1
|
The presynaptic glycine transporter GlyT2 is regulated by the Hedgehog pathway in vitro and in vivo. Commun Biol 2021; 4:1197. [PMID: 34663888 PMCID: PMC8523746 DOI: 10.1038/s42003-021-02718-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/22/2021] [Indexed: 01/20/2023] Open
Abstract
The identity of a glycinergic synapse is maintained presynaptically by the activity of a surface glycine transporter, GlyT2, which recaptures glycine back to presynaptic terminals to preserve vesicular glycine content. GlyT2 loss-of-function mutations cause Hyperekplexia, a rare neurological disease in which loss of glycinergic neurotransmission causes generalized stiffness and strong motor alterations. However, the molecular underpinnings controlling GlyT2 activity remain poorly understood. In this work, we identify the Hedgehog pathway as a robust controller of GlyT2 expression and transport activity. Modulating the activation state of the Hedgehog pathway in vitro in rodent primary spinal cord neurons or in vivo in zebrafish embryos induced a selective control in GlyT2 expression, regulating GlyT2 transport activity. Our results indicate that activation of Hedgehog reduces GlyT2 expression by increasing its ubiquitination and degradation. This work describes a new molecular link between the Hedgehog signaling pathway and presynaptic glycine availability. By modulating the activation state of the Hedgehog pathway, de la Rocha-Muñoz et al demonstrate that Hedgehog signaling controls the expression and transport activity of the neuronal glycine transporter GlyT2. This work begins to reveal a potential link between the Hedgehog signaling pathway and presynaptic glycine availability.
Collapse
|
2
|
Hill SA, Fu M, Garcia ADR. Sonic hedgehog signaling in astrocytes. Cell Mol Life Sci 2021; 78:1393-1403. [PMID: 33079226 PMCID: PMC7904711 DOI: 10.1007/s00018-020-03668-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/02/2020] [Accepted: 10/05/2020] [Indexed: 01/12/2023]
Abstract
Astrocytes are complex cells that perform a broad array of essential functions in the healthy and injured nervous system. The recognition that these cells are integral components of various processes, including synapse formation, modulation of synaptic activity, and response to injury, underscores the need to identify the molecular signaling programs orchestrating these diverse functional properties. Emerging studies have identified the Sonic hedgehog (Shh) signaling pathway as an essential regulator of the molecular identity and functional properties of astrocytes. Well established as a powerful regulator of diverse neurodevelopmental processes in the embryonic nervous system, its functional significance in astrocytes is only beginning to be revealed. Notably, Shh signaling is active only in discrete subpopulations of astrocytes distributed throughout the brain, a feature that has potential to yield novel insights into functional specialization of astrocytes. Here, we discuss Shh signaling and emerging data that point to essential roles for this pleiotropic signaling pathway in regulating various functional properties of astrocytes in the healthy and injured brain.
Collapse
Affiliation(s)
- Steven A Hill
- Department of Biology, Drexel University, Philadelphia, PA, 19104, USA
| | - Marissa Fu
- Department of Biology, Drexel University, Philadelphia, PA, 19104, USA
| | - A Denise R Garcia
- Department of Biology, Drexel University, Philadelphia, PA, 19104, USA.
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| |
Collapse
|
3
|
Husson T, Duboc JB, Quenez O, Charbonnier C, Rotharmel M, Cuenca M, Jegouzo X, Richard AC, Frebourg T, Deleuze JF, Boland A, Genin E, Debette S, Tzourio C, Campion D, Nicolas G, Guillin O, The FREX Consortium. Identification of potential genetic risk factors for bipolar disorder by whole-exome sequencing. Transl Psychiatry 2018; 8:268. [PMID: 30518751 PMCID: PMC6281607 DOI: 10.1038/s41398-018-0291-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 09/25/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022] Open
Abstract
This study aims at assessing the burden of rare (minor allele frequency < 1%) predicted damaging variants in the whole exome of 92 bipolar I disorder (BD) patients and 1051 controls of French ancestry. Patients exhibiting an extreme phenotype (earlier onset and family history of mood disorder) were preferentially included to increase the power to detect an association. A collapsing strategy was used to test the overall burden of rare variants in cases versus controls at the gene level. Only protein-truncating and predicted damaging missense variants were included in the analysis. Thirteen genes exhibited p values exceeding 10-3 and could be considered as potential risk factors for BD. Furthermore, the validity of the association was supported when the Exome Aggregation Consortium database non-Finnish European population was used as controls for eight of them. Their gene products are involved in various cerebral processes, some of which were previously implicated in BD and belong to pathways implicated in the therapeutic effect of lithium, the main mood stabilizer. However, exome-wide threshold for association study was not reached, emphasizing that larger samples are needed.
Collapse
Affiliation(s)
- Thomas Husson
- 0000 0004 1765 2814grid.477068.aDepartment of Research, Centre hospitalier du Rouvray, Sotteville-lès-Rouen, France ,grid.41724.34Department of Genetics, Normandy Centre for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, F 76000 Rouen, France
| | - Jean-Baptiste Duboc
- 0000 0004 1765 2814grid.477068.aDepartment of Research, Centre hospitalier du Rouvray, Sotteville-lès-Rouen, France
| | - Olivier Quenez
- grid.41724.34Department of Genetics, Normandy Centre for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, F 76000 Rouen, France
| | - Camille Charbonnier
- grid.41724.34Department of Genetics, Normandy Centre for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, F 76000 Rouen, France
| | - Maud Rotharmel
- 0000 0004 1765 2814grid.477068.aDepartment of Research, Centre hospitalier du Rouvray, Sotteville-lès-Rouen, France ,grid.41724.34Department of Genetics, Normandy Centre for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, F 76000 Rouen, France
| | - Macarena Cuenca
- 0000 0004 1765 2814grid.477068.aDepartment of Research, Centre hospitalier du Rouvray, Sotteville-lès-Rouen, France
| | - Xavier Jegouzo
- 0000 0004 1765 2814grid.477068.aDepartment of Research, Centre hospitalier du Rouvray, Sotteville-lès-Rouen, France
| | - Anne-Claire Richard
- grid.41724.34Department of Genetics, Normandy Centre for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, F 76000 Rouen, France
| | - Thierry Frebourg
- grid.41724.34Department of Genetics, Normandy Centre for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, F 76000 Rouen, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, Institut de Génomique, CEA, Evry, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine, Institut de Génomique, CEA, Evry, France
| | - Emmanuelle Genin
- 0000 0004 0472 3249grid.411766.3Inserm UMR-1078, CHRU Brest, Univ. Brest, Brest, France
| | - Stéphanie Debette
- 0000 0001 2106 639Xgrid.412041.2Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR1219, F-33076 Bordeaux, France
| | - Christophe Tzourio
- 0000 0001 2106 639Xgrid.412041.2Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR1219, F-33076 Bordeaux, France
| | - Dominique Campion
- 0000 0004 1765 2814grid.477068.aDepartment of Research, Centre hospitalier du Rouvray, Sotteville-lès-Rouen, France ,grid.41724.34Department of Genetics, Normandy Centre for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, F 76000 Rouen, France
| | - Gaël Nicolas
- grid.41724.34Department of Genetics, Normandy Centre for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, F 76000 Rouen, France
| | - Olivier Guillin
- Department of Research, Centre hospitalier du Rouvray, Sotteville-lès-Rouen, France. .,Department of Genetics, Normandy Centre for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, F 76000, Rouen, France.
| | | |
Collapse
|
4
|
He W, Tian X, Lv M, Wang H. Liraglutide Protects Neurite Outgrowth of Cortical Neurons Under Oxidative Stress though Activating the Wnt Pathway. J Stroke Cerebrovasc Dis 2018; 27:2696-2702. [PMID: 30042033 DOI: 10.1016/j.jstrokecerebrovasdis.2018.05.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/20/2018] [Accepted: 05/25/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Neurogenesis including neurite outgrowth is important for brain plasticity under physiological conditions and in brain repair after injury. Liraglutide has been found to have neuroprotective action in the risk of central nervous system disease. However, the effect and the potential mechanism of liraglutide-induced neurite outgrowth in primary cortical neurons under oxidative stress remain poorly documented. METHODS In the text, H2O2 was used to mimic ischemia injury in primary cortical neurons. The viability and apoptosis of cell was assessed by Cell Counting Kit-8 and Hoechst 33342. Immunofluorescence method was used to examine the effect of liraglutide on neurite outgrowth in cortical neuron under H2O2 condition. Then, the potential mechanisms involving the Wnt pathway were investigated. The expression of β-catenin, c-myc, and cyclin D1 was determined using quantitative real-time polymerase chain reaction and Western blot. RESULTS Liraglutide significantly increased the viability and alleviated the apoptosis rate of cortical neurons induced by H2O2. Next, liraglutide promoted neurite outgrowth, which could be partially inhibited by the Wnt pathway inhibitor Xav939. Besides, liraglutide induced an increase of β-catenin, c-myc, and cyclin D1 levels, which could also be blocked in the presence of Xav939. CONCLUSIONS These results illustrate that liraglutide exerts neurotrophin-like activity in cortical neurons under oxidative stress condition, partly through activating the Wnt pathway.
Collapse
Affiliation(s)
- Weiliang He
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, PR China
| | - Xiaochao Tian
- Department of Cardiology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Mimi Lv
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, PR China
| | - Hebo Wang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, PR China.
| |
Collapse
|
5
|
Whole exome sequencing reveals inherited and de novo variants in autism spectrum disorder: a trio study from Saudi families. Sci Rep 2017; 7:5679. [PMID: 28720891 PMCID: PMC5515956 DOI: 10.1038/s41598-017-06033-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with genetic and clinical heterogeneity. The interplay of de novo and inherited rare variants has been suspected in the development of ASD. Here, we applied whole exome sequencing (WES) on 19 trios from singleton Saudi families with ASD. We developed an analysis pipeline that allows capturing both de novo and inherited rare variants predicted to be deleterious. A total of 47 unique rare variants were detected in 17 trios including 38 which are newly discovered. The majority were either autosomal recessive or X-linked. Our pipeline uncovered variants in 15 ASD-candidate genes, including 5 (GLT8D1, HTATSF1, OR6C65, ITIH6 and DDX26B) that have not been reported in any human condition. The remaining variants occurred in genes formerly associated with ASD or other neurological disorders. Examples include SUMF1, KDM5B and MXRA5 (Known-ASD genes), PRODH2 and KCTD21 (implicated in schizophrenia), as well as USP9X and SMS (implicated in intellectual disability). Consistent with expectation and previous studies, most of the genes implicated herein are enriched for biological processes pertaining to neuronal function. Our findings underscore the private and heterogeneous nature of the genetic architecture of ASD even in a population with high consanguinity rates.
Collapse
|
6
|
He W, Cui L, Zhang C, Zhang X, He J, Xie Y, Chen Y. Sonic hedgehog promotes neurite outgrowth of cortical neurons under oxidative stress: Involving of mitochondria and energy metabolism. Exp Cell Res 2017; 350:83-90. [DOI: 10.1016/j.yexcr.2016.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/06/2016] [Accepted: 11/12/2016] [Indexed: 12/29/2022]
|
7
|
Wu C, Cheng J, Hu S, Deng R, Muangu YW, Shi L, Wu K, Zhang P, Chang W, Wang G, Tao K. Reduced proliferation and increased apoptosis of the SGC‑7901 gastric cancer cell line on exposure to GDC‑0449. Mol Med Rep 2015; 13:1434-40. [PMID: 26676867 DOI: 10.3892/mmr.2015.4677] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 11/19/2015] [Indexed: 11/06/2022] Open
Abstract
The sonic hedgehog (Shh) pathway is known to be vital in embryonic development and cancer propagation due to its irreplaceable role in cell proliferation and differentiation. GDC‑0449, a basal cell skin cancer target drug approved by the Food and Drugs Administration, is a smoothened (Smo)-specific antagonist. Although it has been clinically verified as a valid drug for the treatment of skin and pancreatic cancer, the application of GDC‑0449 in gastric cancer requires further investigation. In the present study, high-glucose Dulbecco's modified Eagle's medium with 10% fetal bovine serum was used for routine SGC‑7901 cell line culture. A Cell Counting Kit‑8 assay was employed for determination of the reproductive rate of the cells. Flow cytometry was performed to determine the apoptosis status of the SGC‑7901 cell line through Q4 analysis. Reverse transcription-quantitative polymerase chain reaction and Western blot analyses were used as target molecule detection vehicles. As expected, GDC‑0449 reduced the expression levels of Shh‑associated molecules, including Smo and gli1, compared with the blank group. The rate of cell proliferation was markedly limited and was accompanied by an increase in the apoptotic rate following GDC‑0449 exposure. In addition, further investigations confirmed B cell lymphoma‑2 (Bcl‑2) as the downstream molecular mechanism of GDC‑0449 efficacy. Of note, representatives of the cancer stem cell (CSC) surface marker, CD44 and CD133, demonstrated a similar trend to the Smo restriction observed. By repressing the expression of Bcl‑2, GDC‑0449 inhibited the normal proliferation of SGC‑7901 cells, and accelerated the apoptotic rate of the cells. It may also alter CSC properties due to the reduction in the expression of surface markers.
Collapse
Affiliation(s)
- Chuanqing Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Ji Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shaobo Hu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Rui Deng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yamba Willy Muangu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Liang Shi
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Ke Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Weilong Chang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
8
|
Narayanan B, Ethridge LE, O'Neil K, Dunn S, Mathew I, Tandon N, Calhoun VD, Ruaño G, Kocherla M, Windemuth A, Clementz BA, Tamminga CA, Sweeney JA, Keshavan MS, Pearlson GD. Genetic Sources of Subcomponents of Event-Related Potential in the Dimension of Psychosis Analyzed From the B-SNIP Study. Am J Psychiatry 2015; 172:466-78. [PMID: 25615564 PMCID: PMC4455958 DOI: 10.1176/appi.ajp.2014.13101411] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Biological risk factors underlying psychosis are poorly understood. Biological underpinnings of the dimension of psychosis can be derived using genetic associations with intermediate phenotypes such as subcomponents of auditory event-related potentials (ERPs). Various ERP subcomponent abnormalities in schizophrenia and psychotic bipolar disorder are heritable and are expressed in unaffected relatives, although studies investigating genetic contributions to ERP abnormalities are limited. The authors used a novel parallel independent component analysis (para-ICA) to determine which empirically derived gene clusters are associated with data-driven ERP subcomponents, assuming a complex etiology underlying psychosis. METHOD The authors examined the multivariate polygenic association of ERP subcomponents from 64-channel auditory oddball data in 144 individuals with schizophrenia, 210 psychotic bipolar disorder probands, and 95 healthy individuals from the multisite Bipolar-Schizophrenia Network on Intermediate Phenotypes study. Data were reduced by principal components analysis to two target and one standard ERP waveforms. Multivariate association of compressed ERP waveforms with a set of 20,329 single-nucleotide polymorphisms (SNPs) (reduced from a 1-million-SNP array) was examined using para-ICA. Genes associated with SNPs were further examined using pathway analysis tools. RESULTS Para-ICA identified four ERP components that were significantly correlated with three genetic components. Enrichment analysis revealed complement immune response pathway and multiple processes that significantly mediate ERP abnormalities in psychosis, including synaptic cell adhesion, axon guidance, and neurogenesis. CONCLUSIONS This study identified three genetic components comprising multiple genes mediating ERP subcomponent abnormalities in schizophrenia and psychotic bipolar disorder. The data suggest a possible polygenic structure comprising genes influencing key neurodevelopmental processes, neural circuitry, and brain function mediating biological pathways plausibly associated with psychosis.
Collapse
Affiliation(s)
- Balaji Narayanan
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT-06106
| | - Lauren E. Ethridge
- Department of Psychiatry, UT Southwestern Medical School, Dallas, TX-75390
| | - Kasey O'Neil
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT-06106
| | - Sabra Dunn
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT-06106
| | - Ian Mathew
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA-02215 and
| | - Neeraj Tandon
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA-02215 and
| | - Vince D. Calhoun
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, 87131,The Mind Research Network, Albuquerque, NM-87106,Departments of Psychiatry & Neurobiology, Yale University School of Medicine, New Haven, CT-06520
| | - Gualberto Ruaño
- Genetics Research Center, Hartford Hospital, Hartford, CT-06106,Genomas Inc, Hartford, CT-06106
| | - Mohan Kocherla
- Genetics Research Center, Hartford Hospital, Hartford, CT-06106,Genomas Inc, Hartford, CT-06106
| | | | | | - Carol A. Tamminga
- Department of Psychiatry, UT Southwestern Medical School, Dallas, TX-75390
| | - John A. Sweeney
- Department of Psychiatry, UT Southwestern Medical School, Dallas, TX-75390
| | - Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA-02215 and
| | - Godfrey D. Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT-06106,Departments of Psychiatry & Neurobiology, Yale University School of Medicine, New Haven, CT-06520
| |
Collapse
|
9
|
Cooperative integration between HEDGEHOG-GLI signalling and other oncogenic pathways: implications for cancer therapy. Expert Rev Mol Med 2015; 17:e5. [PMID: 25660620 PMCID: PMC4836208 DOI: 10.1017/erm.2015.3] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The HEDGEHOG-GLI (HH-GLI) signalling is a key pathway critical in embryonic development, stem cell biology and tissue homeostasis. In recent years, aberrant activation of HH-GLI signalling has been linked to several types of cancer, including those of the skin, brain, lungs, prostate, gastrointestinal tract and blood. HH-GLI signalling is initiated by binding of HH ligands to the transmembrane receptor PATCHED and is mediated by transcriptional effectors that belong to the GLI family, whose activity is finely tuned by a number of molecular interactions and post-translation modifications. Several reports suggest that the activity of the GLI proteins is regulated by several proliferative and oncogenic inputs, in addition or independent of upstream HH signalling. The identification of this complex crosstalk and the understanding of how the major oncogenic signalling pathways interact in cancer is a crucial step towards the establishment of efficient targeted combinatorial treatments. Here we review recent findings on the cooperative integration of HH-GLI signalling with the major oncogenic inputs and we discuss how these cues modulate the activity of the GLI proteins in cancer. We then summarise the latest advances on SMO and GLI inhibitors and alternative approaches to attenuate HH signalling through rational combinatorial therapies.
Collapse
|
10
|
Roberg-Larsen H, Strand MF, Krauss S, Wilson SR. Metabolites in vertebrate Hedgehog signaling. Biochem Biophys Res Commun 2014; 446:669-74. [DOI: 10.1016/j.bbrc.2014.01.087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 01/18/2014] [Indexed: 12/26/2022]
|
11
|
Abstract
Corticostriatal projections are essential components of forebrain circuits and are widely involved in motivated behaviour. These axonal projections are formed by two distinct classes of cortical neurons, intratelencephalic (IT) and pyramidal tract (PT) neurons. Convergent evidence points to IT versus PT differentiation of the corticostriatal system at all levels of functional organization, from cellular signalling mechanisms to circuit topology. There is also growing evidence for IT/PT imbalance as an aetiological factor in neurodevelopmental, neuropsychiatric and movement disorders - autism, amyotrophic lateral sclerosis, obsessive-compulsive disorder, schizophrenia, Huntington's and Parkinson's diseases and major depression are highlighted here.
Collapse
Affiliation(s)
- Gordon M. G. Shepherd
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
| |
Collapse
|