in trp mutants was rescued in ninaC;trp double mutants. Nevertheless, translocation following prolonged dark adaptation was significantly slower in ninaC mutants, than in wild type: a difference that was reflected in the slow decay of the electroretinogram. The results suggest that cytosolic NINAC is a Ca(2+)-dependent binding target for Arr2, which protects Arr2 from immobilization by a second potential sink that sequesters and releases arrestin on a much slower timescale. We propose that rapid Ca(2+)/CaM-dependent release of Arr2 from NINAC upon Ca(2+) influx accounts for the acceleration of translocation by phototransduction.
Collapse
|
35
|
Montell C. Drosophila visual transduction. Trends Neurosci 2012; 35:356-63. [PMID: 22498302 DOI: 10.1016/j.tins.2012.03.004] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 03/06/2012] [Accepted: 03/11/2012] [Indexed: 11/26/2022]
Abstract
Visual transduction in the Drosophila compound eye functions through a pathway that couples rhodopsin to phospholipase C (PLC) and the opening of transient receptor potential (TRP) channels. This cascade differs from phototransduction in mammalian rods and cones, but is remarkably similar to signaling in mammalian intrinsically photosensitive retinal ganglion cells (ipRGCs). In this review, I focus on recent advances in the fly visual system, including the discovery of a visual cycle and insights into the machinery and mechanisms involved in generating a light response in photoreceptor cells.
Collapse
Affiliation(s)
- Craig Montell
- Departments of Biological Chemistry and Neuroscience, Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
36
|
Raghu P, Yadav S, Mallampati NBN. Lipid signaling in Drosophila photoreceptors. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1154-65. [PMID: 22487656 DOI: 10.1016/j.bbalip.2012.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 03/20/2012] [Accepted: 03/22/2012] [Indexed: 11/19/2022]
Abstract
Drosophila photoreceptors are sensory neurons whose primary function is the transduction of photons into an electrical signal for forward transmission to the brain. Photoreceptors are polarized cells whose apical domain is organized into finger like projections of plasma membrane, microvilli that contain the molecular machinery required for sensory transduction. The development of this apical domain requires intense polarized membrane transport during development and it is maintained by post developmental membrane turnover. Sensory transduction in these cells involves a high rate of G-protein coupled phosphatidylinositol 4,5 bisphosphate [PI(4,5)P(2)] hydrolysis ending with the activation of ion channels that are members of the TRP superfamily. Defects in this lipid-signaling cascade often result in retinal degeneration, which is a consequence of the loss of apical membrane homeostasis. In this review we discuss the various membrane transport challenges of photoreceptors and their regulation by ongoing lipid signaling cascades in these cells. This article is part of a Special Issue entitled Lipids and Vesicular Transport.
Collapse
Affiliation(s)
- Padinjat Raghu
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bellary Road, Banglore 560065, India.
| | | | | |
Collapse
|
37
|
Hu W, Wan D, Yu X, Cao J, Guo P, Li HS, Han J. Protein Gq modulates termination of phototransduction and prevents retinal degeneration. J Biol Chem 2012; 287:13911-8. [PMID: 22389492 DOI: 10.1074/jbc.m112.339895] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Appropriate termination of the phototransduction cascade is critical for photoreceptors to achieve high temporal resolution and to prevent excessive Ca(2+)-induced cell toxicity. Using a genetic screen to identify defective photoresponse mutants in Drosophila, we isolated and identified a novel Gα(q) mutant allele, which has defects in both activation and deactivation. We revealed that G(q) modulates the termination of the light response and that metarhodopsin/G(q) interaction affects subsequent arrestin-rhodopsin (Arr2-Rh1) binding, which mediates the deactivation of metarhodopsin. We further showed that the Gα(q) mutant undergoes light-dependent retinal degeneration, which is due to the slow accumulation of stable Arr2-Rh1 complexes. Our study revealed the roles of G(q) in mediating photoresponse termination and in preventing retinal degeneration. This pathway may represent a general rapid feedback regulation of G protein-coupled receptor signaling.
Collapse
Affiliation(s)
- Wen Hu
- Institute of Life Science, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Lieu MH, Vallejos MJ, Michael E, Tsunoda S. Mechanisms underlying stage-1 TRPL channel translocation in Drosophila photoreceptors. PLoS One 2012; 7:e31622. [PMID: 22363689 PMCID: PMC3282777 DOI: 10.1371/journal.pone.0031622] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 01/16/2012] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND TRP channels function as key mediators of sensory transduction and other cellular signaling pathways. In Drosophila, TRP and TRPL are the light-activated channels in photoreceptors. While TRP is statically localized in the signaling compartment of the cell (the rhabdomere), TRPL localization is regulated by light. TRPL channels translocate out of the rhabdomere in two distinct stages, returning to the rhabdomere with dark-incubation. Translocation of TRPL channels regulates their availability, and thereby the gain of the signal. Little, however, is known about the mechanisms underlying this trafficking of TRPL channels. METHODOLOGY/PRINCIPAL FINDINGS We first examine the involvement of de novo protein synthesis in TRPL translocation. We feed flies cycloheximide, verify inhibition of protein synthesis, and test for TRPL translocation in photoreceptors. We find that protein synthesis is not involved in either stage of TRPL translocation out of the rhabdomere, but that re-localization to the rhabdomere from stage-1, but not stage-2, depends on protein synthesis. We also characterize an ex vivo eye preparation that is amenable to biochemical and genetic manipulation. We use this preparation to examine mechanisms of stage-1 TRPL translocation. We find that stage-1 translocation is: induced with ATP depletion, unaltered with perturbation of the actin cytoskeleton or inhibition of endocytosis, and slowed with increased membrane sterol content. CONCLUSIONS/SIGNIFICANCE Our results indicate that translocation of TRPL out of the rhabdomere is likely due to protein transport, and not degradation/re-synthesis. Re-localization from each stage to the rhabdomere likely involves different strategies. Since TRPL channels can translocate to stage-1 in the absence of ATP, with no major requirement of the cytoskeleton, we suggest that stage-1 translocation involves simple diffusion through the apical membrane, which may be regulated by release of a light-dependent anchor in the rhabdomere.
Collapse
Affiliation(s)
- Minh-Ha Lieu
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Maximiliano J. Vallejos
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Emily Michael
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Susan Tsunoda
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
39
|
Abstract
Drosophila photoreceptors (R cells) are an extreme instance of sensory membrane amplification via apical microvilli, a widely deployed and deeply conserved operation of polarized epithelial cells. Developmental rotation of R cell apices aligns rhabdomere microvilli across the optical axis and enables enormous membrane expansion in a new, proximal distal dimension. R cell ectoplasm, the specialized cortical cytoplasm abutting the rhabdomere is likewise enormously amplified. Ectoplasm is dominated by the actin-rich terminal web, a conserved operational domain of the ancient vesicle-transport motor, Myosin V. R cells harness Myosin V to move two distinct cargoes, the biosynthetic traffic that builds the rhabdomere during development, and the migration of pigment granules that mediates the adaptive "longitudinal pupil" in adults, using two distinct Rab proteins. Ectoplasm further shapes a distinct cortical endosome compartment, the subrhabdomeral cisterna (SRC), vital to normal cell function. Reticulon, a protein that promotes endomembrane curvature, marks the SRC. R cell visual arrestin 2 (Arr2) is predominantly cytoplasmic in dark-adapted photoreceptors but on illumination it translocates to the rhabdomere, where it quenches ongoing photosignaling by binding to activated metarhodopsin. Arr2 translocation is "powered" by diffusion; a motor is not required to move Arr2 and ectoplasm does not obstruct its rapid diffusion to the rhabdomere.
Collapse
Affiliation(s)
- Hongai Xia
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Donald F. Ready
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
40
|
Gurevich VV, Hanson SM, Song X, Vishnivetskiy SA, Gurevich EV. The functional cycle of visual arrestins in photoreceptor cells. Prog Retin Eye Res 2011; 30:405-430. [PMID: 21824527 PMCID: PMC3196764 DOI: 10.1016/j.preteyeres.2011.07.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 01/14/2023]
Abstract
Visual arrestin-1 plays a key role in the rapid and reproducible shutoff of rhodopsin signaling. Its highly selective binding to light-activated phosphorylated rhodopsin is an integral part of the functional perfection of rod photoreceptors. Structure-function studies revealed key elements of the sophisticated molecular mechanism ensuring arrestin-1 selectivity and paved the way to the targeted manipulation of the arrestin-1 molecule to design mutants that can compensate for congenital defects in rhodopsin phosphorylation. Arrestin-1 self-association and light-dependent translocation in photoreceptor cells work together to keep a constant supply of active rhodopsin-binding arrestin-1 monomer in the outer segment. Recent discoveries of arrestin-1 interaction with other signaling proteins suggest that it is a much more versatile signaling regulator than previously thought, affecting the function of the synaptic terminals and rod survival. Elucidation of the fine molecular mechanisms of arrestin-1 interactions with rhodopsin and other binding partners is necessary for the comprehensive understanding of rod function and for devising novel molecular tools and therapeutic approaches to the treatment of visual disorders.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Ave, PRB, Rm 417D, Nashville, TN 37232, USA.
| | | | | | | | | |
Collapse
|
41
|
Hardie RC. Phototransduction mechanisms in Drosophila microvillar photoreceptors. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/wmts.20] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Vishnivetskiy SA, Gimenez LE, Francis DJ, Hanson SM, Hubbell WL, Klug CS, Gurevich VV. Few residues within an extensive binding interface drive receptor interaction and determine the specificity of arrestin proteins. J Biol Chem 2011; 286:24288-99. [PMID: 21471193 PMCID: PMC3129209 DOI: 10.1074/jbc.m110.213835] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/25/2011] [Indexed: 01/25/2023] Open
Abstract
Arrestins bind active phosphorylated forms of G protein-coupled receptors, terminating G protein activation, orchestrating receptor trafficking, and redirecting signaling to alternative pathways. Visual arrestin-1 preferentially binds rhodopsin, whereas the two non-visual arrestins interact with hundreds of G protein-coupled receptor subtypes. Here we show that an extensive surface on the concave side of both arrestin-2 domains is involved in receptor binding. We also identified a small number of residues on the receptor binding surface of the N- and C-domains that largely determine the receptor specificity of arrestins. We show that alanine substitution of these residues blocks the binding of arrestin-1 to rhodopsin in vitro and of arrestin-2 and -3 to β2-adrenergic, M2 muscarinic cholinergic, and D2 dopamine receptors in intact cells, suggesting that these elements critically contribute to the energy of the interaction. Thus, in contrast to arrestin-1, where direct phosphate binding is crucial, the interaction of non-visual arrestins with their cognate receptors depends to a lesser extent on phosphate binding and more on the binding to non-phosphorylated receptor elements.
Collapse
Affiliation(s)
| | - Luis E. Gimenez
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Derek J. Francis
- the Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and
| | - Susan M. Hanson
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Wayne L. Hubbell
- the Jules Stein Eye Institute and Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Candice S. Klug
- the Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and
| | - Vsevolod V. Gurevich
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
43
|
Stavenga DG, Hardie RC. Metarhodopsin control by arrestin, light-filtering screening pigments, and visual pigment turnover in invertebrate microvillar photoreceptors. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2011; 197:227-41. [PMID: 21046112 PMCID: PMC3040812 DOI: 10.1007/s00359-010-0604-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 09/29/2010] [Accepted: 10/20/2010] [Indexed: 11/23/2022]
Abstract
The visual pigments of most invertebrate photoreceptors have two thermostable photo-interconvertible states, the ground state rhodopsin and photo-activated metarhodopsin, which triggers the phototransduction cascade until it binds arrestin. The ratio of the two states in photoequilibrium is determined by their absorbance spectra and the effective spectral distribution of illumination. Calculations indicate that metarhodopsin levels in fly photoreceptors are maintained below ~35% in normal diurnal environments, due to the combination of a blue-green rhodopsin, an orange-absorbing metarhodopsin and red transparent screening pigments. Slow metarhodopsin degradation and rhodopsin regeneration processes further subserve visual pigment maintenance. In most insect eyes, where the majority of photoreceptors have green-absorbing rhodopsins and blue-absorbing metarhodopsins, natural illuminants are predicted to create metarhodopsin levels greater than 60% at high intensities. However, fast metarhodopsin decay and rhodopsin regeneration also play an important role in controlling metarhodopsin in green receptors, resulting in a high rhodopsin content at low light intensities and a reduced overall visual pigment content in bright light. A simple model for the visual pigment-arrestin cycle is used to illustrate the dependence of the visual pigment population states on light intensity, arrestin levels and pigment turnover.
Collapse
Affiliation(s)
- Doekele G Stavenga
- Department of Neurobiophysics, University of Groningen, Groningen, The Netherlands.
| | | |
Collapse
|
44
|
Bayburt TH, Vishnivetskiy SA, McLean MA, Morizumi T, Huang CC, Tesmer JJG, Ernst OP, Sligar SG, Gurevich VV. Monomeric rhodopsin is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding. J Biol Chem 2011; 286:1420-1428. [PMID: 20966068 PMCID: PMC3020750 DOI: 10.1074/jbc.m110.151043] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 10/20/2010] [Indexed: 11/06/2022] Open
Abstract
G-protein-coupled receptor (GPCR) oligomerization has been observed in a wide variety of experimental contexts, but the functional significance of this phenomenon at different stages of the life cycle of class A GPCRs remains to be elucidated. Rhodopsin (Rh), a prototypical class A GPCR of visual transduction, is also capable of forming dimers and higher order oligomers. The recent demonstration that Rh monomer is sufficient to activate its cognate G protein, transducin, prompted us to test whether the same monomeric state is sufficient for rhodopsin phosphorylation and arrestin-1 binding. Here we show that monomeric active rhodopsin is phosphorylated by rhodopsin kinase (GRK1) as efficiently as rhodopsin in the native disc membrane. Monomeric phosphorylated light-activated Rh (P-Rh*) in nanodiscs binds arrestin-1 essentially as well as P-Rh* in native disc membranes. We also measured the affinity of arrestin-1 for P-Rh* in nanodiscs using a fluorescence-based assay and found that arrestin-1 interacts with monomeric P-Rh* with low nanomolar affinity and 1:1 stoichiometry, as previously determined in native disc membranes. Thus, similar to transducin activation, rhodopsin phosphorylation by GRK1 and high affinity arrestin-1 binding only requires a rhodopsin monomer.
Collapse
Affiliation(s)
- Timothy H. Bayburt
- From the Department of Biochemistry, University of Illinois, Urbana, Illinois 61801
| | | | - Mark A. McLean
- From the Department of Biochemistry, University of Illinois, Urbana, Illinois 61801
| | | | | | - John J. G. Tesmer
- the Life Sciences Institute and
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109-2216
| | - Oliver P. Ernst
- Charité-Universitätsmedizin Berlin, D-10117 Berlin, Germany, and
| | - Stephen G. Sligar
- From the Department of Biochemistry, University of Illinois, Urbana, Illinois 61801
| | - Vsevolod V. Gurevich
- the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
45
|
Sommer ME, Hofmann KP, Heck M. Arrestin-rhodopsin binding stoichiometry in isolated rod outer segment membranes depends on the percentage of activated receptors. J Biol Chem 2010; 286:7359-69. [PMID: 21169358 DOI: 10.1074/jbc.m110.204941] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In the rod cell of the retina, arrestin is responsible for blocking signaling of the G-protein-coupled receptor rhodopsin. The general visual signal transduction model implies that arrestin must be able to interact with a single light-activated, phosphorylated rhodopsin molecule (Rho*P), as would be generated at physiologically relevant low light levels. However, the elongated bi-lobed structure of arrestin suggests that it might be able to accommodate two rhodopsin molecules. In this study, we directly addressed the question of binding stoichiometry by quantifying arrestin binding to Rho*P in isolated rod outer segment membranes. We manipulated the "photoactivation density," i.e. the percentage of active receptors in the membrane, with the use of a light flash or by partially regenerating membranes containing phosphorylated opsin with 11-cis-retinal. Curiously, we found that the apparent arrestin-Rho*P binding stoichiometry was linearly dependent on the photoactivation density, with one-to-one binding at low photoactivation density and one-to-two binding at high photoactivation density. We also observed that, irrespective of the photoactivation density, a single arrestin molecule was able to stabilize the active metarhodopsin II conformation of only a single Rho*P. We hypothesize that, although arrestin requires at least a single Rho*P to bind the membrane, a single arrestin can actually interact with a pair of receptors. The ability of arrestin to interact with heterogeneous receptor pairs composed of two different photo-intermediate states would be well suited to the rod cell, which functions at low light intensity but is routinely exposed to several orders of magnitude more light.
Collapse
Affiliation(s)
- Martha E Sommer
- Institut für Medizinische Physik und Biophysik (CC2), Charité-Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | | | | |
Collapse
|
46
|
Stavenga DG. On visual pigment templates and the spectral shape of invertebrate rhodopsins and metarhodopsins. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 196:869-78. [PMID: 20725729 PMCID: PMC2962788 DOI: 10.1007/s00359-010-0568-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/03/2010] [Accepted: 08/05/2010] [Indexed: 11/30/2022]
Abstract
The absorbance spectra of visual pigments can be approximated with mathematical expressions using as single parameter the absorbance peak wavelength. A comparison of the formulae of Stavenga et al. in Vision Res 33:1011–1017 (1993) and Govardovskii et al. in Vis Neurosci 17:509–528 (2000) applied to a number of invertebrate rhodopsins reveals that both templates well describe the normalized α-band of rhodopsins with peak wavelength > 400 nm; the template spectra are virtually indistinguishable in an absorbance range of about three log units. The template formulae of Govardovskii et al. in Vis Neurosci 17:509–528 (2000) describe the rhodopsin spectra better for absorbances below 10−3. The template predicted spectra deviate in the ultraviolet wavelength range from each other as well as from measured spectra, preventing a definite conclusion about the spectral shape in the wavelength range <400 nm. The metarhodopsin spectra of blowfly and fruitfly R1-6 photoreceptors derived from measured data appear to be virtually identical. The established templates describe the spectral shape of fly metarhodopsin reasonably well. However, the best fitting template spectrum slightly deviates from the experimental spectra near the peak and in the long-wavelength tail. Improved formulae for fitting the fly metarhodopsin spectra are proposed.
Collapse
Affiliation(s)
- Doekele G Stavenga
- Department of Neurobiophysics, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|