1
|
Gorin AS, Miao Y, Ahn S, Suresh V, Su Y, Ciftcioglu UM, Sommer FT, Hirsch JA. Local interneurons in the murine visual thalamus have diverse receptive fields and can provide feature selective inhibition to relay cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.549394. [PMID: 37609295 PMCID: PMC10441385 DOI: 10.1101/2023.08.10.549394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
By influencing the type and quality of information that relay cells transmit, local interneurons in thalamus have a powerful impact on cortex. To define the sensory features that these inhibitory neurons encode, we mapped receptive fields of optogenetically identified cells in the murine dorsolateral geniculate nucleus. Although few in number, local interneurons had diverse types of receptive fields, like their counterpart relay cells. This result differs markedly from visual cortex, where inhibitory cells are typically less selective than excitatory cells. To explore how thalamic interneurons might converge on relay cells, we took a computational approach. Using an evolutionary algorithm to search through a library of interneuron models generated from our results, we show that aggregated output from different groups of local interneurons can simulate the inhibitory component of the relay cell's receptive field. Thus, our work provides proof-of-concept that groups of diverse interneurons can supply feature-specific inhibition to relay cells.
Collapse
|
2
|
Ingensiep C, Schaffrath K, Walter P, Johnen S. Effects of Hydrostatic Pressure on Electrical Retinal Activity in a Multielectrode Array-Based ex vivo Glaucoma Acute Model. Front Neurosci 2022; 16:831392. [PMID: 35177963 PMCID: PMC8845467 DOI: 10.3389/fnins.2022.831392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Glaucoma is a heterogeneous eye disease causing atrophy of the optic nerve head (ONH). The optic nerve is formed by the axons of the retinal ganglion cells (RGCs) that transmit visual input to the brain. The progressive RGC loss during glaucoma leads to irreversible vision loss. An elevated intraocular pressure (IOP) is described as main risk factor in glaucoma. In this study, a multielectrode array (MEA)-based ex vivo glaucoma acute model was established and the effects of hydrostatic pressure (10, 30, 60, and 90 mmHg) on the functionality and survival of adult male and female wild-type mouse (C57BL/6) retinae were investigated. Spontaneous activity, response rate to electrical and light stimulation, and bursting behavior of RGCs was analyzed prior, during, and after pressure stress. No pressure related effects on spontaneous firing and on the response rate of the RGCs were observed. Even a high pressure level (90 mmHg for 2 h) did not disturb the RGC functionality. However, the cells’ bursting behavior significantly changed under 90 mmHg. The number of spikes in bursts doubled during pressure application and stayed on a high level after pressure stress. Addition of the amino sulfonic acid taurine (1 mM) showed a counteracting effect. OFF ganglion cells did not reveal an increase in bursts under pressure stress. Live/dead staining after pressure application showed no significant changes in RGC survival. The findings of our ex vivo model suggest that RGCs are tolerant toward high, short-time pressure stress.
Collapse
|
3
|
Stacy AK, Van Hooser SD. Development of Functional Properties in the Early Visual System: New Appreciations of the Roles of Lateral Geniculate Nucleus. Curr Top Behav Neurosci 2022; 53:3-35. [PMID: 35112333 DOI: 10.1007/7854_2021_297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the years following Hubel and Wiesel's first reports on ocular dominance plasticity and amblyopia, much attention has been focused on understanding the role of cortical circuits in developmental and experience-dependent plasticity. Initial studies found few differences between retinal ganglion cells and neurons in the lateral geniculate nucleus and uncovered little evidence for an impact of altered visual experience on the functional properties of lateral geniculate nucleus neurons. In the last two decades, however, studies have revealed that the connectivity between the retina and lateral geniculate nucleus is much richer than was previously appreciated, even revealing visual plasticity - including ocular dominance plasticity - in lateral geniculate nucleus neurons. Here we review the development of the early visual system and the impact of experience with a distinct focus on recent discoveries about lateral geniculate nucleus, its connectivity, and evidence for its plasticity and rigidity during development.
Collapse
Affiliation(s)
- Andrea K Stacy
- Department of Biology, Brandeis University, Waltham, MA, USA
| | | |
Collapse
|
4
|
Limited functional convergence of eye-specific inputs in the retinogeniculate pathway of the mouse. Neuron 2021; 109:2457-2468.e12. [DOI: 10.1016/j.neuron.2021.05.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/16/2021] [Accepted: 05/28/2021] [Indexed: 11/22/2022]
|
5
|
Liang L, Chen C. Organization, Function, and Development of the Mouse Retinogeniculate Synapse. Annu Rev Vis Sci 2020; 6:261-285. [DOI: 10.1146/annurev-vision-121219-081753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Visual information is encoded in distinct retinal ganglion cell (RGC) types in the eye tuned to specific features of the visual space. These streams of information project to the visual thalamus, the first station of the image-forming pathway. In the mouse, this connection between RGCs and thalamocortical neurons, the retinogeniculate synapse, has become a powerful experimental model for understanding how circuits in the thalamus are constructed to process these incoming lines of information. Using modern molecular and genetic tools, recent studies have suggested a more complex circuit organization than was previously understood. In this review, we summarize the current understanding of the structural and functional organization of the retinogeniculate synapse in the mouse. We discuss a framework by which a seemingly complex circuit can effectively integrate and parse information to downstream stations of the visual pathway. Finally, we review how activity and visual experience can sculpt this exquisite connectivity.
Collapse
Affiliation(s)
- Liang Liang
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Department of Neuroscience, Yale University, New Haven, Connecticut 06520, USA
| | - Chinfei Chen
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| |
Collapse
|
6
|
Ahn J, Phan HL, Cha S, Koo KI, Yoo Y, Goo YS. Synchrony of Spontaneous Burst Firing between Retinal Ganglion Cells Across Species. Exp Neurobiol 2020; 29:285-299. [PMID: 32921641 PMCID: PMC7492847 DOI: 10.5607/en20025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 01/16/2023] Open
Abstract
Neurons communicate with other neurons in response to environmental changes. Their goal is to transmit information to their targets reliably. A burst, which consists of multiple spikes within a short time interval, plays an essential role in enhancing the reliability of information transmission through synapses. In the visual system, retinal ganglion cells (RGCs), the output neurons of the retina, show bursting activity and transmit retinal information to the lateral geniculate neuron of the thalamus. In this study, to extend our interest to the population level, the burstings of multiple RGCs were simultaneously recorded using a multi-channel recording system. As the first step in network analysis, we focused on investigating the pairwise burst correlation between two RGCs. Furthermore, to assess if the population bursting is preserved across species, we compared the synchronized bursting of RGCs between marmoset monkey (callithrix jacchus), one species of the new world monkeys and mouse (C57BL/6J strain). First, monkey RGCs showed a larger number of spikes within a burst, while the inter-spike interval, burst duration, and inter-burst interval were smaller compared with mouse RGCs. Monkey RGCs showed a strong burst synchronization between RGCs, whereas mouse RGCs showed no correlated burst firing. Monkey RGC pairs showed significantly higher burst synchrony and mutual information than mouse RGC pairs did. Comprehensively, through this study, we emphasize that two species have a different bursting activity of RGCs and different burst synchronization suggesting two species have distinctive retinal processing.
Collapse
Affiliation(s)
- Jungryul Ahn
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Korea
| | - Huu Lam Phan
- Department of Biomedical Engineering, University of Ulsan, Ulsan 44610, Korea
| | - Seongkwang Cha
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Korea
| | - Kyo-In Koo
- Department of Biomedical Engineering, University of Ulsan, Ulsan 44610, Korea
| | - Yongseok Yoo
- Department of Electronics Engineering, Incheon National University, Incheon 22012, Korea
| | - Yong Sook Goo
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Korea
| |
Collapse
|
7
|
Rutland JW, Schefflein J, Arrighi-Allisan AE, Ranti D, Ladner TR, Pai A, Loewenstern J, Lin HM, Chelnis J, Delman BN, Shrivastava RK, Balchandani P. Measuring degeneration of the lateral geniculate nuclei from pituitary adenoma compression detected by 7T ultra-high field MRI: a method for predicting vision recovery following surgical decompression of the optic chiasm. J Neurosurg 2020; 132:1747-1756. [PMID: 31100726 PMCID: PMC7351175 DOI: 10.3171/2019.2.jns19271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/22/2019] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Predicting vision recovery following surgical decompression of the optic chiasm in pituitary adenoma patients remains a clinical challenge, as there is significant variability in postoperative visual function that remains unreliably explained by current prognostic factors. Available literature inadequately characterizes alterations in adenoma patients involving the lateral geniculate nucleus (LGN). This study examined the association of LGN degeneration with chiasmatic compression as well as with the retinal nerve fiber layer (RNFL), pattern standard deviation (PSD), mean deviation (MD), and postoperative vision recovery. PSD is the degree of difference between the measured visual field pattern and the normal pattern ("hill") of vision, and MD is the average of the difference from the age-adjusted normal value. METHODS A prospective study of 27 pituitary adenoma patients and 27 matched healthy controls was conducted. Participants were scanned on a 7T ultra-high field MRI scanner, and 3 independent readers measured the LGN at its maximum cross-sectional area on coronal T1-weighted MPRAGE imaging. Readers were blinded to diagnosis and to each other's measurements. Neuro-ophthalmological data, including RNFL thickness, MD, and PSD, were acquired for 12 patients, and postoperative visual function data were collected on patients who underwent surgical chiasmal decompression. LGN areas were compared using two-tailed t-tests. RESULTS The average LGN cross-sectional area of adenoma patients was significantly smaller than that of controls (13.8 vs 19.2 mm2, p < 0.0001). The average LGN cross-sectional area correlated with MD (r = 0.67, p = 0.04), PSD (r = -0.62, p = 0.02), and RNFL thickness (r = 0.75, p = 0.02). The LGN cross-sectional area in adenoma patients with chiasm compression was 26.6% smaller than in patients without compression (p = 0.009). The average tumor volume was 7902.7 mm3. Patients with preoperative vision impairment showed 29.4% smaller LGN cross-sectional areas than patients without deficits (p = 0.003). Patients who experienced improved postoperative vision had LGN cross-sectional areas that were 40.8% larger than those of patients without postoperative improvement (p = 0.007). CONCLUSIONS The authors demonstrate novel in vivo evidence of LGN volume loss in pituitary adenoma patients and correlate imaging results with neuro-ophthalmology findings and postoperative vision recovery. Morphometric changes to the LGN may reflect anterograde transsynaptic degeneration. These findings indicate that LGN degeneration may be a marker of optic apparatus injury from chiasm compression, and measurement of LGN volume loss may be useful in predicting vision recovery following adenoma resection.
Collapse
Affiliation(s)
- John W Rutland
- 1Translational and Molecular Imaging Institute and Departments of
- 2Neurosurgery and
| | | | | | | | | | | | | | - Hung-Mo Lin
- 4Department of Population Health Science and Policy, Mount Sinai Hospital, New York; and
| | - James Chelnis
- 5Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | | |
Collapse
|
8
|
Rose T, Bonhoeffer T. Experience-dependent plasticity in the lateral geniculate nucleus. Curr Opin Neurobiol 2018; 53:22-28. [DOI: 10.1016/j.conb.2018.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 11/27/2022]
|
9
|
Liang L, Fratzl A, Goldey G, Ramesh RN, Sugden AU, Morgan JL, Chen C, Andermann ML. A Fine-Scale Functional Logic to Convergence from Retina to Thalamus. Cell 2018; 173:1343-1355.e24. [PMID: 29856953 DOI: 10.1016/j.cell.2018.04.041] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/31/2018] [Accepted: 04/27/2018] [Indexed: 11/26/2022]
Abstract
Numerous well-defined classes of retinal ganglion cells innervate the thalamus to guide image-forming vision, yet the rules governing their convergence and divergence remain unknown. Using two-photon calcium imaging in awake mouse thalamus, we observed a functional arrangement of retinal ganglion cell axonal boutons in which coarse-scale retinotopic ordering gives way to fine-scale organization based on shared preferences for other visual features. Specifically, at the ∼6 μm scale, clusters of boutons from different axons often showed similar preferences for either one or multiple features, including axis and direction of motion, spatial frequency, and changes in luminance. Conversely, individual axons could "de-multiplex" information channels by participating in multiple, functionally distinct bouton clusters. Finally, ultrastructural analyses demonstrated that retinal axonal boutons in a local cluster often target the same dendritic domain. These data suggest that functionally specific convergence and divergence of retinal axons may impart diverse, robust, and often novel feature selectivity to visual thalamus.
Collapse
Affiliation(s)
- Liang Liang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alex Fratzl
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Glenn Goldey
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rohan N Ramesh
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Arthur U Sugden
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Josh L Morgan
- Department of Ophthalmology and Visual Sciences, Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chinfei Chen
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| | - Mark L Andermann
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Li H, Fang Q, Ge Y, Li Z, Meng J, Zhu J, Yu H. Relationship between the Dynamics of Orientation Tuning and Spatiotemporal Receptive Field Structures of Cat LGN Neurons. Neuroscience 2018; 377:26-39. [PMID: 29481999 DOI: 10.1016/j.neuroscience.2018.02.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/01/2018] [Accepted: 02/15/2018] [Indexed: 10/18/2022]
Abstract
Simple cells in the cat primary visual cortex usually have elongated receptive fields (RFs), and their orientation selectivity can be largely predicted by their RFs. As to the relay cells in cats' lateral geniculate nucleus (LGN), they also have weak but significant orientation bias (OB). It is thus of interest to investigate the fine spatiotemporal receptive field (STRF) properties in LGN, compare them with the dynamics of orientation tuning, and examine the dynamic relationship between STRF and orientation sensitivity in LGN. We mapped the STRFs of the LGN neurons in cats with white noise and characterized the dynamics of the orientation tuning by flashing gratings. We found that most of the LGN neurons showed elongated RFs and that the elongation axes were consistent with the preferred orientations. STRFs and the dynamics of orientation tuning were closely correlated temporally: the elongation of RFs and OB emerged, peaked and decayed at the same pace, with unchanged elongation axis of RF and preferred orientation but consistently changing aspect ratio of RF and OB strength across time. Importantly, the above consistency between RF and orientation tuning was not influenced by the ablation of the primary visual cortex. Furthermore, biased orientation tuning emerged 20-30 ms earlier than those in the primary visual cortex. These data demonstrated that similar to the primary visual cortex, the orientation sensitivity was closely reflected by the RF properties in LGN. However, the elongated RF and OB in LGN did not originate from the primary visual cortex feedback.
Collapse
Affiliation(s)
- Hongjian Li
- Vision Research Laboratory, School of Life Sciences, The State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Qi Fang
- Vision Research Laboratory, School of Life Sciences, The State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Yijun Ge
- Vision Research Laboratory, School of Life Sciences, The State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Zhong Li
- Vision Research Laboratory, School of Life Sciences, The State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Jianjun Meng
- Vision Research Laboratory, School of Life Sciences, The State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Jianbing Zhu
- Vision Research Laboratory, School of Life Sciences, The State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Hongbo Yu
- Vision Research Laboratory, School of Life Sciences, The State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200433, China.
| |
Collapse
|
11
|
Refinement of Spatial Receptive Fields in the Developing Mouse Lateral Geniculate Nucleus Is Coordinated with Excitatory and Inhibitory Remodeling. J Neurosci 2018; 38:4531-4542. [PMID: 29661964 DOI: 10.1523/jneurosci.2857-17.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 11/21/2022] Open
Abstract
Receptive field properties of individual visual neurons are dictated by the precise patterns of synaptic connections they receive, including the arrangement of inputs in visual space and features such as polarity (On vs Off). The inputs from the retina to the lateral geniculate nucleus (LGN) in the mouse undergo significant refinement during development. However, it is unknown how this refinement corresponds to the establishment of functional visual response properties. Here we conducted in vivo and in vitro recordings in the mouse LGN, beginning just after natural eye opening, to determine how receptive fields develop as excitatory and feedforward inhibitory retinal afferents refine. Experiments used both male and female subjects. For in vivo assessment of receptive fields, we performed multisite extracellular recordings in awake mice. Spatial receptive fields at eye-opening were >2 times larger than in adulthood, and decreased in size over the subsequent week. This topographic refinement was accompanied by other spatial changes, such as a decrease in spot size preference and an increase in surround suppression. Notably, the degree of specificity in terms of On/Off and sustained/transient responses appeared to be established already at eye opening and did not change. We performed in vitro recordings of the synaptic responses evoked by optic tract stimulation across the same time period. These recordings revealed a pairing of decreased excitatory and increased feedforward inhibitory convergence, providing a potential mechanism to explain the spatial receptive field refinement.SIGNIFICANCE STATEMENT The development of precise patterns of retinogeniculate connectivity has been a powerful model system for understanding the mechanisms underlying the activity-dependent refinement of sensory systems. Here we link the maturation of spatial receptive field properties in the lateral geniculate nucleus (LGN) to the remodeling of retinal and inhibitory feedforward convergence onto LGN neurons. These findings should thus provide a starting point for testing the cell type-specific plasticity mechanisms that lead to refinement of different excitatory and inhibitory inputs, and for determining the effect of these mechanisms on the establishment of mature receptive fields in the LGN.
Collapse
|
12
|
Aguila J, Cudeiro FJ, Rivadulla C. Suppression of V1 Feedback Produces a Shift in the Topographic Representation of Receptive Fields of LGN Cells by Unmasking Latent Retinal Drives. Cereb Cortex 2018; 27:3331-3345. [PMID: 28334353 DOI: 10.1093/cercor/bhx071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Indexed: 12/15/2022] Open
Abstract
In awake monkeys, we used repetitive transcranial magnetic stimulation (rTMS) to focally inactivate visual cortex while measuring the responsiveness of parvocellular lateral geniculate nucleus (LGN) neurons. Effects were noted in 64/75 neurons, and could be divided into 2 main groups: (1) for 39 neurons, visual responsiveness decreased and visual latency increased without apparent shift in receptive field (RF) position and (2) a second group (n = 25, 33% of the recorded cells) whose excitability was not compromised, but whose RF position shifted an average of 4.5°. This change is related to the retinotopic correspondence observed between the recorded thalamic area and the affected cortical zone. The effect of inactivation for this group of neurons was compatible with silencing the original retinal drive and unmasking a second latent retinal drive onto the studied neuron. These results indicate novel and remarkable dynamics in thalamocortical circuitry that force us to reassess constraints on retinogeniculate transmission.
Collapse
Affiliation(s)
- Jordi Aguila
- Neurocom, School of Health Sciences and Centro de Investigacións Científicas Avanzadas (CICA), Institute of Biomedical Research (INIBIC), University of A Coruña, 15006 A Coruña, Spain
| | - F Javier Cudeiro
- Neurocom, School of Health Sciences and Centro de Investigacións Científicas Avanzadas (CICA), Institute of Biomedical Research (INIBIC), University of A Coruña, 15006 A Coruña, Spain.,Cerebral Stimulation Center of Galicia, 15009 A Coruña, Spain
| | - Casto Rivadulla
- Neurocom, School of Health Sciences and Centro de Investigacións Científicas Avanzadas (CICA), Institute of Biomedical Research (INIBIC), University of A Coruña, 15006 A Coruña, Spain
| |
Collapse
|
13
|
Jaepel J, Hübener M, Bonhoeffer T, Rose T. Lateral geniculate neurons projecting to primary visual cortex show ocular dominance plasticity in adult mice. Nat Neurosci 2017; 20:1708-1714. [PMID: 29184207 DOI: 10.1038/s41593-017-0021-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 10/12/2017] [Indexed: 01/11/2023]
Abstract
Experience-dependent plasticity in the mature visual system is widely considered to be cortical. Using chronic two-photon Ca2+ imaging of thalamic afferents in layer 1 of binocular visual cortex, we provide evidence against this tenet: the respective dorsal lateral geniculate nucleus (dLGN) cells showed pronounced ocular dominance (OD) shifts after monocular deprivation in adult mice. Most (86%), but not all, of dLGN cell boutons were monocular during normal visual experience. Following deprivation, initially deprived-eye-dominated boutons reduced or lost their visual responsiveness to that eye and frequently became responsive to the non-deprived eye. This cannot be explained by eye-specific cortical changes propagating to dLGN via cortico-thalamic feedback because the shift in dLGN responses was largely resistant to cortical inactivation using the GABAA receptor agonist muscimol. Our data suggest that OD shifts observed in the binocular visual cortex of adult mice may at least partially reflect plasticity of eye-specific inputs onto dLGN neurons.
Collapse
Affiliation(s)
- Juliane Jaepel
- Synapses - Circuits - Plasticity, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Mark Hübener
- Synapses - Circuits - Plasticity, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Tobias Bonhoeffer
- Synapses - Circuits - Plasticity, Max Planck Institute of Neurobiology, Martinsried, Germany.
| | - Tobias Rose
- Synapses - Circuits - Plasticity, Max Planck Institute of Neurobiology, Martinsried, Germany.
| |
Collapse
|
14
|
Litvina EY, Chen C. Functional Convergence at the Retinogeniculate Synapse. Neuron 2017; 96:330-338.e5. [PMID: 29024658 DOI: 10.1016/j.neuron.2017.09.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/01/2017] [Accepted: 09/22/2017] [Indexed: 01/03/2023]
Abstract
Precise connectivity between retinal ganglion cells (RGCs) and thalamocortical (TC) relay neurons is thought to be essential for the transmission of visual information. Consistent with this view, electrophysiological measurements have previously estimated that 1-3 RGCs converge onto a mouse geniculate TC neuron. Recent advances in connectomics and rabies tracing have yielded much higher estimates of retinogeniculate convergence, although not all identified contacts may be functional. Here we use optogenetics and a computational simulation to determine the number of functionally relevant retinogeniculate inputs onto TC neurons in mice. We find an average of ten RGCs converging onto a mature TC neuron, in contrast to >30 inputs before developmental refinement. However, only 30% of retinogeniculate inputs exceed the threshold for dominating postsynaptic activity. These results signify a greater role for the thalamus in visual processing and provide a functional perspective of anatomical connectivity data.
Collapse
Affiliation(s)
- Elizabeth Y Litvina
- Department of Neurology, F.M. Kirby Neurobiology Center, Children's Hospital, Boston, 300 Longwood Avenue, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Chinfei Chen
- Department of Neurology, F.M. Kirby Neurobiology Center, Children's Hospital, Boston, 300 Longwood Avenue, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Abstract
The thalamocortical (TC) relay neuron of the dorsoLateral Geniculate Nucleus (dLGN) has borne its imprecise label for many decades in spite of strong evidence that its role in visual processing transcends the implied simplicity of the term "relay". The retinogeniculate synapse is the site of communication between a retinal ganglion cell and a TC neuron of the dLGN. Activation of retinal fibers in the optic tract causes reliable, rapid, and robust postsynaptic potentials that drive postsynaptics spikes in a TC neuron. Cortical and subcortical modulatory systems have been known for decades to regulate retinogeniculate transmission. The dynamic properties that the retinogeniculate synapse itself exhibits during and after developmental refinement further enrich the role of the dLGN in the transmission of the retinal signal. Here we consider the structural and functional substrates for retinogeniculate synaptic transmission and plasticity, and reflect on how the complexity of the retinogeniculate synapse imparts a novel dynamic and influential capacity to subcortical processing of visual information.
Collapse
Affiliation(s)
- Elizabeth Y Litvina
- Department of Neurology,F.M. Kirby Neurobiology Center,Children's Hospital, Boston,Boston,Massachusetts 02115
| | - Chinfei Chen
- Department of Neurology,F.M. Kirby Neurobiology Center,Children's Hospital, Boston,Boston,Massachusetts 02115
| |
Collapse
|
16
|
Yu Q, Zhang P, Qiu J, Fang F. Perceptual Learning of Contrast Detection in the Human Lateral Geniculate Nucleus. Curr Biol 2016; 26:3176-3182. [PMID: 27839973 DOI: 10.1016/j.cub.2016.09.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/09/2016] [Accepted: 09/19/2016] [Indexed: 10/20/2022]
Abstract
The brain is continuously modified by perceptual experience throughout life. Perceptual learning, which refers to the long-term performance improvement resulting from practice, has been widely used as a paradigm to study experience-dependent brain plasticity in adults [1, 2]. In the visual system, adult plasticity is largely believed to be restricted to the cortex, with subcortical structures losing their capacity for change after a critical period of development [3, 4]. Although various cortical mechanisms have been shown to mediate visual perceptual learning [5-12], there has been no reported investigation of perceptual learning in subcortical nuclei. Here, human subjects were trained on a contrast detection task for 30 days, leading to a significant contrast sensitivity improvement that was specific to the trained eye and the trained visual hemifield. Training also resulted in an eye- and hemifield-specific fMRI signal increase to low-contrast patterns in the magnocellular layers of the lateral geniculate nucleus (LGN), even when subjects did not pay attention to the patterns. Such an increase was absent in the parvocellular layers of the LGN and visual cortical areas. Furthermore, the behavioral benefit significantly correlated with the neural enhancement. These findings suggest that LGN signals can be amplified by training to detect faint patterns. Neural plasticity induced by perceptual learning in human adults might not be confined to the cortical level but might occur as early as at the thalamic level.
Collapse
Affiliation(s)
- Qinlin Yu
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China; Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Peng Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (Ministry of Education) and Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Fang Fang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China; Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
| |
Collapse
|
17
|
Moore BD. Adult cortical plasticity: a murine model? (Commentary on Smolders et al.). Eur J Neurosci 2016; 44:2163-4. [DOI: 10.1111/ejn.13162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Bartlett D. Moore
- McGovern Medical School; University of Texas; 6431 Fannin St. Houston TX 77030 USA
| |
Collapse
|
18
|
Melanopsin-driven increases in maintained activity enhance thalamic visual response reliability across a simulated dawn. Proc Natl Acad Sci U S A 2015; 112:E5734-43. [PMID: 26438865 DOI: 10.1073/pnas.1505274112] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Twice a day, at dawn and dusk, we experience gradual but very high amplitude changes in background light intensity (irradiance). Although we perceive the associated change in environmental brightness, the representation of such very slow alterations in irradiance by the early visual system has been little studied. Here, we addressed this deficit by recording electrophysiological activity in the mouse dorsal lateral geniculate nucleus under exposure to a simulated dawn. As irradiance increased we found a widespread enhancement in baseline firing that extended to units with ON as well as OFF responses to fast luminance increments. This change in baseline firing was equally apparent when the slow irradiance ramp appeared alone or when a variety of higher-frequency artificial or natural visual stimuli were superimposed upon it. Using a combination of conventional knockout, chemogenetic, and receptor-silent substitution manipulations, we continued to show that, over higher irradiances, this increase in firing originates with inner-retinal melanopsin photoreception. At the single-unit level, irradiance-dependent increases in baseline firing were strongly correlated with improvements in the amplitude of responses to higher-frequency visual stimuli. This in turn results in an up to threefold increase in single-trial reliability of fast visual responses. In this way, our data indicate that melanopsin drives a generalized increase in dorsal lateral geniculate nucleus excitability as dawn progresses that both conveys information about changing background light intensity and increases the signal:noise for fast visual responses.
Collapse
|
19
|
Harvey AR, Lovett SJ, Majda BT, Yoon JH, Wheeler LPG, Hodgetts SI. Neurotrophic factors for spinal cord repair: Which, where, how and when to apply, and for what period of time? Brain Res 2014; 1619:36-71. [PMID: 25451132 DOI: 10.1016/j.brainres.2014.10.049] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/20/2014] [Accepted: 10/23/2014] [Indexed: 12/22/2022]
Abstract
A variety of neurotrophic factors have been used in attempts to improve morphological and behavioural outcomes after experimental spinal cord injury (SCI). Here we review many of these factors, their cellular targets, and their therapeutic impact on spinal cord repair in different, primarily rodent, models of SCI. A majority of studies report favourable outcomes but results are by no means consistent, thus a major aim of this review is to consider how best to apply neurotrophic factors after SCI to optimize their therapeutic potential. In addition to which factors are chosen, many variables need be considered when delivering trophic support, including where and when to apply a given factor or factors, how such factors are administered, at what dose, and for how long. Overall, the majority of studies have applied neurotrophic support in or close to the spinal cord lesion site, in the acute or sub-acute phase (0-14 days post-injury). Far fewer chronic SCI studies have been undertaken. In addition, comparatively fewer studies have administered neurotrophic factors directly to the cell bodies of injured neurons; yet in other instructive rodent models of CNS injury, for example optic nerve crush or transection, therapies are targeted directly at the injured neurons themselves, the retinal ganglion cells. The mode of delivery of neurotrophic factors is also an important variable, whether delivered by acute injection of recombinant proteins, sub-acute or chronic delivery using osmotic minipumps, cell-mediated delivery, delivery using polymer release vehicles or supporting bridges of some sort, or the use of gene therapy to modify neurons, glial cells or precursor/stem cells. Neurotrophic factors are often used in combination with cell or tissue grafts and/or other pharmacotherapeutic agents. Finally, the dose and time-course of delivery of trophic support should ideally be tailored to suit specific biological requirements, whether they relate to neuronal survival, axonal sparing/sprouting, or the long-distance regeneration of axons ending in a different mode of growth associated with terminal arborization and renewed synaptogenesis. This article is part of a Special Issue entitled SI: Spinal cord injury.
Collapse
Affiliation(s)
- Alan R Harvey
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Sarah J Lovett
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Bernadette T Majda
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Jun H Yoon
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Lachlan P G Wheeler
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Stuart I Hodgetts
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
20
|
Ma Y. Relationship between monocularly deprivation and amblyopia rats and visual system development. ASIAN PAC J TROP MED 2014; 7:568-71. [PMID: 25063288 DOI: 10.1016/s1995-7645(14)60095-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/15/2014] [Accepted: 06/15/2014] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE To explore the changes of lateral geniculate body and visual cortex in monocular strabismus and form deprived amblyopic rat, and visual development plastic stage and visual plasticity in adult rats. METHODS A total of 60 SD rats ages 13 d were randomly divided into A, B, C three groups with 20 in each group, group A was set as the normal control group without any processing, group B was strabismus amblyopic group, using the unilateral extraocular rectus resection to establish the strabismus amblyopia model, group C was monocular form deprivation amblyopia group using unilateral eyelid edge resection + lid suture. At visual developmental early phase (P25), meta phase (P35), late phase (P45) and adult phase (P120), the lateral geniculate body and visual cortex area 17 of five rats in each group were exacted for C-fos Immunocytochemistry. Neuron morphological changes in lateral geniculate body and visual cortex was observed, the positive neurons differences of C-fos expression induced by light stimulation was measured in each group, and the condition of radiation development of P120 amblyopic adult rats was observed. RESULTS In groups B and C, C-fos positive cells were significantly lower than the control group at P25 (P<0.05), there was no statistical difference of C-fos protein positive cells between group B and group A (P>0.05), C-fos protein positive cells level of group B was significantly lower than that of group A (P<0.05). The binoculus C-fos protein positive cells level of groups B and C were significantly higher than that of control group at P35, P45 and P120 with statistically significant differences (P<0.05). CONCLUSIONS The increasing of C-fos expression in geniculate body and visual cortex neurons of adult amblyopia suggests the visual cortex neurons exist a certain degree of visual plasticity.
Collapse
Affiliation(s)
- Yu Ma
- Department of Ophthalmology, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
21
|
Kwon HG, Jang SH. Neural connectivity of the lateral geniculate body in the human brain: diffusion tensor imaging study. Neurosci Lett 2014; 578:66-70. [PMID: 24970751 DOI: 10.1016/j.neulet.2014.06.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 06/03/2014] [Accepted: 06/13/2014] [Indexed: 11/25/2022]
Abstract
A few studies have reported on the neural connectivity of some neural structures of the visual system in the human brain. However, little is known about the neural connectivity of the lateral geniculate body (LGB). In the current study, using diffusion tensor tractography (DTT), we attempted to investigate the neural connectivity of the LGB in normal subjects. A total of 52 healthy subjects were recruited for this study. A seed region of interest was placed on the LGB using the FMRIB Software Library which is a probabilistic tractography method based on a multi-fiber model. Connectivity was defined as the incidence of connection between the LGB and target brain areas at the threshold of 5, 25, and 50 streamlines. In addition, connectivity represented the percentage of connection in all hemispheres of 52 subjects. We found the following characteristics of connectivity of the LGB at the threshold of 5 streamline: (1) high connectivity to the corpus callosum (91.3%) and the contralateral temporal cortex (56.7%) via the corpus callosum, (2) high connectivity to the ipsilateral cerebral cortex: the temporal lobe (100%), primary visual cortex (95.2%), and visual association cortex (77.9%). The LGB appeared to have high connectivity to the corpus callosum and both temporal cortexes as well as the ipsilateral occipital cortex. We believe that the results of this study would be helpful in investigation of the neural network associated with the visual system and brain plasticity of the visual system after brain injury.
Collapse
Affiliation(s)
- Hyeok Gyu Kwon
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, 317-1, Daemyung dong, Namku, Daegu 705-717, Republic of Korea.
| | - Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, 317-1, Daemyung dong, Namku, Daegu 705-717, Republic of Korea.
| |
Collapse
|
22
|
Cortical brightness adaptation when darkness and brightness produce different dynamical states in the visual cortex. Proc Natl Acad Sci U S A 2014; 111:1210-5. [PMID: 24398523 DOI: 10.1073/pnas.1314690111] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Darkness and brightness are very different perceptually. To understand the neural basis for the visual difference, we studied the dynamical states of populations of neurons in macaque primary visual cortex when a spatially uniform area (8° × 8°) of the visual field alternated between black and white. Darkness evoked sustained nerve-impulse spiking in primary visual cortex neurons, but bright stimuli evoked only a transient response. A peak in the local field potential (LFP) γ band (30-80 Hz) occurred during darkness; white-induced LFP fluctuations were of lower amplitude, peaking at 25 Hz. However, the sustained response to white in the evoked LFP was larger than for black. Together with the results on spiking, the LFP results imply that, throughout the stimulus period, bright fields evoked strong net sustained inhibition. Such cortical brightness adaptation can explain many perceptual phenomena: interocular speeding up of dark adaptation, tonic interocular suppression, and interocular masking.
Collapse
|
23
|
Suematsu N, Naito T, Miyoshi T, Sawai H, Sato H. Spatiotemporal receptive field structures in retinogeniculate connections of cat. Front Syst Neurosci 2013; 7:103. [PMID: 24367299 PMCID: PMC3856685 DOI: 10.3389/fnsys.2013.00103] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/18/2013] [Indexed: 11/15/2022] Open
Abstract
The spatial structure of the receptive field (RF) of cat lateral geniculate nucleus (LGN) neurons is significantly elliptical, which may provide a basis for the orientation tuning of LGN neurons, especially at high spatial frequency stimuli. However, the input mechanisms generating this elliptical RF structure are poorly defined. We therefore compared the spatiotemporal RF structures of pairs of retinal ganglion cells (RGCs) and LGN neurons that form monosynaptic connections based on the cross-correlation analysis of their firing activities. We found that the spatial RF structure of both RGCs and LGN neurons were comparably elliptical and oriented in a direction toward the area centralis. Additionally, the spatial RF structures of pairs with the same response sign were often overlapped and similarly oriented. We also found there was a small population of pairs with RF structures that had the opposite response sign and were spatially displaced and independently oriented. Finally, the temporal RF structure of an RGC was tightly correlated with that of its target LGN neuron, though the response duration of the LGN neuron was significantly longer. Our results suggest that the elliptical RF structure of an LGN neuron is mainly inherited from the primary projecting RGC and is affected by convergent inputs from multiple RGCs. We discuss how the convergent inputs may enhance the stimulus feature sensitivity of LGN neurons.
Collapse
Affiliation(s)
- Naofumi Suematsu
- Laboratory of Cognitive and Behavioral Neuroscience, Department of Health and Sportsscience, Graduate School of Frontier Biosciences, Osaka University Osaka, Japan
| | - Tomoyuki Naito
- Laboratory of Cognitive and Behavioral Neuroscience, Department of Health and Sportsscience, Graduate School of Medicine, Osaka University Osaka, Japan
| | - Tomomitsu Miyoshi
- Department of Integrative Physiology, Graduate School of Medicine, Osaka University Osaka, Japan
| | - Hajime Sawai
- Department of Integrative Physiology, Graduate School of Medicine, Osaka University Osaka, Japan
| | - Hiromichi Sato
- Laboratory of Cognitive and Behavioral Neuroscience, Department of Health and Sportsscience, Graduate School of Frontier Biosciences, Osaka University Osaka, Japan ; Laboratory of Cognitive and Behavioral Neuroscience, Department of Health and Sportsscience, Graduate School of Medicine, Osaka University Osaka, Japan
| |
Collapse
|
24
|
Abstract
The dorsal lateral geniculate nucleus (dLGN) receives visual information from the retina and transmits it to the cortex. In this study, we made extracellular recordings in the dLGN of both anesthetized and awake mice, and found that a surprisingly high proportion of cells were selective for stimulus orientation. The orientation selectivity of dLGN cells was unchanged after silencing the visual cortex pharmacologically, indicating that it is not due to cortical feedback. The orientation tuning of some dLGN cells correlated with their elongated receptive fields, while in others orientation selectivity was observed despite the fact that their receptive fields were circular, suggesting that their retinal input might already be orientation selective. Consistently, we revealed orientation/axis-selective ganglion cells in the mouse retina using multielectrode arrays in an in vitro preparation. Furthermore, the orientation tuning of dLGN cells was largely maintained at different stimulus contrasts, which could be sufficiently explained by a simple linear feedforward model. We also compared the degree of orientation selectivity in different visual structures under the same recording condition. Compared with the dLGN, orientation selectivity is greatly improved in the visual cortex, but is similar in the superior colliculus, another major retinal target. Together, our results demonstrate prominent orientation selectivity in the mouse dLGN, which may potentially contribute to visual processing in the cortex.
Collapse
|
25
|
Spoida K, Distler C, Trampe AK, Hoffmann KP. Blocking retinal chloride co-transporters KCC2 and NKCC: impact on direction selective ON and OFF responses in the rat's nucleus of the optic tract. PLoS One 2012; 7:e44724. [PMID: 22970298 PMCID: PMC3435285 DOI: 10.1371/journal.pone.0044724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 08/09/2012] [Indexed: 11/27/2022] Open
Abstract
In the present study we investigated in vivo the effects of pharmacological manipulation of retinal processing on the response properties of direction selective retinal slip cells in the nucleus of the optic tract and dorsal terminal nucleus (NOT-DTN), the key visuomotor interface in the pathway underlying the optokinetic reflex. Employing a moving visual stimulus consisting of either a large dark or light edge we could differentiate direction selective ON and OFF responses in retinal slip cells. To disclose the origin of the retinal slip cells' unexpected OFF response we selectively blocked the retinal ON channels and inactivated the visual cortex by cooling. Cortical cooling had no effect on the direction selectivity of the ON or the OFF response in NOT-DTN retinal slip cells. Blockade of the retinal ON channel with APB led to a loss of the ON and, to a lesser degree, of the OFF response and a reduction in direction selectivity. Subsequent blocking of GABA receptors in the retina with picrotoxin unmasked a vigorous albeit direction unselective OFF response in the NOT-DTN. Disturbing the retinal chloride homeostasis by intraocular injections of bumetanide or furosemide led to a loss of direction selectivity in both the NOT-DTN's ON and the OFF response due to a reduced response in the neuron's preferred direction under bumetanide as well as under furosemide and a slightly increased response in the null direction under bumetanide. Our results indicate that the direction specificity of retinal slip cells in the NOT-DTN of the rat strongly depends on direction selective retinal input which depends on intraretinal chloride homeostasis. On top of the well established input from ON center direction selective ganglion cells we could demonstrate an equally effective input from the retinal OFF system to the NOT-DTN.
Collapse
Affiliation(s)
- Katharina Spoida
- Allgemeine Zoologie and Neurobiologie, Ruhr-Universität Bochum, Bochum, Germany
| | - Claudia Distler
- Allgemeine Zoologie and Neurobiologie, Ruhr-Universität Bochum, Bochum, Germany
| | - Anne-Kathrin Trampe
- Allgemeine Zoologie and Neurobiologie, Ruhr-Universität Bochum, Bochum, Germany
| | | |
Collapse
|