1
|
Northrup V, Perez LJ, Edgett BA, Karakach T, Simpson JA, Brunt KR. Intron retention is a mechanism of erythropoietin regulation in brain cell models. Gene 2024; 898:148099. [PMID: 38128788 DOI: 10.1016/j.gene.2023.148099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Intron retention is a mechanism of post-transcriptional gene regulation, including genes involved in erythropoiesis. Erythropoietin (EPO) is a hormone without evidence of intracellular vesicle storage that regulates erythropoiesis. We hypothesize that EPO uses intron retention as a mechanism of post-transcriptional regulation in response to hypoxia and ischemia. Cell models of hypoxia and ischemia for kidney, liver, and brain cells were examined for intron retention by real time quantitative PCR. EPO expression increased in most cells except for blood brain barrier and liver cells. The intron retained transcript ratio decreased in brain cells, except for Astrocytes, but showed no change in kidney or liver after 24 h of ischemia. The shift in intron ratio was maintained when using poly (A) enriched cDNA, suggesting that intron retention is not due to immature transcripts. The expression of EPO was elevated at variable time points amongst cell models with the intron ratio also changing over a time course of 2 to 16 h after ischemia. We conclude that intron retention is a mechanism regulating EPO expression in response to ischemia in a tissue specific manner.
Collapse
Affiliation(s)
- Victoria Northrup
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada; Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada; IMPART investigator team Canada
| | - Lester J Perez
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada; Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada; IMPART investigator team Canada
| | - Brittany A Edgett
- Department of Kinesiology, University of Calgary, Calgary, Alberta, Canada; IMPART investigator team Canada
| | - Tobias Karakach
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada; IMPART investigator team Canada
| | - Jeremy A Simpson
- Department of Human and Nutritional Science, University of Guelph, Guelph, Ontario, Canada; IMPART investigator team Canada
| | - Keith R Brunt
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada; Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada; IMPART investigator team Canada.
| |
Collapse
|
2
|
Baralle M, Romano M. Age-Related Alternative Splicing: Driver or Passenger in the Aging Process? Cells 2023; 12:2819. [PMID: 38132139 PMCID: PMC10742131 DOI: 10.3390/cells12242819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Alternative splicing changes are closely linked to aging, though it remains unclear if they are drivers or effects. As organisms age, splicing patterns change, varying gene isoform levels and functions. These changes may contribute to aging alterations rather than just reflect declining RNA quality control. Three main splicing types-intron retention, cassette exons, and cryptic exons-play key roles in age-related complexity. These events modify protein domains and increase nonsense-mediated decay, shifting protein isoform levels and functions. This may potentially drive aging or serve as a biomarker. Fluctuations in splicing factor expression also occur with aging. Somatic mutations in splicing genes can also promote aging and age-related disease. The interplay between splicing and aging has major implications for aging biology, though differentiating correlation and causation remains challenging. Declaring a splicing factor or event as a driver requires comprehensive evaluation of the associated molecular and physiological changes. A greater understanding of how RNA splicing machinery and downstream targets are impacted by aging is essential to conclusively establish the role of splicing in driving aging, representing a promising area with key implications for understanding aging, developing novel therapeutical options, and ultimately leading to an increase in the healthy human lifespan.
Collapse
Affiliation(s)
- Marco Baralle
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy;
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via A. Valerio 28, 34127 Trieste, Italy
| |
Collapse
|
3
|
Niu M, Cao W, Wang Y, Zhu Q, Luo J, Wang B, Zheng H, Weitz DA, Zong C. Droplet-based transcriptome profiling of individual synapses. Nat Biotechnol 2023; 41:1332-1344. [PMID: 36646931 DOI: 10.1038/s41587-022-01635-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/06/2022] [Indexed: 01/17/2023]
Abstract
Synapses are crucial structures that mediate signal transmission between neurons in complex neural circuits and display considerable morphological and electrophysiological heterogeneity. So far we still lack a high-throughput method to profile the molecular heterogeneity among individual synapses. In the present study, we develop a droplet-based single-cell (sc) total-RNA-sequencing platform, called Multiple-Annealing-and-Tailing-based Quantitative scRNA-seq in Droplets, for transcriptome profiling of individual neurites, primarily composed of synaptosomes. In the synaptosome transcriptome, or 'synaptome', profiling of both mouse and human brain samples, we detect subclusters among synaptosomes that are associated with neuronal subtypes and characterize the landscape of transcript splicing that occurs within synapses. We extend synaptome profiling to synaptopathy in an Alzheimer's disease (AD) mouse model and discover AD-associated synaptic gene expression changes that cannot be detected by single-nucleus transcriptome profiling. Overall, our results show that this platform provides a high-throughput, single-synaptosome transcriptome profiling tool that will facilitate future discoveries in neuroscience.
Collapse
Affiliation(s)
- Muchun Niu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Wenjian Cao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, TX, USA
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, China
| | - Yongcheng Wang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Wyss Institute of Bioinspired Engineering, Harvard University, Cambridge, MA, USA
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Qiangyuan Zhu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, China
| | - Jiayi Luo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Baiping Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Hui Zheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - David A Weitz
- Wyss Institute of Bioinspired Engineering, Harvard University, Cambridge, MA, USA.
- Department of Physics and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| | - Chenghang Zong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
4
|
Wang H, Zhu Y, Li M, Pan J, Li D, Guo WP, Xie G, Du L. Transcriptome profiling of A549 non-small cell lung cancer cells in response to Trichinella spiralis muscle larvae excretory/secretory products. Front Vet Sci 2023; 10:1208538. [PMID: 37601754 PMCID: PMC10433203 DOI: 10.3389/fvets.2023.1208538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Trichinella spiralis (T. spiralis) muscle-larva excretory/secretory products (ML-ESPs) is a complex array of proteins with antitumor activity. We previously demonstrated that ML-ESPs inhibit the proliferation of A549 non-small cell lung cancer (NSCLC) cell line. However, the mechanism of ML-ESPs against A549 cells, especially on the transcriptional level, remains unknow. In this study, we systematically investigated a global profile bioinformatics analysis of transcriptional response of A549 cells treated with ML-ESPs. And then, we further explored the transcriptional regulation of genes related to glucose metabolism in A549 cells by ML-ESPs. The results showed that ML-ESPs altered the expression of 2,860 genes (1,634 upregulated and 1,226 downregulated). GO and KEGG analysis demonstrated that differentially expressed genes (DEGs) were mainly associated with pathway in cancer and metabolic process. The downregulated genes interaction network of metabolic process is mainly associated with glucose metabolism. Furthermore, the expression of phosphofructokinase muscle (PFKM), phosphofructokinase liver (PFKL), enolase 2 (ENO2), lactate dehydrogenase B (LDHB), 6-phosphogluconolactonase (6PGL), ribulose-phosphate-3-epimerase (PRE), transketolase (TKT), transaldolase 1 (TALDO1), which genes mainly regulate glycolysis and pentose phosphate pathway (PPP), were suppressed by ML-ESPs. Interestingly, tricarboxylic acid cycle (TCA)-related genes, such as pyruvate dehydrogenase phosphatase 1 (PDP1), PDP2, aconitate hydratase 1 (ACO1) and oxoglutarate dehydrogenase (OGDH) were upregulated by ML-ESPs. In summary, the transcriptome profiling of A549 cells were significantly altered by ML-ESPs. And we also provide new insight into how ML-ESPs induced a transcriptional reprogramming of glucose metabolism-related genes in A549 cells.
Collapse
Affiliation(s)
- Haoxuan Wang
- Department of Pathogenic Biology, Chengde Medical University, Chengde, Hebei, China
| | - Yingying Zhu
- Department of Pathogenic Biology, Chengde Medical University, Chengde, Hebei, China
| | - Meichen Li
- Department of Clinical Laboratory, First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Jingdan Pan
- Department of Laboratory, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Dan Li
- Department of Pathogenic Biology, Chengde Medical University, Chengde, Hebei, China
| | - Wen-Ping Guo
- Department of Pathogenic Biology, Chengde Medical University, Chengde, Hebei, China
| | - Guangcheng Xie
- Department of Pathogenic Biology, Chengde Medical University, Chengde, Hebei, China
| | - Luanying Du
- Department of Pathogenic Biology, Chengde Medical University, Chengde, Hebei, China
| |
Collapse
|
5
|
Piol D, Robberechts T, Da Cruz S. Lost in local translation: TDP-43 and FUS in axonal/neuromuscular junction maintenance and dysregulation in amyotrophic lateral sclerosis. Neuron 2023; 111:1355-1380. [PMID: 36963381 DOI: 10.1016/j.neuron.2023.02.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/21/2022] [Accepted: 02/16/2023] [Indexed: 03/26/2023]
Abstract
Key early features of amyotrophic lateral sclerosis (ALS) are denervation of neuromuscular junctions and axonal degeneration. Motor neuron homeostasis relies on local translation through controlled regulation of axonal mRNA localization, transport, and stability. Yet the composition of the local transcriptome, translatome (mRNAs locally translated), and proteome during health and disease remains largely unexplored. This review covers recent discoveries on axonal translation as a critical mechanism for neuronal maintenance/survival. We focus on two RNA binding proteins, transactive response DNA binding protein-43 (TDP-43) and fused in sarcoma (FUS), whose mutations cause ALS and frontotemporal dementia (FTD). Emerging evidence points to their essential role in the maintenance of axons and synapses, including mRNA localization, transport, and local translation, and whose dysfunction may contribute to ALS. Finally, we describe recent advances in omics-based approaches mapping compartment-specific local RNA and protein compositions, which will be invaluable to elucidate fundamental local processes and identify key targets for therapy development.
Collapse
Affiliation(s)
- Diana Piol
- VIB-KU Leuven Center for Brain and Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Tessa Robberechts
- VIB-KU Leuven Center for Brain and Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Sandrine Da Cruz
- VIB-KU Leuven Center for Brain and Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium.
| |
Collapse
|
6
|
Borsi G, Motheramgari K, Dhiman H, Baumann M, Sinkala E, Sauerland M, Riba J, Borth N. Single-cell RNA sequencing reveals homogeneous transcriptome patterns and low variance in a suspension CHO-K1 and an adherent HEK293FT cell line in culture conditions. J Biotechnol 2023; 364:13-22. [PMID: 36708997 DOI: 10.1016/j.jbiotec.2023.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 01/15/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
Recombinant mammalian host cell lines, in particular CHO and HEK293 cells, are used for the industrial production of therapeutic proteins. Despite their well-known genomic instability, the control mechanisms that enable cells to respond to changes in the environmental conditions are not yet fully understood, nor do we have a good understanding of the factors that lead to phenotypic shifts in long-term cultures. A contributing factor could be inherent diversity in transcriptomes within a population. In this study, we used a full-length coverage single-cell RNA sequencing (scRNA-seq) approach to investigate and compare cell-to-cell variability and the impact of standardized and homogenous culture conditions on the diversity of individual cell transcriptomes, comparing suspension CHO-K1 and adherent HEK293FT cells. Our data showed a critical batch effect from the sequencing of four 96-well plates of CHO-K1 single cells stored for different periods of time, which was and may be therefore identified as a technical variable to consider in experimental planning. Besides, in an artificial and controlled culture environment such as used in routine cell culture technology, the gene expression pattern of a given population does not reveal any marker gene capable to disclose relevant cell population substructures, both for CHO-K1 cells and for HEK293FT cells. The variation observed is primarily driven by the cell cycle.
Collapse
Affiliation(s)
- Giulia Borsi
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190, Vienna, Austria
| | - Krishna Motheramgari
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190, Vienna, Austria
| | - Heena Dhiman
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190, Vienna, Austria
| | - Martina Baumann
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190, Vienna, Austria
| | | | | | | | - Nicole Borth
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
7
|
Bourke AM, Schwarz A, Schuman EM. De-centralizing the Central Dogma: mRNA translation in space and time. Mol Cell 2023; 83:452-468. [PMID: 36669490 DOI: 10.1016/j.molcel.2022.12.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023]
Abstract
As our understanding of the cell interior has grown, we have come to appreciate that most cellular operations are localized, that is, they occur at discrete and identifiable locations or domains. These cellular domains contain enzymes, machines, and other components necessary to carry out and regulate these localized operations. Here, we review these features of one such operation: the localization and translation of mRNAs within subcellular compartments observed across cell types and organisms. We describe the conceptual advantages and the "ingredients" and mechanisms of local translation. We focus on the nature and features of localized mRNAs, how they travel and get localized, and how this process is regulated. We also evaluate our current understanding of protein synthesis machines (ribosomes) and their cadre of regulatory elements, that is, the translation factors.
Collapse
Affiliation(s)
- Ashley M Bourke
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany
| | - Andre Schwarz
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany.
| |
Collapse
|
8
|
Bo S, Sun Q, Li Z, Aodun G, Ji Y, Wei L, Wang C, Lu Z, Zhang Q, Zhao X. Ubiquitous conservative interaction patterns between post-spliced introns and their mRNAs revealed by genome-wide interspecies comparison. Front Genet 2023; 14:1151703. [PMID: 37124607 PMCID: PMC10132729 DOI: 10.3389/fgene.2023.1151703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Introns, as important vectors of biological functions, can influence many stages of mRNA metabolism. However, in recent research, post-spliced introns are rarely considered. In this study, the optimal matched regions between introns and their mRNAs in nine model organism genomes were investigated with improved Smith-Waterman local alignment software. Our results showed that the distributions of mRNA optimal matched frequencies were highly consistent or universal. There are optimal matched frequency peaks in the UTR regions, which are obvious, especially in the 3'-UTR. The matched frequencies are relatively low in the CDS regions of the mRNA. The distributions of the optimal matched frequencies around the functional sites are also remarkably changed. The centers of the GC content distributions for different sequences are different. The matched rate distributions are highly consistent and are located mainly between 60% and 80%. The most probable value of the optimal matched segments is about 20 bp for lower eukaryotes and 30 bp for higher eukaryotes. These results show that there are abundant functional units in the introns, and these functional units are correlated structurally with all kinds of sequences of mRNA. The interaction between the post-spliced introns and their corresponding mRNAs may play a key role in gene expression.
Collapse
Affiliation(s)
- Suling Bo
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Qiuying Sun
- Department of Oncology, Inner Mongolia Cancer Hospital and the Affiliated People’s Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Zhongxian Li
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Gerile Aodun
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Yucheng Ji
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Lihua Wei
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Chao Wang
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Zhanyuan Lu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
- Key Laboratory of Black Soil Protection and Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
- *Correspondence: Zhanyuan Lu, ; Qiang Zhang, ; Xiaoqing Zhao,
| | - Qiang Zhang
- College of Science, Inner Mongolia Agriculture University, Hohhot, China
- *Correspondence: Zhanyuan Lu, ; Qiang Zhang, ; Xiaoqing Zhao,
| | - Xiaoqing Zhao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
- Key Laboratory of Black Soil Protection and Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
- *Correspondence: Zhanyuan Lu, ; Qiang Zhang, ; Xiaoqing Zhao,
| |
Collapse
|
9
|
David JK, Maden SK, Wood MA, Thompson RF, Nellore A. Retained introns in long RNA-seq reads are not reliably detected in sample-matched short reads. Genome Biol 2022; 23:240. [PMID: 36369064 PMCID: PMC9652823 DOI: 10.1186/s13059-022-02789-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/10/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND There is growing interest in retained introns in a variety of disease contexts including cancer and aging. Many software tools have been developed to detect retained introns from short RNA-seq reads, but reliable detection is complicated by overlapping genes and transcripts as well as the presence of unprocessed or partially processed RNAs. RESULTS We compared introns detected by 8 tools using short RNA-seq reads with introns observed in long RNA-seq reads from the same biological specimens. We found significant disagreement among tools (Fleiss' [Formula: see text]) such that 47.7% of all detected intron retentions were not called by more than one tool. We also observed poor performance of all tools, with none achieving an F1-score greater than 0.26, and qualitatively different behaviors between general-purpose alternative splicing detection tools and tools confined to retained intron detection. CONCLUSIONS Short-read tools detect intron retention with poor recall and precision, calling into question the completeness and validity of a large percentage of putatively retained introns called by commonly used methods.
Collapse
Affiliation(s)
- Julianne K. David
- grid.5288.70000 0000 9758 5690Computational Biology Program, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR USA ,Present Address: Base5 Genomics, Inc., Mountain View, CA USA
| | - Sean K. Maden
- grid.5288.70000 0000 9758 5690Computational Biology Program, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR USA ,grid.21107.350000 0001 2171 9311Present Address: Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | - Mary A. Wood
- grid.5288.70000 0000 9758 5690Computational Biology Program, Oregon Health & Science University, Portland, OR USA ,grid.429936.30000 0004 5914 210XPortland VA Research Foundation, Portland, OR USA ,Present Address: Phase Genomics, Inc., Seattle, WA USA
| | - Reid F. Thompson
- grid.5288.70000 0000 9758 5690Computational Biology Program, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR USA ,grid.484322.bDivision of Hospital and Specialty Medicine, VA Portland Healthcare System, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Radiation Medicine, Oregon Health & Science University, Portland, OR USA
| | - Abhinav Nellore
- grid.5288.70000 0000 9758 5690Computational Biology Program, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Surgery, Oregon Health & Science University, Portland, OR USA
| |
Collapse
|
10
|
Nagel M, Noss M, Xu J, Horn N, Ueffing M, Boldt K, Schuele R. The kinesin motor KIF1C is a putative transporter of the exon junction complex in neuronal cells. RNA (NEW YORK, N.Y.) 2022; 29:rna.079426.122. [PMID: 36316088 PMCID: PMC9808568 DOI: 10.1261/rna.079426.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Neurons critically depend on regulated RNA localization and tight control of spatio-temporal gene expression to maintain their morphological and functional integrity. Mutations in the kinesin motor protein gene KIF1C cause Hereditary Spastic Paraplegia, an autosomal recessive disease leading to predominant degeneration of the long axons of central motoneurons. In this study we aimed to gain insight into the molecular function of KIF1C and understand how KIF1C dysfunction contributes to motoneuron degeneration. We used affinity proteomics in neuronally differentiated neuroblastoma cells (SH-SY5Y) to identify the protein complex associated with KIF1C in neuronal cells; candidate interactions were then validated by immunoprecipitation and mislocalization of putative KIF1C cargoes was studied by immunostainings. We found KIF1C to interact with all core components of the exon junction complex (EJC); expression of mutant KIF1C in neuronal cells leads to loss of the typical localization distally in neurites. Instead, EJC core components accumulate in the pericentrosomal region, here co-localizing with mutant KIF1C. These findings suggest KIF1C as a neuronal transporter of the EJC. Interestingly, the binding of KIF1C to the EJC is RNA-mediated, as treatment with RNAse prior to immunoprecipitation almost completely abolishes the interaction. Silica-based solid-phase extraction of UV-crosslinked RNA-protein complexes furthermore supports direct interaction of KIF1C with RNA, as recently also demonstrated for kinesin heavy chain. Taken together, our findings are consistent with a model where KIF1C transports mRNA in an EJC-bound and therefore transcriptionally silenced state along neurites, thus providing the missing link between the EJC and mRNA localization in neurons.
Collapse
Affiliation(s)
- Maike Nagel
- German Center for Neurodegenerative Diseases, Tuebingen; Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tuebingen; Graduate School of Cellular and Molecular Neuroscience
| | - Marvin Noss
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tuebingen
| | - Jishu Xu
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tuebingen; Institute of Medical Genetics and Applied Genomics, University of Tuebingen; Graduate School
| | - Nicola Horn
- Institute for Ophthalmic Research, University of Tuebingen
| | - Marius Ueffing
- Institute of Ophthalmic Research, University of Tuebingen
| | - Karsten Boldt
- Institute of Ophthalmic Research, University of Tuebingen
| | - Rebecca Schuele
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tuebingen; German Center for Neurodegenerative Diseases, Tuebingen
| |
Collapse
|
11
|
Petrić Howe M, Crerar H, Neeves J, Harley J, Tyzack GE, Klein P, Ramos A, Patani R, Luisier R. Physiological intron retaining transcripts in the cytoplasm abound during human motor neurogenesis. Genome Res 2022; 32:1808-1825. [PMID: 36180233 PMCID: PMC9712626 DOI: 10.1101/gr.276898.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022]
Abstract
Intron retention (IR) is now recognized as a dominant splicing event during motor neuron (MN) development; however, the role and regulation of intron-retaining transcripts (IRTs) localized to the cytoplasm remain particularly understudied. Here we show that IR is a physiological process that is spatiotemporally regulated during MN lineage restriction and that IRTs in the cytoplasm are detected in as many as 13% (n = 2297) of the genes expressed during this process. We identify a major class of cytoplasmic IRTs that are not associated with reduced expression of their own genes but instead show a high capacity for RNA-binding protein and miRNA occupancy. Finally, we show that ALS-causing VCP mutations lead to a selective increase in cytoplasmic abundance of this particular class of IRTs, which in turn temporally coincides with an increase in the nuclear expression level of predicted miRNA target genes. Altogether, our study identifies a previously unrecognized class of cytoplasmic intronic sequences with potential regulatory function beyond gene expression.
Collapse
Affiliation(s)
- Marija Petrić Howe
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3AR, United Kingdom
| | - Hamish Crerar
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3AR, United Kingdom
| | - Jacob Neeves
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3AR, United Kingdom
| | - Jasmine Harley
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3AR, United Kingdom
| | - Giulia E Tyzack
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3AR, United Kingdom
| | - Pierre Klein
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Research Department of Structural and Molecular Biology, University College London, London WC1E 6XA, United Kingdom
| | - Andres Ramos
- Research Department of Structural and Molecular Biology, University College London, London WC1E 6XA, United Kingdom
| | - Rickie Patani
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3AR, United Kingdom
| | - Raphaëlle Luisier
- Idiap Research Institute, Genomics and Health Informatics, CH-1920 Martigny, Switzerland
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Hernandez VA, Carvajal-Moreno J, Wang X, Pietrzak M, Yalowich JC, Elton TS. Use of CRISPR/Cas9 with homology-directed repair to silence the human topoisomerase IIα intron-19 5’ splice site: Generation of etoposide resistance in human leukemia K562 cells. PLoS One 2022; 17:e0265794. [PMID: 35617303 PMCID: PMC9135202 DOI: 10.1371/journal.pone.0265794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/06/2022] [Indexed: 11/19/2022] Open
Abstract
DNA Topoisomerase IIα (TOP2α/170) is an enzyme essential for proliferating cells. For rapidly multiplying malignancies, this has made TOP2α/170 an important target for etoposide and other clinically active anticancer drugs. Efficacy of these agents is often limited by chemoresistance related to alterations in TOP2α/170 expression levels. Our laboratory recently demonstrated reduced levels of TOP2α/170 and overexpression of a C-terminal truncated 90-kDa isoform, TOP2α/90, due to intronic polyadenylation (IPA; within intron 19) in an acquired etoposide-resistant K562 clonal cell line, K/VP.5. We previously reported that this isoform heterodimerized with TOP2α/170 and was a determinant of acquired resistance to etoposide. Optimization of the weak TOP2α exon 19/intron 19 5′ splice site in drug-resistant K/VP.5 cells by gene-editing restored TOP2α/170 levels, diminished TOP2α/90 expression, and circumvented drug resistance. Conversely, in the present study, silencing of the exon 19/intron 19 5′ splice site in parental K562 cells by CRISPR/Cas9 with homology-directed repair (HDR), and thereby forcing intron 19 retention, was used to induce resistance by disrupting normal RNA processing (i.e., gene knockout), and to further evaluate the role of TOP2α/170 and TOP2α/90 isoforms as resistance determinants. Gene-edited clones were identified by quantitative polymerase chain reaction (qPCR) and verified by Sanger sequencing. TOP2α/170 mRNA/protein expression levels were attenuated in the TOP2α gene-edited clones which resulted in resistance to etoposide as assessed by reduced etoposide-induced DNA damage (γH2AX, Comet assays) and growth inhibition. RNA-seq and qPCR studies suggested that intron 19 retention leads to decreased TOP2α/170 expression by degradation of the TOP2α edited mRNA transcripts. Forced expression of TOP2α/90 in the gene-edited K562 cells further decreased etoposide-induced DNA damage in support of a dominant negative role for this truncated isoform. Together results support the important role of both TOP2α/170 and TOP2α/90 as determinants of sensitivity/resistance to TOP2α-targeting agents.
Collapse
Affiliation(s)
- Victor A. Hernandez
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Jessika Carvajal-Moreno
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Xinyi Wang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Maciej Pietrzak
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Jack C. Yalowich
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (JCY); (TSE)
| | - Terry S. Elton
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (JCY); (TSE)
| |
Collapse
|
13
|
Nicolet BP, Zandhuis ND, Lattanzio VM, Wolkers MC. Sequence determinants as key regulators in gene expression of T cells. Immunol Rev 2021; 304:10-29. [PMID: 34486113 PMCID: PMC9292449 DOI: 10.1111/imr.13021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
T cell homeostasis, T cell differentiation, and T cell effector function rely on the constant fine-tuning of gene expression. To alter the T cell state, substantial remodeling of the proteome is required. This remodeling depends on the intricate interplay of regulatory mechanisms, including post-transcriptional gene regulation. In this review, we discuss how the sequence of a transcript influences these post-transcriptional events. In particular, we review how sequence determinants such as sequence conservation, GC content, and chemical modifications define the levels of the mRNA and the protein in a T cell. We describe the effect of different forms of alternative splicing on mRNA expression and protein production, and their effect on subcellular localization. In addition, we discuss the role of sequences and structures as binding hubs for miRNAs and RNA-binding proteins in T cells. The review thus highlights how the intimate interplay of post-transcriptional mechanisms dictate cellular fate decisions in T cells.
Collapse
Affiliation(s)
- Benoit P. Nicolet
- Department of HematopoiesisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Nordin D. Zandhuis
- Department of HematopoiesisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - V. Maria Lattanzio
- Department of HematopoiesisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Monika C. Wolkers
- Department of HematopoiesisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| |
Collapse
|
14
|
Rajgor D, Welle TM, Smith KR. The Coordination of Local Translation, Membranous Organelle Trafficking, and Synaptic Plasticity in Neurons. Front Cell Dev Biol 2021; 9:711446. [PMID: 34336865 PMCID: PMC8317219 DOI: 10.3389/fcell.2021.711446] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022] Open
Abstract
Neurons are highly complex polarized cells, displaying an extraordinary degree of spatial compartmentalization. At presynaptic and postsynaptic sites, far from the cell body, local protein synthesis is utilized to continually modify the synaptic proteome, enabling rapid changes in protein production to support synaptic function. Synapses undergo diverse forms of plasticity, resulting in long-term, persistent changes in synapse strength, which are paramount for learning, memory, and cognition. It is now well-established that local translation of numerous synaptic proteins is essential for many forms of synaptic plasticity, and much work has gone into deciphering the strategies that neurons use to regulate activity-dependent protein synthesis. Recent studies have pointed to a coordination of the local mRNA translation required for synaptic plasticity and the trafficking of membranous organelles in neurons. This includes the co-trafficking of RNAs to their site of action using endosome/lysosome “transports,” the regulation of activity-dependent translation at synapses, and the role of mitochondria in fueling synaptic translation. Here, we review our current understanding of these mechanisms that impact local translation during synaptic plasticity, providing an overview of these novel and nuanced regulatory processes involving membranous organelles in neurons.
Collapse
Affiliation(s)
- Dipen Rajgor
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Theresa M Welle
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Katharine R Smith
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
15
|
Ziff OJ, Taha DM, Crerar H, Clarke BE, Chakrabarti AM, Kelly G, Neeves J, Tyzack GE, Luscombe NM, Patani R. Reactive astrocytes in ALS display diminished intron retention. Nucleic Acids Res 2021; 49:3168-3184. [PMID: 33684213 PMCID: PMC8034657 DOI: 10.1093/nar/gkab115] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Reactive astrocytes are implicated in amyotrophic lateral sclerosis (ALS), although the mechanisms controlling reactive transformation are unknown. We show that decreased intron retention (IR) is common to human-induced pluripotent stem cell (hiPSC)-derived astrocytes carrying ALS-causing mutations in VCP, SOD1 and C9orf72. Notably, transcripts with decreased IR and increased expression are overrepresented in reactivity processes including cell adhesion, stress response and immune activation. This was recapitulated in public-datasets for (i) hiPSC-derived astrocytes stimulated with cytokines to undergo reactive transformation and (ii) in vivo astrocytes following selective deletion of TDP-43. We also re-examined public translatome sequencing (TRAP-seq) of astrocytes from a SOD1 mouse model, which revealed that transcripts upregulated in translation significantly overlap with transcripts exhibiting decreased IR. Using nucleocytoplasmic fractionation of VCP mutant astrocytes coupled with mRNA sequencing and proteomics, we identify that decreased IR in nuclear transcripts is associated with enhanced nonsense mediated decay and increased cytoplasmic expression of transcripts and proteins regulating reactive transformation. These findings are consistent with a molecular model for reactive transformation in astrocytes whereby poised nuclear reactivity-related IR transcripts are spliced, undergo nuclear-to-cytoplasmic translocation and translation. Our study therefore provides new insights into the molecular regulation of reactive transformation in astrocytes.
Collapse
Affiliation(s)
- Oliver J Ziff
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.,National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK
| | - Doaa M Taha
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.,Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Hamish Crerar
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Benjamin E Clarke
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Anob M Chakrabarti
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, UK
| | - Gavin Kelly
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jacob Neeves
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Giulia E Tyzack
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Nicholas M Luscombe
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, UK.,Okinawa Institute of Science & Technology Graduate University, Okinawa 904-0495, Japan
| | - Rickie Patani
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.,National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK
| |
Collapse
|
16
|
Grinman E, Nakahata Y, Avchalumov Y, Espadas I, Swarnkar S, Yasuda R, Puthanveettil SV. Activity-regulated synaptic targeting of lncRNA ADEPTR mediates structural plasticity by localizing Sptn1 and AnkB in dendrites. SCIENCE ADVANCES 2021; 7:7/16/eabf0605. [PMID: 33863727 PMCID: PMC8051873 DOI: 10.1126/sciadv.abf0605] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/26/2021] [Indexed: 05/26/2023]
Abstract
Activity-dependent structural plasticity at the synapse requires specific changes in the neuronal transcriptome. While much is known about the role of coding elements in this process, the role of the long noncoding transcriptome remains elusive. Here, we report the discovery of an intronic long noncoding RNA (lncRNA)-termed ADEPTR-that is up-regulated and synaptically transported in a cAMP/PKA-dependent manner in hippocampal neurons, independently of its protein-coding host gene. Loss of ADEPTR function suppresses activity-dependent changes in synaptic transmission and structural plasticity of dendritic spines. Mechanistically, dendritic localization of ADEPTR is mediated by molecular motor protein Kif2A. ADEPTR physically binds to actin-scaffolding regulators ankyrin (AnkB) and spectrin (Sptn1) via a conserved sequence and is required for their dendritic localization. Together, this study demonstrates how activity-dependent synaptic targeting of an lncRNA mediates structural plasticity at the synapse.
Collapse
Affiliation(s)
- Eddie Grinman
- Department of Neuroscience, Scripps Research, 130 Scripps Way, Jupiter, FL 33458, USA
| | | | - Yosef Avchalumov
- Department of Neuroscience, Scripps Research, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Isabel Espadas
- Department of Neuroscience, Scripps Research, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Supriya Swarnkar
- Department of Neuroscience, Scripps Research, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | | |
Collapse
|
17
|
Tyzack GE, Neeves J, Crerar H, Klein P, Ziff O, Taha DM, Luisier R, Luscombe NM, Patani R. Aberrant cytoplasmic intron retention is a blueprint for RNA binding protein mislocalization in VCP-related amyotrophic lateral sclerosis. Brain 2021; 144:1985-1993. [PMID: 33693641 PMCID: PMC8370440 DOI: 10.1093/brain/awab078] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/22/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
We recently described aberrantly increased cytoplasmic SFPQ intron-retaining transcripts (IRTs) and concurrent SFPQ protein mislocalization as new hallmarks of amyotrophic lateral sclerosis (ALS). However, the generalizability and potential roles of cytoplasmic IRTs in health and disease remain unclear. Here, using time-resolved deep sequencing of nuclear and cytoplasmic fractions of human induced pluripotent stem cells undergoing motor neurogenesis, we reveal that ALS-causing VCP gene mutations lead to compartment-specific aberrant accumulation of IRTs. Specifically, we identify >100 IRTs with increased cytoplasmic abundance in ALS samples. Furthermore, these aberrant cytoplasmic IRTs possess sequence-specific attributes and differential predicted binding affinity to RNA binding proteins. Remarkably, TDP-43, SFPQ and FUS—RNA binding proteins known for nuclear-to-cytoplasmic mislocalization in ALS—abundantly and specifically bind to this aberrant cytoplasmic pool of IRTs. Our data are therefore consistent with a novel role for cytoplasmic IRTs in regulating compartment-specific protein abundance. This study provides new molecular insight into potential pathomechanisms underlying ALS and highlights aberrant cytoplasmic IRTs as potential therapeutic targets.
Collapse
Affiliation(s)
- Giulia E Tyzack
- Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Jacob Neeves
- Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Hamish Crerar
- Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Pierre Klein
- Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Oliver Ziff
- Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Doaa M Taha
- Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.,Zoology Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Raphaëlle Luisier
- Genomics and Health Informatics Group, Idiap Research Institute, CH - 1920 Martigny, Switzerland
| | - Nicholas M Luscombe
- Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.,UCL Genetics Institute, University College London, London, WC1E 6BT, UK.,Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Rickie Patani
- Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| |
Collapse
|
18
|
Alon S, Goodwin DR, Sinha A, Wassie AT, Chen F, Daugharthy ER, Bando Y, Kajita A, Xue AG, Marrett K, Prior R, Cui Y, Payne AC, Yao CC, Suk HJ, Wang R, Yu CCJ, Tillberg P, Reginato P, Pak N, Liu S, Punthambaker S, Iyer EPR, Kohman RE, Miller JA, Lein ES, Lako A, Cullen N, Rodig S, Helvie K, Abravanel DL, Wagle N, Johnson BE, Klughammer J, Slyper M, Waldman J, Jané-Valbuena J, Rozenblatt-Rosen O, Regev A, Church GM, Marblestone AH, Boyden ES. Expansion sequencing: Spatially precise in situ transcriptomics in intact biological systems. Science 2021; 371:eaax2656. [PMID: 33509999 PMCID: PMC7900882 DOI: 10.1126/science.aax2656] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/13/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
Methods for highly multiplexed RNA imaging are limited in spatial resolution and thus in their ability to localize transcripts to nanoscale and subcellular compartments. We adapt expansion microscopy, which physically expands biological specimens, for long-read untargeted and targeted in situ RNA sequencing. We applied untargeted expansion sequencing (ExSeq) to the mouse brain, which yielded the readout of thousands of genes, including splice variants. Targeted ExSeq yielded nanoscale-resolution maps of RNAs throughout dendrites and spines in the neurons of the mouse hippocampus, revealing patterns across multiple cell types, layer-specific cell types across the mouse visual cortex, and the organization and position-dependent states of tumor and immune cells in a human metastatic breast cancer biopsy. Thus, ExSeq enables highly multiplexed mapping of RNAs from nanoscale to system scale.
Collapse
Affiliation(s)
- Shahar Alon
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
- Faculty of Engineering, Gonda Brain Research Center and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Daniel R Goodwin
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Anubhav Sinha
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Asmamaw T Wassie
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Fei Chen
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Evan R Daugharthy
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Yosuke Bando
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- Kioxia Corporation, Minato-ku, Tokyo, Japan
| | | | - Andrew G Xue
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
| | | | | | - Yi Cui
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Andrew C Payne
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Chun-Chen Yao
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ho-Jun Suk
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Ru Wang
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Chih-Chieh Jay Yu
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Paul Tillberg
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
| | - Paul Reginato
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Nikita Pak
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
- Department of Mechanical Engineering, MIT, Cambridge, MA, USA
| | - Songlei Liu
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Sukanya Punthambaker
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Eswar P R Iyer
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Richie E Kohman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | | | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Ana Lako
- Center for Immuno-Oncology (CIO), Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nicole Cullen
- Center for Immuno-Oncology (CIO), Dana-Farber Cancer Institute, Boston, MA, USA
| | - Scott Rodig
- Center for Immuno-Oncology (CIO), Dana-Farber Cancer Institute, Boston, MA, USA
| | - Karla Helvie
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Daniel L Abravanel
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Nikhil Wagle
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Bruce E Johnson
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Michal Slyper
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julia Waldman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Department of Biology, MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | | | - Edward S Boyden
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA.
- McGovern Institute, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Department of Biology, MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| |
Collapse
|
19
|
Yergert KM, Doll CA, O’Rouke R, Hines JH, Appel B. Identification of 3' UTR motifs required for mRNA localization to myelin sheaths in vivo. PLoS Biol 2021; 19:e3001053. [PMID: 33439856 PMCID: PMC7837478 DOI: 10.1371/journal.pbio.3001053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 01/26/2021] [Accepted: 12/22/2020] [Indexed: 12/20/2022] Open
Abstract
Myelin is a specialized membrane produced by oligodendrocytes that insulates and supports axons. Oligodendrocytes extend numerous cellular processes, as projections of the plasma membrane, and simultaneously wrap multiple layers of myelin membrane around target axons. Notably, myelin sheaths originating from the same oligodendrocyte are variable in size, suggesting local mechanisms regulate myelin sheath growth. Purified myelin contains ribosomes and hundreds of mRNAs, supporting a model that mRNA localization and local protein synthesis regulate sheath growth and maturation. However, the mechanisms by which mRNAs are selectively enriched in myelin sheaths are unclear. To investigate how mRNAs are targeted to myelin sheaths, we tested the hypothesis that transcripts are selected for myelin enrichment through consensus sequences in the 3' untranslated region (3' UTR). Using methods to visualize mRNA in living zebrafish larvae, we identified candidate 3' UTRs that were sufficient to localize mRNA to sheaths and enriched near growth zones of nascent membrane. We bioinformatically identified motifs common in 3' UTRs from 3 myelin-enriched transcripts and determined that these motifs are required and sufficient in a context-dependent manner for mRNA transport to myelin sheaths. Finally, we show that 1 motif is highly enriched in the myelin transcriptome, suggesting that this sequence is a global regulator of mRNA localization during developmental myelination.
Collapse
Affiliation(s)
- Katie M. Yergert
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Caleb A. Doll
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Rebecca O’Rouke
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Jacob H. Hines
- Department of Biology, Winona State University, Winona, Minnesota, United States of America
| | - Bruce Appel
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
20
|
Schmitz U, Monteuuis G, Petrova V, Shah JS, Rasko JE. Computational Methods for Intron Retention Identification and Quantification. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11567-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
21
|
Li JX, He JJ, Elsheikha HM, Ma J, Xu XP, Zhu XQ. ROP18-Mediated Transcriptional Reprogramming of HEK293T Cell Reveals New Roles of ROP18 in the Interplay Between Toxoplasma gondii and the Host Cell. Front Cell Infect Microbiol 2020; 10:586946. [PMID: 33330132 PMCID: PMC7734210 DOI: 10.3389/fcimb.2020.586946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/30/2020] [Indexed: 12/02/2022] Open
Abstract
Toxoplasma gondii secretes a number of virulence-related effector proteins, such as the rhoptry protein 18 (ROP18). To further broaden our understanding of the molecular functions of ROP18, we examined the transcriptional response of human embryonic kidney cells (HEK293T) to ROP18 of type I T. gondii RH strain. Using RNA-sequencing, we compared the transcriptome of ROP18-expressing HEK293T cells to control HEK293T cells. Our analysis revealed that ROP18 altered the expression of 750 genes (467 upregulated genes and 283 downregulated genes) in HEK293T cells. Gene ontology (GO) and pathway enrichment analyses showed that differentially expressed genes (DEGs) were significantly enriched in extracellular matrix– and immune–related GO terms and pathways. KEGG pathway enrichment analysis revealed that DEGs were involved in several disease-related pathways, such as nervous system diseases and eye disease. ROP18 significantly increased the alternative splicing pattern “retained intron” and altered the expression of 144 transcription factors (TFs). These results provide new insight into how ROP18 may influence biological processes in the host cells via altering the expression of genes, TFs, and pathways. More in vitro and in vivo studies are required to substantiate these findings.
Collapse
Affiliation(s)
- Jie-Xi Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Jun Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiao-Pei Xu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
22
|
Brito DVC, Gulmez Karaca K, Kupke J, Frank L, Oliveira AMM. MeCP2 gates spatial learning-induced alternative splicing events in the mouse hippocampus. Mol Brain 2020; 13:156. [PMID: 33203444 PMCID: PMC7672966 DOI: 10.1186/s13041-020-00695-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/06/2020] [Indexed: 12/31/2022] Open
Abstract
Long-term memory formation is supported by functional and structural changes of neuronal networks, which rely on de novo gene transcription and protein synthesis. The modulation of the neuronal transcriptome in response to learning depends on transcriptional and post-transcriptional mechanisms. DNA methylation writers and readers regulate the activity-dependent genomic program required for memory consolidation. The most abundant DNA methylation reader, the Methyl CpG binding domain protein 2 (MeCP2), has been shown to regulate alternative splicing, but whether it establishes splicing events important for memory consolidation has not been investigated. In this study, we identified the alternative splicing profile of the mouse hippocampus in basal conditions and after a spatial learning experience, and investigated the requirement of MeCP2 for these processes. We observed that spatial learning triggers a wide-range of alternative splicing events in transcripts associated with structural and functional remodeling and that virus-mediated knockdown of MeCP2 impairs learning-dependent post-transcriptional responses of mature hippocampal neurons. Furthermore, we found that MeCP2 preferentially affected the splicing modalities intron retention and exon skipping and guided the alternative splicing of distinct set of genes in baseline conditions and after learning. Lastly, comparative analysis of the MeCP2-regulated transcriptome with the alternatively spliced mRNA pool, revealed that MeCP2 disruption alters the relative abundance of alternatively spliced isoforms without affecting the overall mRNA levels. Taken together, our findings reveal that adult hippocampal MeCP2 is required to finetune alternative splicing events in basal conditions, as well as in response to spatial learning. This study provides new insight into how MeCP2 regulates brain function, particularly cognitive abilities, and sheds light onto the pathophysiological mechanisms of Rett syndrome, that is characterized by intellectual disability and caused by mutations in the Mecp2 gene.
Collapse
Affiliation(s)
- David V C Brito
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Kubra Gulmez Karaca
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.,Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN, Nijmegen, The Netherlands
| | - Janina Kupke
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Lukas Frank
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant (Heidelberg University), Heidelberg, Germany
| | - Ana M M Oliveira
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.
| |
Collapse
|
23
|
Linker SB, Randolph-Moore L, Kottilil K, Qiu F, Jaeger BN, Barron J, Gage FH. Identification of bona fide B2 SINE retrotransposon transcription through single-nucleus RNA-seq of the mouse hippocampus. Genome Res 2020; 30:1643-1654. [PMID: 33122305 PMCID: PMC7605253 DOI: 10.1101/gr.262196.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022]
Abstract
Currently, researchers rely on generalized methods to quantify transposable element (TE) RNA expression, such as RT-qPCR and RNA-seq, that do not distinguish between TEs expressed from their own promoter (bona fide) and TEs that are transcribed from a neighboring gene promoter such as within an intron or exon. This distinction is important owing to the differing functional roles of TEs depending on whether they are independently transcribed. Here we report a simple strategy to examine bona fide TE expression, termed BonaFide-TEseq. This approach can be used with any template-switch based library such as Smart-seq2 or the single-cell 5' gene expression kit from 10x, extending its utility to single-cell RNA-sequencing. This approach does not require TE-specific enrichment, enabling the simultaneous examination of TEs and protein-coding genes. We show that TEs identified through BonaFide-TEseq are expressed from their own promoter, rather than captured as internal products of genes. We reveal the utility of BonaFide-TEseq in the analysis of single-cell data and show that short-interspersed nuclear elements (SINEs) show cell type-specific expression profiles in the mouse hippocampus. We further show that, in response to a brief exposure of home-cage mice to a novel stimulus, SINEs are activated in dentate granule neurons in a time course that is similar to that of protein-coding immediate early genes. This work provides a simple alternative approach to assess bona fide TE transcription at single-cell resolution and provides a proof-of-concept using this method to identify SINE activation in a context that is relevant for normal learning and memory.
Collapse
Affiliation(s)
- Sara B Linker
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Lynne Randolph-Moore
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Kalyani Kottilil
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Fan Qiu
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Baptiste N Jaeger
- Laboratory of Neural Plasticity, Faculty of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Jerika Barron
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, California 94143, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
24
|
Grabski DF, Broseus L, Kumari B, Rekosh D, Hammarskjold ML, Ritchie W. Intron retention and its impact on gene expression and protein diversity: A review and a practical guide. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1631. [PMID: 33073477 DOI: 10.1002/wrna.1631] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/16/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Intron retention (IR) occurs when a complete and unspliced intron remains in mature mRNA. An increasing body of literature has demonstrated a major role for IR in numerous biological functions, including several that impact human health and disease. Although experimental technologies used to study other forms of mRNA splicing can also be used to investigate IR, a specialized downstream computational analysis is optimal for IR discovery and analysis. Here we provide a review of IR and its biological implications, as well as a practical guide for how to detect and analyze it. Several methods, including long read third generation direct RNA sequencing, are described. We have developed an R package, FakIR, to facilitate the execution of the bioinformatic tasks recommended in this review and a tutorial on how to fit them to users aims. Additionally, we provide guidelines and experimental protocols to validate IR discovery and to evaluate the potential impact of IR on gene expression and protein output. This article is categorized under: RNA Evolution and Genomics > Computational Analyses of RNA RNA Processing > Splicing Regulation/Alternative Splicing RNA Methods > RNA Analyses in vitro and In Silico.
Collapse
Affiliation(s)
- David F Grabski
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, USA
| | - Lucile Broseus
- IGH, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France
| | - Bandana Kumari
- IGH, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France
| | - David Rekosh
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, USA.,Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Marie-Louise Hammarskjold
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, USA.,Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - William Ritchie
- IGH, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France
| |
Collapse
|
25
|
Abstract
Parenteau et al. (2019) and Morgan et al. (2019) showed that a subset of introns can work as non-coding RNAs that trap the spliceosome and decrease global splicing upon nutrient depletion in yeast, providing a new example of the functionality of introns, molecules that were previously assumed to be useless.
Collapse
Affiliation(s)
- Michela Zaffagni
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Sebastian Kadener
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02453, USA.
| |
Collapse
|
26
|
Wang Y, Patani R. Novel therapeutic targets for amyotrophic lateral sclerosis: ribonucleoproteins and cellular autonomy. Expert Opin Ther Targets 2020; 24:971-984. [PMID: 32746659 DOI: 10.1080/14728222.2020.1805734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a devastating disease with a lifetime risk of approximately 1:400. It is incurable and invariably fatal. Average survival is between 3 and 5 years and patients become increasingly paralyzed, losing the ability to speak, eat, and breathe. Therapies in development either (i) target specific familial forms of ALS (comprising a minority of around 10% of cases) or ii) emanate from (over)reliance on animal models or non-human/non-neuronal cell models. There is a desperate and unmet clinical need for effective treatments. Deciphering the primacy and relative contributions of defective protein homeostasis and RNA metabolism in ALS across different model systems will facilitate the identification of putative therapeutic targets. AREAS COVERED This review examines the putative common primary molecular events that lead to ALS pathogenesis. We focus on deregulated RNA metabolism, protein mislocalization/pathological aggregation and the role of glia in ALS-related motor neuron degeneration. Finally, we describe promising targets for therapeutic evaluation. EXPERT OPINION Moving forward, an effective strategy could be achieved by a poly-therapeutic approach which targets both deregulated RNA metabolism and protein dyshomeostasis in the relevant cell types, at the appropriate phase of disease.
Collapse
Affiliation(s)
- Yiran Wang
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London , London, UK.,Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute , London, UK
| | - Rickie Patani
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London , London, UK.,Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute , London, UK
| |
Collapse
|
27
|
Park EM, Scott PM, Clutario K, Cassidy KB, Zhan K, Gerber SA, Holland AJ. WBP11 is required for splicing the TUBGCP6 pre-mRNA to promote centriole duplication. J Cell Biol 2020; 219:133543. [PMID: 31874114 PMCID: PMC7039186 DOI: 10.1083/jcb.201904203] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/24/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022] Open
Abstract
Centriole duplication occurs once in each cell cycle to maintain centrosome number. A previous genome-wide screen revealed that depletion of 14 RNA splicing factors leads to a specific defect in centriole duplication, but the cause of this deficit remains unknown. Here, we identified an additional pre-mRNA splicing factor, WBP11, as a novel protein required for centriole duplication. Loss of WBP11 results in the retention of ∼200 introns, including multiple introns in TUBGCP6, a central component of the γ-TuRC. WBP11 depletion causes centriole duplication defects, in part by causing a rapid decline in the level of TUBGCP6. Several additional splicing factors that are required for centriole duplication interact with WBP11 and are required for TUBGCP6 expression. These findings provide insight into how the loss of a subset of splicing factors leads to a failure of centriole duplication. This may have clinical implications because mutations in some spliceosome proteins cause microcephaly and/or growth retardation, phenotypes that are strongly linked to centriole defects.
Collapse
Affiliation(s)
- Elizabeth M Park
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Phillip M Scott
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kevin Clutario
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Katelyn B Cassidy
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Kevin Zhan
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Scott A Gerber
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH.,Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH.,Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
28
|
Engel KL, Arora A, Goering R, Lo HYG, Taliaferro JM. Mechanisms and consequences of subcellular RNA localization across diverse cell types. Traffic 2020; 21:404-418. [PMID: 32291836 PMCID: PMC7304542 DOI: 10.1111/tra.12730] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
Essentially all cells contain a variety of spatially restricted regions that are important for carrying out specialized functions. Often, these regions contain specialized transcriptomes that facilitate these functions by providing transcripts for localized translation. These transcripts play a functional role in maintaining cell physiology by enabling a quick response to changes in the cellular environment. Here, we review how RNA molecules are trafficked within cells, with a focus on the subcellular locations to which they are trafficked, mechanisms that regulate their transport and clinical disorders associated with misregulation of the process.
Collapse
Affiliation(s)
- Krysta L Engel
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ankita Arora
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Raeann Goering
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hei-Yong G Lo
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - J Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
29
|
Monteuuis G, Wong JJL, Bailey CG, Schmitz U, Rasko JEJ. The changing paradigm of intron retention: regulation, ramifications and recipes. Nucleic Acids Res 2020; 47:11497-11513. [PMID: 31724706 PMCID: PMC7145568 DOI: 10.1093/nar/gkz1068] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/04/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Intron retention (IR) is a form of alternative splicing that has long been neglected in mammalian systems although it has been studied for decades in non-mammalian species such as plants, fungi, insects and viruses. It was generally assumed that mis-splicing, leading to the retention of introns, would have no physiological consequence other than reducing gene expression by nonsense-mediated decay. Relatively recent landmark discoveries have highlighted the pivotal role that IR serves in normal and disease-related human biology. Significant technical hurdles have been overcome, thereby enabling the robust detection and quantification of IR. Still, relatively little is known about the cis- and trans-acting modulators controlling this phenomenon. The fate of an intron to be, or not to be, retained in the mature transcript is the direct result of the influence exerted by numerous intrinsic and extrinsic factors at multiple levels of regulation. These factors have altered current biological paradigms and provided unexpected insights into the transcriptional landscape. In this review, we discuss the regulators of IR and methods to identify them. Our focus is primarily on mammals, however, we broaden the scope to non-mammalian organisms in which IR has been shown to be biologically relevant.
Collapse
Affiliation(s)
- Geoffray Monteuuis
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, Australia
| | - Justin J L Wong
- Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia.,Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, Australia
| | - Charles G Bailey
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, Australia.,Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Ulf Schmitz
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, Australia.,Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia.,Computational Biomedicine Laboratory Centenary Institute, The University of Sydney, Camperdown, Australia
| | - John E J Rasko
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, Australia.,Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia.,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, Australia
| |
Collapse
|
30
|
Li HD, Funk CC, Price ND. iREAD: a tool for intron retention detection from RNA-seq data. BMC Genomics 2020; 21:128. [PMID: 32028886 PMCID: PMC7006120 DOI: 10.1186/s12864-020-6541-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/28/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Intron retention (IR) has been traditionally overlooked as 'noise' and received negligible attention in the field of gene expression analysis. In recent years, IR has become an emerging field for interrogating transcriptomes because it has been recognized to carry out important biological functions such as gene expression regulation and it has been found to be associated with complex diseases such as cancers. However, methods for detecting IR today are limited. Thus, there is a need to develop novel methods to improve IR detection. RESULTS Here we present iREAD (intron REtention Analysis and Detector), a tool to detect IR events genome-wide from high-throughput RNA-seq data. The command line interface for iREAD is implemented in Python. iREAD takes as input a BAM file, representing the transcriptome, and a text file containing the intron coordinates of a genome. It then 1) counts all reads that overlap intron regions, 2) detects IR events by analyzing the features of reads such as depth and distribution patterns, and 3) outputs a list of retained introns into a tab-delimited text file. iREAD provides significant added value in detecting IR compared with output from IRFinder with a higher AUC on all datasets tested. Both methods showed low false positive rates and high false negative rates in different regimes, indicating that use together is generally beneficial. The output from iREAD can be directly used for further exploratory analysis such as differential intron expression and functional enrichment. The software is freely available at https://github.com/genemine/iread. CONCLUSION Being complementary to existing tools, iREAD provides a new and generic tool to interrogate poly-A enriched transcriptomic data of intron regions. Intron retention analysis provides a complementary approach for understanding transcriptome.
Collapse
Affiliation(s)
- Hong-Dong Li
- Center for Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan Province, 410083, People's Republic of China
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Cory C Funk
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | | |
Collapse
|
31
|
Saini H, Bicknell AA, Eddy SR, Moore MJ. Free circular introns with an unusual branchpoint in neuronal projections. eLife 2019; 8:e47809. [PMID: 31697236 PMCID: PMC6879206 DOI: 10.7554/elife.47809] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022] Open
Abstract
The polarized structure of axons and dendrites in neuronal cells depends in part on RNA localization. Previous studies have looked at which polyadenylated RNAs are enriched in neuronal projections or at synapses, but less is known about the distribution of non-adenylated RNAs. By physically dissecting projections from cell bodies of primary rat hippocampal neurons and sequencing total RNA, we found an unexpected set of free circular introns with a non-canonical branchpoint enriched in neuronal projections. These introns appear to be tailless lariats that escape debranching. They lack ribosome occupancy, sequence conservation, and known localization signals, and their function, if any, is not known. Nonetheless, their enrichment in projections has important implications for our understanding of the mechanisms by which RNAs reach distal compartments of asymmetric cells.
Collapse
Affiliation(s)
- Harleen Saini
- RNA Therapeutics InstituteUniversity of Massachusetts Medical SchoolWorcesterUnited States
- Department of Molecular and Cellular BiologyHoward Hughes Medical Institute, Harvard UniversityCambridgeUnited States
| | - Alicia A Bicknell
- RNA Therapeutics InstituteUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Sean R Eddy
- Department of Molecular and Cellular BiologyHoward Hughes Medical Institute, Harvard UniversityCambridgeUnited States
- John A Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeUnited States
| | - Melissa J Moore
- RNA Therapeutics InstituteUniversity of Massachusetts Medical SchoolWorcesterUnited States
| |
Collapse
|
32
|
Adusumalli S, Ngian Z, Lin W, Benoukraf T, Ong C. Increased intron retention is a post-transcriptional signature associated with progressive aging and Alzheimer's disease. Aging Cell 2019; 18:e12928. [PMID: 30868713 PMCID: PMC6516162 DOI: 10.1111/acel.12928] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/18/2018] [Indexed: 12/23/2022] Open
Abstract
Intron retention (IR) by alternative splicing is a conserved regulatory mechanism that can affect gene expression and protein function during adult development and age-onset diseases. However, it remains unclear whether IR undergoes spatial or temporal changes during different stages of aging or neurodegeneration like Alzheimer's disease (AD). By profiling the transcriptome of Drosophila head cells at different ages, we observed a significant increase in IR events for many genes during aging. Differential IR affects distinct biological functions at different ages and occurs at several AD-associated genes in older adults. The increased nucleosome occupancy at the differentially retained introns in young animals suggests that it may regulate the level of IR during aging. Notably, an increase in the number of IR events was also observed in healthy older mouse and human brain tissues, as well as in the cerebellum and frontal cortex from independent AD cohorts. Genes with differential IR shared many common features, including shorter intron length, no perturbation in their mRNA level, and enrichment for biological functions that are associated with mRNA processing and proteostasis. The differentially retained introns identified in AD frontal cortex have higher GC content, with many of their mRNA transcripts showing an altered level of protein expression compared to control samples. Taken together, our results suggest that an increased IR is an conserved signature that is associated with aging. By affecting pathways involved in mRNA and protein homeostasis, changes of IR pattern during aging may regulate the transition from healthy to pathological state in late-onset sporadic AD.
Collapse
Affiliation(s)
- Swarnaseetha Adusumalli
- Temasek Life Sciences Laboratory National University of Singapore Singapore
- Department of Biological Sciences National University of Singapore Singapore
| | - Zhen‐Kai Ngian
- Temasek Life Sciences Laboratory National University of Singapore Singapore
| | - Wei‐Qi Lin
- Temasek Life Sciences Laboratory National University of Singapore Singapore
| | - Touati Benoukraf
- Cancer Science Institute of Singapore National University of Singapore Singapore
- Discipline of Genetics, Faculty of Medicine Memorial University of Newfoundland St. John’s Newfoundland and Labrador Canada
| | - Chin‐Tong Ong
- Temasek Life Sciences Laboratory National University of Singapore Singapore
- Department of Biological Sciences National University of Singapore Singapore
| |
Collapse
|
33
|
Bo S, Li H, Zhang Q, Lu Z, Bao T, Zhao X. Potential relations between post-spliced introns and mature mRNAs in the Caenorhabditis elegans genome. J Theor Biol 2019; 467:7-14. [PMID: 30710554 DOI: 10.1016/j.jtbi.2019.01.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/14/2019] [Accepted: 01/29/2019] [Indexed: 10/27/2022]
Abstract
There are potential interactions between introns and their corresponding coding sequences (CDSs) in ribosomal protein genes that have been proposed by our group and the interactions are achieved by sequence matches between the two kinds of sequences. Here, the optimal matching relations between mature mRNAs and their corresponding introns in Caenorhabditis elegans (C.elegans) were investigated by improved Smith-Waterman local alignment software. Our results showed that the remarkably matched regions appear in the untranslated regions (UTRs) of mRNAs, especially in the 3' UTR. The optimal matched segments (OMSs) are highly organized segments. In addition, the optimal matching relations were analysed between mature mRNAs and other introns. The matching strengths in the UTRs are clearly lower than those in their corresponding introns. Our studies indicate that there are potential interactions between mature mRNAs and their corresponding introns and the post-spliced introns should have other novel functions in the gene expression process.
Collapse
Affiliation(s)
- Suling Bo
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Hong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China.
| | - Qiang Zhang
- College of Science, Inner Mongolia Agriculture University, Hohhot 010018, China
| | - Zhanyuan Lu
- School of Life Science, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Huhhot 010031 China
| | - Tonglaga Bao
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Xiaoqing Zhao
- School of Life Science, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Huhhot 010031 China
| |
Collapse
|
34
|
Middleton SA, Eberwine J, Kim J. Comprehensive catalog of dendritically localized mRNA isoforms from sub-cellular sequencing of single mouse neurons. BMC Biol 2019; 17:5. [PMID: 30678683 PMCID: PMC6344992 DOI: 10.1186/s12915-019-0630-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/16/2019] [Indexed: 02/06/2023] Open
Abstract
Background RNA localization involves cis-motifs that are recognized by RNA-binding proteins (RBP), which then mediate localization to specific sub-cellular compartments. RNA localization is critical for many different cell functions, e.g., in neuronal dendrites, localization is a critical step for long-lasting synaptic potentiation. However, there is little consensus regarding which RNAs are localized and the role of alternative isoforms in localization. A comprehensive catalog of localized RNA can help dissect RBP/RNA interactions and localization motifs. Here, we utilize a single cell sub-cellular RNA sequencing approach to profile differentially localized RNAs from individual cells across multiple single cells to help identify a consistent set of localized RNA in mouse neurons. Results Using independent RNA sequencing from soma and dendrites of the same neuron, we deeply profiled the sub-cellular transcriptomes to assess the extent and variability of dendritic RNA localization in individual hippocampal neurons, including an assessment of differential localization of alternative 3′UTR isoforms. We identified 2225 dendritic RNAs, including 298 cases of 3′UTR isoform-specific localization. We extensively analyzed the localized RNAs for potential localization motifs, finding that B1 and B2 SINE elements are up to 5.7 times more abundant in localized RNA 3′UTRs than non-localized, and also functionally characterized the localized RNAs using protein structure analysis. Conclusion We integrate our list of localized RNAs with the literature to provide a comprehensive list of known dendritically localized RNAs as a resource. This catalog of transcripts, including differentially localized isoforms and computationally hypothesized localization motifs, will help investigators further dissect the genome-scale mechanism of RNA localization. Electronic supplementary material The online version of this article (10.1186/s12915-019-0630-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah A Middleton
- Graduate Program in Genomics and Computational Biology, Biomedical Graduate Studies, University of Pennsylvania, 160 BRB II/III - 421 Curie Blvd, Philadelphia, PA, 19104-6064, USA.,Present Address: Computational Biology, Target Sciences, GlaxoSmithKline R&D, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - James Eberwine
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, 829 BRB II/III, 421 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Junhyong Kim
- Graduate Program in Genomics and Computational Biology, Biomedical Graduate Studies, University of Pennsylvania, 160 BRB II/III - 421 Curie Blvd, Philadelphia, PA, 19104-6064, USA. .,Department of Biology, University of Pennsylvania, 415 S. University Ave, Philadelphia, PA, 19104, USA.
| |
Collapse
|
35
|
Clare AJ, Day RC, Empson RM, Hughes SM. Transcriptome Profiling of Layer 5 Intratelencephalic Projection Neurons From the Mature Mouse Motor Cortex. Front Mol Neurosci 2018; 11:410. [PMID: 30483051 PMCID: PMC6240696 DOI: 10.3389/fnmol.2018.00410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 10/22/2018] [Indexed: 11/17/2022] Open
Abstract
The mature cortex contains hugely diverse populations of pyramidal projection neurons (PNs), critical to normal forebrain circuits. In order to understand the healthy cortex, it is essential to characterize this neuronal complexity. We recently demonstrated different identities for Fezf2-positive (Fezf2+ve) and Fezf2-negative (Fezf2−ve) intratelencephalic-PNs (IT-PNs) from layer 5 of the motor cortex (M1). Comparatively, each IT-PN type has a distinct electrophysiological phenotype and the Fezf2+ve IT-PNs display a unique apical dendritic tuft. Here, we aimed to expand our understanding of the molecular underpinnings defining these unique IT-PN types. Using a validated Fezf2-GFP reporter mouse, retrograde labeling techniques and fluorescence activated cell sorting (FACS), combined with a novel approach for low-input RNA-sequencing, we isolated mature Fezf2+ve and Fezf2−ve IT-PNs for transcriptome profiling. Through the comparison of Fezf2+ve and Fezf2−ve IT-PN gene expression profiles, we identified significant enrichment of 81 genes in the Fezf2+ve IT-PNs and 119 genes in the Fezf2−ve IT-PNs. Term enrichment analysis of these enriched genes demonstrated significant overrepresentation of the calcium-binding EF-hand domain in Fezf2+ve IT-PNs, suggesting a greater importance for calcium handling in these neurons. Of the Fezf2−ve IT-PN enriched genes an unexpected and unique enrichment of genes, previously associated with microglia were identified. Our dataset identifies the molecular profiles of two unique IT-PN types in the mature M1, providing important targets to investigate for their maintenance in the healthy mature brain.
Collapse
Affiliation(s)
- Alison J Clare
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Genetics Otago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Robert C Day
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Genetics Otago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ruth M Empson
- Brain Health Research Centre, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Stephanie M Hughes
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Genetics Otago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
36
|
Andreassi C, Crerar H, Riccio A. Post-transcriptional Processing of mRNA in Neurons: The Vestiges of the RNA World Drive Transcriptome Diversity. Front Mol Neurosci 2018; 11:304. [PMID: 30210293 PMCID: PMC6121099 DOI: 10.3389/fnmol.2018.00304] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/09/2018] [Indexed: 12/17/2022] Open
Abstract
Neurons are morphologically complex cells that rely on the compartmentalization of protein expression to develop and maintain their extraordinary cytoarchitecture. This formidable task is achieved, at least in part, by targeting mRNA to subcellular compartments where they are rapidly translated. mRNA transcripts are the conveyor of genetic information from DNA to the translational machinery, however, they are also endowed with additional functions linked to both the coding sequence (open reading frame, or ORF) and the flanking 5′ and 3′ untranslated regions (UTRs), that may harbor coding-independent functions. In this review, we will highlight recent evidences supporting new coding-dependent and -independent functions of mRNA and discuss how nuclear and cytoplasmic post-transcriptional modifications of mRNA contribute to localization and translation in mammalian cells with specific emphasis on neurons. We also describe recently developed techniques that can be employed to study RNA dynamics at subcellular level in eukaryotic cells in developing and regenerating neurons.
Collapse
Affiliation(s)
- Catia Andreassi
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Hamish Crerar
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Antonella Riccio
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| |
Collapse
|
37
|
Jackson DP, Ting JH, Pozniak PD, Meurice C, Schleidt SS, Dao A, Lee AH, Klinman E, Jordan-Sciutto KL. Identification and characterization of two novel alternatively spliced E2F1 transcripts in the rat CNS. Mol Cell Neurosci 2018; 92:1-11. [PMID: 29936143 DOI: 10.1016/j.mcn.2018.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 06/05/2018] [Accepted: 06/19/2018] [Indexed: 10/28/2022] Open
Abstract
E2F1 is a transcription factor classically known to regulate G0/G1 to S phase progression in the cell cycle. In addition, E2F1 also regulates a wide range of apoptotic genes and thus has been well studied in the context of neuronal death and neurodegenerative diseases. However, its function and regulation in the mature central nervous system are not well understood. Alternative splicing is a well-conserved post-transcriptional mechanism common in cells of the CNS and is necessary to generate diverse functional modifications to RNA or protein products from genes. Heretofore, physiologically significant alternatively spliced E2F1 transcripts have not been reported. In the present study, we report the identification of two novel alternatively spliced E2F1 transcripts: E2F1b, an E2F1 transcript retaining intron 5, and E2F1c, an E2F1 transcript excluding exon 6. These alternatively spliced transcripts are observed in the brain and neural cell types including neurons, astrocytes, and undifferentiated oligodendrocytes. The expression of these E2F1 transcripts is distinct during maturation of primary hippocampal neuroglial cells. Pharmacologically-induced global translation inhibition with cycloheximide, anisomycin or thapsigargin lead to significantly reduced expression of E2F1a, E2F1b and E2F1c. Conversely, increasing neuronal activity by elevating the concentration of potassium chloride selectively increased the expression of E2F1b. Furthermore, experiments expressing these variants in vitro show the transcripts can be translated to generate a protein product. Taken together, our data suggest that the alternatively spliced E2F1 transcript behave differently than the E2F1a transcript, and our results provide a foundation for future investigation of the function of E2F1 splice variants in the CNS.
Collapse
Affiliation(s)
- Dan P Jackson
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Philadelphia, PA 19104, USA
| | - Jenhao H Ting
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Philadelphia, PA 19104, USA
| | - Paul D Pozniak
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Philadelphia, PA 19104, USA
| | - Claire Meurice
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephanie S Schleidt
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Philadelphia, PA 19104, USA
| | - Anh Dao
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Philadelphia, PA 19104, USA
| | - Amy H Lee
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Philadelphia, PA 19104, USA
| | - Eva Klinman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kelly L Jordan-Sciutto
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Philadelphia, PA 19104, USA.
| |
Collapse
|
38
|
Luisier R, Tyzack GE, Hall CE, Mitchell JS, Devine H, Taha DM, Malik B, Meyer I, Greensmith L, Newcombe J, Ule J, Luscombe NM, Patani R. Intron retention and nuclear loss of SFPQ are molecular hallmarks of ALS. Nat Commun 2018; 9:2010. [PMID: 29789581 PMCID: PMC5964114 DOI: 10.1038/s41467-018-04373-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/20/2018] [Indexed: 01/08/2023] Open
Abstract
Mutations causing amyotrophic lateral sclerosis (ALS) strongly implicate ubiquitously expressed regulators of RNA processing. To understand the molecular impact of ALS-causing mutations on neuronal development and disease, we analysed transcriptomes during in vitro differentiation of motor neurons (MNs) from human control and patient-specific VCP mutant induced-pluripotent stem cells (iPSCs). We identify increased intron retention (IR) as a dominant feature of the splicing programme during early neural differentiation. Importantly, IR occurs prematurely in VCP mutant cultures compared with control counterparts. These aberrant IR events are also seen in independent RNAseq data sets from SOD1- and FUS-mutant MNs. The most significant IR is seen in the SFPQ transcript. The SFPQ protein binds extensively to its retained intron, exhibits lower nuclear abundance in VCP mutant cultures and is lost from nuclei of MNs in mouse models and human sporadic ALS. Collectively, we demonstrate SFPQ IR and nuclear loss as molecular hallmarks of familial and sporadic ALS.
Collapse
Affiliation(s)
| | - Giulia E Tyzack
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Claire E Hall
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Jamie S Mitchell
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Helen Devine
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Doaa M Taha
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Bilal Malik
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Ione Meyer
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Linda Greensmith
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Jia Newcombe
- Department of Neuroinflammation, UCL Institute of Neurology, Queen Square, London, WC1N 1PJ, UK
| | - Jernej Ule
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Nicholas M Luscombe
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK.
- Okinawa Institute of Science & Technology Graduate University, Okinawa, 904-0495, Japan.
| | - Rickie Patani
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
39
|
Li J, Eberwine J. The successes and future prospects of the linear antisense RNA amplification methodology. Nat Protoc 2018; 13:811-818. [PMID: 29599441 PMCID: PMC7086549 DOI: 10.1038/nprot.2018.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/04/2018] [Indexed: 12/03/2022]
Abstract
This Perspective discusses the development of the linear amplified RNA amplification technique over the last 25 years, and future applications of this important and versatile methodology. It has been over a quarter of a century since the introduction of the linear RNA amplification methodology known as antisense RNA (aRNA) amplification. Whereas most molecular biology techniques are rapidly replaced owing to the fast-moving nature of development in the field, the aRNA procedure has become a base that can be built upon through varied uses of the technology. The technique was originally developed to assess RNA populations from small amounts of starting material, including single cells, but over time its use has evolved to include the detection of various cellular entities such as proteins, RNA-binding-protein-associated cargoes, and genomic DNA. In this Perspective we detail the linear aRNA amplification procedure and its use in assessing various components of a cell's chemical phenotype. This procedure is particularly useful in efforts to multiplex the simultaneous detection of various cellular processes. These efforts are necessary to identify the quantitative chemical phenotype of cells that underlies cellular function.
Collapse
Affiliation(s)
- Jifen Li
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James Eberwine
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
40
|
Ortiz R, Georgieva MV, Gutiérrez S, Pedraza N, Fernández-Moya SM, Gallego C. Recruitment of Staufen2 Enhances Dendritic Localization of an Intron-Containing CaMKIIα mRNA. Cell Rep 2018; 20:13-20. [PMID: 28683307 DOI: 10.1016/j.celrep.2017.06.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/30/2017] [Accepted: 06/08/2017] [Indexed: 02/07/2023] Open
Abstract
Regulation of mRNA localization is a conserved cellular process observed in many types of cells and organisms. Asymmetrical mRNA distribution plays a particularly important role in the nervous system, where local translation of localized mRNA represents a key mechanism in synaptic plasticity. CaMKIIα is a very abundant mRNA detected in neurites, consistent with its crucial role at glutamatergic synapses. Here, we report the presence of CaMKIIα mRNA isoforms that contain intron i16 in dendrites, RNA granules, and synaptoneurosomes from primary neurons and brain. This subpopulation of unspliced mRNA preferentially localizes to distal dendrites in a synaptic-activity-dependent manner. Staufen2, a well-established marker of RNA transport in dendrites, interacts with intron i16 sequences and enhances its distal dendritic localization, pointing to the existence of intron-mediated mechanisms in the molecular pathways that modulate dendritic transport and localization of synaptic mRNAs.
Collapse
Affiliation(s)
- Raúl Ortiz
- Molecular Biology Institute of Barcelona (IBMB-CSIC), 08028 Barcelona, Catalonia, Spain
| | - Maya V Georgieva
- Molecular Biology Institute of Barcelona (IBMB-CSIC), 08028 Barcelona, Catalonia, Spain
| | - Sara Gutiérrez
- Molecular Biology Institute of Barcelona (IBMB-CSIC), 08028 Barcelona, Catalonia, Spain
| | - Neus Pedraza
- Institut de Recerca Biomèdica de Lleida (IRBLleida), Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | - Sandra M Fernández-Moya
- Biomedical Center, Division of Anatomy and Cell Biology, Ludwig Maximilians University, 82152 Planegg-Martinsried, Germany
| | - Carme Gallego
- Molecular Biology Institute of Barcelona (IBMB-CSIC), 08028 Barcelona, Catalonia, Spain.
| |
Collapse
|
41
|
Rekosh D, Hammarskjold ML. Intron retention in viruses and cellular genes: Detention, border controls and passports. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1470. [PMID: 29508942 DOI: 10.1002/wrna.1470] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/04/2018] [Accepted: 01/24/2018] [Indexed: 02/06/2023]
Abstract
Intron retention (IR), where one or more introns remain in the RNA after splicing, was long thought to be rare in mammalian cells, albeit common in plants and some viruses. Largely due to the development of better methods for RNA analysis, it has now been recognized that IR is much more common than previously thought and that this mechanism is likely to play an important role in mammalian gene regulation. To date, most publications and reviews about IR have described the resulting mRNAs as "dead end" products, with no direct consequence for the proteome. However, there are also many reports of mRNAs with retained introns giving rise to alternative protein isoforms. Although this was originally revealed in viral systems, there are now numerous examples of bona fide cellular proteins that are translated from mRNAs with retained introns. These new isoforms have sometimes been shown to have important regulatory functions. In this review, we highlight recent developments in this area and the research on viruses that led the way to the realization of the many ways in which mRNAs with retained introns can be regulated. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing RNA Export and Localization > Nuclear Export/Import RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- David Rekosh
- The Myles H. Thaler Center for AIDS and Human Retrovirus Research and the Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia.,Department of Microbiology, University of Venda, Thohoyandou, South Africa
| | - Marie-Louise Hammarskjold
- The Myles H. Thaler Center for AIDS and Human Retrovirus Research and the Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia.,Department of Microbiology, University of Venda, Thohoyandou, South Africa
| |
Collapse
|
42
|
Vanichkina DP, Schmitz U, Wong JJL, Rasko JE. Challenges in defining the role of intron retention in normal biology and disease. Semin Cell Dev Biol 2018; 75:40-49. [DOI: 10.1016/j.semcdb.2017.07.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/19/2017] [Accepted: 07/19/2017] [Indexed: 10/19/2022]
|
43
|
Tóth EN, Lohith A, Mondal M, Guo J, Fukamizu A, Pourmand N. Single-cell nanobiopsy reveals compartmentalization of mRNAs within neuronal cells. J Biol Chem 2018; 293:4940-4951. [PMID: 29378846 DOI: 10.1074/jbc.m117.800763] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 01/21/2018] [Indexed: 12/22/2022] Open
Abstract
In highly polarized cells such as neurons, compartmentalization of mRNA and of local protein synthesis enables remarkably fast, precise, and local responses to external stimuli. These responses are highly important for neuron growth cone guidance, synapse formation, and regeneration following injury. Because an altered spatial distribution of mRNA can result in mental retardation or neurodegenerative diseases, subcellular transcriptome analysis of neurons could be a useful tool for studying these conditions, but current techniques, such as in situ hybridization, bulk microarray, and RNA-Seq, impose tradeoffs between spatial resolution and multiplexing. To obtain a comprehensive analysis of the cell body versus neurite transcriptome from the same neuron, we have recently developed a label-free, single-cell nanobiopsy platform based on scanning ion conductance microscopy that uses electrowetting within a quartz nanopipette to extract cellular material from living cells with minimal disruption of the cellular membrane and milieu. In this study, we used this platform to collect samples from the cell bodies and neurites of human neurons and analyzed the mRNA pool with multiplex RNA sequencing. The minute volume of a nanobiopsy sample allowed us to extract samples from several locations in the same cell and to map the various mRNA species to specific subcellular locations. In addition to previously identified transcripts, we discovered new sets of mRNAs localizing to neurites, including nuclear genes such as Eomes and Hmgb3 In summary, our single-neuron nanobiopsy analysis provides opportunities to improve our understanding of intracellular mRNA transport and local protein composition in neuronal growth, connectivity, and function.
Collapse
Affiliation(s)
- Eszter N Tóth
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, Ibaraki 305-8577, Japan; Life Science Center, Tsukuba Advanced Research Alliance, Department of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8577, Japan; Department of Biomolecular Engineering, Jack Baskin School of Engineering, University of California at Santa Cruz, Santa Cruz, California 95064
| | - Akshar Lohith
- Department of Biomolecular Engineering, Jack Baskin School of Engineering, University of California at Santa Cruz, Santa Cruz, California 95064
| | - Manas Mondal
- Department of Chemistry and Biochemistry & Biodesign Institute, Arizona State University, Tempe, Arizona 85287
| | - Jia Guo
- Department of Chemistry and Biochemistry & Biodesign Institute, Arizona State University, Tempe, Arizona 85287
| | - Akiyoshi Fukamizu
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, Ibaraki 305-8577, Japan; Life Science Center, Tsukuba Advanced Research Alliance, Department of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Nader Pourmand
- Department of Biomolecular Engineering, Jack Baskin School of Engineering, University of California at Santa Cruz, Santa Cruz, California 95064.
| |
Collapse
|
44
|
Schmitz U, Pinello N, Jia F, Alasmari S, Ritchie W, Keightley MC, Shini S, Lieschke GJ, Wong JJL, Rasko JEJ. Intron retention enhances gene regulatory complexity in vertebrates. Genome Biol 2017; 18:216. [PMID: 29141666 PMCID: PMC5688624 DOI: 10.1186/s13059-017-1339-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/13/2017] [Indexed: 01/22/2023] Open
Abstract
Background While intron retention (IR) is now widely accepted as an important mechanism of mammalian gene expression control, it remains the least studied form of alternative splicing. To delineate conserved features of IR, we performed an exhaustive phylogenetic analysis in a highly purified and functionally defined cell type comprising neutrophilic granulocytes from five vertebrate species spanning 430 million years of evolution. Results Our RNA-sequencing-based analysis suggests that IR increases gene regulatory complexity, which is indicated by a strong anti-correlation between the number of genes affected by IR and the number of protein-coding genes in the genome of individual species. Our results confirm that IR affects many orthologous or functionally related genes in granulocytes. Further analysis uncovers new and unanticipated conserved characteristics of intron-retaining transcripts. We find that intron-retaining genes are transcriptionally co-regulated from bidirectional promoters. Intron-retaining genes have significantly longer 3′ UTR sequences, with a corresponding increase in microRNA binding sites, some of which include highly conserved sequence motifs. This suggests that intron-retaining genes are highly regulated post-transcriptionally. Conclusions Our study provides unique insights concerning the role of IR as a robust and evolutionarily conserved mechanism of gene expression regulation. Our findings enhance our understanding of gene regulatory complexity by adding another contributor to evolutionary adaptation. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1339-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ulf Schmitz
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, 2050, NSW, Australia
| | - Natalia Pinello
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, 2050, NSW, Australia.,Gene Regulation in Cancer Laboratory, Centenary Institute, University of Sydney, Camperdown, 2050, NSW, Australia
| | - Fangzhi Jia
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, 2050, NSW, Australia
| | - Sultan Alasmari
- Australian Regenerative Medicine Institute, Monash University, Clayton, 3800, VIC, Australia
| | | | | | - Shaniko Shini
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Graham J Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Justin J-L Wong
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, 2050, NSW, Australia.,Gene Regulation in Cancer Laboratory, Centenary Institute, University of Sydney, Camperdown, 2050, NSW, Australia
| | - John E J Rasko
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, NSW, Australia. .,Sydney Medical School, University of Sydney, Camperdown, 2050, NSW, Australia. .,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, 2050, NSW, Australia. .,, Locked Bag 6, Newtown, NSW, 2042, Australia.
| |
Collapse
|
45
|
Li Y, Luo S, Jia X, Zhu Y, Chen D, Duan Y, Hou Y, Zhou M. Regulatory roles of introns in fungicide sensitivity of Fusarium graminearum. Environ Microbiol 2017; 19:4140-4153. [DOI: 10.1111/1462-2920.13863] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/10/2017] [Accepted: 07/14/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Yanjun Li
- College of Plant Protection; Nanjing Agricultural University; Nanjing 210095 China
| | - Shunwen Luo
- College of Plant Protection; Nanjing Agricultural University; Nanjing 210095 China
| | - Xiaojing Jia
- College of Plant Protection; Nanjing Agricultural University; Nanjing 210095 China
| | - Yuanye Zhu
- College of Plant Protection; Nanjing Agricultural University; Nanjing 210095 China
| | - Dongming Chen
- College of Plant Protection; Nanjing Agricultural University; Nanjing 210095 China
| | - Yabing Duan
- College of Plant Protection; Nanjing Agricultural University; Nanjing 210095 China
| | - Yiping Hou
- College of Plant Protection; Nanjing Agricultural University; Nanjing 210095 China
| | - Mingguo Zhou
- College of Plant Protection; Nanjing Agricultural University; Nanjing 210095 China
| |
Collapse
|
46
|
Regulated Intron Removal Integrates Motivational State and Experience. Cell 2017; 169:836-848.e15. [PMID: 28525754 DOI: 10.1016/j.cell.2017.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/23/2017] [Accepted: 05/01/2017] [Indexed: 11/23/2022]
Abstract
Myriad experiences produce transient memory, yet, contingent on the internal state of the organism and the saliency of the experience, only some memories persist over time. How experience and internal state influence the duration of memory at the molecular level remains unknown. A self-assembled aggregated state of Drosophila Orb2A protein is required specifically for long-lasting memory. We report that in the adult fly brain the mRNA encoding Orb2A protein exists in an unspliced non-protein-coding form. The convergence of experience and internal drive transiently increases the spliced protein-coding Orb2A mRNA. A screen identified pasilla, the fly ortholog of mammalian Nova-1/2, as a mediator of Orb2A mRNA processing. A single-nucleotide substitution in the intronic region that reduces Pasilla binding and intron removal selectively impairs long-term memory. We posit that pasilla-mediated processing of unspliced Orb2A mRNA integrates experience and internal state to control Orb2A protein abundance and long-term memory formation.
Collapse
|
47
|
Abstract
Cells are highly organized entities that rely on intricate addressing mechanisms to sort their constituent molecules to precise subcellular locations. These processes are crucial for cells to maintain their proper organization and carry out specialized functions in the body, consequently genetic perturbations that clog up these addressing systems can contribute to disease aetiology. The trafficking of RNA molecules represents an important layer in the control of cellular organization, a process that is both highly prevalent and for which features of the regulatory machineries have been deeply conserved evolutionarily. RNA localization is commonly driven by trans-regulatory factors, including RNA binding proteins at the core, which recognize specific cis-acting zipcode elements within the RNA transcripts. Here, we first review the functions and biological benefits of intracellular RNA trafficking, from the perspective of both coding and non-coding RNAs. Next, we discuss the molecular mechanisms that modulate this localization, emphasizing the diverse features of the cis- and trans-regulators involved, while also highlighting emerging technologies and resources that will prove instrumental in deciphering RNA targeting pathways. We then discuss recent findings that reveal how co-transcriptional regulatory mechanisms operating in the nucleus can dictate the downstream cytoplasmic localization of RNAs. Finally, we survey the growing number of human diseases in which RNA trafficking pathways are impacted, including spinal muscular atrophy, Alzheimer's disease, fragile X syndrome and myotonic dystrophy. Such examples highlight the need to further dissect RNA localization mechanisms, which could ultimately pave the way for the development of RNA-oriented diagnostic and therapeutic strategies. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- Ashley Chin
- Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins Ouest, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, Canada
| | - Eric Lécuyer
- Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins Ouest, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, 2900 Boulevard Edouard-Montpetit, Montreal, Quebec, Canada.
| |
Collapse
|
48
|
Cui Y, Zhang C, Cai M. Prediction and feature analysis of intron retention events in plant genome. Comput Biol Chem 2017; 68:219-223. [PMID: 28419974 DOI: 10.1016/j.compbiolchem.2017.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/07/2017] [Accepted: 04/11/2017] [Indexed: 12/27/2022]
Abstract
Alternative splicing (AS) is a major contributor to increase the potential informational content of eukaryotic genomes by creating multiple mRNA species and proteins from a single gene. In plants, up to 60% genes are alternatively spliced and the most common type of AS is intron retention (IR). Genomic analyses of IR have illuminated its crucial role in shaping the evolution of genomes, in the control of developmental processes, and in the dynamic regulation of the transcriptome to influence phenotype. To explore the relationship between the sequence feature and the formation mechanism of IR, we statistically analyzed the retained introns and proposed an improved random forest-based hybrid method to predict intron retention events in plant genome. The results indicate that IR has significant relationship with individual introns which have weaker 5' splice sites, lower GC content and less termination codon occurrence. By the method we proposed, 93.48% retained introns can be correctly distinguished from constitutive introns. Strikingly, our study will facilitate a better understanding of underlying mechanisms involved in intron retention.
Collapse
Affiliation(s)
- Ying Cui
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China; Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215, USA
| | - Chao Zhang
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China.
| | - Meng Cai
- School of Economics and Management, Xidian University, Xi'an 710071, China; Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215, USA
| |
Collapse
|
49
|
Fernández-Moya SM, Ehses J, Kiebler MA. The alternative life of RNA-sequencing meets single molecule approaches. FEBS Lett 2017; 591:1455-1470. [PMID: 28369835 DOI: 10.1002/1873-3468.12639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/15/2017] [Accepted: 03/24/2017] [Indexed: 12/31/2022]
Abstract
The central dogma of RNA processing has started to totter. Single genes produce a variety of mRNA isoforms by mRNA modification, alternative polyadenylation (APA), and splicing. Different isoforms, even those that code for the identical protein, may differ in function or spatiotemporal expression. One option of how this can be achieved is by the selective recruitment of trans-acting factors to the 3'-untranslated region of a given isoform. Recent innovations in high-throughput RNA-sequencing methods allow deep insight into global RNA regulation, whereas novel imaging-based technologies enable researchers to explore single RNA molecules during different stages of development, in different tissues and different compartments of the cell. Resolving the dynamic function of ribonucleoprotein particles in splicing, APA, or RNA modification will enable us to understand their contribution to pathological conditions.
Collapse
Affiliation(s)
| | - Janina Ehses
- BioMedical Center, Ludwig Maximilians University, Planegg-Martinsried, Germany
| | - Michael A Kiebler
- BioMedical Center, Ludwig Maximilians University, Planegg-Martinsried, Germany
| |
Collapse
|
50
|
Middleton R, Gao D, Thomas A, Singh B, Au A, Wong JJL, Bomane A, Cosson B, Eyras E, Rasko JEJ, Ritchie W. IRFinder: assessing the impact of intron retention on mammalian gene expression. Genome Biol 2017; 18:51. [PMID: 28298237 PMCID: PMC5353968 DOI: 10.1186/s13059-017-1184-4] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/27/2017] [Indexed: 01/05/2023] Open
Abstract
Intron retention (IR) occurs when an intron is transcribed into pre-mRNA and remains in the final mRNA. We have developed a program and database called IRFinder to accurately detect IR from mRNA sequencing data. Analysis of 2573 samples showed that IR occurs in all tissues analyzed, affects over 80% of all coding genes and is associated with cell differentiation and the cell cycle. Frequently retained introns are enriched for specific RNA binding protein sites and are often retained in clusters in the same gene. IR is associated with lower protein levels and intron-retaining transcripts that escape nonsense-mediated decay are not actively translated.
Collapse
Affiliation(s)
- Robert Middleton
- Bioinformatics Laboratory, Centenary Institute, Camperdown, 2050, Australia
| | - Dadi Gao
- Bioinformatics Laboratory, Centenary Institute, Camperdown, 2050, Australia.,Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA.,Boston & Harvard Medical School, Boston, MA, USA.,Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown, 2050, Australia
| | | | - Babita Singh
- Pompeu Fabra University, UPF, Dr. Aiguader 88, E08003, Barcelona, Spain
| | - Amy Au
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown, 2050, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - Justin J-L Wong
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown, 2050, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia.,Gene Regulation in Cancer Laboratory, Centenary Institute, University of Sydney, Camperdown, 2050, Australia
| | - Alexandra Bomane
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR7216, CNRS, F-75013, Paris, France
| | - Bertrand Cosson
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR7216, CNRS, F-75013, Paris, France
| | - Eduardo Eyras
- Pompeu Fabra University, UPF, Dr. Aiguader 88, E08003, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies, ICREA, Passeig Lluís Companys 23, E08010, Barcelona, Spain
| | - John E J Rasko
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown, 2050, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia.,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, 2050, Australia
| | - William Ritchie
- Bioinformatics Laboratory, Centenary Institute, Camperdown, 2050, Australia. .,CNRS, UPR 1142, Montpellier, 34094, France. .,CNRS, UMR 5203, Montpellier, 34094, France.
| |
Collapse
|