1
|
Liu X, Ni Y, Wang Z, Wei S, Chen XE, Lin J, Liu L, Yu B, Yu Y, Lei D, Chen Y, Zhang J, Qi J, Zhong W, Liu Y. Heterointerface-Modulated Synthetic Synapses Exhibiting Complex Multiscale Plasticity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e17237. [PMID: 40391797 DOI: 10.1002/advs.202417237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/20/2025] [Indexed: 05/22/2025]
Abstract
An asymmetric dual-gate heterointerface-regulated artificial synapse (HRAS) is developed, utilizing a main gate with distinct ion concentrations and a lateral gate to receive synaptic pulses, and through dielectric coupling and ionic effects, formed indium tin zinc oxide (ITZO) dual-interface channels that allow precise control over channel charge, thereby simulating multi-level coordinated actions of dual-neurotransmitters. The lateral modulation of the lateral gate significantly regulates ionic effects, achieving the intricate interplay among lateral inhibition/enhancement and short-/long-term plasticity at a multi-level scale for the first time. This interplay enables the HRAS device to simulate frequency-dependent image filtering and spike number-dependent dynamic visual persistence. By combining temporal synaptic inputs with lateral modulation, HRAS harnesses spatiotemporal properties for bio-inspired cryptographic applications, offering a versatile device-level platform for secure information processing. Furthermore, a novel dual-gate input neural network architecture based on HRAS has been proposed, which aids in weight update and demonstrates enhanced recognition capabilities in neural network tasks, highlighting its role in bio-inspired computing.
Collapse
Affiliation(s)
- Xingji Liu
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yao Ni
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zujun Wang
- National Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an, 710024, China
| | - Sunfu Wei
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiao En Chen
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jingjie Lin
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou, 510006, China
| | - Lu Liu
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Boyang Yu
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| | - Yue Yu
- Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Dengyun Lei
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yayi Chen
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jianfeng Zhang
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jing Qi
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| | - Wei Zhong
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuan Liu
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
2
|
DePasquale O, O'Brien C, Gordon B, Barker DJ. The Orphan Receptor GPR151: Discovery, Expression, and Emerging Biological Significance. ACS Chem Neurosci 2025; 16:1639-1646. [PMID: 40295925 DOI: 10.1021/acschemneuro.4c00780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
G protein-coupled receptors (GPCRs) are among the most prominent druggable targets in the human genome, accounting for approximately 40% of marketed drugs. Despite this, current GPCR-targeted therapies address only about 10% of the GPCRs encoded in the genome. Expanding our knowledge of the remaining "orphan" GPCRs represents a critical frontier in drug discovery. GPR151 emerges as a compelling target due to its distinct expression in the habenula complex, spinal cord neurons, and dorsal root ganglia. This receptor is highly conserved across mammals and possesses orthologs in species such as zebrafish and chickens, underscoring its evolutionarily conserved role in fundamental mammalian processes. Although the precise function of GPR151 remains unknown, it has been strongly implicated in pain modulation and reward-seeking behavior. These attributes position GPR151 as a promising candidate for the development of targeted and specialized pharmacological therapies. This review summarizes the current literature on GPR151, including its discovery, structure, mechanisms, anatomical distribution, and functional roles, while also exploring potential directions for future research.
Collapse
Affiliation(s)
- Olivia DePasquale
- Department of Psychology, Rutgers, The State University of New Jersey, 152 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
| | - Chris O'Brien
- Department of Psychology, Rutgers, The State University of New Jersey, 152 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
| | - Baila Gordon
- Department of Psychology, Rutgers, The State University of New Jersey, 152 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
| | - David J Barker
- Department of Psychology, Rutgers, The State University of New Jersey, 152 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
- Brain Health Institute, Rutgers University, Piscataway, New Jersey 08854, United States
- Rutgers Addiction Research Center, Piscataway, New Jersey 08854, United States
| |
Collapse
|
3
|
Matsumata M, Hirao K, Kobayashi T, Handa T, Zhou Y, Sugiyama T, Kakinuma H, Islam T, Kobayashi Y, Huang AJ, Kasaragod DK, McHugh TJ, Okamoto H. The habenula-interpeduncular nucleus-median raphe pathway regulates the outcome of social dominance conflicts in mice. Curr Biol 2025; 35:2064-2077.e9. [PMID: 40209712 DOI: 10.1016/j.cub.2025.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/02/2025] [Accepted: 03/18/2025] [Indexed: 04/12/2025]
Abstract
The habenula (Hb) to interpeduncular nucleus (IPN) projection is highly conserved across vertebrates and, in zebrafish, has been shown to regulate the decision between continuing to fight and surrender during social conflict. We have recently shown that, in loser zebrafish, habenular acetylcholine release acts on postsynaptic α7 nicotinic receptors to induce the expression of Ca2+-permeable AMPA receptors on the silent synapses of the IPN neurons that project to the median raphe (MnR). Leveraging this evolutionary conservation, we demonstrate that the disruption of cholinergic transmission from the Hb to the IPN biases mice toward winning social conflicts, whereas optogenetic activation has the opposite effect of biasing toward losing. Further circuit dissection revealed that the losing bias is likely to be mediated via inhibition of serotonin (5-hydroxytryptamine [5-HT]) neurons in the MnR by the IPN.
Collapse
Affiliation(s)
- Miho Matsumata
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Kenzo Hirao
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Takuma Kobayashi
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Takehisa Handa
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Yijun Zhou
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Taku Sugiyama
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Hisaya Kakinuma
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tanvir Islam
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Yuki Kobayashi
- Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Arthur J Huang
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Deepa Kamath Kasaragod
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Hitoshi Okamoto
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako 351-0198, Japan; RIKEN CBS-Kao Collaboration Center, Saitama 351-0198, Japan; Center for Advanced Biomedical Sciences, Faculty of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8489, Japan; Institute of Neuropsychiatry, 91 Bentencho, Shinjuku-ku, Tokyo 162-0851, Japan.
| |
Collapse
|
4
|
Rosenthal JS, Zhang D, Yin J, Long C, Yang G, Li Y, Lu Z, Li WP, Yu Z, Li J, Yuan Q. Molecular organization of central cholinergic synapses. Proc Natl Acad Sci U S A 2025; 122:e2422173122. [PMID: 40273107 PMCID: PMC12054790 DOI: 10.1073/pnas.2422173122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/18/2025] [Indexed: 04/26/2025] Open
Abstract
Synapses have undergone significant diversification and adaptation, contributing to the complexity of the central nervous system. Understanding their molecular architecture is essential for deciphering the brain's functional evolution. While nicotinic acetylcholine receptors (nAchRs) are widely distributed across metazoan brains, their associated protein networks remain poorly characterized. Using in vivo proximity labeling, we generated proteomic maps of subunit-specific nAchR interactomes in developing and mature Drosophila brains. Our findings reveal a developmental expansion and reconfiguration of the nAchR interactome. Proteome profiling with genetic perturbations showed that removing individual nAchR subunits consistently triggers compensatory shifts in receptor subtypes, highlighting mechanisms of synaptic plasticity. We also identified the Rho-GTPase regulator Still life (Sif) as a key organizer of cholinergic synapses, with loss of Sif disrupting their molecular composition and structural integrity. These results provide molecular insights into the development and plasticity of central cholinergic synapses, advancing our understanding of synaptic identity conservation and divergence.
Collapse
Affiliation(s)
- Justin S. Rosenthal
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD20892
| | - Dean Zhang
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD20892
| | - Jun Yin
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD20892
| | - Caixia Long
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD20892
| | - George Yang
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD20892
| | - Yan Li
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD20892
| | - Zhiyuan Lu
- Janelia Research Campus, HHMI, Ashburn, VA20147
| | - Wei-Ping Li
- Janelia Research Campus, HHMI, Ashburn, VA20147
| | - Zhiheng Yu
- Janelia Research Campus, HHMI, Ashburn, VA20147
| | - Jiefu Li
- Janelia Research Campus, HHMI, Ashburn, VA20147
| | - Quan Yuan
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD20892
| |
Collapse
|
5
|
Handa T, Sugiyama T, Islam T, Johansen JP, Yanagawa Y, McHugh TJ, Okamoto H. The neural pathway from the superior subpart of the medial habenula to the interpeduncular nucleus suppresses anxiety. Mol Psychiatry 2025:10.1038/s41380-025-02964-8. [PMID: 40140491 DOI: 10.1038/s41380-025-02964-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 02/13/2025] [Accepted: 03/19/2025] [Indexed: 03/28/2025]
Abstract
The medial habenula (MHb) and its projection target, the interpeduncular nucleus (IPN), are highly conserved throughout vertebrate evolution. The MHb-IPN pathway connects the limbic system to the brainstem, consisting of subpathways that project in a topographically organized manner, and has been implicated in the regulation of fear and anxiety. Previous studies have revealed subregion-specific functions of the cholinergic ventral MHb and a substance P (SP)-positive (SP+) subpart of the dorsal MHb (dMHb). In contrast, the dMHb also contains another subpart, a SP-negative subpart known as the 'superior part of MHb (MHbS)'. Although the MHbS has been characterized from various aspects, e.g. distinct c-Fos responses to stressful events and electrophysiological properties compared to other subregions, many of its physiological functions remain to be investigated. Here we found that dopamine receptor D3 (DRD3)-Cre mice enable the labeling of the IPN subregion that receives the MHbS projection. The Cre-expressing somata within the lateral subnucleus of the IPN (LIPN) were concentrated in its most lateral area, which we refer to as the 'lateral subregion of the LIPN (lLIPN)'. This region is characterized by the absence of SP+ axons, in contrast to the medial subregion of the LIPN (mLIPN) innervated by the SP+ axons from the dorsal MHb. Chemogenetic activation and genetically induced synaptic silencing of the DRD3-Cre+ cells reduced and enhanced anxiety-like behavior, respectively. Moreover, c-Fos expression was increased in the lLIPN under an anxiogenic environment. These findings suggest that the MHbS-lLIPN pathway is activated under anxiogenic environments to counteract anxiety.
Collapse
Affiliation(s)
- Takehisa Handa
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Laboratory of Molecular Neuroscience, Medical Research Institute, Institute of Science Tokyo (formerly Tokyo Medical and Dental University), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Department of Psychiatry and Behavioral Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Taku Sugiyama
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Support Unit for Bio-Material Analysis, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Tanvir Islam
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Support Unit for Bio-Material Analysis, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Joshua P Johansen
- Laboratory for Neural Circuitry of Learning and Memory, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, 3-39-15 Showacho, Maebashi, Gunma, 371-8511, Japan
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hitoshi Okamoto
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- RIKEN CBS-Kao Collaboration Center, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Center for Advanced Biomedical Sciences, Faculty of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo, 162-8489, Japan.
- Institute of Neuropsychiatry, 91 Bentencho, Shinjuku, Tokyo, 162-0851, Japan.
| |
Collapse
|
6
|
Kawai T, Dong P, Bakhurin K, Yin HH, Yang H. Calcium-activated ion channels drive atypical inhibition in medial habenula neurons. SCIENCE ADVANCES 2025; 11:eadq2629. [PMID: 40106550 PMCID: PMC11922023 DOI: 10.1126/sciadv.adq2629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025]
Abstract
Nicotine is an addictive substance that poses substantial health and societal challenges. Despite the known links between the medial habenula (MHb) and nicotine avoidance, the ionic mechanisms underlying MHb neuronal responses to nicotine remain unclear. Here, we report that MHb neurons use a long-lasting refractory period (LLRP) as an unconventional inhibitory mechanism to curb hyperexcitability. This process is initiated by nicotine-induced calcium influx through nicotinic acetylcholine receptors, which activates a calcium-activated chloride channel (CaCC). Owing to high intracellular chloride levels in MHb neurons, chloride efflux through CaCC, coupled with high-threshold voltage-gated calcium channels, sustains MHb depolarization near the chloride equilibrium potential of -30 millivolts, thereby enabling LLRP. Concurrently, calcium-activated BK potassium channels counteract this depolarization, promoting LLRP termination. Our findings reveal an atypical inhibitory mechanism, orchestrated by synergistic actions between calcium-permeable and calcium-activated channels. This discovery advances our understanding of neuronal excitability control and nicotine addiction.
Collapse
Affiliation(s)
- Takafumi Kawai
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
- Integrative Physiology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Ping Dong
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Konstantin Bakhurin
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Henry H. Yin
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Huanghe Yang
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
7
|
Chan M, Ogawa S. GPR139, an Ancient Receptor and an Emerging Target for Neuropsychiatric and Behavioral Disorders. Mol Neurobiol 2025:10.1007/s12035-025-04828-2. [PMID: 40102345 DOI: 10.1007/s12035-025-04828-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 03/09/2025] [Indexed: 03/20/2025]
Abstract
GPR139 is an orphan G-protein-coupled receptor that is predominantly expressed in several midbrain regions, e.g., the habenula, striatum, and hypothalamus. GPR139 gene is highly conserved across vertebrate phylogenetic taxa, suggesting its fundamental importance in neurophysiology. Evidence from both animal studies and human genetic association studies has demonstrated that dysregulation of GPR139 expression and function is linked to aberrant behaviors, cognitive deficits, alterations in sleep and alertness, and substance abuse and withdrawal. Animal knockout models suggest that GPR139 plays an anti-opioid role by modulating the signaling activity of the μ-opioid receptor (MOR), as well as the intensity of withdrawal symptoms and nociception in behavioral paradigms. Modulation of GPR139 activity by surrogate agonists such as TAK-041 and JNJ-63533054 has shown promising results in experimental models; however, the use of TAK-041 in clinical trials has produced heterogeneous effects and has not met the intended primary endpoint. Here, we highlight current in vitro and in vivo studies of GPR139, its potential physiological roles, and therapeutic potential in the pathophysiology of neuropsychiatric and behavioral disorders. This review aims to focus on the current knowledge gaps to facilitate future studies that will contribute to the understanding of GPR139 as a therapeutic target for neuropsychiatric and behavioral disorders.
Collapse
Affiliation(s)
- Minyu Chan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Satoshi Ogawa
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
8
|
Hirai H, Konno K, Yamasaki M, Watanabe M, Sakaba T, Hashimotodani Y. Distinct release properties of glutamate/GABA co-transmission serve as a frequency-dependent filtering of supramammillary inputs. eLife 2024; 13:RP99711. [PMID: 39680436 DOI: 10.7554/elife.99711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Glutamate and GABA co-transmitting neurons exist in several brain regions; however, the mechanism by which these two neurotransmitters are co-released from the same synaptic terminals remains unclear. Here, we show that the supramammillary nucleus (SuM) to dentate granule cell synapses, which co-release glutamate and GABA, exhibit differences between glutamate and GABA release properties in paired-pulse ratio, Ca2+-sensitivity, presynaptic receptor modulation, and Ca2+ channel-vesicle coupling configuration. Moreover, uniquantal synaptic responses show independent glutamatergic and GABAergic responses. Morphological analysis reveals that most SuM terminals form distinct glutamatergic and GABAergic synapses in proximity, each characterized by GluN1 and GABAAα1 labeling, respectively. Notably, glutamate/GABA co-transmission exhibits distinct short-term plasticities, with frequency-dependent depression of glutamate and frequency-independent stable depression of GABA. Our findings suggest that glutamate and GABA are co-released from different synaptic vesicles within the SuM terminals, and reveal that distinct transmission modes of glutamate/GABA co-release serve as frequency-dependent filters of SuM inputs.
Collapse
Affiliation(s)
- Himawari Hirai
- Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Kohtarou Konno
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Miwako Yamasaki
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Sakaba
- Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | | |
Collapse
|
9
|
Liang J, Zhou Y, Feng Q, Zhou Y, Jiang T, Ren M, Jia X, Gong H, Di R, Jiao P, Luo M. A brainstem circuit amplifies aversion. Neuron 2024; 112:3634-3650.e5. [PMID: 39270652 DOI: 10.1016/j.neuron.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/09/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024]
Abstract
Dynamic gain control of aversive signals enables adaptive behavioral responses. Although the role of amygdalar circuits in aversive processing is well established, the neural pathway for amplifying aversion remains elusive. Here, we show that the brainstem circuit linking the interpeduncular nucleus (IPN) with the nucleus incertus (NI) amplifies aversion and promotes avoidant behaviors. IPN GABA neurons are activated by aversive stimuli and their predicting cues, with their response intensity closely tracking aversive values. Activating these neurons does not trigger aversive behavior on its own but rather amplifies responses to aversive stimuli, whereas their ablation or inhibition suppresses such responses. Detailed circuit dissection revealed anatomically distinct subgroups within the IPN GABA neuron population, highlighting the NI-projecting subgroup as the modulator of aversiveness related to fear and opioid withdrawal. These findings unveil the IPN-NI circuit as an aversion amplifier and suggest potential targets for interventions against affective disorders and opioid relapse.
Collapse
Affiliation(s)
- Jingwen Liang
- National Institute of Biological Sciences (NIBS), Beijing 102206, China; Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Yu Zhou
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Chinese Institute for Brain Research (CIBR), Beijing 102206, China.
| | - Qiru Feng
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Youtong Zhou
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Tao Jiang
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215125, China
| | - Miao Ren
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Xueyan Jia
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215125, China
| | - Hui Gong
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215125, China
| | - Run Di
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing 100053, China
| | - Peijie Jiao
- School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Minmin Luo
- Chinese Institute for Brain Research (CIBR), Beijing 102206, China; New Cornerstone Science Laboratory, Shenzhen 518054, China; Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing 100005, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China.
| |
Collapse
|
10
|
Mei F, Zhao C, Li S, Xue Z, Zhao Y, Xu Y, Ye R, You H, Yu P, Han X, Carr GV, Weinberger DR, Yang F, Lu B. Ngfr + cholinergic projection from SI/nBM to mPFC selectively regulates temporal order recognition memory. Nat Commun 2024; 15:7342. [PMID: 39187496 PMCID: PMC11347598 DOI: 10.1038/s41467-024-51707-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 08/13/2024] [Indexed: 08/28/2024] Open
Abstract
Acetylcholine regulates various cognitive functions through broad cholinergic innervation. However, specific cholinergic subpopulations, circuits and molecular mechanisms underlying recognition memory remain largely unknown. Here we show that Ngfr+ cholinergic neurons in the substantia innominate (SI)/nucleus basalis of Meynert (nBM)-medial prefrontal cortex (mPFC) circuit selectively underlies recency judgements. Loss of nerve growth factor receptor (Ngfr-/- mice) reduced the excitability of cholinergic neurons in the SI/nBM-mPFC circuit but not in the medial septum (MS)-hippocampus pathway, and impaired temporal order memory but not novel object and object location recognition. Expression of Ngfr in Ngfr-/- SI/nBM restored defected temporal order memory. Fiber photometry revealed that acetylcholine release in mPFC not only predicted object encounters but also mediated recency judgments of objects, and such acetylcholine release was absent in Ngfr-/- mPFC. Chemogenetic and optogenetic inhibition of SI/nBM projection to mPFC in ChAT-Cre mice diminished mPFC acetylcholine release and deteriorated temporal order recognition. Impaired cholinergic activity led to a depolarizing shift of GABAergic inputs to mPFC pyramidal neurons, due to disturbed KCC2-mediated chloride gradients. Finally, potentiation of acetylcholine signaling upregulated KCC2 levels, restored GABAergic driving force and rescued temporal order recognition deficits in Ngfr-/- mice. Thus, NGFR-dependent SI/nBM-mPFC cholinergic circuit underlies temporal order recognition memory.
Collapse
Affiliation(s)
- Fan Mei
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Chen Zhao
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Shangjin Li
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Zeping Xue
- Basic and Translational Medicine Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- School of Basic Medicine, Capital Medical University, Beijing, China
- Laboratory of Cognitive and Behavioral Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Yueyang Zhao
- Basic and Translational Medicine Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yihua Xu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Rongrong Ye
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - He You
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Peng Yu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Xinyu Han
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Gregory V Carr
- Department of Pharmacology and Molecular Sciences, Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel R Weinberger
- Department of Pharmacology and Molecular Sciences, Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Feng Yang
- Basic and Translational Medicine Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
- Laboratory of Cognitive and Behavioral Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
| | - Bai Lu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
11
|
Miguelez Fernández AMM, Netherton S, Niladhuri SB, Rivera P, Tseng KY, Peters CJ. Chemogenetic control of GABAergic activity within the interpeduncular nucleus reveals dissociable behavioral components of the nicotine withdrawal phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602259. [PMID: 39026861 PMCID: PMC11257432 DOI: 10.1101/2024.07.05.602259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Chronic exposure to nicotine results in the development of a dependent state such that a withdrawal syndrome is elicited upon cessation of nicotine. The habenulo-interpeduncular (Hb-IPN) circuit contains a high concentration of nAChRs and has been identified as a main circuit involved in nicotine withdrawal. Here we investigated the contribution of two distinct subpopulations of IPN GABAergic neurons to nicotine withdrawal behaviors. Using a chemogenetic approach to specifically target Amigo1-expressing or Epyc-expressing neurons within the IPN, we found that activity of the Amigo1 and not the Epyc subpopulation of GABAergic neurons is critical for anxiety-like behaviors both in naïve mice and in those undergoing nicotine withdrawal. Moreover, data revealed that stimulation of Amigo1 neurons in nicotine-naïve mice elicits opposite effects on affective and somatic signs of withdrawal. Taken together, these results suggest that somatic and affective behaviors constitute dissociable components of the nicotine withdrawal phenotype and are likely supported by distinct subpopulations of neurons within the IPN.
Collapse
|
12
|
Tsuzuki A, Yamasaki M, Konno K, Miyazaki T, Takei N, Tomita S, Yuzaki M, Watanabe M. Abundant extrasynaptic expression of α3β4-containing nicotinic acetylcholine receptors in the medial habenula-interpeduncular nucleus pathway in mice. Sci Rep 2024; 14:14193. [PMID: 38902419 PMCID: PMC11189931 DOI: 10.1038/s41598-024-65076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) in the medial habenula (MHb)-interpeduncular nucleus (IPN) pathway play critical roles in nicotine-related behaviors. This pathway is particularly enriched in nAChR α3 and β4 subunits, both of which are genetically linked to nicotine dependence. However, the cellular and subcellular expression of endogenous α3β4-containing nAChRs remains largely unknown because specific antibodies and appropriate detection methods were unavailable. Here, we successfully uncovered the expression of endogenous nAChRs containing α3 and β4 subunits in the MHb-IPN pathway using novel specific antibodies and a fixative glyoxal that enables simultaneous detection of synaptic and extrasynaptic molecules. Immunofluorescence and immunoelectron microscopy revealed that both subunits were predominantly localized to the extrasynaptic cell surface of somatodendritic and axonal compartments of MHb neurons but not at their synaptic junctions. Immunolabeling for α3 and β4 subunits disappeared in α5β4-knockout brains, which we used as negative controls. The enriched and diffuse extrasynaptic expression along the MHb-IPN pathway suggests that α3β4-containing nAChRs may enhance the excitability of MHb neurons and neurotransmitter release from their presynaptic terminals in the IPN. The revealed distribution pattern provides a molecular and anatomical basis for understanding the functional role of α3β4-containing nAChRs in the crucial pathway of nicotine dependence.
Collapse
Grants
- 17KK0160 Ministry of Education, Culture, Sports, Science and Technology
- 21K06746 Ministry of Education, Culture, Sports, Science and Technology
- 22K06784 Ministry of Education, Culture, Sports, Science and Technology
- 20H05628 Ministry of Education, Culture, Sports, Science and Technology
- 20H05628 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Asuka Tsuzuki
- Department of Anatomy, Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Miwako Yamasaki
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan.
| | - Kohtarou Konno
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Taisuke Miyazaki
- Department of Functioning and Disability, Faculty of Health Sciences, Hokkaido University, Sapporo, 060-8638, Japan
| | - Norio Takei
- Institute for Animal Experimentation, Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Susumu Tomita
- Department of Cellular and Molecular Physiology, Department of Neuroscience, and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Michisuke Yuzaki
- Department of Physiology, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| |
Collapse
|
13
|
Ritter A, Habusha S, Givon L, Edut S, Klavir O. Prefrontal control of superior colliculus modulates innate escape behavior following adversity. Nat Commun 2024; 15:2158. [PMID: 38461293 PMCID: PMC10925020 DOI: 10.1038/s41467-024-46460-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/28/2024] [Indexed: 03/11/2024] Open
Abstract
Innate defensive responses, though primarily instinctive, must also be highly adaptive to changes in risk assessment. However, adaptive changes can become maladaptive, following severe stress, as seen in posttraumatic stress disorder (PTSD). In a series of experiments, we observed long-term changes in innate escape behavior of male mice towards a previously non-threatening stimulus following an adverse shock experience manifested as a shift in the threshold of threat response. By recording neural activity in the superior colliculus (SC) while phototagging specific responses to afferents, we established the crucial influence of input arriving at the SC from the medial prefrontal cortex (mPFC), both directly and indirectly, on escape-related activity after adverse shock experience. Inactivating these specific projections during the shock effectively abolished the observed changes. Conversely, optogenetically activating them during encounters controlled escape responses. This establishes the necessity and sufficiency of those specific mPFC inputs into the SC for adverse experience related changes in innate escape behavior.
Collapse
Affiliation(s)
- Ami Ritter
- School of Psychological Sciences, The University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Shlomi Habusha
- School of Psychological Sciences, The University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Lior Givon
- School of Psychological Sciences, The University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Shahaf Edut
- School of Psychological Sciences, The University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Oded Klavir
- School of Psychological Sciences, The University of Haifa, Haifa, Israel.
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel.
| |
Collapse
|
14
|
Koppensteiner P, Bhandari P, Önal C, Borges-Merjane C, Le Monnier E, Roy U, Nakamura Y, Sadakata T, Sanbo M, Hirabayashi M, Rhee J, Brose N, Jonas P, Shigemoto R. GABA B receptors induce phasic release from medial habenula terminals through activity-dependent recruitment of release-ready vesicles. Proc Natl Acad Sci U S A 2024; 121:e2301449121. [PMID: 38346189 PMCID: PMC10895368 DOI: 10.1073/pnas.2301449121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
GABAB receptor (GBR) activation inhibits neurotransmitter release in axon terminals in the brain, except in medial habenula (MHb) terminals, which show robust potentiation. However, mechanisms underlying this enigmatic potentiation remain elusive. Here, we report that GBR activation on MHb terminals induces an activity-dependent transition from a facilitating, tonic to a depressing, phasic neurotransmitter release mode. This transition is accompanied by a 4.1-fold increase in readily releasable vesicle pool (RRP) size and a 3.5-fold increase of docked synaptic vesicles (SVs) at the presynaptic active zone (AZ). Strikingly, the depressing phasic release exhibits looser coupling distance than the tonic release. Furthermore, the tonic and phasic release are selectively affected by deletion of synaptoporin (SPO) and Ca2+-dependent activator protein for secretion 2 (CAPS2), respectively. SPO modulates augmentation, the short-term plasticity associated with tonic release, and CAPS2 retains the increased RRP for initial responses in phasic response trains. The cytosolic protein CAPS2 showed a SV-associated distribution similar to the vesicular transmembrane protein SPO, and they were colocalized in the same terminals. We developed the "Flash and Freeze-fracture" method, and revealed the release of SPO-associated vesicles in both tonic and phasic modes and activity-dependent recruitment of CAPS2 to the AZ during phasic release, which lasted several minutes. Overall, these results indicate that GBR activation translocates CAPS2 to the AZ along with the fusion of CAPS2-associated SVs, contributing to persistency of the RRP increase. Thus, we identified structural and molecular mechanisms underlying tonic and phasic neurotransmitter release and their transition by GBR activation in MHb terminals.
Collapse
Affiliation(s)
| | - Pradeep Bhandari
- Institute of Science and Technology Austria, Klosterneuburg3400, Austria
| | - Cihan Önal
- Institute of Science and Technology Austria, Klosterneuburg3400, Austria
| | | | - Elodie Le Monnier
- Institute of Science and Technology Austria, Klosterneuburg3400, Austria
| | - Utsa Roy
- Institute of Science and Technology Austria, Klosterneuburg3400, Austria
| | - Yukihiro Nakamura
- Department of Pharmacology, Jikei University School of Medicine, Nishishinbashi, Minato-ku, Tokyo105-8461, Japan
| | - Tetsushi Sadakata
- Advanced Scientific Research Leaders Development Unit, Gunma University Graduate School of Medicine, Maebashi, Gunma371-8511, Japan
| | - Makoto Sanbo
- Section of Mammalian Transgenesis, National Institute for Physiological Sciences, Okazaki444-8585, Japan
| | - Masumi Hirabayashi
- Section of Mammalian Transgenesis, National Institute for Physiological Sciences, Okazaki444-8585, Japan
| | - JeongSeop Rhee
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
| | - Peter Jonas
- Institute of Science and Technology Austria, Klosterneuburg3400, Austria
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria, Klosterneuburg3400, Austria
| |
Collapse
|
15
|
Olszewski NA, Tetteh-Quarshie S, Henderson BJ. Neuronal Excitability in the Medial Habenula and Ventral Tegmental Area Is Differentially Modulated by Nicotine Dosage and Menthol in a Sex-Specific Manner. eNeuro 2024; 11:ENEURO.0380-23.2024. [PMID: 38233142 PMCID: PMC10863631 DOI: 10.1523/eneuro.0380-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024] Open
Abstract
The medial habenula (MHb) has been identified as the limiting factor for nicotine intake and facilitating nicotine withdrawal. However, few studies have assessed MHb neuronal excitability in response to nicotine, and, currently, a gap in knowledge is present for finding behavioral correlates to neuronal excitability in the region. Moreover, no study to date has evaluated sex or nicotine dosage as factors of excitability in the MHb. Here, we utilized an e-vape self-administration (EVSA) model to determine differences between sexes with different nicotine dosages ± menthol. Following this paradigm, we employed patch-clamp electrophysiology to assess key metrics of MHb neuronal excitability in relation to behavioral endpoints. We observed female mice self-administered significantly more than males, regardless of dosage. We also observed a direct correlation between self-administration behavior and MHb excitability with low-dose nicotine + menthol in males. Conversely, a high dose of nicotine ± menthol yields an inverse correlation between excitability and self-administration behavior in males only. In addition, intrinsic excitability in the ventral tegmental area (VTA) does not track with the amount of nicotine self-administered. Rather, they correlate to the active/inactive discrimination of mice. Using fast-scan cyclic voltammetry, we also observed that dopamine release dynamics are linked to reinforcement-related behavior in males and motivation-related behaviors in females. These results point to a sex-specific difference in the activity of the MHb and VTA leading to distinct differences in self-administration behavior. His could lend evidence to clinical observations of smoking and nicotine-use behavior differing between males and females.
Collapse
Affiliation(s)
- Nathan A Olszewski
- Department of Biomedical Science and Research, Joan C. Edwards School of Medicine, Marshall University, Huntington 25703-1104, West Virginia
| | - Samuel Tetteh-Quarshie
- Department of Biomedical Science and Research, Joan C. Edwards School of Medicine, Marshall University, Huntington 25703-1104, West Virginia
| | - Brandon J Henderson
- Department of Biomedical Science and Research, Joan C. Edwards School of Medicine, Marshall University, Huntington 25703-1104, West Virginia
| |
Collapse
|
16
|
Nordengen K, Morland C. From Synaptic Physiology to Synaptic Pathology: The Enigma of α-Synuclein. Int J Mol Sci 2024; 25:986. [PMID: 38256059 PMCID: PMC10815905 DOI: 10.3390/ijms25020986] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Alpha-synuclein (α-syn) has gained significant attention due to its involvement in neurodegenerative diseases, particularly Parkinson's disease. However, its normal function in the human brain is equally fascinating. The α-syn protein is highly dynamic and can adapt to various conformational stages, which differ in their interaction with synaptic elements, their propensity to drive pathological aggregation, and their toxicity. This review will delve into the multifaceted role of α-syn in different types of synapses, shedding light on contributions to neurotransmission and overall brain function. We describe the physiological role of α-syn at central synapses, including the bidirectional interaction between α-syn and neurotransmitter systems.
Collapse
Affiliation(s)
- Kaja Nordengen
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
| | - Cecilie Morland
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, The Faculty of Mathematics and Natural Sciences, University of Oslo, 1068 Oslo, Norway
| |
Collapse
|
17
|
Kim K, Picciotto MR. Nicotine addiction: More than just dopamine. Curr Opin Neurobiol 2023; 83:102797. [PMID: 37832393 PMCID: PMC10842238 DOI: 10.1016/j.conb.2023.102797] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023]
Abstract
Despite decades of research and anti-tobacco messaging, nicotine addiction remains an important public health problem leading to hundreds of thousands of deaths each year. While fundamental studies have identified molecular, circuit-level and behavioral mechanisms important for nicotine reinforcement and withdrawal, recent studies have identified additional pathways that are important for both nicotine seeking and aversion. In particular, although dopaminergic mechanisms are necessary for nicotine-dependent reward and drug-seeking, novel glutamate and GABA signaling mechanisms in the mesolimbic system have been identified for their contributions to reward-related behaviors. An additional area of active investigation for nicotine addiction focuses on molecular mechanisms in the habenula-interpeduncular pathway driving nicotine aversion and withdrawal. Across all these domains, sex differences in the molecular basis of nicotine-induced behaviors have emerged that identify important new directions for future research. Recent studies reviewed here highlight additional pathways that could provide therapeutic targets for smoking cessation and problematic nicotine vaping.
Collapse
Affiliation(s)
- Kristen Kim
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06508, USA; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06508, USA. https://twitter.com/kristenkim415
| | - Marina R Picciotto
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06508, USA; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06508, USA.
| |
Collapse
|
18
|
Wallace ML, Sabatini BL. Synaptic and circuit functions of multitransmitter neurons in the mammalian brain. Neuron 2023; 111:2969-2983. [PMID: 37463580 PMCID: PMC10592565 DOI: 10.1016/j.neuron.2023.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 07/20/2023]
Abstract
Neurons in the mammalian brain are not limited to releasing a single neurotransmitter but often release multiple neurotransmitters onto postsynaptic cells. Here, we review recent findings of multitransmitter neurons found throughout the mammalian central nervous system. We highlight recent technological innovations that have made the identification of new multitransmitter neurons and the study of their synaptic properties possible. We also focus on mechanisms and molecular constituents required for neurotransmitter corelease at the axon terminal and synaptic vesicle, as well as some possible functions of multitransmitter neurons in diverse brain circuits. We expect that these approaches will lead to new insights into the mechanism and function of multitransmitter neurons, their role in circuits, and their contribution to normal and pathological brain function.
Collapse
Affiliation(s)
- Michael L Wallace
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| | - Bernardo L Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Chung L, Jing M, Li Y, Tapper AR. Feed-forward Activation of Habenula Cholinergic Neurons by Local Acetylcholine. Neuroscience 2023; 529:172-182. [PMID: 37572877 PMCID: PMC10840387 DOI: 10.1016/j.neuroscience.2023.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
While the functional and behavioral role of the medial habenula (MHb) is still emerging, recent data indicate an involvement of this nuclei in regulating mood, aversion, and addiction. Unique to the MHb is a large cluster of cholinergic neurons that project to the interpeduncular nucleus and densely express acetylcholine receptors (AChRs) suggesting that the activity of these cholinergic neurons may be regulated by ACh itself. Whether endogenous ACh from within the habenula regulates cholinergic neuron activity has not been demonstrated. Supporting a role for ACh in modulating MHb activity, acetylcholinesterase inhibitors increased the firing rate of MHb cholinergic neurons in mouse habenula slices, an effect blocked by AChR antagonists and mediated by ACh which was detected via expressing fluorescent ACh sensors in MHb in vivo. To test if cholinergic afferents innervate MHb cholinergic neurons, we used anterograde and retrograde viral tracing to identify cholinergic inputs. Surprisingly, tracing experiments failed to detect cholinergic inputs into the MHb, including from the septum, suggesting that MHb cholinergic neurons may release ACh within the MHb to drive cholinergic activity. To test this hypothesis, we expressed channelrhodopsin in a portion of MHb cholinergic neurons while recording from non-opsin-expressing neurons. Light pulses progressively increased activity of MHb cholinergic neurons indicating feed-forward activation driven by MHb ACh release. These data indicate MHb cholinergic neurons may utilize a unique feed-forward mechanism to synchronize and increase activity by releasing local ACh.
Collapse
Affiliation(s)
- Leeyup Chung
- Brudnick Neuropsychiatric Research Institute, Dept. of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Miao Jing
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, 100871 Beijing, China; Chinese Institute for Brain Research, 102206 Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, 100871 Beijing, China; Chinese Institute for Brain Research, 102206 Beijing, China
| | - Andrew R Tapper
- Brudnick Neuropsychiatric Research Institute, Dept. of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
20
|
Song X, Li H, Liu X, Pang M, Wang Y. Calcium Imaging Characterize the Neurobiological Effect of Terahertz Radiation in Zebrafish Larvae. SENSORS (BASEL, SWITZERLAND) 2023; 23:7689. [PMID: 37765745 PMCID: PMC10537331 DOI: 10.3390/s23187689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/22/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023]
Abstract
(1) Objective: To explore the neurobiological effects of terahertz (THz) radiation on zebrafish larvae using calcium (Ca2+) imaging technology. (2) Methods: Zebrafish larvae at 7 days post fertilization (dpf) were exposed to THz radiation for 10 or 20 min; the frequency was 2.52 THz and the amplitude 50 mW/cm2. The behavioral experiments, neural Ca2+ imaging, and quantitative polymerase chain reaction (qPCR) of the dopamine-related genes were conducted following the irradiation. (3) Results: Compared with the control group, the behavioral experiments demonstrated that THz radiation significantly increased the distance travelled and speed of zebrafish larvae. In addition, the maximum acceleration and motion frequency were elevated in the 20 min radiation group. The neural Ca2+ imaging results indicated a substantial increase in zebrafish neuronal activity. qPCR experiments revealed a significant upregulation of dopamine-related genes, such as drd2b, drd4a, slc6a3 and th. (4) Conclusion: THz radiation (2.52 THz, 50 mW/cm2, 20 min) upregulated dopamine-related genes and significantly enhanced neuronal excitability, and the neurobiological effect of THz radiation can be visualized using neural Ca2+ imaging in vivo.
Collapse
Affiliation(s)
- Xin Song
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (X.S.); (X.L.)
| | - Haibin Li
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China;
| | - Xiuyun Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (X.S.); (X.L.)
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China;
| | - Meijun Pang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (X.S.); (X.L.)
| | - Yuye Wang
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China;
| |
Collapse
|
21
|
Etter G, Carmichael JE, Williams S. Linking temporal coordination of hippocampal activity to memory function. Front Cell Neurosci 2023; 17:1233849. [PMID: 37720546 PMCID: PMC10501408 DOI: 10.3389/fncel.2023.1233849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/01/2023] [Indexed: 09/19/2023] Open
Abstract
Oscillations in neural activity are widespread throughout the brain and can be observed at the population level through the local field potential. These rhythmic patterns are associated with cycles of excitability and are thought to coordinate networks of neurons, in turn facilitating effective communication both within local circuits and across brain regions. In the hippocampus, theta rhythms (4-12 Hz) could contribute to several key physiological mechanisms including long-range synchrony, plasticity, and at the behavioral scale, support memory encoding and retrieval. While neurons in the hippocampus appear to be temporally coordinated by theta oscillations, they also tend to fire in sequences that are developmentally preconfigured. Although loss of theta rhythmicity impairs memory, these sequences of spatiotemporal representations persist in conditions of altered hippocampal oscillations. The focus of this review is to disentangle the relative contribution of hippocampal oscillations from single-neuron activity in learning and memory. We first review cellular, anatomical, and physiological mechanisms underlying the generation and maintenance of hippocampal rhythms and how they contribute to memory function. We propose candidate hypotheses for how septohippocampal oscillations could support memory function while not contributing directly to hippocampal sequences. In particular, we explore how theta rhythms could coordinate the integration of upstream signals in the hippocampus to form future decisions, the relevance of such integration to downstream regions, as well as setting the stage for behavioral timescale synaptic plasticity. Finally, we leverage stimulation-based treatment in Alzheimer's disease conditions as an opportunity to assess the sufficiency of hippocampal oscillations for memory function.
Collapse
Affiliation(s)
| | | | - Sylvain Williams
- Department of Psychiatry, Douglas Mental Health Research Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
22
|
Antunes GF, Campos ACP, Martins DDO, Gouveia FV, Rangel Junior MJ, Pagano RL, Martinez RCR. Unravelling the Role of Habenula Subnuclei on Avoidance Response: Focus on Activation and Neuroinflammation. Int J Mol Sci 2023; 24:10693. [PMID: 37445871 DOI: 10.3390/ijms241310693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 07/15/2023] Open
Abstract
Understanding the mechanisms responsible for anxiety disorders is a major challenge. Avoidance behavior is an essential feature of anxiety disorders. The two-way avoidance test is a preclinical model with two distinct subpopulations-the good and poor performers-based on the number of avoidance responses presented during testing. It is believed that the habenula subnuclei could be important for the elaboration of avoidance response with a distinct pattern of activation and neuroinflammation. The present study aimed to shed light on the habenula subnuclei signature in avoidance behavior, evaluating the pattern of neuronal activation using FOS expression and astrocyte density using GFAP immunoreactivity, and comparing control, good and poor performers. Our results showed that good performers had a decrease in FOS immunoreactivity (IR) in the superior part of the medial division of habenula (MHbS) and an increase in the marginal part of the lateral subdivision of lateral habenula (LHbLMg). Poor performers showed an increase in FOS in the basal part of the lateral subdivision of lateral habenula (LHbLB). Considering the astroglial immunoreactivity, the poor performers showed an increase in GFAP-IR in the inferior portion of the medial complex (MHbl), while the good performers showed a decrease in the oval part of the lateral part of the lateral complex (LHbLO) in comparison with the other groups. Taken together, our data suggest that specific subdivisions of the MHb and LHb have different activation patterns and astroglial immunoreactivity in good and poor performers. This study could contribute to understanding the neurobiological mechanisms responsible for anxiety disorders.
Collapse
Affiliation(s)
| | | | | | - Flavia Venetucci Gouveia
- Division of Neuroscience, Hospital Sírio-Libanês, Sao Paulo 01308-060, Brazil
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Miguel José Rangel Junior
- Centro Universitário de Santa Fé do Sul, Santa Fé do Sul 15775-000, Brazil
- Medical School, Universidade Brasil, Fernandópolis 15600-000, Brazil
| | - Rosana Lima Pagano
- Division of Neuroscience, Hospital Sírio-Libanês, Sao Paulo 01308-060, Brazil
| | - Raquel Chacon Ruiz Martinez
- Division of Neuroscience, Hospital Sírio-Libanês, Sao Paulo 01308-060, Brazil
- Laboratorios de Investigação Médica-LIM/23, Institute of Psychiatry, School of Medicine, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| |
Collapse
|
23
|
Orlando IF, Shine JM, Robbins TW, Rowe JB, O'Callaghan C. Noradrenergic and cholinergic systems take centre stage in neuropsychiatric diseases of ageing. Neurosci Biobehav Rev 2023; 149:105167. [PMID: 37054802 DOI: 10.1016/j.neubiorev.2023.105167] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023]
Abstract
Noradrenergic and cholinergic systems are among the most vulnerable brain systems in neuropsychiatric diseases of ageing, including Alzheimer's disease, Parkinson's disease, Lewy body dementia, and progressive supranuclear palsy. As these systems fail, they contribute directly to many of the characteristic cognitive and psychiatric symptoms. However, their contribution to symptoms is not sufficiently understood, and pharmacological interventions targeting noradrenergic and cholinergic systems have met with mixed success. Part of the challenge is the complex neurobiology of these systems, operating across multiple timescales, and with non-linear changes across the adult lifespan and disease course. We address these challenges in a detailed review of the noradrenergic and cholinergic systems, outlining their roles in cognition and behaviour, and how they influence neuropsychiatric symptoms in disease. By bridging across levels of analysis, we highlight opportunities for improving drug therapies and for pursuing personalised medicine strategies.
Collapse
Affiliation(s)
- Isabella F Orlando
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia
| | - James M Shine
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia
| | - Trevor W Robbins
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, CB2 3EB, United Kingdom
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, CB2 0SZ, United Kingdom
| | - Claire O'Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia.
| |
Collapse
|
24
|
Kinoshita M, Okamoto H. Acetylcholine potentiates glutamate transmission from the habenula to the interpeduncular nucleus in losers of social conflict. Curr Biol 2023:S0960-9822(23)00445-1. [PMID: 37105168 DOI: 10.1016/j.cub.2023.03.087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/02/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023]
Abstract
Switching behaviors from aggression to submission in losers at the end of conspecific social fighting is essential to avoid serious injury or death. We have previously shown that the experience of defeat induces a loser-specific potentiation in the habenula (Hb)-interpeduncular nucleus (IPN) and show here that this is induced by acetylcholine. Calcium imaging and electrophysiological recording using acute brain slices from winners and losers of fighting behavior in zebrafish revealed that the ventral IPN (vIPN) dominates over the dorsal IPN in the neural response to Hb stimulation in losers. We also show that GluA1 α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits on the postsynaptic membrane increased in the vIPN of losers. Furthermore, these loser-specific neural properties disappeared in the presence of an α7 nicotinic acetylcholine receptor (nAChR) antagonist and, conversely, were induced in brain slices of winners treated with α7 nAChR agonists. These data suggest that acetylcholine released from Hb terminals in the vIPN induces activation of α7 nAChR followed by an increase in postsynaptic membrane GluA1. This results in an increase in active synapses on postsynaptic neurons, resulting in the potentiation of neurotransmissions to the vIPN. This acetylcholine-induced neuromodulation could be the neural foundation for behavioral switching in losers. Our results could increase our understanding of the mechanisms of various mood disorders such as social anxiety disorder and social withdrawal.
Collapse
Affiliation(s)
- Masae Kinoshita
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Hitoshi Okamoto
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, Saitama 351-0198, Japan; RIKEN CBS-Kao Collaboration Center, Saitama 351-0198, Japan.
| |
Collapse
|
25
|
Ables JL, Park K, Ibañez-Tallon I. Understanding the habenula: A major node in circuits regulating emotion and motivation. Pharmacol Res 2023; 190:106734. [PMID: 36933754 PMCID: PMC11081310 DOI: 10.1016/j.phrs.2023.106734] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Over the last decade, the understanding of the habenula has rapidly advanced from being an understudied brain area with the Latin name 'habena" meaning "little rein", to being considered a "major rein" in the control of key monoaminergic brain centers. This ancient brain structure is a strategic node in the information flow from fronto-limbic brain areas to brainstem nuclei. As such, it plays a crucial role in regulating emotional, motivational, and cognitive behaviors and has been implicated in several neuropsychiatric disorders, including depression and addiction. This review will summarize recent findings on the medial (MHb) and lateral (LHb) habenula, their topographical projections, cell types, and functions. Additionally, we will discuss contemporary efforts that have uncovered novel molecular pathways and synaptic mechanisms with a focus on MHb-Interpeduncular nucleus (IPN) synapses. Finally, we will explore the potential interplay between the habenula's cholinergic and non-cholinergic components in coordinating related emotional and motivational behaviors, raising the possibility that these two pathways work together to provide balanced roles in reward prediction and aversion, rather than functioning independently.
Collapse
Affiliation(s)
- Jessica L Ables
- Psychiatry Department, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kwanghoon Park
- The Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Inés Ibañez-Tallon
- The Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
26
|
Ananth MR, Rajebhosale P, Kim R, Talmage DA, Role LW. Basal forebrain cholinergic signalling: development, connectivity and roles in cognition. Nat Rev Neurosci 2023; 24:233-251. [PMID: 36823458 PMCID: PMC10439770 DOI: 10.1038/s41583-023-00677-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/18/2023] [Indexed: 02/25/2023]
Abstract
Acetylcholine plays an essential role in fundamental aspects of cognition. Studies that have mapped the activity and functional connectivity of cholinergic neurons have shown that the axons of basal forebrain cholinergic neurons innervate the pallium with far more topographical and functional organization than was historically appreciated. Together with the results of studies using new probes that allow release of acetylcholine to be detected with high spatial and temporal resolution, these findings have implicated cholinergic networks in 'binding' diverse behaviours that contribute to cognition. Here, we review recent findings on the developmental origins, connectivity and function of cholinergic neurons, and explore the participation of cholinergic signalling in the encoding of cognition-related behaviours.
Collapse
Affiliation(s)
- Mala R Ananth
- Section on Circuits, Synapses, and Molecular Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Prithviraj Rajebhosale
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ronald Kim
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - David A Talmage
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Lorna W Role
- Section on Circuits, Synapses, and Molecular Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
27
|
Li T, Morselli M, Su T, Million M, Larauche M, Pellegrini M, Taché Y, Yuan PQ. Comparative transcriptomics reveals highly conserved regional programs between porcine and human colonic enteric nervous system. Commun Biol 2023; 6:98. [PMID: 36693960 PMCID: PMC9872754 DOI: 10.1038/s42003-023-04478-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
The porcine gut is increasingly regarded as a useful translational model. The enteric nervous system in the colon coordinates diverse functions. However, knowledge of the molecular profiling of porcine enteric nerve system and its similarity to that of human is still lacking. We identified the distinct transcriptional programs associated with functional characteristics between inner submucosal and myenteric ganglia in porcine proximal and distal colon using bulk RNA and single-cell RNA sequencing. Comparative transcriptomics of myenteric ganglia in corresponding colonic regions of pig and human revealed highly conserved programs in porcine proximal and distal colon, which explained >96% of their transcriptomic responses to vagal nerve stimulation, suggesting that porcine proximal and distal colon could serve as predictors in translational studies. The conserved programs specific for inflammatory modulation were displayed in pigs with vagal nerve stimulation. This study provides a valuable transcriptomic resource for understanding of human colonic functions and neuromodulation using porcine model.
Collapse
Affiliation(s)
- Tao Li
- CURE/Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, USA
| | - Marco Morselli
- Department of Molecular, Cell, & Developmental Biology, UCLA, Los Angeles, USA
| | - Trent Su
- Department of Biological Chemistry, UCLA, Los Angeles, USA
| | - Mulugeta Million
- CURE/Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, USA
| | - Muriel Larauche
- CURE/Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, & Developmental Biology, UCLA, Los Angeles, USA
| | - Yvette Taché
- CURE/Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, USA
| | - Pu-Qing Yuan
- CURE/Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, USA.
- VA Greater Los Angeles Healthcare System, Los Angeles, USA.
| |
Collapse
|
28
|
Ni Y, Liu L, Liu J, Xu W. A High-Strength Neuromuscular System That Implements Reflexes as Controlled by a Multiquadrant Artificial Efferent Nerve. ACS NANO 2022; 16:20294-20304. [PMID: 36318482 DOI: 10.1021/acsnano.2c06122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We demonstrate an artificial efferent nerve that distinguishes environment-responsive conditioned and unconditioned reflexes, i.e., hand-retraction reflex and muscle memory, respectively. These reflex modes are immediately switchable by altering the polarity of charge carriers in a parallel-channeled artificial synapse; this ability emulates multiplexed neurotransmission of different neurotransmitters to form glutamine-induced short-term plasticity and acetylcholine-induced long-term plasticity. This is the successful control of high-strength artificial muscle fibers by using an artificial efferent nerve to form a neuromuscular system that can realize curvature and force simultaneously and in which all these aspects far surpass currently available neuromuscular systems. Furthermore, the special four-quadrant information-processing mechanism of our artificial efferent nerve allows complex application extensions, i.e., relative-position tracking of sound sources, immediate switchable learning modes between fast information processing and long-term memory, and high-accuracy pattern cognition. This work is a step toward development of human-compatible artificial neuromuscular systems.
Collapse
Affiliation(s)
- Yao Ni
- Institute of Optoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
- Shenzhen Research Institute of Nankai University, Nankai University, Shenzhen 518000, China
| | - Lu Liu
- Institute of Optoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
- Shenzhen Research Institute of Nankai University, Nankai University, Shenzhen 518000, China
| | - Jiaqi Liu
- Institute of Optoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
- Shenzhen Research Institute of Nankai University, Nankai University, Shenzhen 518000, China
| | - Wentao Xu
- Institute of Optoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
- Shenzhen Research Institute of Nankai University, Nankai University, Shenzhen 518000, China
| |
Collapse
|
29
|
Yamada S, Furukawa R, Sakakibara SI. Identification and expression profile of novel STAND gene Nwd2 in the mouse central nervous system. Gene Expr Patterns 2022; 46:119284. [PMID: 36341976 DOI: 10.1016/j.gep.2022.119284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 11/04/2022]
Abstract
In the central nervous system (CNS), neurons need synaptic neurotransmitter release and cellular response for various cellular stress or environmental stimuli. To achieve these highly orchestrated cellular processes, neurons should drive the molecular mechanisms that govern and integrate complex signaling pathways. The signal transduction ATPases with numerous domains (STAND) family of proteins has been shown to play essential roles in diverse signal transduction mechanisms, including apoptosis and innate immunity. However, a comprehensive understanding of STAND genes remains lacking. Previously, we identified the NACHT and WD repeat domain-containing protein 1 (NWD1), a member of STAND family, in the regulation of the assembly of a giant multi-enzyme complex that enables efficient de novo purine biosynthesis during brain development. Here we identified the mouse Nwd2 gene, which is a paralog of Nwd1. A molecular phylogenetic analysis suggested that Nwd1 emerged during the early evolution of the animal kingdom, and that Nwd2 diverged in the process of Nwd1 duplication. RT-PCR and in situ hybridization analyses revealed the unique expression profile of Nwd2 in the developing and adult CNS. Unlike Nwd1, Nwd2 expression was primarily confined to neurons in the medial habenular nucleus, an essential modulating center for diverse psychological states, such as fear, anxiety, and drug addiction. In the adult brain, Nwd2 expression, albeit at a lower level, was also observed in some neuronal populations in the piriform cortex, hippocampus, and substantia nigra pars compacta. NWD2 might play a unique role in the signal transduction required for specific neuronal circuits, especially for cholinergic neurons in the habenula.
Collapse
Affiliation(s)
- Seiya Yamada
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama, 359-1192, Japan.
| | - Ryutaro Furukawa
- Laboratory of Life Science for Extremophiles, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama, 359-1192, Japan
| | - Shin-Ichi Sakakibara
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama, 359-1192, Japan.
| |
Collapse
|
30
|
Circuits regulating pleasure and happiness - focus on potential biomarkers for circuitry including the habenuloid complex. Acta Neuropsychiatr 2022; 34:229-239. [PMID: 35587050 DOI: 10.1017/neu.2022.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
INTRODUCTION The multiplicity and complexity of the neuronal connections in the central nervous system make it difficult to disentangle circuits that play an essential role in the development or treatment of (neuro)psychiatric disorders. By choosing the evolutionary development of the forebrain as a starting point, a certain order in the connections can be created. The dorsal diencephalic connection (DDC) system can be applied for the development of biomarkers that can predict treatment response. MATERIALS AND METHODS After providing a brief introduction to the theory, we examined neuroanatomical publications on the connectivity of the DDC system. We then searched for neurochemical components that are specific for the habenula. RESULTS AND DISCUSSION The best strategy to find biomarkers that reflect the function of the habenular connection is to use genetic variants of receptors, transporters or enzymes specific to this complex. By activating these with probes and measuring the response in people with different functional genotypes, the usefulness of biomarkers can be assessed. CONCLUSIONS The most promising biomarkers in this respect are those linked to activation or inhibition of the nicotine receptor, dopamine D4 receptor, μ-opioid receptor and also those of the functioning of habenular glia cells (astrocytes and microglia).
Collapse
|
31
|
Cristofari P, Desplanque M, Poirel O, Hébert A, Dumas S, Herzog E, Danglot L, Geny D, Gilles JF, Geeverding A, Bolte S, Canette A, Trichet M, Fabre V, Daumas S, Pietrancosta N, El Mestikawy S, Bernard V. Nanoscopic distribution of VAChT and VGLUT3 in striatal cholinergic varicosities suggests colocalization and segregation of the two transporters in synaptic vesicles. Front Mol Neurosci 2022; 15:991732. [PMID: 36176961 PMCID: PMC9513193 DOI: 10.3389/fnmol.2022.991732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/26/2022] [Indexed: 11/26/2022] Open
Abstract
Striatal cholinergic interneurons (CINs) use acetylcholine (ACh) and glutamate (Glut) to regulate the striatal network since they express vesicular transporters for ACh (VAChT) and Glut (VGLUT3). However, whether ACh and Glut are released simultaneously and/or independently from cholinergic varicosities is an open question. The answer to that question requires the multichannel detection of vesicular transporters at the level of single synaptic vesicle (SV). Here, we used super-resolution STimulated Emission Depletion microscopy (STED) to characterize and quantify the distribution of VAChT and VGLUT3 in CINs SVs. Nearest-neighbor distances analysis between VAChT and VGLUT3-immunofluorescent spots revealed that 34% of CINs SVs contain both VAChT and VGLUT3. In addition, 40% of SVs expressed only VAChT while 26% of SVs contain only VGLUT3. These results suggest that SVs from CINs have the potential to store simultaneously or independently ACh and/or Glut. Overall, these morphological findings support the notion that CINs varicosities can signal with either ACh or Glut or both with an unexpected level of complexity.
Collapse
Affiliation(s)
- Paola Cristofari
- Sorbonne Université—CNRS UMR 8246—INSERM U1130—Neuroscience Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), Paris, France
| | - Mazarine Desplanque
- Sorbonne Université—CNRS UMR 8246—INSERM U1130—Neuroscience Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), Paris, France
| | - Odile Poirel
- Sorbonne Université—CNRS UMR 8246—INSERM U1130—Neuroscience Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), Paris, France
| | - Alison Hébert
- Sorbonne Université—CNRS UMR 8246—INSERM U1130—Neuroscience Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), Paris, France
| | | | - Etienne Herzog
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Lydia Danglot
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, Paris, France
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, NeurImag Imaging Facility, Paris, France
- GHU Paris Psychiatrie & Neurosciences, Paris, France
| | - David Geny
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, NeurImag Imaging Facility, Paris, France
| | - Jean-François Gilles
- Imaging Facility of the Institut de Biologie Paris-Seine (IBPS)—Sorbonne Université, Paris, France
| | - Audrey Geeverding
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Service de Microscopie Électronique (IBPS-SME), Paris, France
| | - Susanne Bolte
- Imaging Facility of the Institut de Biologie Paris-Seine (IBPS)—Sorbonne Université, Paris, France
| | - Alexis Canette
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Service de Microscopie Électronique (IBPS-SME), Paris, France
| | - Michaël Trichet
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Service de Microscopie Électronique (IBPS-SME), Paris, France
| | - Véronique Fabre
- Sorbonne Université—CNRS UMR 8246—INSERM U1130—Neuroscience Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), Paris, France
| | - Stéphanie Daumas
- Sorbonne Université—CNRS UMR 8246—INSERM U1130—Neuroscience Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), Paris, France
| | - Nicolas Pietrancosta
- Sorbonne Université—CNRS UMR 8246—INSERM U1130—Neuroscience Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), Paris, France
- Sorbonne Université—CNRS UMR 7203—Laboratoire des BioMolécules, Paris, France
| | - Salah El Mestikawy
- Sorbonne Université—CNRS UMR 8246—INSERM U1130—Neuroscience Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), Paris, France
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Véronique Bernard
- Sorbonne Université—CNRS UMR 8246—INSERM U1130—Neuroscience Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), Paris, France
- *Correspondence: Véronique Bernard,
| |
Collapse
|
32
|
Mu R, Tang S, Han X, Wang H, Yuan D, Zhao J, Long Y, Hong H. A cholinergic medial septum input to medial habenula mediates generalization formation and extinction of visual aversion. Cell Rep 2022; 39:110882. [PMID: 35649349 DOI: 10.1016/j.celrep.2022.110882] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 12/07/2021] [Accepted: 05/06/2022] [Indexed: 12/28/2022] Open
Abstract
Generalization of visual aversion is a critical function of the brain that supports survival, but the underlying neurobiological mechanisms are unclear. We establish a rapid generalization procedure for inducing visual aversion by dynamic stripe images. By using fiber photometry, apoptosis, chemogenetic and optogenetic techniques, and behavioral tests, we find that decreased cholinergic neurons' activity in the medial septum (MS) leads to generalization loss of visual aversion. Strikingly, we identify a projection from MS cholinergic neurons to the medial habenula (MHb) and find that inhibition of the MS→MHb cholinergic circuit disrupts aversion-generalization formation while its continuous activation disrupts subsequent extinction. Further studies show that MS→MHb cholinergic projections modulate the generalization of visual aversion possibly via M1 muscarinic acetylcholine receptors (mAChRs) of downstream neurons coreleasing glutamate and acetylcholine. These findings reveal that the MS→MHb cholinergic circuit is a critical node in aversion-generalization formation and extinction and potentially provides insight into the pathogenesis of affective disorders.
Collapse
Affiliation(s)
- Ronghao Mu
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Susu Tang
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaomeng Han
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Hao Wang
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Danhua Yuan
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Jiajia Zhao
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Long
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China.
| | - Hao Hong
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
33
|
Zych SM, Ford CP. Divergent properties and independent regulation of striatal dopamine and GABA co-transmission. Cell Rep 2022; 39:110823. [PMID: 35584679 PMCID: PMC9134867 DOI: 10.1016/j.celrep.2022.110823] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/03/2022] [Accepted: 04/24/2022] [Indexed: 01/11/2023] Open
Abstract
Substantia nigra pars compacta (SNc) dopamine neurons play a key role in regulating the activity of striatal circuits within the basal ganglia. In addition to dopamine, these neurons release several other transmitters, including the major inhibitory neurotransmitter γ-aminobutyric acid (GABA). Both dopamine and GABA are loaded into SNc synaptic vesicles by the vesicular monoamine transporter 2 (VMAT2), and co-release of GABA provides strong inhibition to the striatum by directly inhibiting striatal medium spiny projection neurons (MSNs) through activation of GABAA receptors. Here, we found that despite both dopamine and GABA being co-packaged by VMAT2, the properties of transmission, including Ca2+ sensitivity, release probability, and requirement of active zone scaffolding proteins, differ between the two transmitters. Moreover, the extent by which presynaptic neuromodulators inhibit co-transmission also varied. Differences in modulation and the mechanisms controlling release allow for independent regulation of dopamine and GABA signals despite both being loaded via similar mechanisms.
Collapse
Affiliation(s)
- Sarah M Zych
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 E 19th Ave, Aurora, CO 80045, USA
| | - Christopher P Ford
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 E 19th Ave, Aurora, CO 80045, USA.
| |
Collapse
|
34
|
Vieira RSF, Venâncio CAS, Félix LM. Behavioural impairment and oxidative stress by acute exposure of zebrafish to a commercial formulation of tebuconazole. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 91:103823. [PMID: 35123019 DOI: 10.1016/j.etap.2022.103823] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/17/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Tebuconazole is a systemic follicular fungicide known to cause diverse problems in non-target organisms namely associated to the pure active ingredient. As such, the objective of this work was to evaluate developmental changes induced by a tebuconazole commercial formulation to a non-target animal model. Zebrafish embryos at ± 2 h post-fertilization were exposed to tebuconazole wettable powder concentrations (0.05, 0.5 and 5 mg L-1) for 96 h with developmental toxicity assessed throughout the exposure period and biochemical parameters evaluated at the end of the exposure. Behavioural assessment (spatial exploration and response to stimuli) was conducted 24 h after the end of the exposure. While no developmental and physiological alterations were observed, exposure to tebuconazole resulted in an increased generation of reactive oxidative species at the 0.05 and 0.5 mg L-1 concentrations and a decreased GPx activity at the 0.5 mg L-1 concentration suggesting a potential protection mechanism. There was also a change in the avoidance-escape behaviour supporting an anxiolytic effect suggesting possible alterations in the central nervous system development demanding further studies.
Collapse
Affiliation(s)
- Raquel S F Vieira
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Carlos A S Venâncio
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Department of Animal Science, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Animal and Veterinary Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Luís M Félix
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade of Porto, Porto, Portugal; Laboratory Animal Science, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto (UP), Porto, Portugal.
| |
Collapse
|
35
|
Upmanyu N, Jin J, Emde HVD, Ganzella M, Bösche L, Malviya VN, Zhuleku E, Politi AZ, Ninov M, Silbern I, Leutenegger M, Urlaub H, Riedel D, Preobraschenski J, Milosevic I, Hell SW, Jahn R, Sambandan S. Colocalization of different neurotransmitter transporters on synaptic vesicles is sparse except for VGLUT1 and ZnT3. Neuron 2022; 110:1483-1497.e7. [PMID: 35263617 DOI: 10.1016/j.neuron.2022.02.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/08/2022] [Accepted: 02/10/2022] [Indexed: 12/26/2022]
Abstract
Vesicular transporters (VTs) define the type of neurotransmitter that synaptic vesicles (SVs) store and release. While certain mammalian neurons release multiple transmitters, it is not clear whether the release occurs from the same or distinct vesicle pools at the synapse. Using quantitative single-vesicle imaging, we show that a vast majority of SVs in the rodent brain contain only one type of VT, indicating specificity for a single neurotransmitter. Interestingly, SVs containing dual transporters are highly diverse (27 types) but small in proportion (2% of all SVs), excluding the largest pool that carries VGLUT1 and ZnT3 (34%). Using VGLUT1-ZnT3 SVs, we demonstrate that the transporter colocalization influences the SV content and synaptic quantal size. Thus, the presence of diverse transporters on the same vesicle is bona fide, and depending on the VT types, this may act to regulate neurotransmitter type, content, and release in space and time.
Collapse
Affiliation(s)
- Neha Upmanyu
- Synaptic Metal Ion Dynamics and Signaling, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Jialin Jin
- European Neurosciences Institute, A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Göttingen 37077, Germany
| | - Henrik von der Emde
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Marcelo Ganzella
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Leon Bösche
- Synaptic Metal Ion Dynamics and Signaling, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Viveka Nand Malviya
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Evi Zhuleku
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Antonio Zaccaria Politi
- Live-Cell Imaging Facility, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Momchil Ninov
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Ivan Silbern
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Marcel Leutenegger
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Dietmar Riedel
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Julia Preobraschenski
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen 37075, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen 37075, Germany
| | - Ira Milosevic
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7BN, UK; Multidisciplinary Institute of Ageing, MIA-Portugal, University of Coimbra, Coimbra 3000-370, Portugal
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg 69028, Germany
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Sivakumar Sambandan
- Synaptic Metal Ion Dynamics and Signaling, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany.
| |
Collapse
|
36
|
Rodriguez-Romaguera J, Namboodiri VMK, Basiri ML, Stamatakis AM, Stuber GD. Developments from Bulk Optogenetics to Single-Cell Strategies to Dissect the Neural Circuits that Underlie Aberrant Motivational States. Cold Spring Harb Perspect Med 2022; 12:a039792. [PMID: 32513671 PMCID: PMC7799172 DOI: 10.1101/cshperspect.a039792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Motivational states are regulated by complex networks across brain regions that are composed of genetically and functionally distinct neuronal populations. Disruption within these neural circuits leads to aberrant motivational states and are thought to be the root cause of psychiatric disorders related to reward processing and addiction. Critical technological advances in the field have revolutionized the study of neural systems by allowing the use of optical strategies to precisely control and visualize neural activity within genetically identified neural populations in the brain. This review will provide a brief introduction into the history of how technological advances in single-cell strategies have been applied to elucidate the neural circuits that underlie aberrant motivational states that often lead to dysfunction in reward processing and addiction.
Collapse
Affiliation(s)
- Jose Rodriguez-Romaguera
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina 27514, USA
- Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27514, USA
| | - Vijay M K Namboodiri
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine & Department of Pharmacology, University of Washington, Seattle, Washington 98195-6410, USA
| | - Marcus L Basiri
- Neuroscience Curriculum, University of North Carolina, Chapel Hill, North Carolina 27514, USA
| | - Alice M Stamatakis
- Neuroscience Curriculum, University of North Carolina, Chapel Hill, North Carolina 27514, USA
| | - Garret D Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine & Department of Pharmacology, University of Washington, Seattle, Washington 98195-6410, USA
| |
Collapse
|
37
|
Jin XT, Drenan RM. Functional α7 nicotinic acetylcholine receptors in GABAergic neurons of the interpeduncular nucleus. Neuropharmacology 2022; 208:108987. [PMID: 35167902 PMCID: PMC8885883 DOI: 10.1016/j.neuropharm.2022.108987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 11/17/2022]
Abstract
The interpeduncular nucleus (IPN) plays a key role in nicotine dependence and is involved in regulation of fear responses, affective states, and novelty processing. IPN neurons express nicotinic acetylcholine receptors (nAChR) and receive strong cholinergic innervation from the ventral medial habenula. Dorsal medial habenula neurons are primarily peptidergic, releasing substance P (SP) mainly onto IPN neurons in the lateral subnucleus (IPL). IPL neurons are sensitive to SP, but it is not known if they are involved in cholinergic transmission like other IPN neurons. We examined nAChR subunit gene expression in IPL neurons, revealing that Chrna7 (α7 nAChR subunit) is expressed in a subset of GABAergic IPL neurons. In patch-clamp recordings from IPL neurons, ACh-evoked inward currents were attenuated by methyllycaconitine (α7 nAChR antagonist) and potentiated by NS1738 (α7 Type I positive allosteric modulator). We confirmed α7 functional expression in IPL neurons by also showing that ACh-evoked currents were potentiated by PNU-120596 (Type II positive allosteric modulator). Additional pharmacological experiments show that IPN neurons expressing α7 nAChRs also express α3β4 nAChRs. Finally, we used 2-photon laser scanning microscopy and nicotine uncaging to directly examine the morphology of IPL neurons that express α7 nAChRs. These results highlight a novel aspect of α7 nAChR neurobiology, adding to the complexity of cholinergic modulation by nAChRs in the IPN.
Collapse
Affiliation(s)
- Xiao-Tao Jin
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Ryan M Drenan
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
38
|
Klenowski PM, Zhao-Shea R, Freels TG, Molas S, Tapper AR. Dynamic activity of interpeduncular nucleus GABAergic neurons controls expression of nicotine withdrawal in male mice. Neuropsychopharmacology 2022; 47:641-651. [PMID: 34326477 PMCID: PMC8782840 DOI: 10.1038/s41386-021-01107-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023]
Abstract
A critical brain area implicated in nicotine dependence is the interpeduncular nucleus (IPN) located in the ventral midbrain and consisting primarily of GABAergic neurons. Previous studies indicate that IPN GABAergic neurons contribute to expression of somatic symptoms of nicotine withdrawal; however, whether IPN neurons are dynamically regulated during withdrawal in vivo and how this may contribute to both somatic and affective withdrawal behavior is unknown. To bridge this gap in knowledge, we expressed GCaMP in IPN GABAergic neurons and used in vivo fiber photometry to record changes in fluorescence, as a proxy for neuronal activity, in male mice during nicotine withdrawal. Mecamylamine-precipitated withdrawal significantly increased activity of IPN GABAergic neurons in nicotine-dependent, but not nicotine-naive mice. Analysis of GCaMP signals time-locked with somatic symptoms including grooming and scratching revealed reduced IPN GABAergic activity during these behaviors, specifically in mice undergoing withdrawal. In the elevated plus maze, used to measure anxiety-like behavior, an affective withdrawal symptom, IPN GABAergic neuron activity was increased during open-arm versus closed-arm exploration in nicotine-withdrawn, but not non-withdrawn mice. Optogenetic silencing IPN GABAergic neurons during withdrawal significantly reduced withdrawal-induced increases in somatic behavior and increased open-arm exploration. Together, our data indicate that IPN GABAergic neurons are dynamically regulated during nicotine withdrawal, leading to increased anxiety-like symptoms and somatic behavior, which inherently decrease IPN GABAergic neuron activity as a withdrawal-coping mechanism. These results provide a neuronal basis underlying the role of the IPN in the expression of somatic and affective behaviors of nicotine withdrawal.
Collapse
Affiliation(s)
- Paul M Klenowski
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Rubing Zhao-Shea
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Timothy G Freels
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Susanna Molas
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andrew R Tapper
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
39
|
Wills L, Ables JL, Braunscheidel KM, Caligiuri SPB, Elayouby KS, Fillinger C, Ishikawa M, Moen JK, Kenny PJ. Neurobiological Mechanisms of Nicotine Reward and Aversion. Pharmacol Rev 2022; 74:271-310. [PMID: 35017179 PMCID: PMC11060337 DOI: 10.1124/pharmrev.121.000299] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) regulate the rewarding actions of nicotine contained in tobacco that establish and maintain the smoking habit. nAChRs also regulate the aversive properties of nicotine, sensitivity to which decreases tobacco use and protects against tobacco use disorder. These opposing behavioral actions of nicotine reflect nAChR expression in brain reward and aversion circuits. nAChRs containing α4 and β2 subunits are responsible for the high-affinity nicotine binding sites in the brain and are densely expressed by reward-relevant neurons, most notably dopaminergic, GABAergic, and glutamatergic neurons in the ventral tegmental area. High-affinity nAChRs can incorporate additional subunits, including β3, α6, or α5 subunits, with the resulting nAChR subtypes playing discrete and dissociable roles in the stimulatory actions of nicotine on brain dopamine transmission. nAChRs in brain dopamine circuits also participate in aversive reactions to nicotine and the negative affective state experienced during nicotine withdrawal. nAChRs containing α3 and β4 subunits are responsible for the low-affinity nicotine binding sites in the brain and are enriched in brain sites involved in aversion, including the medial habenula, interpeduncular nucleus, and nucleus of the solitary tract, brain sites in which α5 nAChR subunits are also expressed. These aversion-related brain sites regulate nicotine avoidance behaviors, and genetic variation that modifies the function of nAChRs in these sites increases vulnerability to tobacco dependence and smoking-related diseases. Here, we review the molecular, cellular, and circuit-level mechanisms through which nicotine elicits reward and aversion and the adaptations in these processes that drive the development of nicotine dependence. SIGNIFICANCE STATEMENT: Tobacco use disorder in the form of habitual cigarette smoking or regular use of other tobacco-related products is a major cause of death and disease worldwide. This article reviews the actions of nicotine in the brain that contribute to tobacco use disorder.
Collapse
Affiliation(s)
- Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Jessica L Ables
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Kevin M Braunscheidel
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Stephanie P B Caligiuri
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Karim S Elayouby
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Clementine Fillinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Masago Ishikawa
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Janna K Moen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| |
Collapse
|
40
|
Ni Y, Feng J, Liu J, Yu H, Wei H, Du Y, Liu L, Sun L, Zhou J, Xu W. An Artificial Nerve Capable of UV-Perception, NIR-Vis Switchable Plasticity Modulation, and Motion State Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102036. [PMID: 34716679 PMCID: PMC8728819 DOI: 10.1002/advs.202102036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/26/2021] [Indexed: 06/02/2023]
Abstract
The first flexible organic-heterojunction neuromorphic transistor (OHNT) that senses broadband light, including near-ultraviolet (NUV), visible (vis), and near-infrared (NIR), and processes multiplexed-neurotransmission signals is demonstrated. For UV perception, electrical energy consumption down to 536 aJ per synaptic event is demonstrated, at least one order of magnitude lower than current UV-sensitive synaptic devices. For NIR- and vis-perception, switchable plasticity by alternating light sources is yielded for recognition and memory. The device emulates multiplexed neurochemical transition of different neurotransmitters such as dopamine and noradrenaline to form short-term and long-term responses. These facilitate the first realization of human-integrated motion state monitoring and processing using a synaptic hardware, which is then used for real-time heart monitoring of human movement. Motion state analysis with the 96% accuracy is then achieved by artificial neural network. This work provides important support to future biomedical electronics and neural prostheses.
Collapse
Affiliation(s)
- Yao Ni
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai UniversityTianjin300350P. R. China
- Key Laboratory of Optoelectronic Thin Film Devices and Technology of TianjinTianjin300350P. R. China
- Engineering Research Center of Thin Film Optoelectronics Technology of Ministry of EducationNankai UniversityTianjin300350P. R. China
- College of Electronic Information and Optical Engineering of Nankai UniversityNational Institute for Advanced MaterialsNankai UniversityTianjin300350P. R. China
| | - Jiulong Feng
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai UniversityTianjin300350P. R. China
- Key Laboratory of Optoelectronic Thin Film Devices and Technology of TianjinTianjin300350P. R. China
- Engineering Research Center of Thin Film Optoelectronics Technology of Ministry of EducationNankai UniversityTianjin300350P. R. China
- College of Electronic Information and Optical Engineering of Nankai UniversityNational Institute for Advanced MaterialsNankai UniversityTianjin300350P. R. China
| | - Jiaqi Liu
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai UniversityTianjin300350P. R. China
- Key Laboratory of Optoelectronic Thin Film Devices and Technology of TianjinTianjin300350P. R. China
- Engineering Research Center of Thin Film Optoelectronics Technology of Ministry of EducationNankai UniversityTianjin300350P. R. China
- College of Electronic Information and Optical Engineering of Nankai UniversityNational Institute for Advanced MaterialsNankai UniversityTianjin300350P. R. China
| | - Hang Yu
- College of Microelectronics and Communication EngineeringChongqing UniversityChongqing400044P. R. China
- No. 24 Research Institute of China Electronics Technology Group CorporationChongqing400060P. R. China
| | - Huanhuan Wei
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai UniversityTianjin300350P. R. China
- Key Laboratory of Optoelectronic Thin Film Devices and Technology of TianjinTianjin300350P. R. China
- Engineering Research Center of Thin Film Optoelectronics Technology of Ministry of EducationNankai UniversityTianjin300350P. R. China
- College of Electronic Information and Optical Engineering of Nankai UniversityNational Institute for Advanced MaterialsNankai UniversityTianjin300350P. R. China
| | - Yi Du
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai UniversityTianjin300350P. R. China
- Key Laboratory of Optoelectronic Thin Film Devices and Technology of TianjinTianjin300350P. R. China
- Engineering Research Center of Thin Film Optoelectronics Technology of Ministry of EducationNankai UniversityTianjin300350P. R. China
- College of Electronic Information and Optical Engineering of Nankai UniversityNational Institute for Advanced MaterialsNankai UniversityTianjin300350P. R. China
| | - Lu Liu
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai UniversityTianjin300350P. R. China
- Key Laboratory of Optoelectronic Thin Film Devices and Technology of TianjinTianjin300350P. R. China
- Engineering Research Center of Thin Film Optoelectronics Technology of Ministry of EducationNankai UniversityTianjin300350P. R. China
- College of Electronic Information and Optical Engineering of Nankai UniversityNational Institute for Advanced MaterialsNankai UniversityTianjin300350P. R. China
| | - Lin Sun
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai UniversityTianjin300350P. R. China
- Key Laboratory of Optoelectronic Thin Film Devices and Technology of TianjinTianjin300350P. R. China
- Engineering Research Center of Thin Film Optoelectronics Technology of Ministry of EducationNankai UniversityTianjin300350P. R. China
- College of Electronic Information and Optical Engineering of Nankai UniversityNational Institute for Advanced MaterialsNankai UniversityTianjin300350P. R. China
| | - Jianlin Zhou
- College of Microelectronics and Communication EngineeringChongqing UniversityChongqing400044P. R. China
| | - Wentao Xu
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai UniversityTianjin300350P. R. China
- Key Laboratory of Optoelectronic Thin Film Devices and Technology of TianjinTianjin300350P. R. China
- Engineering Research Center of Thin Film Optoelectronics Technology of Ministry of EducationNankai UniversityTianjin300350P. R. China
- College of Electronic Information and Optical Engineering of Nankai UniversityNational Institute for Advanced MaterialsNankai UniversityTianjin300350P. R. China
| |
Collapse
|
41
|
Zaupa M, Naini SMA, Younes MA, Bullier E, Duboué ER, Le Corronc H, Soula H, Wolf S, Candelier R, Legendre P, Halpern ME, Mangin JM, Hong E. Trans-inhibition of axon terminals underlies competition in the habenulo-interpeduncular pathway. Curr Biol 2021; 31:4762-4772.e5. [PMID: 34529937 DOI: 10.1016/j.cub.2021.08.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/12/2021] [Accepted: 08/18/2021] [Indexed: 11/19/2022]
Abstract
Survival of animals is dependent on the correct selection of an appropriate behavioral response to competing external stimuli. Theoretical models have been proposed and underlying mechanisms are emerging to explain how one circuit is selected among competing neural circuits. The evolutionarily conserved forebrain to midbrain habenulo-interpeduncular nucleus (Hb-IPN) pathway consists of cholinergic and non-cholinergic neurons, which mediate different aversive behaviors. Simultaneous calcium imaging of neuronal cell bodies and of the population dynamics of their axon terminals reveals that signals in the cell bodies are not reflective of terminal activity. We find that axon terminals of cholinergic and non-cholinergic habenular neurons exhibit stereotypic patterns of spontaneous activity that are negatively correlated and localize to discrete subregions of the target IPN. Patch-clamp recordings show that calcium bursts in cholinergic terminals at the ventral IPN trigger excitatory currents in IPN neurons, which precede inhibition of non-cholinergic terminals at the adjacent dorsal IPN. Inhibition is mediated through presynaptic GABAB receptors activated in non-cholinergic habenular neurons upon GABA release from the target IPN. Together, the results reveal a hardwired mode of competition at the terminals of two excitatory neuronal populations, providing a physiological framework to explore the relationship between different aversive responses.
Collapse
Affiliation(s)
- Margherita Zaupa
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Seyedeh Maryam Alavi Naini
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Maroun Abi Younes
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Erika Bullier
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Erik R Duboué
- Jupiter Life Science Initiative, Wilkes Honors College and Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Hervé Le Corronc
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Hédi Soula
- INSERM, Sorbonne Université, Nutriomics, La Pitié Salpétrière, 75013 Paris, France
| | - Sebastien Wolf
- Laboratoire Jean Perrin, CNRS, Sorbonne Université, 75005 Paris, France
| | - Raphaël Candelier
- Laboratoire Jean Perrin, CNRS, Sorbonne Université, 75005 Paris, France
| | - Pascal Legendre
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Marnie E Halpern
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Jean-Marie Mangin
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Elim Hong
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France.
| |
Collapse
|
42
|
The habenula clock influences response to a stressor. Neurobiol Stress 2021; 15:100403. [PMID: 34632007 PMCID: PMC8488752 DOI: 10.1016/j.ynstr.2021.100403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/12/2022] Open
Abstract
The response of an animal to a sensory stimulus depends on the nature of the stimulus and on expectations, which are mediated by spontaneous activity. Here, we ask how circadian variation in the expectation of danger, and thus the response to a potential threat, is controlled. We focus on the habenula, a mediator of threat response that functions by regulating neuromodulator release, and use zebrafish as the experimental system. Single cell transcriptomics indicates that multiple clock genes are expressed throughout the habenula, while quantitative in situ hybridization confirms that the clock oscillates. Two-photon calcium imaging indicates a circadian change in spontaneous activity of habenula neurons. To assess the role of this clock, a truncated clocka gene was specifically expressed in the habenula. This partially inhibited the clock, as shown by changes in per3 expression as well as altered day-night variation in dopamine, serotonin and acetylcholine levels. Behaviourally, anxiety-like responses evoked by an alarm pheromone were reduced. Circadian effects of the pheromone were disrupted, such that responses in the day resembled those at night. Behaviours that are regulated by the pineal clock and not triggered by stressors were unaffected. We suggest that the habenula clock regulates the expectation of danger, thus providing one mechanism for circadian change in the response to a stressor.
Collapse
|
43
|
Abstract
Neurons are highly specialized cells equipped with a sophisticated molecular machinery for the reception, integration, conduction and distribution of information. The evolutionary origin of neurons remains unsolved. How did novel and pre-existing proteins assemble into the complex machinery of the synapse and of the apparatus conducting current along the neuron? In this review, the step-wise assembly of functional modules in neuron evolution serves as a paradigm for the emergence and modification of molecular machinery in the evolution of cell types in multicellular organisms. The pre-synaptic machinery emerged through modification of calcium-regulated large vesicle release, while the postsynaptic machinery has different origins: the glutamatergic postsynapse originated through the fusion of a sensory signaling module and a module for filopodial outgrowth, while the GABAergic postsynapse incorporated an ancient actin regulatory module. The synaptic junction, in turn, is built around two adhesion modules controlled by phosphorylation, which resemble septate and adherens junctions. Finally, neuronal action potentials emerged via a series of duplications and modifications of voltage-gated ion channels. Based on these origins, key molecular innovations are identified that led to the birth of the first neuron in animal evolution.
Collapse
|
44
|
Reyes-Pinto R, Ferrán JL, Vega-Zuniga T, González-Cabrera C, Luksch H, Mpodozis J, Puelles L, Marín GJ. Change in the neurochemical signature and morphological development of the parvocellular isthmic projection to the avian tectum. J Comp Neurol 2021; 530:553-573. [PMID: 34363623 DOI: 10.1002/cne.25229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 11/05/2022]
Abstract
Neurons can change their classical neurotransmitters during ontogeny, sometimes going through stages of dual release. Here, we explored the development of the neurotransmitter identity of neurons of the avian nucleus isthmi parvocellularis (Ipc), whose axon terminals are retinotopically arranged in the optic tectum (TeO) and exert a focal gating effect upon the ascending transmission of retinal inputs. Although cholinergic and glutamatergic markers are both found in Ipc neurons and terminals of adult pigeons and chicks, the mRNA expression of the vesicular acetylcholine transporter, VAChT, is weak or absent. To explore how the Ipc neurotransmitter identity is established during ontogeny, we analyzed the expression of mRNAs coding for cholinergic (ChAT, VAChT, and CHT) and glutamatergic (VGluT2 and VGluT3) markers in chick embryos at different developmental stages. We found that between E12 and E18, Ipc neurons expressed all cholinergic mRNAs and also VGluT2 mRNA; however, from E16 through posthatch stages, VAChT mRNA expression was specifically diminished. Our ex vivo deposits of tracer crystals and intracellular filling experiments revealed that Ipc axons exhibit a mature paintbrush morphology late in development, experiencing marked morphological transformations during the period of presumptive dual vesicular transmitter release. Additionally, although ChAT protein immunoassays increasingly label the growing Ipc axon, this labeling was consistently restricted to sparse portions of the terminal branches. Combined, these results suggest that the synthesis of glutamate and acetylcholine, and their vesicular release, is complexly linked to the developmental processes of branching, growing and remodeling of these unique axons.
Collapse
Affiliation(s)
- Rosana Reyes-Pinto
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - José L Ferrán
- Department of Human Anatomy and Psychobiology and IMIB-Arrixaca Institute, University of Murcia, Murcia, Spain
| | - Tomas Vega-Zuniga
- Lehrstuhl für Zoologie, Technical University of Munich, Freising, Germany.,Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | | | - Harald Luksch
- Lehrstuhl für Zoologie, Technical University of Munich, Freising, Germany
| | - Jorge Mpodozis
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology and IMIB-Arrixaca Institute, University of Murcia, Murcia, Spain
| | - Gonzalo J Marín
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
45
|
Stone TW. Relationships and Interactions between Ionotropic Glutamate Receptors and Nicotinic Receptors in the CNS. Neuroscience 2021; 468:321-365. [PMID: 34111447 DOI: 10.1016/j.neuroscience.2021.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Although ionotropic glutamate receptors and nicotinic receptors for acetylcholine (ACh) have usually been studied separately, they are often co-localized and functionally inter-dependent. The objective of this review is to survey the evidence for interactions between the two receptor families and the mechanisms underlying them. These include the mutual regulation of subunit expression, which change the NMDA:AMPA response balance, and the existence of multi-functional receptor complexes which make it difficult to distinguish between individual receptor sites, especially in vivo. This is followed by analysis of the functional relationships between the receptors from work on transmitter release, cellular electrophysiology and aspects of behavior where these can contribute to understanding receptor interactions. It is clear that nicotinic receptors (nAChRs) on axonal terminals directly regulate the release of glutamate and other neurotransmitters, α7-nAChRs generally promoting release. Hence, α7-nAChR responses will be prevented not only by a nicotinic antagonist, but also by compounds blocking the indirectly activated glutamate receptors. This accounts for the apparent anticholinergic activity of some glutamate antagonists, including the endogenous antagonist kynurenic acid. The activation of presynaptic nAChRs is by the ambient levels of ACh released from pre-terminal synapses, varicosities and glial cells, acting as a 'volume neurotransmitter' on synaptic and extrasynaptic sites. In addition, ACh and glutamate are released as CNS co-transmitters, including 'cholinergic' synapses onto spinal Renshaw cells. It is concluded that ACh should be viewed primarily as a modulator of glutamatergic neurotransmission by regulating the release of glutamate presynaptically, and the location, subunit composition, subtype balance and sensitivity of glutamate receptors, and not primarily as a classical fast neurotransmitter. These conclusions and caveats should aid clarification of the sites of action of glutamate and nicotinic receptor ligands in the search for new centrally-acting drugs.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; Institute of Neuroscience, University of Glasgow, G12 8QQ, UK.
| |
Collapse
|
46
|
Ren Y, Liu Y, Luo M. Gap Junctions Between Striatal D1 Neurons and Cholinergic Interneurons. Front Cell Neurosci 2021; 15:674399. [PMID: 34168539 PMCID: PMC8217616 DOI: 10.3389/fncel.2021.674399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/29/2021] [Indexed: 01/15/2023] Open
Abstract
The striatum participates in numerous important behaviors. Its principal projection neurons use GABA and peptides as neurotransmitters and interact extensively with interneurons, including cholinergic interneurons (ChIs) that are tonically active. Dissecting the interactions between projection neurons and ChIs is important for uncovering the role and mechanisms of the striatal microcircuits. Here, by combining several optogenetic tools with cell type-specific electrophysiological recordings, we uncovered direct electrical coupling between D1-type projection neurons and ChIs, in addition to the chemical transmission between these two major cell types. Optogenetic stimulation or inhibition led to bilateral current exchanges between D1 neurons and ChIs, which can be abolished by gap junction blockers. We further confirmed the presence of gap junctions through paired electrophysiological recordings and dye microinjections. Finally, we found that activating D1 neurons promotes basal activity of ChIs via gap junctions. Collectively, these results reveal the coexistence of the chemical synapse and gap junctions between D1 neurons and ChIs, which contributes to maintaining the tonically active firing patterns of ChIs.
Collapse
Affiliation(s)
- Yuqi Ren
- School of Life Sciences, Peking University, Beijing, China.,Peking University-Tsinghua University-NIBS Joint Graduate Program, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Yang Liu
- School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Minmin Luo
- National Institute of Biological Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Beijing, China
| |
Collapse
|
47
|
Abstract
Tobacco smoking results in more than five million deaths each year and accounts for ∼90% of all deaths from lung cancer.3 Nicotine, the major reinforcing component of tobacco smoke, acts in the brain through the neuronal nicotinic acetylcholine receptors (nAChRs). The nAChRs are allosterically regulated, ligand-gated ion channels consisting of five membrane-spanning subunits. Twelve mammalian α subunits (α2-α10) and three β subunits (β2-β4) have been cloned. The predominant nAChR subtypes in mammalian brain are those containing α4 and β2 subunits (denoted as α4β2* nAChRs). The α4β2* nAChRs mediate many behaviors related to nicotine addiction and are the primary targets for currently approved smoking cessation agents. Considering the large number of nAChR subunits in the brain, it is likely that nAChRs containing subunits in addition to α4 and β2 also play a role in tobacco smoking. Indeed, genetic variation in the CHRNA5-CHRNA3-CHRNB4 gene cluster, encoding the α5, α3, and β4 nAChR subunits, respectively, has been shown to increase vulnerability to tobacco dependence and smoking-associated diseases including lung cancer. Moreover, mice, in which expression of α5 or β4 subunits has been genetically modified, have profoundly altered patterns of nicotine consumption. In addition to the reinforcing properties of nicotine, the effects of nicotine on appetite, attention, and mood are also thought to contribute to establishment and maintenance of the tobacco smoking habit. Here, we review recent insights into the behavioral actions of nicotine, and the nAChR subtypes involved, which likely contribute to the development of tobacco dependence in smokers.
Collapse
Affiliation(s)
- Marina R Picciotto
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06508, USA
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
48
|
Bhandari P, Vandael D, Fernández-Fernández D, Fritzius T, Kleindienst D, Önal C, Montanaro J, Gassmann M, Jonas P, Kulik A, Bettler B, Shigemoto R, Koppensteiner P. GABA B receptor auxiliary subunits modulate Cav2.3-mediated release from medial habenula terminals. eLife 2021; 10:68274. [PMID: 33913808 PMCID: PMC8121548 DOI: 10.7554/elife.68274] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/28/2021] [Indexed: 12/20/2022] Open
Abstract
The synaptic connection from medial habenula (MHb) to interpeduncular nucleus (IPN) is critical for emotion-related behaviors and uniquely expresses R-type Ca2+ channels (Cav2.3) and auxiliary GABAB receptor (GBR) subunits, the K+-channel tetramerization domain-containing proteins (KCTDs). Activation of GBRs facilitates or inhibits transmitter release from MHb terminals depending on the IPN subnucleus, but the role of KCTDs is unknown. We therefore examined the localization and function of Cav2.3, GBRs, and KCTDs in this pathway in mice. We show in heterologous cells that KCTD8 and KCTD12b directly bind to Cav2.3 and that KCTD8 potentiates Cav2.3 currents in the absence of GBRs. In the rostral IPN, KCTD8, KCTD12b, and Cav2.3 co-localize at the presynaptic active zone. Genetic deletion indicated a bidirectional modulation of Cav2.3-mediated release by these KCTDs with a compensatory increase of KCTD8 in the active zone in KCTD12b-deficient mice. The interaction of Cav2.3 with KCTDs therefore scales synaptic strength independent of GBR activation.
Collapse
Affiliation(s)
- Pradeep Bhandari
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - David Vandael
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | | | | | - David Kleindienst
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Cihan Önal
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Jacqueline Montanaro
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Martin Gassmann
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Peter Jonas
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Akos Kulik
- Institute of Physiology II, Faculty of Medicine, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Bernhard Bettler
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Peter Koppensteiner
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| |
Collapse
|
49
|
Leveraging VGLUT3 Functions to Untangle Brain Dysfunctions. Trends Pharmacol Sci 2021; 42:475-490. [PMID: 33775453 DOI: 10.1016/j.tips.2021.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 11/21/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) were long thought to be specific markers of glutamatergic excitatory transmission. The discovery, two decades ago, of the atypical VGLUT3 has thoroughly modified this oversimplified view. VGLUT3 is strategically expressed in discrete populations of glutamatergic, cholinergic, serotonergic, and even GABAergic neurons. Recent reports show the subtle, but critical, implications of VGLUT3-dependent glutamate co-transmission and its roles in the regulation of diverse brain functions and dysfunctions. Progress in the neuropharmacology of VGLUT3 could lead to decisive breakthroughs in the treatment of Parkinson's disease (PD), addiction, eating disorders, anxiety, presbycusis, or pain. This review summarizes recent findings on VGLUT3 and its vesicular underpinnings as well as on possible ways to target this atypical transporter for future therapeutic strategies.
Collapse
|
50
|
Sethuramanujam S, Matsumoto A, deRosenroll G, Murphy-Baum B, Grosman C, McIntosh JM, Jing M, Li Y, Berson D, Yonehara K, Awatramani GB. Rapid multi-directed cholinergic transmission in the central nervous system. Nat Commun 2021; 12:1374. [PMID: 33654091 PMCID: PMC7925691 DOI: 10.1038/s41467-021-21680-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
In many parts of the central nervous system, including the retina, it is unclear whether cholinergic transmission is mediated by rapid, point-to-point synaptic mechanisms, or slower, broad-scale 'non-synaptic' mechanisms. Here, we characterized the ultrastructural features of cholinergic connections between direction-selective starburst amacrine cells and downstream ganglion cells in an existing serial electron microscopy data set, as well as their functional properties using electrophysiology and two-photon acetylcholine (ACh) imaging. Correlative results demonstrate that a 'tripartite' structure facilitates a 'multi-directed' form of transmission, in which ACh released from a single vesicle rapidly (~1 ms) co-activates receptors expressed in multiple neurons located within ~1 µm of the release site. Cholinergic signals are direction-selective at a local, but not global scale, and facilitate the transfer of information from starburst to ganglion cell dendrites. These results suggest a distinct operational framework for cholinergic signaling that bears the hallmarks of synaptic and non-synaptic forms of transmission.
Collapse
Affiliation(s)
| | - Akihiro Matsumoto
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | | | | | - Claudio Grosman
- Department of Molecular and Integrative Physiology, 407 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - J Michael McIntosh
- George E. Whalen Veterans Affairs Medical Center, Department of Psychiatry, School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
- Department of Psychiatry; School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Miao Jing
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - David Berson
- Neuroscience, Brown University, Providence, RI, USA
| | - Keisuke Yonehara
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
| | | |
Collapse
|