1
|
Duewell BR, Faris KA, Hansen SD. Molecular basis of product recognition during PIP5K-mediated production of PI(4,5)P 2 with positive feedback. J Biol Chem 2024; 300:107631. [PMID: 39098525 PMCID: PMC11405805 DOI: 10.1016/j.jbc.2024.107631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024] Open
Abstract
The ability for cells to localize and activate peripheral membrane-binding proteins is critical for signal transduction. Ubiquitously important in these signaling processes are phosphatidylinositol phosphate (PIP) lipids, which are dynamically phosphorylated by PIP lipid kinases on intracellular membranes. Functioning primarily at the plasma membrane, phosphatidylinositol-4-phosphate 5-kinases (PIP5K) catalyzes the phosphorylation of PI(4)P to generate most of the PI(4,5)P2 lipids found in eukaryotic plasma membranes. Recently, we determined that PIP5K displays a positive feedback loop based on membrane-mediated dimerization and cooperative binding to its product, PI(4,5)P2. Here, we examine how two motifs contribute to PI(4,5)P2 recognition to control membrane association and catalysis of PIP5K. Using a combination of single molecule TIRF microscopy and kinetic analysis of PI(4)P lipid phosphorylation, we map the sequence of steps that allow PIP5K to cooperatively engage PI(4,5)P2. We find that the specificity loop regulates the rate of PIP5K membrane association and helps orient the kinase to more effectively bind PI(4,5)P2 lipids. After correctly orienting on the membrane, PIP5K transitions to binding PI(4,5)P2 lipids near the active site through a motif previously referred to as the substrate or PIP-binding motif (PIPBM). The PIPBM has broad specificity for anionic lipids and serves a role in regulating membrane association in vitro and in vivo. Overall, our data supports a two-step membrane-binding model where the specificity loop and PIPBM act in concert to help PIP5K orient and productively engage anionic lipids to drive the positive feedback during PI(4,5)P2 production.
Collapse
Affiliation(s)
- Benjamin R Duewell
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA; Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Katherine A Faris
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA; Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Scott D Hansen
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA; Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA.
| |
Collapse
|
2
|
Ratchatasunthorn A, Sakagami H, Kondo H, Hipkaeo W, Chomphoo S. Temporal involvement of phosphatidylinositol 4-phosphate 5-kinase γ in differentiation of Z-bands and myofilament bundles as well as intercalated discs in mouse heart at mid-gestation. J Anat 2024; 244:1030-1039. [PMID: 38275211 PMCID: PMC11095301 DOI: 10.1111/joa.14008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
Considering the occurrence of serious heart failure in a gene knockout mouse of PIP5Kγ and in congenital abnormal cases in humans in which the gene was defective as reported by others, the present study attempted to localize PIP5Kγ in the heart during prenatal stages. It was done on the basis of the supposition that phenotypes caused by gene mutation of a given molecule are owed to the functional deterioration of selective cellular sites normally expressing it at significantly higher levels in wild mice. PIP5Kγ-immunoreactivity was the highest in the heart at E10 in contrast to almost non-significant levels of the immunoreactivity in surrounding organs and tissues such as liver. The immunoreactivity gradually weakened in the heart with the prenatal age, and it was at non-significant levels at newborn and postnatal stages. Six patterns in localization of distinct immunoreactivity for PIP5Kγ were recognized in cardiomyocytes: (1) its localization on the plasma membranes and subjacent cytoplasm without association with short myofibrils and (2) its localization on them as well as short myofibrils in association with them in cardiomyocytes of early differentiation at E10; (3) its spot-like localization along long myofibrils in cardiomyocytes of advanced differentiation at E10; (4) rare occurrences of such spot-like localization along long myofibrils in cardiomyocytes of advanced differentiation at E14; (5) its localization at Z-bands of long myofibrils; and (6) its localization at intercellular junctions including the intercalated discs in cardiomyocytes of advanced differentiation at E10 and E14, especially dominant at the latter stage. No distinct localization of PIP5Kγ-immunoreactivity of any patterns was seen in the heart at E18 and P1D. The present finding suggests that sites of PIP5Kγ-appearance and probably of its high activity in cardiomyocytes are shifted from the plasma membranes through short myofibrils subjacent to the plasma membranes and long myofibrils, to Z-bands as well as to the intercalated discs during the mid-term gestation. It is further suggested that PIP5Kγ is involved in the differentiation of myofibrils as well as intercellular junctions including the intercalated discs at later stages of the mid-term gestation. Failures in its involvement in the differentiation of these structural components are thus likely to cause the mid-term gestation lethality of the mutant mice for PIP5Kγ.
Collapse
Affiliation(s)
- A Ratchatasunthorn
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - H Sakagami
- Department of Anatomy, School of Medicine, Kitasato University, Sagamihara, Japan
| | - H Kondo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - W Hipkaeo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - S Chomphoo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
3
|
Calabrese B, Halpain S. MARCKS and PI(4,5)P 2 reciprocally regulate actin-based dendritic spine morphology. Mol Biol Cell 2024; 35:ar23. [PMID: 38088877 PMCID: PMC10881156 DOI: 10.1091/mbc.e23-09-0370] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 01/14/2024] Open
Abstract
Myristoylated, alanine-rich C-kinase substrate (MARCKS) is an F-actin and phospholipid binding protein implicated in numerous cellular activities, including the regulation of morphology in neuronal dendrites and dendritic spines. MARCKS contains a lysine-rich effector domain that mediates its binding to plasma membrane phosphatidylinositol-4,5-biphosphate (PI(4,5)P2) in a manner controlled by PKC and calcium/calmodulin. In neurons, manipulations of MARCKS concentration and membrane targeting strongly affect the numbers, shapes, and F-actin properties of dendritic spines, but the mechanisms remain unclear. Here, we tested the hypothesis that the effects of MARCKS on dendritic spine morphology are due to its capacity to regulate the availability of plasma membrane PI(4,5)P2. We observed that the concentration of free PI(4,5)P2 on the dendritic plasma membrane was inversely proportional to the concentration of MARCKS. Endogenous PI(4,5)P2 levels were increased or decreased, respectively, by acutely overexpressing either phosphatidylinositol-4-phosphate 5-kinase (PIP5K) or inositol polyphosphate 5-phosphatase (5ptase). PIP5K, like MARCKS depletion, induced severe spine shrinkage; 5ptase, like constitutively membrane-bound MARCKS, induced aberrant spine elongation. These phenotypes involved changes in actin properties driven by the F-actin severing protein cofilin. Collectively, these findings support a model in which neuronal activity regulates actin-dependent spine morphology through antagonistic interactions of MARCKS and PI(4,5)P2.
Collapse
Affiliation(s)
- Barbara Calabrese
- Department of Neurobiology, School of Biological Sciences, University of California San Diego and Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| | - Shelley Halpain
- Department of Neurobiology, School of Biological Sciences, University of California San Diego and Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| |
Collapse
|
4
|
Lv W, Sha Y, Liu X, He Y, Hu J, Wang J, Li S, Guo X, Shao P, Zhao F, Li M. Interaction between Rumen Epithelial miRNAs-Microbiota-Metabolites in Response to Cold-Season Nutritional Stress in Tibetan Sheep. Int J Mol Sci 2023; 24:14489. [PMID: 37833936 PMCID: PMC10572940 DOI: 10.3390/ijms241914489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Tibetan sheep are already well adapted to cold season nutrient stress on the Tibetan Plateau. Rumen, an important nutrient for metabolism and as an absorption organ in ruminants, plays a vital role in the cold stress adaptations of Tibetan sheep. Ruminal microbiota also plays an indispensable role in rumen function. In this study, combined multiomics data were utilized to comprehensively analyze the interaction mechanism between rumen epithelial miRNAs and microbiota and their metabolites in Tibetan sheep under nutrient stress in the cold season. A total of 949 miRNAs were identified in the rumen epithelium of both cold and warm seasons. A total of 62 differentially expressed (DE) miRNAs were screened using FC > 1.5 and p value < 0.01, and a total of 20,206 targeted genes were predicted by DE miRNAs. KEGG enrichment analysis revealed that DE miRNA-targeted genes were mainly enriched in axon guidance(ko04360), tight junction(ko04530), inflammatory mediator regulation of TRP channels(ko04750) and metabolism-related pathways. Correlation analysis revealed that rumen microbiota, rumen VFAs and DE miRNAs were all correlated. Further study revealed that the targeted genes of cold and warm season rumen epithelial DE miRNAs were coenriched with differential metabolites of microbiota in glycerophospholipid metabolism (ko00564), apoptosis (ko04210), inflammatory mediator regulation of TRP channels (ko04750), small cell lung cancer (ko05222), and choline metabolism in cancer (ko05231) pathways. There are several interactions between Tibetan sheep rumen epithelial miRNAs, rumen microbiota, and microbial metabolites, mainly through maintaining rumen epithelial barrier function and host homeostasis of choline and cholesterol, improving host immunity, and promoting energy metabolism pathways, thus enabling Tibetan sheep to effectively respond to cold season nutrient stress. The results also suggest that rumen microbiota have coevolved with their hosts to improve the adaptive capacity of Tibetan sheep to cold season nutrient stress, providing a new perspective for the study of cold season nutritional stress adaptation in Tibetan sheep.
Collapse
Affiliation(s)
- Weibing Lv
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (Y.S.); (J.H.); (J.W.); (S.L.); (X.G.); (P.S.); (F.Z.); (M.L.)
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yuzhu Sha
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (Y.S.); (J.H.); (J.W.); (S.L.); (X.G.); (P.S.); (F.Z.); (M.L.)
| | - Xiu Liu
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (Y.S.); (J.H.); (J.W.); (S.L.); (X.G.); (P.S.); (F.Z.); (M.L.)
| | - Yanyu He
- School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand;
| | - Jiang Hu
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (Y.S.); (J.H.); (J.W.); (S.L.); (X.G.); (P.S.); (F.Z.); (M.L.)
| | - Jiqing Wang
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (Y.S.); (J.H.); (J.W.); (S.L.); (X.G.); (P.S.); (F.Z.); (M.L.)
| | - Shaobin Li
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (Y.S.); (J.H.); (J.W.); (S.L.); (X.G.); (P.S.); (F.Z.); (M.L.)
| | - Xinyu Guo
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (Y.S.); (J.H.); (J.W.); (S.L.); (X.G.); (P.S.); (F.Z.); (M.L.)
| | - Pengyang Shao
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (Y.S.); (J.H.); (J.W.); (S.L.); (X.G.); (P.S.); (F.Z.); (M.L.)
| | - Fangfang Zhao
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (Y.S.); (J.H.); (J.W.); (S.L.); (X.G.); (P.S.); (F.Z.); (M.L.)
| | - Mingna Li
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (Y.S.); (J.H.); (J.W.); (S.L.); (X.G.); (P.S.); (F.Z.); (M.L.)
| |
Collapse
|
5
|
Hofbrucker-MacKenzie SA, Seemann E, Westermann M, Qualmann B, Kessels MM. Long-term depression in neurons involves temporal and ultra-structural dynamics of phosphatidylinositol-4,5-bisphosphate relying on PIP5K, PTEN and PLC. Commun Biol 2023; 6:366. [PMID: 37012315 PMCID: PMC10070498 DOI: 10.1038/s42003-023-04726-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
Synaptic plasticity involves proper establishment and rearrangement of structural and functional microdomains. Yet, visualization of the underlying lipid cues proved challenging. Applying a combination of rapid cryofixation, membrane freeze-fracturing, immunogold labeling and electron microscopy, we visualize and quantitatively determine the changes and the distribution of phosphatidylinositol-4,5-bisphosphate (PIP2) in the plasma membrane of dendritic spines and subareas thereof at ultra-high resolution. These efforts unravel distinct phases of PIP2 signals during induction of long-term depression (LTD). During the first minutes PIP2 rapidly increases in a PIP5K-dependent manner forming nanoclusters. PTEN contributes to a second phase of PIP2 accumulation. The transiently increased PIP2 signals are restricted to upper and middle spine heads. Finally, PLC-dependent PIP2 degradation provides timely termination of PIP2 cues during LTD induction. Together, this work unravels the spatial and temporal cues set by PIP2 during different phases after LTD induction and dissects the molecular mechanisms underlying the observed PIP2 dynamics.
Collapse
Affiliation(s)
- Sarah A Hofbrucker-MacKenzie
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Eric Seemann
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Martin Westermann
- Center for Electron Microscopy, Jena University Hospital - Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, 07743, Jena, Germany.
| | - Michael M Kessels
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, 07743, Jena, Germany.
| |
Collapse
|
6
|
Satoh R, Tanaka T, Yoshida N, Tanaka C, Takasaki T, Sugiura R. Fission Yeast PUF Proteins Puf3 and Puf4 Are Novel Regulators of PI4P5K Signaling. Biol Pharm Bull 2023; 46:163-169. [PMID: 36724944 DOI: 10.1248/bpb.b22-00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Phosphatidylinositol-4-phosphate 5-kinase (PI4P5K) is a highly conserved enzyme that generates phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) by phosphorylating phosphatidylinositol 4-phosphate (PI(4)P). Schizosaccharomyces pombe (S. pombe) its3-1 is a loss-of-function mutation in the essential its3+ gene that encodes a PI4P5K. Its3 regulates cell proliferation, cytokinesis, cell integrity, and membrane trafficking, but little is known about the regulatory mechanisms of Its3. To identify regulators of Its3, we performed a genetic screening utilizing the high-temperature sensitivity (TS) of its3-1 and identified puf3+ and puf4+, encoding Pumilio/PUF family RNA-binding proteins as multicopy suppressors of its3-1 cells. The deletions of the PUF domains in the puf3+ and puf4+ genes resulted in the reduced ability to suppress its3-1, suggesting that the suppression by Puf3 and Puf4 may involve their RNA-binding activities. The gene knockout of Puf4, but not that of Puf3, exacerbated the TS of its3-1. Interestingly, mutant Its3 expression levels both at mRNA and protein levels were lower than those of the wild-type (WT) Its3. Consistently, the overexpression of the mutant its3-1 gene suppressed the its3-1 phenotypes. Notably, Puf3 and Puf4 overexpression increased the mRNA and protein expression levels of both Its3 and Its3-1. Collectively, our genetic screening revealed a functional relationship between the Pumilio/PUF family RNA-binding proteins and PI4P5K.
Collapse
Affiliation(s)
- Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University
| | - Taemi Tanaka
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University
| | - Nobuyasu Yoshida
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University
| | - Chiaki Tanaka
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University
| | - Teruaki Takasaki
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University
| |
Collapse
|
7
|
Fujimura M, Unoki T. Preliminary evaluation of the mechanism underlying vulnerability/resistance to methylmercury toxicity by comparative gene expression profiling of rat primary cultured cerebrocortical and hippocampal neurons. J Toxicol Sci 2022; 47:211-219. [PMID: 35527009 DOI: 10.2131/jts.47.211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Methylmercury (MeHg), an environmentally toxic substance, causes site-specific neuronal cell death; while MeHg exposure causes death in cerebrocortical neurons, interestingly, it does not in hippocampal neurons, which are generally considered to be vulnerable to toxic substances. This phenomenon of site-specific neuronal cell death can be reproduced in animal experiments; however, the mechanism underlying the resistance of hippocampal neurons to MeHg toxicity has not been clarified. In this study, we comparatively analyzed the response to MeHg exposure in terms of viability and the expression characteristics of primary cultured cerebrocortical neurons and hippocampal neurons derived from fetal rat brain. Neuronal differentiated hippocampal neurons were more resistant to MeHg toxicity than cerebrocortical neurons, as indicated by a 2‒3 fold higher half-maximal inhibitory concentration (IC50; 3.3 μM vs. 1.2 μM), despite similar intracellular mercury concentrations in both neuronal cell types. Comprehensive RNA sequencing-based gene expression analysis of non-MeHg-exposed cells revealed that 80 out of 15,208 genes showed at least 10-fold higher expression in hippocampal neurons than in cerebrocortical neurons, whereas six genes showed at least 10-fold higher expression in cerebrocortical neurons than in hippocampal neurons. In particular, genes related to neuronal function, including those encoding transthyretin and brain-derived neurotrophic factor, showed approximately 50-fold higher expression in hippocampal neurons than in cerebrocortical neurons. In conclusion, the resistance of hippocampal neurons to MeHg toxicity may be related to the high expression of neuronal function-related proteins.
Collapse
Affiliation(s)
- Masatake Fujimura
- Department of Basic Medical Sciences, National Institute for Minamata Disease
| | - Takamitsu Unoki
- Department of Basic Medical Sciences, National Institute for Minamata Disease
| |
Collapse
|
8
|
Guo Z, Jiang CH, Tong C, Yang Y, Wang Z, Lam SM, Wang D, Li R, Shui G, Shi YS, Liu JJ. Activity-dependent PI4P synthesis by PI4KIIIα regulates long-term synaptic potentiation. Cell Rep 2022; 38:110452. [PMID: 35235793 DOI: 10.1016/j.celrep.2022.110452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/30/2021] [Accepted: 02/07/2022] [Indexed: 01/11/2023] Open
Abstract
Phosphatidylinositol 4-phosphate (PI4P) is a low abundant phospholipid with important roles in lipid transport and membrane trafficking. However, little is known of its metabolism and function in neurons. Here, we investigate its subcellular distribution and functional roles in dendrites of rodent hippocampal neurons during resting state and long-term synaptic potentiation (LTP). We show that neural activity causes dynamic reversible changes in PI4P metabolism in dendrites. Upon LTP induction, PI4KIIIα, a type III phosphatidylinositol 4-kinase, localizes to the dendritic plasma membrane (PM) in a calcium-dependent manner and causes substantial increase in the levels of PI4P. Acute inhibition of PI4KIIIα activity abolishes trafficking of the AMPA-type glutamate receptor to the PM during LTP induction, and silencing of PI4KIIIα expression in the hippocampal CA1 region causes severe impairment of LTP and long-term memory. Collectively, our results identify an essential role for PI4KIIIα-dependent PI4P synthesis in synaptic plasticity of central nervous system neurons.
Collapse
Affiliation(s)
- Zhenzhen Guo
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chao-Hua Jiang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Chunfang Tong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanrui Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zehua Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Dou Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yun Stone Shi
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Jia-Jia Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
9
|
Loss of phosphatidylinositol-4-phosphate 5-kinase type-1 gamma (Pip5k1c) in mesenchymal stem cells leads to osteopenia by impairing bone remodeling. J Biol Chem 2022; 298:101639. [PMID: 35090892 PMCID: PMC8867119 DOI: 10.1016/j.jbc.2022.101639] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/10/2023] Open
Abstract
Phosphatidylinositol-4-phosphate 5-kinase type-1 gamma (Pip5k1c) is a lipid kinase that plays a pivotal role in the regulation of receptor-mediated calcium signaling in multiple tissues; however, its role in the skeleton is not clear. Here, we show that while deleting Pip5k1c expression in the mesenchymal stem cells using Prx1-Cre transgenic mice does not impair the intramembranous and endochondral ossification during skeletal development, it does cause osteopenia in adult mice, but not rapidly growing young mice. We found Pip5k1c loss dramatically decreases osteoblast formation and osteoid and mineral deposition, leading to reduced bone formation. Furthermore, Pip5k1c loss inhibits osteoblastic, but promotes adipogenic, differentiation of bone marrow stromal cells. Pip5k1c deficiency also impairs cytoplasmic calcium influx and inactivates the calcium/calmodulin-dependent protein kinase, which regulates levels of transcription factor Runx2 by modulating its stability and subsequent osteoblast and bone formation. In addition, Pip5k1c loss reduces levels of the receptor activator of nuclear factor-κB ligand, but not that of osteoprotegerin, its decoy receptor, in osteoblasts in bone and in sera. Finally, we found Pip5k1c loss impairs the ability of bone marrow stromal cells to support osteoclast formation of bone marrow monocytes and reduces the osteoclast precursor population in bone marrow, resulting in reduced osteoclast formation and bone resorption. We conclude Pip5k1c deficiency causes a low-turnover osteopenia in mice, with impairment of bone formation being greater than that of bone resorption. Collectively, we uncover a novel function and mechanism of Pip5k1c in the control of bone mass and identify a potential therapeutic target for osteoporosis.
Collapse
|
10
|
Coleman BC, Manz KM, Grueter BA. Kappa opioid receptor modulation of excitatory drive onto nucleus accumbens fast-spiking interneurons. Neuropsychopharmacology 2021; 46:2340-2349. [PMID: 34400782 PMCID: PMC8581025 DOI: 10.1038/s41386-021-01146-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/30/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023]
Abstract
The dynorphin/kappa opioid receptor (KOR) system within the nucleus accumbens (NAc) contributes to affective states. Parvalbumin fast-spiking interneurons (PV-FSIs), a key component of feedforward inhibition, participate in integration of excitatory inputs to the NAc by robustly inhibiting select populations of medium spiny output neurons, therefore greatly influencing NAc dependent behavior. How the dynorphin/KOR system regulates feedforward inhibition in the NAc remains unknown. Here, we elucidate the molecular mechanisms of KOR inhibition of excitatory transmission onto NAc PV-FSIs using a combination of whole-cell patch-clamp electrophysiology, optogenetics, pharmacology, and a parvalbumin reporter mouse. We find that postsynaptic KOR stimulation induces long-term depression (LTD) of excitatory synapses onto PV-FSI by stimulating the endocytosis of AMPARs via a PKA and calcineurin-dependent mechanism. Furthermore, KOR regulation of PV-FSI synapses are input specific, inhibiting thalamic but not cortical inputs. Finally, following acute stress, a protocol known to elevate dynorphin/KOR signaling in the NAc, KOR agonists no longer inhibit excitatory transmission onto PV-FSI. In conclusion, we delineate pathway-specific mechanisms mediating KOR control of feedforward inhibitory circuits in the NAc and provide evidence for the recruitment of this system in response to stress.
Collapse
Affiliation(s)
| | - Kevin M Manz
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Brad A Grueter
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
11
|
Matsuda S, Yuzaki M. Subunit-dependent and subunit-independent rules of AMPA receptor trafficking during chemical long-term depression in hippocampal neurons. J Biol Chem 2021; 297:100949. [PMID: 34252460 PMCID: PMC8335659 DOI: 10.1016/j.jbc.2021.100949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 11/25/2022] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) of excitatory neurotransmission are believed to be the neuronal basis of learning and memory. Both processes are primarily mediated by neuronal activity-induced transport of postsynaptic AMPA-type glutamate receptors (AMPARs). While AMPAR subunits and their specific phosphorylation sites mediate differential AMPAR trafficking, LTP and LTD could also occur in a subunit-independent manner. Thus, it remains unclear whether and how certain AMPAR subunits with phosphorylation sites are preferentially recruited to or removed from synapses during LTP and LTD. Using immunoblot and immunocytochemical analysis, we show that phosphomimetic mutations of the membrane-proximal region (MPR) in GluA1 AMPAR subunits affect the subunit-dependent endosomal transport of AMPARs during chemical LTD. AP-2 and AP-3, adaptor protein complexes necessary for clathrin-mediated endocytosis and late endosomal/lysosomal trafficking, respectively, are reported to be recruited to AMPARs by binding to the AMPAR auxiliary subunit, stargazin (STG), in an AMPAR subunit-independent manner. However, the association of AP-3, but not AP-2, with STG was indirectly inhibited by the phosphomimetic mutation in the MPR of GluA1. Thus, although AMPARs containing the phosphomimetic mutation at the MPR of GluA1 were endocytosed by a chemical LTD-inducing stimulus, they were quickly recycled back to the cell surface in hippocampal neurons. These results could explain how the phosphorylation status of GluA1-MPR plays a dominant role in subunit-independent STG-mediated AMPAR trafficking during LTD.
Collapse
Affiliation(s)
- Shinji Matsuda
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan; Center for Neuroscience and Biomedical Engineering (CNBE), The University of Electro-Communications, Tokyo, Japan; Department of Physiology, Keio University School of Medicine, Tokyo, Japan.
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
12
|
Ibata K, Yuzaki M. Destroy the old to build the new: Activity-dependent lysosomal exocytosis in neurons. Neurosci Res 2021; 167:38-46. [PMID: 33845090 DOI: 10.1016/j.neures.2021.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022]
Abstract
Lysosomes are organelles that support diverse cellular functions such as terminal degradation of macromolecules and nutrient recycling. Additionally, lysosomes can fuse with the plasma membrane, a phenomenon referred to as lysosomal exocytosis, to release their contents, including hydrolytic enzymes and cargo proteins. Recently, neuronal activity has been shown to induce lysosomal exocytosis in dendrites and axons. Secreted lysosomal enzyme cathepsin B induces and stabilizes synaptic structural changes by degrading the local extracellular matrix. Extracellular matrix reorganization could also enhance the lateral diffusion of the co-released synaptic organizer Cbln1 along the surface of axons to facilitate new synapse formation. Similarly, lateral diffusion of dendritic AMPA-type glutamate receptors could be facilitated to enhance functional synaptic plasticity. Therefore, lysosomal exocytosis is a powerful way of building new cellular structures through the coordinated destruction of the old environment. Understanding the mechanisms by which lysosomal exocytosis is regulated in neurons is expected to lead to the development of new therapeutics for neuronal plasticity following spinal cord injury or neurodegenerative disease.
Collapse
Affiliation(s)
- Keiji Ibata
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Physiology, St. Marianna University School of Medicine, 216-8511, Kanagawa, Japan
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|
13
|
Santa-Marinha L, Castanho I, Silva RR, Bravo FV, Miranda AM, Meira T, Morais-Ribeiro R, Marques F, Xu Y, Point du Jour K, Wenk M, Chan RB, Di Paolo G, Pinto V, Oliveira TG. Phospholipase D1 Ablation Disrupts Mouse Longitudinal Hippocampal Axis Organization and Functioning. Cell Rep 2021; 30:4197-4208.e6. [PMID: 32209478 DOI: 10.1016/j.celrep.2020.02.102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/29/2020] [Accepted: 02/27/2020] [Indexed: 01/01/2023] Open
Abstract
Phosphatidic acid (PA) is a signaling lipid involved in the modulation of synaptic structure and functioning. Based on previous work showing a decreasing PA gradient along the longitudinal axis of the rodent hippocampus, we asked whether the dorsal hippocampus (DH) and the ventral hippocampus (VH) are differentially affected by PA modulation. Here, we show that phospholipase D1 (PLD1) is a major hippocampal PA source, compared to PLD2, and that PLD1 ablation affects predominantly the lipidome of the DH. Moreover, Pld1 knockout (KO) mice show specific deficits in novel object recognition and social interaction and disruption in the DH-VH dendritic arborization differentiation in CA1/CA3 pyramidal neurons. Also, Pld1 KO animals present reduced long-term depression (LTD) induction and reduced GluN2A and SNAP-25 protein levels in the DH. Overall, we observe that PLD1-derived PA reduction leads to differential lipid signatures along the longitudinal hippocampal axis, predominantly affecting DH organization and functioning.
Collapse
Affiliation(s)
- Luísa Santa-Marinha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Isabel Castanho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rita Ribeiro Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Francisca Vaz Bravo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - André Miguel Miranda
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Torcato Meira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rafaela Morais-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fernanda Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Yimeng Xu
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Kimberly Point du Jour
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Markus Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Robin Barry Chan
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Vítor Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
14
|
Zhao X, Cui P, Hu G, Wang C, Jiang L, Zhao J, Xu J, Zhang X. PIP5k1β controls bone homeostasis through modulating both osteoclast and osteoblast differentiation. J Mol Cell Biol 2021; 12:55-70. [PMID: 30986855 PMCID: PMC7052985 DOI: 10.1093/jmcb/mjz028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/16/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023] Open
Abstract
PIP5k1β is crucial to the generation of phosphotidylinosotol (4, 5)P2. PIP5k1β participates in numerous cellular activities, such as B cell and platelet activation, cell phagocytosis and endocytosis, cell apoptosis, and cytoskeletal organization. In the present work, we aimed to examine the function of PIP5k1β in osteoclastogenesis and osteogenesis to provide promising strategies for osteoporosis prevention and treatment. We discovered that PIP5k1β deletion in mice resulted in obvious bone loss and that PIP5k1β was highly expressed during both osteoclast and osteoblast differentiation. Deletion of the gene was found to enhance the proliferation and migration of bone marrow-derived macrophage-like cells to promote osteoclast differentiation. PIP5k1β-/- osteoclasts exhibited normal cytoskeleton architecture but stronger resorption activity. PIP5k1β deficiency also promoted activation of mitogen-activated kinase and Akt signaling, enhanced TRAF6 and c-Fos expression, facilitated the expression and nuclear translocation of NFATC1, and upregulated Grb2 expression, thereby accelerating osteoclast differentiation and function. Finally, PIP5k1β enhanced osteoblast differentiation by upregulating master gene expression through triggering smad1/5/8 signaling. Therefore, PIP5k1β modulates bone homeostasis and remodeling.
Collapse
Affiliation(s)
- Xiaoying Zhao
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.,The Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Penglei Cui
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Guoli Hu
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.,The Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Chuandong Wang
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Lei Jiang
- Key Laboratory of Tibetan Medicine Research, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Jingyu Zhao
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.,The Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.,The Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| |
Collapse
|
15
|
Petersen A, Brown JC, Gerges NZ. BRAG1/IQSEC2 as a regulator of small GTPase-dependent trafficking. Small GTPases 2020; 11:1-7. [PMID: 29363391 PMCID: PMC6959296 DOI: 10.1080/21541248.2017.1361898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 10/18/2022] Open
Abstract
Precise trafficking events, such as those that underlie synaptic transmission and plasticity, require complex regulation. G-protein signaling plays an essential role in the regulation of membrane and protein trafficking. However, it is not well understood how small GTPases and their regulatory proteins coordinate such specific events. Our recent publication focused on a highly abundant synaptic GEF, BRAG1, whose physiologic relevance was unknown. We find that BRAG1s GEF activity is required for activity-dependent trafficking of AMPARs. Moreover, BRAG1 bidirectionally regulates synaptic transmission in a manner independent of this activity. In addition to the GEF domain, BRAG1 contains several functional domains whose roles are not yet understood but may mediate protein-protein interactions and regulatory effects necessary for its role in regulation of AMPAR trafficking. In this commentary, we explore the potential for BRAG1 to provide specificity of small GTPase signaling, coordinating activity-dependent activation of small GTPase activity with signaling and scaffolding molecules involved in trafficking through its GEF activity and other functional domains.
Collapse
Affiliation(s)
- Amber Petersen
- Department of Cell Biology, Neurobiology and Anatomy, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Joshua C. Brown
- Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, SC, USA
| | - Nashaat Z. Gerges
- Department of Cell Biology, Neurobiology and Anatomy, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Biopharmaceutical Sciences, School of Pharmacy, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
16
|
Probing chemotaxis activity in Escherichia coli using fluorescent protein fusions. Sci Rep 2019; 9:3845. [PMID: 30846802 PMCID: PMC6405996 DOI: 10.1038/s41598-019-40655-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 02/19/2019] [Indexed: 12/27/2022] Open
Abstract
Bacterial chemotaxis signaling may be interesting for the development of rapid biosensor assays, but is difficult to quantify. Here we explore two potential fluorescent readouts of chemotactically active Escherichia coli cells. In the first, we probed interactions between the chemotaxis signaling proteins CheY and CheZ by fusing them individually with non-fluorescent parts of stable or unstable ‘split’-Green Fluorescent Protein. Wild-type chemotactic cells but not mutants lacking the CheA kinase produced distinguishable fluorescence foci, two-thirds of which localize at the cell poles with the chemoreceptors and one-third at motor complexes. Fluorescent foci based on stable split-eGFP displayed small fluctuations in cells exposed to attractant or repellent, but those based on an unstable ASV-tagged eGFP showed a higher dynamic behaviour both in the foci intensity changes and the number of foci per cell. For the second readout, we expressed the pH-sensitive fluorophore pHluorin in the cyto- and periplasm of chemotactically active E. coli. Calibrations of pHluorin fluorescence as a function of pH demonstrated that cells accumulating near a chemo-attractant temporally increase cytoplasmic pH while decreasing periplasmic pH. Both readouts thus show promise for biosensor assays based on bacterial chemotaxis activity.
Collapse
|
17
|
Wang D, Hu L, Xu X, Ma X, Li Y, Liu Y, Wang Q, Zhuo C. KIBRA and APOE Gene Variants Affect Brain Functional Network Connectivity in Healthy Older People. J Gerontol A Biol Sci Med Sci 2019; 74:1725-1733. [PMID: 30715155 DOI: 10.1093/gerona/glz004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Indexed: 12/25/2022] Open
Abstract
Abstract
Genetic factors play a critical role in the development of Alzheimer’s disease (AD). Kidney and brain expressed protein (KIBRA) and apolipoprotein E (APOE) are involved in episodic memory performance and AD. However, the interactions between KIBRA and APOE on brain functional network connectivity (FNC) remain unknown in healthy older people. Using independent component analysis, we systematically investigated additive and epistatic interactions of KIBRA rs1707045 and APOE on FNC in 170 healthy older Chinese people of Han ethnicity. We found significant additive KIBRA–APOE interactions on brain FNC in the right medial prefrontal cortex, the posterior cingulate cortex in the default-mode network, and the dorsal anterior cingulate cortex in the salience network. We also found significant epistatic KIBRA–APOE interactions on brain FNC in the left superior frontal gyrus and left angular gyrus in default-mode network. No significant KIBRA–APOE interactions were detected in other brain resting-state networks. These findings suggest that healthy older people have additive and epistatic interactions of KIBRA and APOE gene variants, which modulate brain FNC and may partly elucidate their association with episodic memory performance and AD.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Radiology, Qilu Hospital of Shangdong University, China
| | - Li Hu
- Department of Radiology, Qilu Hospital of Shangdong University, China
| | - Xinghua Xu
- Department of Radiology, Qilu Hospital of Shangdong University, China
| | - Xiangxing Ma
- Department of Radiology, Qilu Hospital of Shangdong University, China
| | - Yi Li
- Department of Neurology, Qilu Hospital of Shangdong University, China
| | - Yong Liu
- Brainnetome Center, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Qing Wang
- Department of Radiology, Qilu Hospital of Shangdong University, China
| | - Chuanjun Zhuo
- Department of Psychiatric-Neuroimaging-Genetics and Comorbidity Laboratory (PNGC-Lab), Tianjin Anding Hospital, China
| |
Collapse
|
18
|
Hackelberg S, Oliver D. Metabotropic Acetylcholine and Glutamate Receptors Mediate PI(4,5)P 2 Depletion and Oscillations in Hippocampal CA1 Pyramidal Neurons in situ. Sci Rep 2018; 8:12987. [PMID: 30154490 PMCID: PMC6113233 DOI: 10.1038/s41598-018-31322-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/17/2018] [Indexed: 01/24/2023] Open
Abstract
The sensitivity of many ion channels to phosphatidylinositol-4,5-bisphosphate (PIP2) levels in the cell membrane suggests that PIP2 fluctuations are important and general signals modulating neuronal excitability. Yet the PIP2 dynamics of central neurons in their native environment remained largely unexplored. Here, we examined the behavior of PIP2 concentrations in response to activation of Gq-coupled neurotransmitter receptors in rat CA1 hippocampal neurons in situ in acute brain slices. Confocal microscopy of the PIP2-selective molecular sensors tubbyCT-GFP and PLCδ1-PH-GFP showed that pharmacological activation of muscarinic acetylcholine (mAChR) or group I metabotropic glutamate (mGluRI) receptors induces transient depletion of PIP2 in the soma as well as in the dendritic tree. The observed PIP2 dynamics were receptor-specific, with mAChR activation inducing stronger PIP2 depletion than mGluRI, whereas agonists of other Gαq-coupled receptors expressed in CA1 neurons did not induce measureable PIP2 depletion. Furthermore, the data show for the first time neuronal receptor-induced oscillations of membrane PIP2 concentrations. Oscillatory behavior indicated that neurons can rapidly restore PIP2 levels during persistent activation of Gq and PLC. Electrophysiological responses to receptor activation resembled PIP2 dynamics in terms of time course and receptor specificity. Our findings support a physiological function of PIP2 in regulating electrical activity.
Collapse
Affiliation(s)
- Sandra Hackelberg
- Institute of Physiology and Pathophysiology, Philipps University, 35037, Marburg, Germany
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Dominik Oliver
- Institute of Physiology and Pathophysiology, Philipps University, 35037, Marburg, Germany.
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps University, Marburg, Germany.
- Center for Mind, Brain and Behavior (CMBB), Marburg and Giessen, Germany.
| |
Collapse
|
19
|
Dopamine Triggers the Maturation of Striatal Spiny Projection Neuron Excitability during a Critical Period. Neuron 2018; 99:540-554.e4. [PMID: 30057204 DOI: 10.1016/j.neuron.2018.06.044] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/20/2018] [Accepted: 06/29/2018] [Indexed: 01/11/2023]
Abstract
Neural circuits are formed and refined during childhood, including via critical changes in neuronal excitability. Here, we investigated the ontogeny of striatal intrinsic excitability. We found that dopamine neurotransmission increases from the first to the third postnatal week in mice and precedes the reduction in spiny projection neuron (SPN) intrinsic excitability during the fourth postnatal week. In mice developmentally deficient for striatal dopamine, direct pathway D1-SPNs failed to undergo maturation of excitability past P18 and maintained hyperexcitability into adulthood. We found that the absence of D1-SPN maturation was due to altered phosphatidylinositol 4,5-biphosphate dynamics and a consequent lack of normal ontogenetic increases in Kir2 currents. Dopamine replacement corrected these deficits in SPN excitability when provided from birth or during a specific period of juvenile development (P18-P28), but not during adulthood. These results identify a sensitive period of dopamine-dependent striatal maturation, with implications for the pathophysiology and treatment of neurodevelopmental disorders.
Collapse
|
20
|
Lee JS, Sorcher JL, Rosen AD, Damadzic R, Sun H, Schwandt M, Heilig M, Kelly J, Mauro KL, Luo A, Rosoff D, Muench C, Jung J, Kaminsky ZA, Lohoff FW. Genetic Association and Expression Analyses of the Phosphatidylinositol-4-Phosphate 5-Kinase (PIP5K1C) Gene in Alcohol Use Disorder-Relevance for Pain Signaling and Alcohol Use. Alcohol Clin Exp Res 2018; 42:1034-1043. [PMID: 29667742 PMCID: PMC6134400 DOI: 10.1111/acer.13751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/07/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND The gene encoding phosphatidylinositol-4-phosphate 5-kinase (PIP5K1C) has been recently implicated in pain regulation. Interestingly, a recent cross-tissue and cross-phenotypic epigenetic analysis identified the same gene in alcohol use disorder (AUD). Given the high comorbidity between AUD and chronic pain, we hypothesized that genetic variation in PIP5K1C might contribute to susceptibility to AUD. METHODS We conducted a case-control association study of genetic variants in PIP5K1C. Association analyses of 16 common PIP5K1C single nucleotide polymorphisms (SNPs) were conducted in cases and controls of African (427 cases and 137 controls) and European ancestry (488 cases and 324 controls) using standard methods. In addition, given the prominent role of the opioid system in pain signaling, we investigated the effects of acute alcohol exposure on PIP5K1C expression in humanized transgenic mice for the μ-opioid receptor that included the OPRM1 A118G polymorphism, a widely used mouse model to study analgesic response to opioids in pain. PIP5K1C expression was measured in the thalamus and basolateral amygdala (BLA) in mice after short-term administration (single 2 g/kg dose) of alcohol or saline using immunohistochemistry and analyzed by 2-way analysis of variance. RESULTS In the case-control association study using an NIAAA discovery sample, 8 SNPs in PIP5K1C were significantly associated with AUD in the African ancestry (AA) group (p < 0.05 after correction; rs4807493, rs10405681, rs2074957, rs10432303, rs8109485, rs1476592, rs10419980, and rs4432372). However, a replication analysis using an independent sample (N = 3,801) found no significant associations after correction for multiple testing. In the humanized transgenic mouse model with the OPRM1 polymorphism, PIP5K1C expression was significantly different between alcohol and saline-treated mice, regardless of genotype, in both the thalamus (p < 0.05) and BLA (p < 0.01). CONCLUSIONS Our discovery sample shows that genetic variants in PIP5K1C are associated with AUD in the AA group, and acute alcohol exposure leads to up-regulation of PIP5K1C, potentially explaining a mechanism underlying the increased risk for chronic pain conditions in individuals with AUD.
Collapse
Affiliation(s)
- Ji Soo Lee
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Jill L. Sorcher
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Allison D Rosen
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Ruslan Damadzic
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Hui Sun
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Melanie Schwandt
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | | | - John Kelly
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kelsey L Mauro
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Audrey Luo
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Daniel Rosoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Christine Muench
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Jeesun Jung
- Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Zachary A. Kaminsky
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Falk W. Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| |
Collapse
|
21
|
Inoue R, Talukdar G, Takao K, Miyakawa T, Mori H. Dissociated Role of D-Serine in Extinction During Consolidation vs. Reconsolidation of Context Conditioned Fear. Front Mol Neurosci 2018; 11:161. [PMID: 29872376 PMCID: PMC5972189 DOI: 10.3389/fnmol.2018.00161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/30/2018] [Indexed: 01/03/2023] Open
Abstract
Extinction-based exposure therapy is widely used for the treatment of anxiety disorders, such as post-traumatic stress disorder (PTSD). D-serine, an endogenous co-agonist at the glycine-binding site of the N-methyl-D-aspartate-type glutamate receptor (NMDAR), has been shown to be involved in extinction of fear memory. Recent findings suggest that the length of time between the initial learning and an extinction session is a determinant of neural mechanism involved in fear extinction. However, how D-serine is involved in extinction of fear memory at different timings remains unclear. In the present study, we investigated the role of D-serine in immediate, delayed and post-retrieval extinction (P-RE) of contextual fear memory using wild-type (WT) and serine racemase (SRR) knockout (KO) mice that exhibit 90% reduction in D-serine content in the hippocampus. We found that SRR disruption impairs P-RE, facilitates immediate extinction (IE), but has no effect on delayed extinction (DE) of contextual fear memories. The impaired P-RE of contextual fear memory in SRRKO mice was associated with increased expression of the GluA1 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor (AMPAR) in the hippocampal synaptic membrane fraction after P-RE, and this increase of AMPAR and impaired P-RE were rescued by the administration of D-serine to SRRKO mice. Our findings suggest that D-serine is differentially involved in the regulation of contextual fear extinction depending on the timing of behavioral intervention, and that combining D-serine or other drugs, enhancing the NMDAR function, with P-RE may achieve optimal outcomes for the treatment of PTSD.
Collapse
Affiliation(s)
- Ran Inoue
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Gourango Talukdar
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Keizo Takao
- Life Science Research Center, University of Toyama, Toyama, Japan.,Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi, Japan.,Genetic Engineering and Functional Genomics Group, Frontier Technology Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Miyakawa
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi, Japan.,Genetic Engineering and Functional Genomics Group, Frontier Technology Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
22
|
Identification of postsynaptic phosphatidylinositol-4,5-bisphosphate (PIP 2) roles for synaptic plasticity using chemically induced dimerization. Sci Rep 2017; 7:3351. [PMID: 28611378 PMCID: PMC5469801 DOI: 10.1038/s41598-017-03520-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 05/02/2017] [Indexed: 11/16/2022] Open
Abstract
Phosphatidylinositol-4,5-bisphosphate (PIP2), one of the key phospholipids, directly interacts with several membrane and cytosolic proteins at neuronal plasma membranes, leading to changes in neuronal properties including the feature and surface expression of ionotropic receptors. Although PIP2 is also concentrated at the dendritic spines, little is known about the direct physiological functions of PIP2 at postsynaptic as opposed to presynaptic sites. Most previous studies used genetic and pharmacological methods to modulate enzymes that alter PIP2 levels, making it difficult to delineate time- or region-specific roles of PIP2. We used chemically-induced dimerization to translocate inositol polyphosphate 5-phosphatase (Inp54p) to plasma membranes in the presence of rapamycin. Upon redistribution of Inp54p, long-term depression (LTD) induced by low-frequency stimulation was blocked in the mouse hippocampal CA3-CA1 pathway, but the catalytically-dead mutant did not affect LTD induction. Collectively, PIP2 is critically required for induction of LTD whereas translocation of Inp54p to plasma membranes has no effect on the intrinsic properties of the neurons, basal synaptic transmission, long-term potentiation or expression of LTD.
Collapse
|
23
|
Zhang N, Liu H, Qin W, Liu B, Jiang T, Yu C. APOEandKIBRAInteractions on Brain Functional Connectivity in Healthy Young Adults. Cereb Cortex 2016; 27:4797-4805. [DOI: 10.1093/cercor/bhw276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 08/11/2016] [Indexed: 12/29/2022] Open
|
24
|
Sachser RM, Haubrich J, Lunardi PS, de Oliveira Alvares L. Forgetting of what was once learned: Exploring the role of postsynaptic ionotropic glutamate receptors on memory formation, maintenance, and decay. Neuropharmacology 2016; 112:94-103. [PMID: 27425202 DOI: 10.1016/j.neuropharm.2016.07.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/26/2022]
Abstract
Over the past years, extensive research in experimental cognitive neuroscience has provided a comprehensive understanding about the role of ionotropic glutamate receptor (IGluR)-dependent signaling underpinning postsynaptic plasticity induced by long-term potentiation (LTP), the leading cellular basis of long-term memory (LTM). However, despite the fact that iGluR-mediated postsynaptic plasticity regulates the formation and persistence of LTP and LTM, here we discuss the state-of-the-art regarding the mechanisms underpinning both LTP and LTM decay. First, we review the crucial roles that iGluRs play on memory encoding and stabilization. Second, we discuss the latest findings in forgetting considering hippocampal GluA2-AMPAR trafficking at postsynaptic sites as well as dendritic spine remodeling possibly involved in LTP decay. Third, on the role of retrieving consolidated LTMs, we discuss the mechanisms involved in memory destabilization that occurs followed reactivation that share striking similarities with the neurobiological basis of forgetting. Fourth, since different AMPAR subunits as well as postsynaptic scaffolding proteins undergo ubiquitination, the ubiquitin-proteasome system (UPS) is discussed in light of memory decay. In conclusion, we provide an integrated overview revealing some of the mechanisms determining memory forgetting that are mediated by iGluRs. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.
Collapse
Affiliation(s)
- Ricardo Marcelo Sachser
- Neurobiology of Memory Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Josué Haubrich
- Psychobiology and Neurocomputation Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paula Santana Lunardi
- Neurobiology of Memory Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lucas de Oliveira Alvares
- Neurobiology of Memory Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
25
|
Gross C. Defective phosphoinositide metabolism in autism. J Neurosci Res 2016; 95:1161-1173. [PMID: 27376697 DOI: 10.1002/jnr.23797] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/26/2016] [Accepted: 06/01/2016] [Indexed: 12/12/2022]
Abstract
Phosphoinositides are essential components of lipid membranes and crucial regulators of many cellular functions, including signal transduction, vesicle trafficking, membrane receptor localization and activity, and determination of membrane identity. These functions depend on the dynamic and highly regulated metabolism of phosphoinositides and require finely balanced activity of specific phosphoinositide kinases and phosphatases. There is increasing evidence from genetic and functional studies that these enzymes are often dysregulated or mutated in autism spectrum disorders; in particular, phosphoinositide 3-kinases and their regulatory subunits appear to be affected frequently. Examples of autism spectrum disorders with defective phosphoinositide metabolism are fragile X syndrome and autism disorders associated with mutations in the phosphoinositide 3-phosphatase tensin homolog deleted on chromosome 10 (PTEN), but recent genetic analyses also suggest that select nonsyndromic, idiopathic forms of autism may have altered activity of phosphoinositide kinases and phosphatases. Isoform-specific inhibitors for some of the phosphoinositide kinases have already been developed for cancer research and treatment, and a few are being evaluated for use in humans. Altogether, this offers exciting opportunities to explore altered phosphoinositide metabolism as a therapeutic target in individuals with certain forms of autism. This review summarizes genetic and functional studies identifying defects in phosphoinositide metabolism in autism and related disorders, describes published preclinical work targeting phosphoinositide 3-kinases in neurological diseases, and discusses the opportunities and challenges ahead to translate these findings from animal models and human cells into clinical application in humans. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
26
|
ACAP3 regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons. Biochem J 2016; 473:2591-602. [PMID: 27330119 DOI: 10.1042/bcj20160183] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/21/2016] [Indexed: 01/30/2023]
Abstract
ACAP3 (ArfGAP with coiled-coil, ankyrin repeat and pleckstrin homology domains 3) belongs to the ACAP family of GAPs (GTPase-activating proteins) for the small GTPase Arf (ADP-ribosylation factor). However, its specificity to Arf isoforms and physiological functions remain unclear. In the present study, we demonstrate that ACAP3 plays an important role in neurite outgrowth of mouse hippocampal neurons through its GAP activity specific to Arf6. In primary cultured mouse hippocampal neurons, knockdown of ACAP3 abrogated neurite outgrowth, which was rescued by ectopically expressed wild-type ACAP3, but not by its GAP activity-deficient mutant. Ectopically expressed ACAP3 in HEK (human embryonic kidney)-293T cells showed the GAP activity specific to Arf6. In support of this observation, the level of GTP-bound Arf6 was significantly increased by knockdown of ACAP3 in hippocampal neurons. In addition, knockdown and knockout of Arf6 in mouse hippocampal neurons suppressed neurite outgrowth. These results demonstrate that ACAP3 positively regulates neurite outgrowth through its GAP activity specific to Arf6. Furthermore, neurite outgrowth suppressed by ACAP3 knockdown was rescued by expression of a fast cycle mutant of Arf6 that spontaneously exchanges guanine nucleotides on Arf6, but not by that of wild-type, GTP- or GDP-locked mutant Arf6. Thus cycling between active and inactive forms of Arf6, which is precisely regulated by ACAP3 in concert with a guanine-nucleotide-exchange factor(s), seems to be required for neurite outgrowth of hippocampal neurons.
Collapse
|
27
|
Pinto MJ, Pedro JR, Costa RO, Almeida RD. Visualizing K48 Ubiquitination during Presynaptic Formation By Ubiquitination-Induced Fluorescence Complementation (UiFC). Front Mol Neurosci 2016; 9:43. [PMID: 27375430 PMCID: PMC4901079 DOI: 10.3389/fnmol.2016.00043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/24/2016] [Indexed: 11/18/2022] Open
Abstract
In recent years, signaling through ubiquitin has been shown to be of great importance for normal brain development. Indeed, fluctuations in ubiquitin levels and spontaneous mutations in (de)ubiquitination enzymes greatly perturb synapse formation and neuronal transmission. In the brain, expression of lysine (K) 48-linked ubiquitin chains is higher at a developmental stage coincident with synaptogenesis. Nevertheless, no studies have so far delved into the involvement of this type of polyubiquitin chains in synapse formation. We have recently proposed a role for polyubiquitinated conjugates as triggering signals for presynaptic assembly. Herein, we aimed at characterizing the axonal distribution of K48 polyubiquitin and its dynamics throughout the course of presynaptic formation. To accomplish so, we used an ubiquitination-induced fluorescence complementation (UiFC) strategy for the visualization of K48 polyubiquitin in live hippocampal neurons. We first validated its use in neurons by analyzing changing levels of polyubiquitin. UiFC signal is diffusely distributed with distinct aggregates in somas, dendrites and axons, which perfectly colocalize with staining for a K48-specific antibody. Axonal UiFC aggregates are relatively stable and new aggregates are formed as an axon grows. Approximately 65% of UiFC aggregates colocalize with synaptic vesicle clusters and they preferentially appear in the axonal domains of axo-somatodendritic synapses when compared to isolated axons. We then evaluated axonal accumulation of K48 ubiquitinated signals in bead-induced synapses. We observed rapid accumulation of UiFC signal and endogenous K48 ubiquitin at the sites of newly formed presynapses. Lastly, we show by means of a microfluidic platform, for the isolation of axons, that presynaptic clustering on beads is dependent on E1-mediated ubiquitination at the axonal level. Altogether, these results indicate that enrichment of K48 polyubiquitin at the site of nascent presynaptic terminals is an important axon-intrinsic event for presynaptic differentiation.
Collapse
Affiliation(s)
- Maria J Pinto
- Center for Neuroscience and Cell Biology (CNC), University of CoimbraCoimbra, Portugal; PhD Programme in Experimental Biology and Biomedicine (PDBEB), Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal
| | - Joana R Pedro
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra Coimbra, Portugal
| | - Rui O Costa
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra Coimbra, Portugal
| | - Ramiro D Almeida
- Center for Neuroscience and Cell Biology (CNC), University of CoimbraCoimbra, Portugal; School of Allied Health Technologies, Polytechnic Institute of Porto (ESTSP-IPP)Vila Nova de Gaia, Portugal; Institute for Interdisciplinary Research, University of CoimbraCoimbra, Portugal
| |
Collapse
|
28
|
Kinoshita PF, Leite JA, Orellana AMM, Vasconcelos AR, Quintas LEM, Kawamoto EM, Scavone C. The Influence of Na(+), K(+)-ATPase on Glutamate Signaling in Neurodegenerative Diseases and Senescence. Front Physiol 2016; 7:195. [PMID: 27313535 PMCID: PMC4890531 DOI: 10.3389/fphys.2016.00195] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/17/2016] [Indexed: 12/17/2022] Open
Abstract
Decreased Na(+), K(+)-ATPase (NKA) activity causes energy deficiency, which is commonly observed in neurodegenerative diseases. The NKA is constituted of three subunits: α, β, and γ, with four distinct isoforms of the catalytic α subunit (α1-4). Genetic mutations in the ATP1A2 gene and ATP1A3 gene, encoding the α2 and α3 subunit isoforms, respectively can cause distinct neurological disorders, concurrent to impaired NKA activity. Within the central nervous system (CNS), the α2 isoform is expressed mostly in glial cells and the α3 isoform is neuron-specific. Mutations in ATP1A2 gene can result in familial hemiplegic migraine (FHM2), while mutations in the ATP1A3 gene can cause Rapid-onset dystonia-Parkinsonism (RDP) and alternating hemiplegia of childhood (AHC), as well as the cerebellar ataxia, areflexia, pescavus, optic atrophy and sensorineural hearing loss (CAPOS) syndrome. Data indicates that the central glutamatergic system is affected by mutations in the α2 isoform, however further investigations are required to establish a connection to mutations in the α3 isoform, especially given the diagnostic confusion and overlap with glutamate transporter disease. The age-related decline in brain α2∕3 activity may arise from changes in the cyclic guanosine monophosphate (cGMP) and cGMP-dependent protein kinase (PKG) pathway. Glutamate, through nitric oxide synthase (NOS), cGMP and PKG, stimulates brain α2∕3 activity, with the glutamatergic N-methyl-D-aspartate (NMDA) receptor cascade able to drive an adaptive, neuroprotective response to inflammatory and challenging stimuli, including amyloid-β. Here we review the NKA, both as an ion pump as well as a receptor that interacts with NMDA, including the role of NKA subunits mutations. Failure of the NKA-associated adaptive response mechanisms may render neurons more susceptible to degeneration over the course of aging.
Collapse
Affiliation(s)
- Paula F. Kinoshita
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Jacqueline A. Leite
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Ana Maria M. Orellana
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Andrea R. Vasconcelos
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Luis E. M. Quintas
- Laboratory of Biochemical and Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Elisa M. Kawamoto
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| |
Collapse
|
29
|
Synaptic P-Rex1 signaling regulates hippocampal long-term depression and autism-like social behavior. Proc Natl Acad Sci U S A 2015; 112:E6964-72. [PMID: 26621702 DOI: 10.1073/pnas.1512913112] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorders (ASDs) are a group of highly inheritable mental disorders associated with synaptic dysfunction, but the underlying cellular and molecular mechanisms remain to be clarified. Here we report that autism in Chinese Han population is associated with genetic variations and copy number deletion of P-Rex1 (phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 1). Genetic deletion or knockdown of P-Rex1 in the CA1 region of the hippocampus in mice resulted in autism-like social behavior that was specifically linked to the defect of long-term depression (LTD) in the CA1 region through alteration of AMPA receptor endocytosis mediated by the postsynaptic PP1α (protein phosphase 1α)-P-Rex1-Rac1 (Ras-related C3 botulinum toxin substrate 1) signaling pathway. Rescue of the LTD in the CA1 region markedly alleviated autism-like social behavior. Together, our findings suggest a vital role of P-Rex1 signaling in CA1 LTD that is critical for social behavior and cognitive function and offer new insight into the etiology of ASDs.
Collapse
|
30
|
Phosphoinositide dynamics in the postsynaptic membrane compartment: Mechanisms and experimental approach. Eur J Cell Biol 2015; 94:401-14. [DOI: 10.1016/j.ejcb.2015.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
31
|
Abstract
Resolving how our brains encode information requires an understanding of the cellular processes taking place during memory formation. Since the 1970s, considerable effort has focused on determining the properties and mechanisms underlying long-term potentiation (LTP) at glutamatergic synapses and how these processes influence initiation of new memories. However, accumulating evidence suggests that long-term depression (LTD) of synaptic strength, particularly at glutamatergic synapses, is a bona fide learning and memory mechanism in the mammalian brain. The known range of mechanisms capable of inducing LTD has been extended to those including NMDAR-independent forms, neuromodulator-dependent LTD, synaptic depression following stress, and non-synaptically induced forms. The examples of LTD observed at the hippocampal CA1 synapse to date demonstrate features consistent with LTP, including homo- and heterosynaptic expression, extended duration beyond induction (several hours to weeks), and association with encoding of distinct types of memories. Canonical mechanisms through which synapses undergo LTD include activation of phosphatases, initiation of protein synthesis, and dynamic regulation of presynaptic glutamate release and/or postsynaptic glutamate receptor endocytosis. Here, we will discuss the pre- and postsynaptic changes underlying LTD, recent advances in the identification and characterization of novel mechanisms underlying LTD, and how engagement of these processes constitutes a cellular analog for the genesis of specific types of memories.
Collapse
Affiliation(s)
- Steven A Connor
- Brain Research Centre and Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yu Tian Wang
- Brain Research Centre and Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
32
|
Kuboyama T, Lee YA, Nishiko H, Tohda C. Inhibition of clathrin-mediated endocytosis prevents amyloid β-induced axonal damage. Neurobiol Aging 2015; 36:1808-19. [DOI: 10.1016/j.neurobiolaging.2015.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 01/05/2015] [Accepted: 02/05/2015] [Indexed: 01/15/2023]
|
33
|
Yong SM, Ong QR, Siew BE, Wong BS. The effect of chicken extract on ERK/CREB signaling is ApoE isoform-dependent. Food Funct 2015; 5:2043-51. [PMID: 25080220 DOI: 10.1039/c4fo00428k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
It is unclear how the nutritional supplement chicken extract (CE) enhances cognition. Human apolipoprotein E (ApoE) can regulate cognition and this isoform-dependent effect is associated with the N-methyl-d-aspartate receptor (NMDAR). To understand if CE utilizes this pathway, we compared the NMDAR signaling in neuronal cells expressing ApoE3 and ApoE4. We observed that CE increased S896 phosphorylation on NR1 in ApoE3 cells and this was linked to higher protein kinase C (PKC) activation. However, ApoE4 cells treated with CE have lowered S897 phosphorylation on NR1 and this was associated with reduced protein kinase A (PKA) phosphorylation. In ApoE3 cells, CE increased calmodulin kinase II (CaMKII) activation and AMPA GluR1 phosphorylation on S831. In contrast, CE reduced CaMKII phosphorylation and led to higher de-phosphorylation of S831 and S845 on GluR1 in ApoE4 cells. While CE enhanced ERK/CREB phosphorylation in ApoE3 cells, this pathway was down-regulated in both ApoE4 and mock cells after CE treatment. These results show that CE triggers ApoE isoform-specific changes on ERK/CREB signaling.
Collapse
Affiliation(s)
- Shan-May Yong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive MD9, Singapore 117597.
| | | | | | | |
Collapse
|
34
|
Garafalo SD, Luth ES, Moss BJ, Monteiro MI, Malkin E, Juo P. The AP2 clathrin adaptor protein complex regulates the abundance of GLR-1 glutamate receptors in the ventral nerve cord of Caenorhabditis elegans. Mol Biol Cell 2015; 26:1887-900. [PMID: 25788288 PMCID: PMC4436833 DOI: 10.1091/mbc.e14-06-1048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 03/06/2015] [Indexed: 01/23/2023] Open
Abstract
Regulation of glutamate receptor trafficking controls synaptic strength and plasticity. This study takes advantage of viable, null mutations in subunits of the clathrin adaptor protein 2 (AP2) complex in Caenorhabditis elegans to reveal a novel and unexpected AP2-dependent trafficking step for glutamate receptors early in the secretory pathway. Regulation of glutamate receptor (GluR) abundance at synapses by clathrin-mediated endocytosis can control synaptic strength and plasticity. We take advantage of viable, null mutations in subunits of the clathrin adaptor protein 2 (AP2) complex in Caenorhabditis elegans to characterize the in vivo role of AP2 in GluR trafficking. In contrast to our predictions for an endocytic adaptor, we found that levels of the GluR GLR-1 are decreased at synapses in the ventral nerve cord (VNC) of animals with mutations in the AP2 subunits APM-2/μ2, APA-2/α, or APS-2/σ2. Rescue experiments indicate that APM-2/μ2 functions in glr-1–expressing interneurons and the mature nervous system to promote GLR-1 levels in the VNC. Genetic analyses suggest that APM-2/μ2 acts upstream of GLR-1 endocytosis in the VNC. Consistent with this, GLR-1 accumulates in cell bodies of apm-2 mutants. However, GLR-1 does not appear to accumulate at the plasma membrane of the cell body as expected, but instead accumulates in intracellular compartments including Syntaxin-13– and RAB-14–labeled endosomes. This study reveals a novel role for the AP2 clathrin adaptor in promoting the abundance of GluRs at synapses in vivo, and implicates AP2 in the regulation of GluR trafficking at an early step in the secretory pathway.
Collapse
Affiliation(s)
- Steven D Garafalo
- Department of Developmental, Molecular & Chemical Biology Graduate Program in Cellular and Molecular Physiology, Tufts University School of Medicine, Boston, MA 02111
| | - Eric S Luth
- Department of Developmental, Molecular & Chemical Biology
| | - Benjamin J Moss
- Department of Developmental, Molecular & Chemical Biology Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
| | - Michael I Monteiro
- Department of Developmental, Molecular & Chemical Biology Graduate Program in Cellular and Molecular Physiology, Tufts University School of Medicine, Boston, MA 02111
| | - Emily Malkin
- Department of Developmental, Molecular & Chemical Biology
| | - Peter Juo
- Department of Developmental, Molecular & Chemical Biology
| |
Collapse
|
35
|
Fedorenko OY, Loonen AJM, Lang F, Toshchakova VA, Boyarko EG, Semke AV, Bokhan NA, Govorin NV, Aftanas LI, Ivanova SA. Association study indicates a protective role of phosphatidylinositol-4-phosphate-5-kinase against tardive dyskinesia. Int J Neuropsychopharmacol 2015; 18:pyu098. [PMID: 25548108 PMCID: PMC4438543 DOI: 10.1093/ijnp/pyu098] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/17/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Tardive dyskinesia is a disorder characterized by involuntary muscle movements that occur as a complication of long-term treatment with antipsychotic drugs. It has been suggested to be related to a malfunctioning of the indirect pathway of the motor part of the cortical-striatal-thalamic-cortical circuit, which may be caused by oxidative stress-induced neurotoxicity. METHODS The purpose of our study was to investigate the possible association between phosphatidylinositol-4-phosphate-5-kinase type IIa (PIP5K2A) function and tardive dyskinesia in 491 Caucasian patients with schizophrenia from 3 different psychiatric institutes in West Siberia. The Abnormal Involuntary Movement Scale was used to assess tardive dyskinesia. Individuals were genotyped for 3 single nucleotide polymorphisms in PIP5K2A gene: rs10828317, rs746203, and rs8341. RESULTS A significant association was established between the functional mutation N251S-polymorphism of the PIP5K2A gene (rs10828317) and tardive dyskinesia, while the other 2 examined nonfunctional single nucleotide polymorphisms were not related. CONCLUSIONS We conclude from this association that PIP5K2A is possibly involved in a mechanism protecting against tardive dyskinesia-inducing neurotoxicity. This corresponds to our hypothesis that tardive dyskinesia is related to neurotoxicity at striatal indirect pathway medium-sized spiny neurons.
Collapse
Affiliation(s)
- Olga Yu Fedorenko
- Mental Health Research Institute, SiberianBranch of RAMSc, Tomsk, Siberia, Russian Federation (Drs Fedorenko, Toshchakova, Boyarko, Semke, Bokhan, and Ivanova); National Research Tomsk Polytechnic University, Tomsk, Siberia, Russian Federation (Drs Fedorenko and Ivanova); Department of Pharmacy, University of Groningen, Groningen, The Netherlands (Dr Loonen); Mental Health Institute Westelijk Noord-Brabant, Halsteren, The Netherlands (Dr Loonen); Department of Physiology, University of Tuebingen, Tuebingen, Germany (Dr Lang); Chita State Medical Academy, Chita, Siberia, Russian Federation (Dr Govorin); National Research Tomsk State University, Tomsk, Siberia, Russian Federation (Dr Bokhan); Scientific Research Institute of Physiology and Basic Medicine, Siberian Branch of RAMSc, Novosibirsk, Siberia, Russian Federation (Dr Aftanas)
| | - Anton J M Loonen
- Mental Health Research Institute, SiberianBranch of RAMSc, Tomsk, Siberia, Russian Federation (Drs Fedorenko, Toshchakova, Boyarko, Semke, Bokhan, and Ivanova); National Research Tomsk Polytechnic University, Tomsk, Siberia, Russian Federation (Drs Fedorenko and Ivanova); Department of Pharmacy, University of Groningen, Groningen, The Netherlands (Dr Loonen); Mental Health Institute Westelijk Noord-Brabant, Halsteren, The Netherlands (Dr Loonen); Department of Physiology, University of Tuebingen, Tuebingen, Germany (Dr Lang); Chita State Medical Academy, Chita, Siberia, Russian Federation (Dr Govorin); National Research Tomsk State University, Tomsk, Siberia, Russian Federation (Dr Bokhan); Scientific Research Institute of Physiology and Basic Medicine, Siberian Branch of RAMSc, Novosibirsk, Siberia, Russian Federation (Dr Aftanas).
| | - Florian Lang
- Mental Health Research Institute, SiberianBranch of RAMSc, Tomsk, Siberia, Russian Federation (Drs Fedorenko, Toshchakova, Boyarko, Semke, Bokhan, and Ivanova); National Research Tomsk Polytechnic University, Tomsk, Siberia, Russian Federation (Drs Fedorenko and Ivanova); Department of Pharmacy, University of Groningen, Groningen, The Netherlands (Dr Loonen); Mental Health Institute Westelijk Noord-Brabant, Halsteren, The Netherlands (Dr Loonen); Department of Physiology, University of Tuebingen, Tuebingen, Germany (Dr Lang); Chita State Medical Academy, Chita, Siberia, Russian Federation (Dr Govorin); National Research Tomsk State University, Tomsk, Siberia, Russian Federation (Dr Bokhan); Scientific Research Institute of Physiology and Basic Medicine, Siberian Branch of RAMSc, Novosibirsk, Siberia, Russian Federation (Dr Aftanas)
| | - Valentina A Toshchakova
- Mental Health Research Institute, SiberianBranch of RAMSc, Tomsk, Siberia, Russian Federation (Drs Fedorenko, Toshchakova, Boyarko, Semke, Bokhan, and Ivanova); National Research Tomsk Polytechnic University, Tomsk, Siberia, Russian Federation (Drs Fedorenko and Ivanova); Department of Pharmacy, University of Groningen, Groningen, The Netherlands (Dr Loonen); Mental Health Institute Westelijk Noord-Brabant, Halsteren, The Netherlands (Dr Loonen); Department of Physiology, University of Tuebingen, Tuebingen, Germany (Dr Lang); Chita State Medical Academy, Chita, Siberia, Russian Federation (Dr Govorin); National Research Tomsk State University, Tomsk, Siberia, Russian Federation (Dr Bokhan); Scientific Research Institute of Physiology and Basic Medicine, Siberian Branch of RAMSc, Novosibirsk, Siberia, Russian Federation (Dr Aftanas)
| | - Evgenia G Boyarko
- Mental Health Research Institute, SiberianBranch of RAMSc, Tomsk, Siberia, Russian Federation (Drs Fedorenko, Toshchakova, Boyarko, Semke, Bokhan, and Ivanova); National Research Tomsk Polytechnic University, Tomsk, Siberia, Russian Federation (Drs Fedorenko and Ivanova); Department of Pharmacy, University of Groningen, Groningen, The Netherlands (Dr Loonen); Mental Health Institute Westelijk Noord-Brabant, Halsteren, The Netherlands (Dr Loonen); Department of Physiology, University of Tuebingen, Tuebingen, Germany (Dr Lang); Chita State Medical Academy, Chita, Siberia, Russian Federation (Dr Govorin); National Research Tomsk State University, Tomsk, Siberia, Russian Federation (Dr Bokhan); Scientific Research Institute of Physiology and Basic Medicine, Siberian Branch of RAMSc, Novosibirsk, Siberia, Russian Federation (Dr Aftanas)
| | - Arkadiy V Semke
- Mental Health Research Institute, SiberianBranch of RAMSc, Tomsk, Siberia, Russian Federation (Drs Fedorenko, Toshchakova, Boyarko, Semke, Bokhan, and Ivanova); National Research Tomsk Polytechnic University, Tomsk, Siberia, Russian Federation (Drs Fedorenko and Ivanova); Department of Pharmacy, University of Groningen, Groningen, The Netherlands (Dr Loonen); Mental Health Institute Westelijk Noord-Brabant, Halsteren, The Netherlands (Dr Loonen); Department of Physiology, University of Tuebingen, Tuebingen, Germany (Dr Lang); Chita State Medical Academy, Chita, Siberia, Russian Federation (Dr Govorin); National Research Tomsk State University, Tomsk, Siberia, Russian Federation (Dr Bokhan); Scientific Research Institute of Physiology and Basic Medicine, Siberian Branch of RAMSc, Novosibirsk, Siberia, Russian Federation (Dr Aftanas)
| | - Nikolay A Bokhan
- Mental Health Research Institute, SiberianBranch of RAMSc, Tomsk, Siberia, Russian Federation (Drs Fedorenko, Toshchakova, Boyarko, Semke, Bokhan, and Ivanova); National Research Tomsk Polytechnic University, Tomsk, Siberia, Russian Federation (Drs Fedorenko and Ivanova); Department of Pharmacy, University of Groningen, Groningen, The Netherlands (Dr Loonen); Mental Health Institute Westelijk Noord-Brabant, Halsteren, The Netherlands (Dr Loonen); Department of Physiology, University of Tuebingen, Tuebingen, Germany (Dr Lang); Chita State Medical Academy, Chita, Siberia, Russian Federation (Dr Govorin); National Research Tomsk State University, Tomsk, Siberia, Russian Federation (Dr Bokhan); Scientific Research Institute of Physiology and Basic Medicine, Siberian Branch of RAMSc, Novosibirsk, Siberia, Russian Federation (Dr Aftanas)
| | - Nikolay V Govorin
- Mental Health Research Institute, SiberianBranch of RAMSc, Tomsk, Siberia, Russian Federation (Drs Fedorenko, Toshchakova, Boyarko, Semke, Bokhan, and Ivanova); National Research Tomsk Polytechnic University, Tomsk, Siberia, Russian Federation (Drs Fedorenko and Ivanova); Department of Pharmacy, University of Groningen, Groningen, The Netherlands (Dr Loonen); Mental Health Institute Westelijk Noord-Brabant, Halsteren, The Netherlands (Dr Loonen); Department of Physiology, University of Tuebingen, Tuebingen, Germany (Dr Lang); Chita State Medical Academy, Chita, Siberia, Russian Federation (Dr Govorin); National Research Tomsk State University, Tomsk, Siberia, Russian Federation (Dr Bokhan); Scientific Research Institute of Physiology and Basic Medicine, Siberian Branch of RAMSc, Novosibirsk, Siberia, Russian Federation (Dr Aftanas)
| | - Lyubomir I Aftanas
- Mental Health Research Institute, SiberianBranch of RAMSc, Tomsk, Siberia, Russian Federation (Drs Fedorenko, Toshchakova, Boyarko, Semke, Bokhan, and Ivanova); National Research Tomsk Polytechnic University, Tomsk, Siberia, Russian Federation (Drs Fedorenko and Ivanova); Department of Pharmacy, University of Groningen, Groningen, The Netherlands (Dr Loonen); Mental Health Institute Westelijk Noord-Brabant, Halsteren, The Netherlands (Dr Loonen); Department of Physiology, University of Tuebingen, Tuebingen, Germany (Dr Lang); Chita State Medical Academy, Chita, Siberia, Russian Federation (Dr Govorin); National Research Tomsk State University, Tomsk, Siberia, Russian Federation (Dr Bokhan); Scientific Research Institute of Physiology and Basic Medicine, Siberian Branch of RAMSc, Novosibirsk, Siberia, Russian Federation (Dr Aftanas)
| | - Svetlana A Ivanova
- Mental Health Research Institute, SiberianBranch of RAMSc, Tomsk, Siberia, Russian Federation (Drs Fedorenko, Toshchakova, Boyarko, Semke, Bokhan, and Ivanova); National Research Tomsk Polytechnic University, Tomsk, Siberia, Russian Federation (Drs Fedorenko and Ivanova); Department of Pharmacy, University of Groningen, Groningen, The Netherlands (Dr Loonen); Mental Health Institute Westelijk Noord-Brabant, Halsteren, The Netherlands (Dr Loonen); Department of Physiology, University of Tuebingen, Tuebingen, Germany (Dr Lang); Chita State Medical Academy, Chita, Siberia, Russian Federation (Dr Govorin); National Research Tomsk State University, Tomsk, Siberia, Russian Federation (Dr Bokhan); Scientific Research Institute of Physiology and Basic Medicine, Siberian Branch of RAMSc, Novosibirsk, Siberia, Russian Federation (Dr Aftanas)
| |
Collapse
|
36
|
Mishiba T, Tanaka M, Mita N, He X, Sasamoto K, Itohara S, Ohshima T. Cdk5/p35 functions as a crucial regulator of spatial learning and memory. Mol Brain 2014; 7:82. [PMID: 25404232 PMCID: PMC4239319 DOI: 10.1186/s13041-014-0082-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/03/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cyclin-dependent kinase 5 (Cdk5), which is activated by binding to p35 or p39, is involved in synaptic plasticity and affects learning and memory formation. In Cdk5 knockout (KO) mice and p35 KO mice, brain development is severely impaired because neuronal migration is impaired and lamination is disrupted. To avoid these developmental confounders, we generated inducible CreER-p35 conditional (cKO) mice to study the role of Cdk5/p35 in higher brain function. RESULTS CreER-p35 cKO mice exhibited spatial learning and memory impairments and reduced anxiety-like behavior. These phenotypes resulted from a decrease in the dendritic spine density of CA1 pyramidal neurons and defective long-term depression induction in the hippocampus. CONCLUSIONS Taken together, our findings reveal that Cdk5/p35 regulates spatial learning and memory, implicating Cdk5/p35 as a therapeutic target in neurological disorders.
Collapse
Affiliation(s)
- Tomohide Mishiba
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, , Shinjuku-ku, Tokyo, 162-8480, Japan.
| | - Mika Tanaka
- Laboratory for Behavioral Genetics, Brain Science Institute, RIKEN, Saitama, 351-0198, Japan.
| | - Naoki Mita
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, , Shinjuku-ku, Tokyo, 162-8480, Japan.
| | - Xiaojuan He
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, , Shinjuku-ku, Tokyo, 162-8480, Japan.
| | - Kodai Sasamoto
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, , Shinjuku-ku, Tokyo, 162-8480, Japan.
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, Brain Science Institute, RIKEN, Saitama, 351-0198, Japan.
| | - Toshio Ohshima
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, , Shinjuku-ku, Tokyo, 162-8480, Japan.
| |
Collapse
|
37
|
Activity-dependent PI(3,5)P2 synthesis controls AMPA receptor trafficking during synaptic depression. Proc Natl Acad Sci U S A 2014; 111:E4896-905. [PMID: 25355904 DOI: 10.1073/pnas.1411117111] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dynamic regulation of phosphoinositide lipids (PIPs) is crucial for diverse cellular functions, and, in neurons, PIPs regulate membrane trafficking events that control synapse function. Neurons are particularly sensitive to the levels of the low abundant PIP, phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], because mutations in PI(3,5)P2-related genes are implicated in multiple neurological disorders, including epilepsy, severe neuropathy, and neurodegeneration. Despite the importance of PI(3,5)P2 for neural function, surprisingly little is known about this signaling lipid in neurons, or any cell type. Notably, the mammalian homolog of yeast vacuole segregation mutant (Vac14), a scaffold for the PI(3,5)P2 synthesis complex, is concentrated at excitatory synapses, suggesting a potential role for PI(3,5)P2 in controlling synapse function and/or plasticity. PI(3,5)P2 is generated from phosphatidylinositol 3-phosphate (PI3P) by the lipid kinase PI3P 5-kinase (PIKfyve). Here, we present methods to measure and control PI(3,5)P2 synthesis in hippocampal neurons and show that changes in neural activity dynamically regulate the levels of multiple PIPs, with PI(3,5)P2 being among the most dynamic. The levels of PI(3,5)P2 in neurons increased during two distinct forms of synaptic depression, and inhibition of PIKfyve activity prevented or reversed induction of synaptic weakening. Moreover, altering neuronal PI(3,5)P2 levels was sufficient to regulate synaptic strength bidirectionally, with enhanced synaptic function accompanying loss of PI(3,5)P2 and reduced synaptic strength following increased PI(3,5)P2 levels. Finally, inhibiting PI(3,5)P2 synthesis alters endocytosis and recycling of AMPA-type glutamate receptors (AMPARs), implicating PI(3,5)P2 dynamics in AMPAR trafficking. Together, these data identify PI(3,5)P2-dependent signaling as a regulatory pathway that is critical for activity-dependent changes in synapse strength.
Collapse
|
38
|
Yong SM, Lim ML, Low CM, Wong BS. Reduced neuronal signaling in the ageing apolipoprotein-E4 targeted replacement female mice. Sci Rep 2014; 4:6580. [PMID: 25301084 PMCID: PMC4192620 DOI: 10.1038/srep06580] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 09/16/2014] [Indexed: 12/22/2022] Open
Abstract
The effect of ApoE on NMDAR-dependent ERK/CREB signaling is isoform-dependent, and ApoE4 accelerates memory decline in ageing. However, this isoform-dependent function on neuronal signaling during ageing is unclear. In this study, we have examined NMDAR-associated ERK/CREB signal transduction in young and aged huApoE3 and huApoE4 targeted replacement (TR) mice. At 12 weeks huApoE4 mouse brain, increased NR1-S896 phosphorylation was linked to higher protein kinase C (PKC) activation. This up-regulation was accompanied by higher phosphorylation of AMPA GluR1-S831, CaMKII, ERK1/2 and CREB. But at 32 weeks, there was no significant difference between huApoE3 and huApoE4 TR mice on NMDAR-associated ERK/CREB signaling. Interestingly, in 72-week-old huApoE4 TR mice, protein phosphorylation that were increased in younger mice were significantly reduced. Lower NR1-S896 phosphorylation was linked to reduced PKC, GluR1-S831, CaMKII, ERK1/2 and CREB phosphorylation in huApoE4 TR mice as compared to huApoE3 TR mice. Furthermore, we have consistently detected lower ApoE levels in young and aged huApoE4 TR mouse brain, and this was associated with reduced expression of the ApoE receptor, LRP1 and NR2A-Y1246 phosphorylation. These results suggest age-specific, isoform-dependent effects of ApoE on neuronal signaling.
Collapse
Affiliation(s)
- Shan-May Yong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mei-Li Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chian-Ming Low
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Boon-Seng Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
39
|
Sakagami H, Katsumata O, Hara Y, Tamaki H, Fukaya M. Preferential localization of type I phosphatidylinositol 4-phosphate 5-kinase γ at the periactive zone of mouse photoreceptor ribbon synapses. Brain Res 2014; 1586:23-33. [PMID: 25152467 DOI: 10.1016/j.brainres.2014.08.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/12/2014] [Accepted: 08/16/2014] [Indexed: 01/22/2023]
Abstract
Type I phosphatidylinositol 4-phosphate 5 kinase γ (PIP5KIγ) constitutes a major pathway for the generation of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) that regulates a variety of neuronal functions at both presynaptic and postsynaptic compartments. In this study, we examined the expression and localization of PIP5KIγ in the adult mouse retina. RT-PCR analysis revealed that PIP5KIγ_v2 was predominantly expressed in the retina while PIP5KIγ_v3 was also expressed faintly. Immunostaining of the adult mouse retina revealed intense PIP5KIγ-immunoreactivity in the inner and outer plexiform layers in a punctate manner. In the photoreceptor ribbon synapse, PIP5KIγ was highly concentrated at the periactive zone. These findings suggest that PIP5KIγ, especially PIP5KIγ_i2, is localized at the periactive zone, a functionally suitable compartment for the endocytosis of synaptic vesicles in photoreceptor ribbon synapses.
Collapse
Affiliation(s)
- Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan.
| | - Osamu Katsumata
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Yoshinobu Hara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Hideaki Tamaki
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| |
Collapse
|
40
|
Trans-regulation of oligodendrocyte myelination by neurons through small GTPase Arf6-regulated secretion of fibroblast growth factor-2. Nat Commun 2014; 5:4744. [PMID: 25144208 DOI: 10.1038/ncomms5744] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/21/2014] [Indexed: 01/13/2023] Open
Abstract
The small G protein ADP-ribosylation factor 6 (Arf6) plays important roles in a wide variety of membrane dynamics-based cellular events such as neurite outgrowth and spine formation in vitro. However, little is known about physiological function of Arf6 in vivo. Here we generate conditional knockout mice lacking Arf6 in neurons, oligodendrocytes, or both cell lineages, and unexpectedly find that Arf6 expression in neurons, but not in oligodendrocytes, is crucial for oligodendrocyte myelination in the hippocampal fimbria and the corpus callosum during development, and that this is through the regulation of secretion of fibroblast growth factor-2, a guidance factor for migration of oligodendrocyte precursor cells (OPCs). These results suggest that Arf6 in neurons plays an important role in OPC migration through regulation of FGF-2 secretion during neuronal development.
Collapse
|
41
|
Dotti CG, Esteban JA, Ledesma MD. Lipid dynamics at dendritic spines. Front Neuroanat 2014; 8:76. [PMID: 25152717 PMCID: PMC4126552 DOI: 10.3389/fnana.2014.00076] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/21/2014] [Indexed: 11/13/2022] Open
Abstract
Dynamic changes in the structure and composition of the membrane protrusions forming dendritic spines underlie memory and learning processes. In recent years a great effort has been made to characterize in detail the protein machinery that controls spine plasticity. However, we know much less about the involvement of lipids, despite being major membrane components and structure determinants. Moreover, protein complexes that regulate spine plasticity depend on specific interactions with membrane lipids for proper function and accurate intracellular signaling. In this review we gather information available on the lipid composition at dendritic spine membranes and on its dynamics. We pay particular attention to the influence that spine lipid dynamism has on glutamate receptors, which are key regulators of synaptic plasticity.
Collapse
|
42
|
Wright BD, Loo L, Street SE, Ma A, Taylor-Blake B, Stashko MA, Jin J, Janzen WP, Frye SV, Zylka MJ. The lipid kinase PIP5K1C regulates pain signaling and sensitization. Neuron 2014; 82:836-47. [PMID: 24853942 DOI: 10.1016/j.neuron.2014.04.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2014] [Indexed: 02/07/2023]
Abstract
Numerous pain-producing (pronociceptive) receptors signal via phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis. However, it is currently unknown which lipid kinases generate PIP2 in nociceptive dorsal root ganglia (DRG) neurons and if these kinases regulate pronociceptive receptor signaling. Here, we found that phosphatidylinositol 4-phosphate 5 kinase type 1C (PIP5K1C) is expressed at higher levels than any other PIP5K and, based on experiments with Pip5k1c(+/-) mice, generates at least half of all PIP2 in DRG neurons. Additionally, Pip5k1c haploinsufficiency reduces pronociceptive receptor signaling and TRPV1 sensitization in DRG neurons as well as thermal and mechanical hypersensitivity in mouse models of chronic pain. We identified a small molecule inhibitor of PIP5K1C (UNC3230) in a high-throughput screen. UNC3230 lowered PIP2 levels in DRG neurons and attenuated hypersensitivity when administered intrathecally or into the hindpaw. Our studies reveal that PIP5K1C regulates PIP2-dependent nociceptive signaling and suggest that PIP5K1C is a therapeutic target for chronic pain.
Collapse
Affiliation(s)
- Brittany D Wright
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lipin Loo
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah E Street
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Anqi Ma
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bonnie Taylor-Blake
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael A Stashko
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jian Jin
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William P Janzen
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephen V Frye
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark J Zylka
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
43
|
Abstract
Extracellular molecular cues guide migrating growth cones along specific routes during development of axon tracts. Such processes rely on asymmetric elevation of cytosolic Ca(2+) concentrations across the growth cone that mediates its attractive or repulsive turning toward or away from the side with Ca(2+) elevation, respectively. Downstream of these Ca(2+) signals, localized activation of membrane trafficking steers the growth cone bidirectionally, with endocytosis driving repulsion and exocytosis causing attraction. However, it remains unclear how Ca(2+) can differentially regulate these opposite membrane-trafficking events. Here, we show that growth cone turning depends on localized imbalance between exocytosis and endocytosis and identify Ca(2+)-dependent signaling pathways mediating such imbalance. In embryonic chicken dorsal root ganglion neurons, repulsive Ca(2+) signals promote clathrin-mediated endocytosis through a 90 kDa splice variant of phosphatidylinositol-4-phosphate 5-kinase type-1γ (PIPKIγ90). In contrast, attractive Ca(2+) signals facilitate exocytosis but suppress endocytosis via Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and cyclin-dependent kinase 5 (Cdk5) that can inactivate PIPKIγ90. Blocking CaMKII or Cdk5 leads to balanced activation of both exocytosis and endocytosis that causes straight growth cone migration even in the presence of guidance signals, whereas experimentally perturbing the balance restores the growth cone's turning response. Remarkably, the direction of this resumed turning depends on relative activities of exocytosis and endocytosis, but not on the type of guidance signals. Our results suggest that navigating growth cones can be redirected by shifting the imbalance between exocytosis and endocytosis, highlighting the importance of membrane-trafficking imbalance for axon guidance and, possibly, for polarized cell migration in general.
Collapse
|
44
|
Mirante O, Brandalise F, Bohacek J, Mansuy IM. Distinct molecular components for thalamic- and cortical-dependent plasticity in the lateral amygdala. Front Mol Neurosci 2014; 7:62. [PMID: 25071439 PMCID: PMC4080466 DOI: 10.3389/fnmol.2014.00062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/16/2014] [Indexed: 01/05/2023] Open
Abstract
N-methyl-D-aspartate receptor (NMDAR)-dependent long-term depression (LTD) in the lateral nucleus of the amygdala (LA) is a form of synaptic plasticity thought to be a cellular substrate for the extinction of fear memory. The LA receives converging inputs from the sensory thalamus and neocortex that are weakened following fear extinction. Combining field and patch-clamp electrophysiological recordings in mice, we show that paired-pulse low-frequency stimulation can induce a robust LTD at thalamic and cortical inputs to LA, and we identify different underlying molecular components at these pathways. We show that while LTD depends on NMDARs and activation of the protein phosphatases PP2B and PP1 at both pathways, it requires NR2B-containing NMDARs at the thalamic pathway, but NR2C/D-containing NMDARs at the cortical pathway. LTD appears to be induced post-synaptically at the thalamic input but presynaptically at the cortical input, since post-synaptic calcium chelation and NMDAR blockade prevent thalamic but not cortical LTD. These results highlight distinct molecular features of LTD in LA that may be relevant for traumatic memory and its erasure, and for pathologies such as post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Osvaldo Mirante
- Brain Research Institute, Medical Faculty, University Zürich Zürich, Switzerland ; Department of Health Science and Technology, Swiss Federal Institute of Technology Zürich, Switzerland
| | - Federico Brandalise
- Brain Research Institute, Medical Faculty, University Zürich Zürich, Switzerland
| | - Johannes Bohacek
- Brain Research Institute, Medical Faculty, University Zürich Zürich, Switzerland ; Department of Health Science and Technology, Swiss Federal Institute of Technology Zürich, Switzerland
| | - Isabelle M Mansuy
- Brain Research Institute, Medical Faculty, University Zürich Zürich, Switzerland ; Department of Health Science and Technology, Swiss Federal Institute of Technology Zürich, Switzerland
| |
Collapse
|
45
|
Ueda Y. The Role of Phosphoinositides in Synapse Function. Mol Neurobiol 2014; 50:821-38. [DOI: 10.1007/s12035-014-8768-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 06/01/2014] [Indexed: 11/30/2022]
|
46
|
Pochwat B, Pałucha-Poniewiera A, Szewczyk B, Pilc A, Nowak G. NMDA antagonists under investigation for the treatment of major depressive disorder. Expert Opin Investig Drugs 2014; 23:1181-92. [PMID: 24818801 DOI: 10.1517/13543784.2014.918951] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Mood disorders, including depression, are becoming increasingly prevalent in the developed world. Furthermore, treatment of depression therapeutics, mainly influencing the serotonergic and adrenergic systems, is considered insufficient. The original NMDA-glutamate hypothesis mechanism of antidepressant action was first proposed ∼ 20 years ago. Since then, a number of preclinical and clinical studies have examined its rationale. AREAS COVERED This review highlights the recent clinical evidence for the use of functional NMDA receptor antagonists as antidepressants. Furthermore, the authors present the mechanism(s) of antidepressant action derived mostly from preclinical paradigms. EXPERT OPINION Currently, clinical studies mostly use ketamine (a noncompetitive high-potency NMDA antagonist) as an agent for rapid relief of depressive symptoms. However, due to the ketamine-induced psychotomimetic effects, new NMDA receptor antagonists (modulators) are continuously being introduced for rapid antidepressant action, especially for use in treatment-resistant patients. Recent clinical reports for the use of CP-101,606, MK-0657 (selective GluN2B subunit NMDA receptor antagonists), GLYX-13 and d-cycloserine (glycine site partial agonists) are optimistic but await further support.
Collapse
Affiliation(s)
- Bartłomiej Pochwat
- Institute of Pharmacology, Polish Academy of Sciences , Smętna 12, PL 31-343 Kraków , Poland
| | | | | | | | | |
Collapse
|
47
|
Wang RR, Jin JH, Womack AW, Lyu D, Kokane SS, Tang N, Zou X, Lin Q, Chen J. Neonatal ketamine exposure causes impairment of long-term synaptic plasticity in the anterior cingulate cortex of rats. Neuroscience 2014; 268:309-17. [PMID: 24674848 DOI: 10.1016/j.neuroscience.2014.03.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/14/2014] [Accepted: 03/14/2014] [Indexed: 01/27/2023]
Abstract
Ketamine, a dissociative anesthetic most commonly used in many pediatric procedures, has been reported in many animal studies to cause widespread neuroapoptosis in the neonatal brain after exposure in high doses and/or for a prolonged period. This neurodegenerative change occurs most severely in the forebrain including the anterior cingulate cortex (ACC) that is an important brain structure for mediating a variety of cognitive functions. However, it is still unknown whether such apoptotic neurodegeneration early in life would subsequently impair the synaptic plasticity of the ACC later in life. In this study, we performed whole-cell patch-clamp recordings from the ACC brain slices of young adult rats to examine any alterations in long-term synaptic plasticity caused by neonatal ketamine exposure. Ketamine was administered at postnatal day 4-7 (subcutaneous injections, 20mg/kg given six times, once every 2h). At 3-4weeks of age, long-term potentiation (LTP) was induced and recorded by monitoring excitatory postsynaptic currents from ACC slices. We found that the induction of LTP in the ACC was significantly reduced when compared to the control group. The LTP impairment was accompanied by an increase in the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated excitatory synaptic transmission and a decrease in GABA inhibitory synaptic transmission in neurons of the ACC. Thus, our present findings show that neonatal ketamine exposure causes a significant LTP impairment in the ACC. We suggest that the imbalanced synaptic transmission is likely to contribute to ketamine-induced LTP impairment in the ACC.
Collapse
Affiliation(s)
- R-R Wang
- Institute for Biomedical Sciences of Pain, Capital Medical University, Beijing, China; Department of Psychology, College of Science, The University of Texas at Arlington, Arlington, TX, USA; Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - J-H Jin
- Department of Psychology, College of Science, The University of Texas at Arlington, Arlington, TX, USA
| | - A W Womack
- Department of Psychology, College of Science, The University of Texas at Arlington, Arlington, TX, USA
| | - D Lyu
- Department of Psychology, College of Science, The University of Texas at Arlington, Arlington, TX, USA
| | - S S Kokane
- Department of Psychology, College of Science, The University of Texas at Arlington, Arlington, TX, USA
| | - N Tang
- Department of Psychology, College of Science, The University of Texas at Arlington, Arlington, TX, USA
| | - X Zou
- Department of Psychology, College of Science, The University of Texas at Arlington, Arlington, TX, USA
| | - Q Lin
- Department of Psychology, College of Science, The University of Texas at Arlington, Arlington, TX, USA.
| | - J Chen
- Institute for Biomedical Sciences of Pain, Capital Medical University, Beijing, China; Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
48
|
Dickson EJ, Falkenburger BH, Hille B. Quantitative properties and receptor reserve of the IP(3) and calcium branch of G(q)-coupled receptor signaling. ACTA ACUST UNITED AC 2014; 141:521-35. [PMID: 23630337 PMCID: PMC3639578 DOI: 10.1085/jgp.201210886] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Gq-coupled plasma membrane receptors activate phospholipase C (PLC), which hydrolyzes membrane phosphatidylinositol 4,5-bisphosphate (PIP2) into the second messengers inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). This leads to calcium release, protein kinase C (PKC) activation, and sometimes PIP2 depletion. To understand mechanisms governing these diverging signals and to determine which of these signals is responsible for the inhibition of KCNQ2/3 (KV7.2/7.3) potassium channels, we monitored levels of PIP2, IP3, and calcium in single living cells. DAG and PKC are monitored in our companion paper (Falkenburger et al. 2013. J. Gen. Physiol.http://dx.doi.org/10.1085/jgp.201210887). The results extend our previous kinetic model of Gq-coupled receptor signaling to IP3 and calcium. We find that activation of low-abundance endogenous P2Y2 receptors by a saturating concentration of uridine 5′-triphosphate (UTP; 100 µM) leads to calcium release but not to PIP2 depletion. Activation of overexpressed M1 muscarinic receptors by 10 µM Oxo-M leads to a similar calcium release but also depletes PIP2. KCNQ2/3 channels are inhibited by Oxo-M (by 85%), but not by UTP (<1%). These differences can be attributed purely to differences in receptor abundance. Full amplitude calcium responses can be elicited even after PIP2 was partially depleted by overexpressed inducible phosphatidylinositol 5-phosphatases, suggesting that very low amounts of IP3 suffice to elicit a full calcium release. Hence, weak PLC activation can elicit robust calcium signals without net PIP2 depletion or KCNQ2/3 channel inhibition.
Collapse
Affiliation(s)
- Eamonn J Dickson
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
49
|
Hardt O, Nader K, Wang YT. GluA2-dependent AMPA receptor endocytosis and the decay of early and late long-term potentiation: possible mechanisms for forgetting of short- and long-term memories. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130141. [PMID: 24298143 DOI: 10.1098/rstb.2013.0141] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The molecular processes involved in establishing long-term potentiation (LTP) have been characterized well, but the decay of early and late LTP (E-LTP and L-LTP) is poorly understood. We review recent advances in describing the mechanisms involved in maintaining LTP and homeostatic plasticity. We discuss how these phenomena could relate to processes that might underpin the loss of synaptic potentiation over time, and how they might contribute to the forgetting of short-term and long-term memories. We propose that homeostatic downscaling mediates the loss of E-LTP, and that metaplastic parameters determine the decay rate of L-LTP, while both processes require the activity-dependent removal of postsynaptic GluA2-containing AMPA receptors.
Collapse
Affiliation(s)
- Oliver Hardt
- Centre for Cognitive and Neural Systems, University of Edinburgh, , Edinburgh, UK
| | | | | |
Collapse
|
50
|
Matsuda S, Kakegawa W, Budisantoso T, Nomura T, Kohda K, Yuzaki M. Stargazin regulates AMPA receptor trafficking through adaptor protein complexes during long-term depression. Nat Commun 2013; 4:2759. [DOI: 10.1038/ncomms3759] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 10/14/2013] [Indexed: 12/25/2022] Open
|