1
|
Wang J, Hao Y, Ma D, Feng L, Yang F, An P, Su X, Feng J. Neurotoxicity mechanisms and clinical implications of six common recreational drugs. Front Pharmacol 2025; 16:1526270. [PMID: 40034818 PMCID: PMC11873747 DOI: 10.3389/fphar.2025.1526270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
The recreational abuse of addictive drugs poses considerable challenges to public health, leading to widespread neurotoxicity and neurological dysfunction. This review comprehensively examines the neurotoxic mechanisms, clinical manifestations, and treatment strategies associated with six commonly abused substances: methamphetamine, cocaine, synthetic cathinones, ketamine, nitrous oxide and heroin. Despite their diverse pharmacological properties, these drugs converge on shared neurotoxic pathways, including oxidative stress, mitochondrial dysfunction, excitotoxicity, and neuroinflammation. Psychostimulants, such as methamphetamine, cocaine and synthetic cathinones, disrupt monoaminergic neurotransmission, causing cognitive impairment, psychiatric disturbances, and neurovascular damage. Dissociative anesthetics, including ketamine and nitrous oxide, impair glutamatergic transmission and mitochondrial function, thereby exacerbating excitotoxicity and neuronal apoptosis. Opioids, such as heroin, primarily target the brain's reward system and induce oxidative stress, neuroinflammation, and cerebrovascular complications. Treatment strategies remain limited, focusing on symptomatic management, neuroprotective interventions, and behavioral therapies. Emerging approaches, such as antioxidants, NMDA receptor modulators, and cognitive rehabilitation, show promise but require further validation. By highlighting the underlying mechanisms and therapeutic challenges, this review provides a foundation for developing targeted interventions and advancing research on drug-induced neurotoxicity.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yulei Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Di Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Liangshu Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Feng Yang
- Department of Neurology, Jining First People’s Hospital, Jining, Shandong, China
| | - Pingxu An
- Department of Oncological Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xingqi Su
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Ramos A, Ishizuka K, Hayashida A, Namkung H, Hayes LN, Srivastava R, Zhang M, Kariya T, Elkins N, Palen T, Carloni E, Tsujimura T, Calva C, Ikemoto S, Rais R, Slusher BS, Niwa M, Saito A, Saitoh T, Takimoto E, Sawa A. Nuclear GAPDH in cortical microglia mediates cellular stress-induced cognitive inflexibility. Mol Psychiatry 2024; 29:2967-2978. [PMID: 38615102 PMCID: PMC11449656 DOI: 10.1038/s41380-024-02553-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/12/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
We report a mechanism that underlies stress-induced cognitive inflexibility at the molecular level. In a mouse model under subacute cellular stress in which deficits in rule shifting tasks were elicited, the nuclear glyceraldehyde dehydrogenase (N-GAPDH) cascade was activated specifically in microglia in the prelimbic cortex. The cognitive deficits were normalized with a pharmacological intervention with a compound (the RR compound) that selectively blocked the initiation of N-GAPDH cascade without affecting glycolytic activity. The normalization was also observed with a microglia-specific genetic intervention targeting the N-GAPDH cascade. At the mechanistic levels, the microglial secretion of High-Mobility Group Box (HMGB), which is known to bind with and regulate the NMDA-type glutamate receptors, was elevated. Consequently, the hyperactivation of the prelimbic layer 5 excitatory neurons, a neural substrate for cognitive inflexibility, was also observed. The upregulation of the microglial HMGB signaling and neuronal hyperactivation were normalized by the pharmacological and microglia-specific genetic interventions. Taken together, we show a pivotal role of cortical microglia and microglia-neuron interaction in stress-induced cognitive inflexibility. We underscore the N-GAPDH cascade in microglia, which causally mediates stress-induced cognitive alteration.
Collapse
Affiliation(s)
- Adriana Ramos
- Departments of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Koko Ishizuka
- Departments of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arisa Hayashida
- Departments of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- International Collaborative Research Administration, Juntendo University, Tokyo, Japan
| | - Ho Namkung
- Departments of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lindsay N Hayes
- Departments of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rupali Srivastava
- Departments of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Manling Zhang
- Departments of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Taro Kariya
- Departments of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Noah Elkins
- Departments of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Trexy Palen
- Departments of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elisa Carloni
- Departments of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tsuyoshi Tsujimura
- Departments of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Coleman Calva
- Neurocircuitry of Motivation Section, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Satoshi Ikemoto
- Neurocircuitry of Motivation Section, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Rana Rais
- Departments of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Barbara S Slusher
- Departments of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Departments of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Departments of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Departments of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Minae Niwa
- Departments of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Atsushi Saito
- Departments of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Eiki Takimoto
- Departments of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Akira Sawa
- Departments of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Departments of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Departments of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Departments of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Departments of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
3
|
Wu SY, Chu SJ, Tang SE, Pao HP, Huang KL, Liao WI. Monomethyl fumarate attenuates lung Ischemia/Reperfusion injury by disrupting the GAPDH/Siah1 signaling cascade. Int Immunopharmacol 2024; 137:112488. [PMID: 38889510 DOI: 10.1016/j.intimp.2024.112488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Monomethyl fumarate (MMF), a potent anti-inflammatory agent used to treat multiple sclerosis, has demonstrated efficacy in various inflammatory and ischemia/reperfusion (IR) models; however, its impact on IR-induced acute lung injury (ALI) has not been explored. We investigated, for the first time, whether MMF attenuates lung IR injury through inhibition of the GAPDH/Siah1 signaling pathway. Rats were subjected to IR injury using an isolated perfused lung model, and proximity ligation assays were employed to evaluate the presence and distribution of the GAPDH/Siah1 complex. In vitro studies involved pretreating human primary alveolar epithelial cells (HPAECs) with MMF and/or inducing GAPDH overexpression or silencing, followed by exposure to hypoxia-reoxygenation. The findings revealed significantly reduced lung damage indicators, including edema, proinflammatory cytokines, oxidative stress and apoptosis, in MMF-treated rats. Notably, MMF treatment inhibited GAPDH/Siah1 complex formation and nuclear translocation, indicating that disruption of the GAPDH/Siah1 cascade was the primary cause of these improvements. Our in vitro studies on pretreated HPAECs corroborate these in vivo findings, further strengthening this interpretation. Our study results suggest that the protective effects of MMF against lung IR injury may be attributed, at least in part, to its ability to disrupt the GAPDH/Siah1 signaling cascade, thereby attenuating inflammatory and apoptotic responses. Given these encouraging results, MMF has emerged as a promising therapeutic candidate for the management of lung IR injury.
Collapse
Affiliation(s)
- Shu-Yu Wu
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan; School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Shi-Jye Chu
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-En Tang
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan; Division of Pulmonary and Critical Care, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Ping Pao
- The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Kun-Lun Huang
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan; The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Wen-I Liao
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
4
|
Godfrey WH, Hwang S, Cho K, Shanmukha S, Gharibani P, Abramson E, Kornberg MD. Therapeutic potential of blocking GAPDH nitrosylation with CGP3466b in experimental autoimmune encephalomyelitis. Front Neurol 2023; 13:979659. [PMID: 36761918 PMCID: PMC9902867 DOI: 10.3389/fneur.2022.979659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/30/2022] [Indexed: 01/26/2023] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disease of the central nervous system (CNS). Although classically considered a demyelinating disease, neuroaxonal injury occurs in both the acute and chronic phases and represents a pathologic substrate of disability not targeted by current therapies. Nitric oxide (NO) generated by CNS macrophages and microglia contributes to neuroaxonal injury in all phases of MS, but candidate therapies that prevent NO-mediated injury have not been identified. Here, we demonstrate that the multifunctional protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is robustly nitrosylated in the CNS in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS. GAPDH nitrosylation is blocked in vivo with daily administration of CGP3466b, a CNS-penetrant compound with an established safety profile in humans. Consistent with the known role of nitrosylated GAPDH (SNO-GAPDH) in neuronal cell death, blockade of SNO-GAPDH with CGP3466b attenuates neurologic disability and reduces axonal injury in EAE independent of effects on the immune system. Our findings suggest that SNO-GAPDH contributes to neuroaxonal injury during neuroinflammation and identify CGP3466b as a candidate neuroprotective therapy in MS.
Collapse
Affiliation(s)
- Wesley H. Godfrey
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Soonmyung Hwang
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Kaho Cho
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Shruthi Shanmukha
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Payam Gharibani
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Efrat Abramson
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | | |
Collapse
|
5
|
Dos Santos ACM, Dos Santos BRC, Dos Santos BB, Bastos DM, de Moura EL, Neto ABL, E Silva ACP, de Farias KF, de Medeiros Alves V, Nardi AE, de Souza Figueiredo EVM. The Role of the IL-10 (-819C/T), TNFA (-308G/A) and ENOS (-786T/C) Polymorphisms of Impulsive and Aggressive Personality Traits in Cocaine/Crack Users. Neuroscience 2022; 498:280-288. [PMID: 35716966 DOI: 10.1016/j.neuroscience.2022.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 05/15/2022] [Accepted: 05/26/2022] [Indexed: 11/19/2022]
Abstract
Cytokines and nitric oxide have been associated with impulsive and aggressive personality traits. We conducted the first study that investigated the role of SNPs in cytokines and nitric oxide genes and the influence in the progression of aggressive and impulsive behavior in 107 of cocaine and crack users. In this case-control, IL-10 (-819C/T), TNFA (-308G/A) and ENOS (-786T/C) polymorphisms were determined by Real-Time PCR. In addition, the relationship between these polymorphisms and Impulsivity and Aggression was determined. We found that the physical aggressiveness sub score was negatively correlated with the C allele of -819C/T polymorphism of the IL-10 (b = -0.14; p = 0.04). The T allele of the SNP -786T/C of the ENOS gene positively predicts traits of physical aggressiveness (b = 0.14; p = 0.04). The GA genotype (b = 0.22; p = 0.01) and the A allele (b = 0.15; p = 0.02) of -308 G/A polymorphism of the TNFA were positively correlated with aggressiveness physical. The GA genotype (b = 0.20; p = 0.03) was positively correlated with aggressiveness verbal. IL-10 (-819C/T), TNFA (-308G/A) and ENOS (-786T/C) polymorphisms might be associated with high risk of aggressive and impulsive behavior.
Collapse
Affiliation(s)
- Ana Caroline Melo Dos Santos
- Federal University of Alagoas, Biomarkers and Health Monitoring Research Group (BMS), Molecular Biology and Gene Expression Laboratory, Brazil; Biomarkers and Health Monitoring Research Group (BMS), Post-Graduate Program in Health Sciences, Federal University of Alagoas, Molecular Biology and Gene Expression Laboratory, Brazil
| | - Barbara Rayssa Correia Dos Santos
- Federal University of Alagoas, Biomarkers and Health Monitoring Research Group (BMS), Molecular Biology and Gene Expression Laboratory, Brazil; Biomarkers and Health Monitoring Research Group (BMS), Post-Graduate Program in Health Sciences, Federal University of Alagoas, Molecular Biology and Gene Expression Laboratory, Brazil
| | - Bruna Brandão Dos Santos
- Federal University of Alagoas, Biomarkers and Health Monitoring Research Group (BMS), Molecular Biology and Gene Expression Laboratory, Brazil; Biomarkers and Health Monitoring Research Group (BMS), Post-Graduate Program in Health Sciences, Federal University of Alagoas, Molecular Biology and Gene Expression Laboratory, Brazil
| | - Dhayane Magalhães Bastos
- Federal University of Alagoas, Biomarkers and Health Monitoring Research Group (BMS), Molecular Biology and Gene Expression Laboratory, Brazil
| | - Edilson Leite de Moura
- Federal University of Alagoas, Biomarkers and Health Monitoring Research Group (BMS), Molecular Biology and Gene Expression Laboratory, Brazil; Biomarkers and Health Monitoring Research Group (BMS), Post-Graduate Program in Health Sciences, Federal University of Alagoas, Molecular Biology and Gene Expression Laboratory, Brazil
| | - Abel Barbosa Lira Neto
- Federal University of Alagoas, Biomarkers and Health Monitoring Research Group (BMS), Molecular Biology and Gene Expression Laboratory, Brazil
| | | | - Karol Fireman de Farias
- Federal University of Alagoas, Biomarkers and Health Monitoring Research Group (BMS), Molecular Biology and Gene Expression Laboratory, Brazil; Department of Nursing, Postgraduate Program in Nursing of the Federal University of Alagoas, Brazil
| | | | - Antônio Egídio Nardi
- Federal University of Rio de Janeiro, Brazilian Academy of Sciences and National Academy of Medicine, Brazil
| | - Elaine Virgínia Martins de Souza Figueiredo
- Federal University of Alagoas, Biomarkers and Health Monitoring Research Group (BMS), Molecular Biology and Gene Expression Laboratory, Brazil; Biomarkers and Health Monitoring Research Group (BMS), Post-Graduate Program in Health Sciences, Federal University of Alagoas, Molecular Biology and Gene Expression Laboratory, Brazil.
| |
Collapse
|
6
|
dos Santos ACM, dos Santos BRC, dos Santos BB, de Moura EL, Neto ABL, Pereira e Silva AC, de Farias KF, de Medeiros Alves V, Nardi AE, de Souza Figueiredo EVM. IL-10 (-819C/T), TNFA (-30G/A) and ENOS (-786T/C) Polymorphisms Modulating the Outcome Related to Mental Disorders in Crack Addicted Users. Clin Pract Epidemiol Ment Health 2022; 18:e174501792201140. [PMID: 37274848 PMCID: PMC10156023 DOI: 10.2174/17450179-v18-e2201140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/23/2021] [Accepted: 12/20/2021] [Indexed: 06/07/2023]
Abstract
Background Cocaine/crack use affects immune system molecules and development of mental disorders has been identified. Objective To investigate the relationship of polymorphisms in the TNFA (-308G/A), IL-10 (-819C/T) and ENOS (-786T/C) genes with mental disorders in cocaine and crack users. Methods A case-control study was carried out, which included 107 cocaine and crack users and 115 controls who never used healthy cocaine and crack. The SNPs in the TNFA (-308G/A), IL-10 (-819C/T) and ENOS (-786T/C) genes were genotyped by real time PCR. Results As for the individuals included in this study, the average age of 31.4 years (± 8.59). We identified that the G/A genotype to TNFA (-308) (OR = 0.24; p = 0.03) and the A allele (OR = 0.30; p = 0.03) were associated with reduced risk for dysthymic disorder. The T allele of the IL-10 (-819) polymorphism was associated with decreased risk of developing panic disorder (OR = 0.44; p = 0.01), while the C allele was correlated with an increased risk for alcohol dependence (OR = 1.97; p = 0.04), alcohol abuse (OR = 1.81; p = 0.04) and psychotic syndrome (OR = 2.23; p = 0.01). C/C genotype was correlated with increased chances of developing current psychotic syndrome (OR = 4.23; p = 0.01). Conclusion Our results suggest that genetic polymorphisms promote susceptibility or promote protection for clinical phenotypes of psychiatric comorbidities in cocaine and crack users and be considered as good prognostic markers.
Collapse
Affiliation(s)
- Ana Caroline Melo dos Santos
- Program in Health Sciences, Molecular Biology and Gene Expression Laboratory, Federal University of Alagoas, Maceio, Brazil
| | | | - Bruna Brandão dos Santos
- Program in Health Sciences, Molecular Biology and Gene Expression Laboratory, Federal University of Alagoas, Maceio, Brazil
| | - Edilson Leite de Moura
- Program in Health Sciences, Molecular Biology and Gene Expression Laboratory, Federal University of Alagoas, Maceio, Brazil
| | - Abel Barbosa Lira Neto
- Program in Health Sciences, Molecular Biology and Gene Expression Laboratory, Federal University of Alagoas, Maceio, Brazil
| | | | - Karol Fireman de Farias
- Program in Nursing, Molecular Biology and Gene Expression Laboratory, Federal University of Alagoas, Maceio, Brazil
| | | | - Antônio Egídio Nardi
- Institute of Psychiatry, Federal University of Rio de Janeiro, Porto Alegre, Brazil
| | | |
Collapse
|
7
|
The role of mitochondria in cocaine addiction. Biochem J 2021; 478:749-764. [PMID: 33626141 DOI: 10.1042/bcj20200615] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 01/03/2023]
Abstract
The incidence of cocaine abuse is increasing especially in the U.K. where the rates are among the highest in Europe. In addition to its role as a psychostimulant, cocaine has profound effect on brain metabolism, impacting glycolysis and impairing oxidative phosphorylation. Cocaine exposure alters metabolic gene expression and protein networks in brain regions including the prefrontal cortex, the ventral tegmental area and the nucleus accumbens, the principal nuclei of the brain reward system. Here, we focus on how cocaine impacts mitochondrial function, in particular through alterations in electron transport chain function, reactive oxygen species (ROS) production and oxidative stress (OS), mitochondrial dynamics and mitophagy. Finally, we describe the impact of cocaine on brain energy metabolism in the developing brain following prenatal exposure. The plethora of mitochondrial functions altered following cocaine exposure suggest that therapies maintaining mitochondrial functional integrity may hold promise in mitigating cocaine pathology and addiction.
Collapse
|
8
|
Clare K, Pan C, Kim G, Park K, Zhao J, Volkow ND, Lin Z, Du C. Cocaine Reduces the Neuronal Population While Upregulating Dopamine D2-Receptor-Expressing Neurons in Brain Reward Regions: Sex-Effects. Front Pharmacol 2021; 12:624127. [PMID: 33912043 PMCID: PMC8072657 DOI: 10.3389/fphar.2021.624127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/08/2021] [Indexed: 02/03/2023] Open
Abstract
Addiction to cocaine is associated with dysfunction of the dopamine mesocortical system including impaired dopamine-2 receptor (D2r) signaling. However, the effects of chronic cocaine on neuronal adaptations in this system have not been systematically examined and data available is mostly from males. Here, we investigated changes in the total neuronal density and relative concentration of D2r-expressing neurons in the medial prefrontal cortex (mPFC), dorsal striatum (Dstr), nucleus accumbens (NAc), and ventral tegmental area (VTA) in both male and female mice passively exposed to cocaine for two weeks. In parallel experiments, we measured mRNA levels for Drd2 and for opioid peptides (mPenk and mPdyn). Through a combination of large field of view fluorescent imaging with BAC transgenic D2r-eGFP mice and immunostaining, we observed that cocaine exposed mice had a higher density of D2r-positive cells that was most prominent in mPFC and VTA and larger for females than for males. This occurred amidst an overall significant decrease in neuronal density (measured with NeuN) in both sexes. However, increases in Drd2 mRNA levels with cocaine were only observed in mPFC and Dstr in females, which might reflect the limited sensitivity of the method. Our findings, which contrast with previous findings of cocaine-induced downregulation of D2r binding availability, could reflect a phenotypic shift in neurons that did not previously express Drd2 and merits further investigation. Additionally, the neuronal loss particularly in mPFC with chronic cocaine might contribute to the cognitive impairments observed with cocaine use disorder.
Collapse
Affiliation(s)
- Kevin Clare
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Chelsea Pan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Gloria Kim
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Kicheon Park
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Juan Zhao
- Laboratory of Psychiatric Neurogenomics, Basic Neuroscience Division, McLean Hospital, Belmont, MA, United States
| | - Nora D Volkow
- National Institute on Drug Abuse, Bethesda, MD, United States
| | - Zhicheng Lin
- Laboratory of Psychiatric Neurogenomics, Basic Neuroscience Division, McLean Hospital, Belmont, MA, United States
| | - Congwu Du
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
9
|
Jîtcă G, Ősz BE, Tero-Vescan A, Vari CE. Psychoactive Drugs-From Chemical Structure to Oxidative Stress Related to Dopaminergic Neurotransmission. A Review. Antioxidants (Basel) 2021; 10:381. [PMID: 33806320 PMCID: PMC8000782 DOI: 10.3390/antiox10030381] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/26/2022] Open
Abstract
Nowadays, more and more young people want to experience illegal, psychoactive substances, without knowing the risks of exposure. Besides affecting social life, psychoactive substances also have an important effect on consumer health. We summarized and analyzed the published literature data with reference to the mechanism of free radical generation and the link between chemical structure and oxidative stress related to dopaminergic neurotransmission. This review presents data on the physicochemical properties, on the ability to cross the blood brain barrier, the chemical structure activity relationship (SAR), and possible mechanisms by which neuronal injuries occur due to oxidative stress as a result of drug abuse such as "bath salts", amphetamines, or cocaine. The mechanisms of action of ingested compounds or their metabolites involve intermediate steps in which free radicals are generated. The brain is strongly affected by the consumption of such substances, facilitating the induction of neurodegenerative diseases. It can be concluded that neurotoxicity is associated with drug abuse. Dependence and oxidative stress are linked to inhibition of neurogenesis and the onset of neuronal death. Understanding the pathological mechanisms following oxidative attack can be a starting point in the development of new therapeutic targets.
Collapse
Affiliation(s)
- George Jîtcă
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (G.J.); (C.E.V.)
| | - Bianca E. Ősz
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (G.J.); (C.E.V.)
| | - Amelia Tero-Vescan
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania;
| | - Camil E. Vari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (G.J.); (C.E.V.)
| |
Collapse
|
10
|
Lerner S, Anderzhanova E, Verbitsky S, Eilam R, Kuperman Y, Tsoory M, Kuznetsov Y, Brandis A, Mehlman T, Mazkereth R, McCarter R, Segal M, Nagamani SCS, Chen A, Erez A. ASL Metabolically Regulates Tyrosine Hydroxylase in the Nucleus Locus Coeruleus. Cell Rep 2020; 29:2144-2153.e7. [PMID: 31747589 PMCID: PMC6902269 DOI: 10.1016/j.celrep.2019.10.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/18/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022] Open
Abstract
Patients with germline mutations in the urea-cycle enzyme argininosuccinate lyase (ASL) are at risk for developing neurobehavioral and cognitive deficits. We find that ASL is prominently expressed in the nucleus locus coeruleus (LC), the central source of norepinephrine. Using natural history data, we show that individuals with ASL deficiency are at risk for developing attention deficits. By generating LC-ASL-conditional knockout (cKO) mice, we further demonstrate altered response to stressful stimuli with increased seizure reactivity in LC-ASL-cKO mice. Depletion of ASL in LC neurons leads to reduced amount and activity of tyrosine hydroxylase (TH) and to decreased catecholamines synthesis, due to decreased nitric oxide (NO) signaling. NO donors normalize catecholamine levels in the LC, seizure sensitivity, and the stress response in LC-ASL-cKO mice. Our data emphasize ASL importance for the metabolic regulation of LC function with translational relevance for ASL deficiency (ASLD) patients as well as for LC-related pathologies. ASL is expressed in the locus coeruleus (LC) and regulates catecholamine synthesis LC-ASL deficiency in mice promotes abnormal stress response and seizure sensitivity LC-ASL deficiency decreases nitric-oxide levels and tyrosine hydroxylase activity NO donors normalize catecholamine production and rescue LC-ASL deficiency phenotype
Collapse
Affiliation(s)
- Shaul Lerner
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Elmira Anderzhanova
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; Clinic for Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Sima Verbitsky
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel; Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Raya Eilam
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Kuperman
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Tsoory
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Yuri Kuznetsov
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Brandis
- Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Tevie Mehlman
- Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Ram Mazkereth
- The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Robert McCarter
- Center for Translational Sciences, Children's National Health System, The George Washington University, Washington, DC, USA
| | - Menahem Segal
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
11
|
Finelli MJ. Redox Post-translational Modifications of Protein Thiols in Brain Aging and Neurodegenerative Conditions-Focus on S-Nitrosation. Front Aging Neurosci 2020; 12:254. [PMID: 33088270 PMCID: PMC7497228 DOI: 10.3389/fnagi.2020.00254] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species and reactive nitrogen species (RONS) are by-products of aerobic metabolism. RONS trigger a signaling cascade that can be transduced through oxidation-reduction (redox)-based post-translational modifications (redox PTMs) of protein thiols. This redox signaling is essential for normal cellular physiology and coordinately regulates the function of redox-sensitive proteins. It plays a particularly important role in the brain, which is a major producer of RONS. Aberrant redox PTMs of protein thiols can impair protein function and are associated with several diseases. This mini review article aims to evaluate the role of redox PTMs of protein thiols, in particular S-nitrosation, in brain aging, and in neurodegenerative diseases. It also discusses the potential of using redox-based therapeutic approaches for neurodegenerative conditions.
Collapse
Affiliation(s)
- Mattéa J Finelli
- School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
12
|
Mai HN, Sharma N, Jeong JH, Shin EJ, Pham DT, Trinh QD, Lee YJ, Jang CG, Nah SY, Bing G, Kim HC. P53 knockout mice are protected from cocaine-induced kindling behaviors via inhibiting mitochondrial oxidative burdens, mitochondrial dysfunction, and proapoptotic changes. Neurochem Int 2019; 124:68-81. [DOI: 10.1016/j.neuint.2018.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 11/30/2022]
|
13
|
Genetic depletion of p53 attenuates cocaine-induced hepatotoxicity in mice. Biochimie 2018; 158:53-61. [PMID: 30576773 DOI: 10.1016/j.biochi.2018.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022]
Abstract
Cocaine, an addictive drug, is known to induce hepatotoxicity via oxidative damage and proapoptosis. Since p53, a tumor suppressor gene, plays a major role in inducing oxidative stress and apoptosis, we examined the role of p53 inhibition against cocaine-induced hepatotoxicity. Cocaine treatment significantly increased oxidative parameters (i.e., reactive oxygen species, 4-hydroxylnonenal, and protein carbonyl) in the liver of wild type (WT) mice. We found that the pharmacological (i.e. pifithrin-α) and genetic (i.e. p53 knockout) inhibition of p53 significantly attenuates cocaine-induced hepatotoxicity. Cocaine treatment increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in the serum of mice, signifying hepatic damage. Consistently, these increases were attenuated by inhibition of p53, implying protection against cocaine-induced hepatic damage. In addition, cocaine treatment significantly increased PKCδ, cleaved PKCδ and p53 levels in the liver of WT mice. These increases were followed by the interaction between p53 and PKCδ, and pro-apoptotic consequences (i.e., cytosolic release of cytochrome c, activation of caspase-3, increase in Bax level and decreases in Bcl-2 and Bcl-xL levels). These changes were attenuated by p53 depletion, reflecting that the critical role of PKCδ in p53-mediated apoptotic potentials. Combined, our results suggest that the inhibition of p53 is important for protection against oxidative burdens, pro-apoptotic events, and hepatic degeneration induced by cocaine.
Collapse
|
14
|
Womersley JS, Townsend DM, Kalivas PW, Uys JD. Targeting redox regulation to treat substance use disorder using N‐acetylcysteine. Eur J Neurosci 2018; 50:2538-2551. [PMID: 30144182 DOI: 10.1111/ejn.14130] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/28/2018] [Accepted: 07/25/2018] [Indexed: 12/17/2022]
Abstract
Substance use disorder (SUD) is a chronic relapsing disorder characterized by transitioning from acute drug reward to compulsive drug use. Despite the heavy personal and societal burden of SUDs, current treatments are limited and unsatisfactory. For this reason, a deeper understanding of the mechanisms underlying addiction is required. Altered redox status, primarily due to drug-induced increases in dopamine metabolism, is a unifying feature of abused substances. In recent years, knowledge of the effects of oxidative stress in the nervous system has evolved from strictly neurotoxic to include a more nuanced role in redox-sensitive signaling. More specifically, S-glutathionylation, a redox-sensitive post-translational modification, has been suggested to influence the response to drugs of abuse. In this review we will examine the evidence for redox-mediating drugs as therapeutic tools focusing on N-acetylcysteine as a treatment for cocaine addiction. We will conclude by suggesting future research directions that may further advance this field.
Collapse
Affiliation(s)
- Jacqueline S Womersley
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 409 Drug Discovery Building, 70 President Street, Charleston, SC, 29425, USA
| | - Danyelle M Townsend
- Department of Drug Discover and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Joachim D Uys
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 409 Drug Discovery Building, 70 President Street, Charleston, SC, 29425, USA
| |
Collapse
|
15
|
Sen T, Saha P, Sen N. Nitrosylation of GAPDH augments pathological tau acetylation upon exposure to amyloid-β. Sci Signal 2018; 11:11/522/eaao6765. [PMID: 29559585 DOI: 10.1126/scisignal.aao6765] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Acetylation of the microtubule-associated protein tau promotes its polymerization into neurofibrillary tangles that are implicated in the pathology of Alzheimer's disease (AD). The gaseous neurotransmitter nitric oxide (NO) regulates cell signaling through the nitrosylation of proteins. We found that NO production and tau acetylation at Lys280 occurred in the brain tissue in mice and in cultured mouse cortical neurons in response to exposure to amyloid-β1-42 (Aβ1-42), a peptide that is also implicated in AD. An increased abundance of NO facilitated the S-nitrosylation (SNO) of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). S-nitrosylated GAPDH (GAPDH-SNO) promoted the acetylation and activation of the acetyltransferase p300 and facilitated the nitrosylation and inactivation of the deacetylase sirtuin 1 (SIRT1). The abundance of GAPDH-SNO was increased in postmortem brain samples from AD patients. Preventing the increase in GAPDH-SNO abundance in both cultured neurons and mice, either by overexpression of the nitrosylation mutant of GAPDH (GAPDH C150S) or by treatment with the GAPDH nitrosylation inhibitor CGP3466B (also known as omigapil), abrogated Aβ1-42-induced tau acetylation, memory impairment, and locomotor dysfunction in mice, suggesting that this drug might be repurposed to treat patients with AD.
Collapse
Affiliation(s)
- Tanusree Sen
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Scaife Hall, Pittsburgh, PA 15213, USA
| | - Pampa Saha
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Scaife Hall, Pittsburgh, PA 15213, USA
| | - Nilkantha Sen
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Scaife Hall, Pittsburgh, PA 15213, USA.
| |
Collapse
|
16
|
Castilla-Ortega E, Ladrón de Guevara-Miranda D, Serrano A, Pavón FJ, Suárez J, Rodríguez de Fonseca F, Santín LJ. The impact of cocaine on adult hippocampal neurogenesis: Potential neurobiological mechanisms and contributions to maladaptive cognition in cocaine addiction disorder. Biochem Pharmacol 2017; 141:100-117. [DOI: 10.1016/j.bcp.2017.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022]
|
17
|
PARP-1 is required for retrieval of cocaine-associated memory by binding to the promoter of a novel gene encoding a putative transposase inhibitor. Mol Psychiatry 2017; 22:570-579. [PMID: 27595592 DOI: 10.1038/mp.2016.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 05/24/2016] [Accepted: 06/01/2016] [Indexed: 12/30/2022]
Abstract
Reward-related memory is an important factor in cocaine seeking. One necessary signaling mechanism for long-term memory formation is the activation of poly(ADP-ribose) polymerase-1 (PARP-1), via poly(ADP-ribosyl)ation. We demonstrate herein that auto-poly(ADP-ribosyl)ation of activated PARP-1 was significantly pronounced during retrieval of cocaine-associated contextual memory, in the central amygdala (CeA) of rats expressing cocaine-conditioned place preference (CPP). Intra-CeA pharmacological and short hairpin RNA depletion of PARP-1 activity during cocaine-associated memory retrieval abolished CPP. In contrast, PARP-1 inhibition after memory retrieval did not affect CPP reconsolidation process and subsequent retrievals. Chromatin immunoprecipitation sequencing revealed that PARP-1 binding in the CeA is highly enriched in genes involved in neuronal signaling. We identified among PARP targets in CeA a single gene, yet uncharacterized and encoding a putative transposase inhibitor, at which PARP-1 enrichment markedly increases during cocaine-associated memory retrieval and positively correlates with CPP. Our findings have important implications for understanding drug-related behaviors, and suggest possible future therapeutic targets for drug abuse.
Collapse
|
18
|
Lazarev VF, Nikotina AD, Semenyuk PI, Evstafyeva DB, Mikhaylova ER, Muronetz VI, Shevtsov MA, Tolkacheva AV, Dobrodumov AV, Shavarda AL, Guzhova IV, Margulis BA. Small molecules preventing GAPDH aggregation are therapeutically applicable in cell and rat models of oxidative stress. Free Radic Biol Med 2016; 92:29-38. [PMID: 26748070 DOI: 10.1016/j.freeradbiomed.2015.12.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 12/01/2015] [Accepted: 12/19/2015] [Indexed: 11/18/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is one of the most abundant targets of the oxidative stress. Oxidation of the enzyme causes its inactivation and the formation of intermolecular disulfide bonds, and leads to the accumulation of GAPDH aggregates and ultimately to cell death. The aim of this work was to reveal the ability of chemicals to break the described above pathologic linkage by inhibiting GAPDH aggregation. Using the model of oxidative stress based on SK-N-SH human neuroblastoma cells treated with hydrogen peroxide, we found that lentivirus-mediated down- or up-regulation of GAPDH content caused inhibition or enhancement of the protein aggregation and respectively reduced or increased the level of cell death. To reveal substances that are able to inhibit GAPDH aggregation, we developed a special assay based on dot ultrafiltration using the collection of small molecules of plant origin. In the first round of screening, five compounds were found to possess anti-aggregation activity as established by ultrafiltration and dynamic light scattering; some of the substances efficiently inhibited GAPDH aggregation in nanomolar concentrations. The ability of the compounds to bind GAPDH molecules was proved by the drug affinity responsive target stability assay, molecular docking and differential scanning calorimetry. Results of experiments with SK-N-SH human neuroblastoma treated with hydrogen peroxide show that two substances, RX409 and RX426, lowered the degree of GAPDH aggregation and reduced cell death by 30%. Oxidative injury was emulated in vivo by injecting of malonic acid into the rat brain, and we showed that the treatment with RX409 or RX426 inhibited GAPDH-mediated aggregation in the brain, reduced areas of the injury as proved by magnetic resonance imaging, and augmented the behavioral status of the rats as established by the "beam walking" test. In conclusion, the data show that two GAPDH binders could be therapeutically relevant in the treatment of injuries stemming from hard oxidative stress.
Collapse
Affiliation(s)
- Vladimir F Lazarev
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky pr., 4, 194064 St. Petersburg, Russia.
| | - Alina D Nikotina
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky pr., 4, 194064 St. Petersburg, Russia
| | - Pavel I Semenyuk
- Belozersky Institute of Physico-Chemical Biology of Moscow State University, 119992 Moscow, Russia
| | - Diana B Evstafyeva
- Belozersky Institute of Physico-Chemical Biology of Moscow State University, 119992 Moscow, Russia
| | - Elena R Mikhaylova
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky pr., 4, 194064 St. Petersburg, Russia
| | - Vladimir I Muronetz
- Belozersky Institute of Physico-Chemical Biology of Moscow State University, 119992 Moscow, Russia
| | - Maxim A Shevtsov
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky pr., 4, 194064 St. Petersburg, Russia
| | - Anastasia V Tolkacheva
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky pr., 4, 194064 St. Petersburg, Russia
| | - Anatoly V Dobrodumov
- Institute of Macromolecular Compounds Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Alexey L Shavarda
- Komarov Botanical Institute Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Irina V Guzhova
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky pr., 4, 194064 St. Petersburg, Russia
| | - Boris A Margulis
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky pr., 4, 194064 St. Petersburg, Russia
| |
Collapse
|
19
|
Cocaine elicits autophagic cytotoxicity via a nitric oxide-GAPDH signaling cascade. Proc Natl Acad Sci U S A 2016; 113:1417-22. [PMID: 26787898 DOI: 10.1073/pnas.1524860113] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cocaine exerts its behavioral stimulant effects by facilitating synaptic actions of neurotransmitters such as dopamine and serotonin. It is also neurotoxic and broadly cytotoxic, leading to overdose deaths. We demonstrate that the cytotoxic actions of cocaine reflect selective enhancement of autophagy, a process that physiologically degrades metabolites and cellular organelles, and that uncontrolled autophagy can also lead to cell death. In brain cultures, cocaine markedly increases levels of LC3-II and depletes p62, both actions characteristic of autophagy. By contrast, cocaine fails to stimulate cell death processes reflecting parthanatos, monitored by cleavage of poly(ADP ribose)polymerase-1 (PARP-1), or necroptosis, assessed by levels of phosphorylated mixed lineage kinase domain-like protein. Pharmacologic inhibition of autophagy protects neurons against cocaine-induced cell death. On the other hand, inhibition of parthanatos, necroptosis, or apoptosis did not change cocaine cytotoxicity. Depletion of ATG5 or beclin-1, major mediators of autophagy, prevents cocaine-induced cell death. By contrast, depleting caspase-3, whose cleavage reflects apoptosis, fails to alter cocaine cytotoxicity, and cocaine does not alter caspase-3 cleavage. Moreover, depleting PARP-1 or RIPK1, key mediators of parthanatos and necroptosis, respectively, did not prevent cocaine-induced cell death. Autophagic actions of cocaine are mediated by the nitric oxide-glyceraldehyde-3-phosphate dehydrogenase signaling pathway. Thus, cocaine-associated autophagy is abolished by depleting GAPDH via shRNA; by the drug CGP3466B, which prevents GAPDH nitrosylation; and by mutating cysteine-150 of GAPDH, its site of nitrosylation. Treatments that selectively influence cocaine-associated autophagy may afford therapeutic benefit.
Collapse
|
20
|
Nakamura T, Lipton SA. Protein S-Nitrosylation as a Therapeutic Target for Neurodegenerative Diseases. Trends Pharmacol Sci 2015; 37:73-84. [PMID: 26707925 DOI: 10.1016/j.tips.2015.10.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 12/20/2022]
Abstract
At physiological levels, nitric oxide (NO) contributes to the maintenance of normal neuronal activity and survival, thus serving as an important regulatory mechanism in the central nervous system. By contrast, accumulating evidence suggests that exposure to environmental toxins or the normal aging process can trigger excessive production of reactive oxygen/nitrogen species (such as NO), contributing to the etiology of several neurodegenerative diseases. We highlight here protein S-nitrosylation, resulting from covalent attachment of an NO group to a cysteine thiol of the target protein, as a ubiquitous effector of NO signaling in both health and disease. We review our current understanding of this redox-dependent post-translational modification under neurodegenerative conditions, and evaluate how targeting dysregulated protein S-nitrosylation can lead to novel therapeutics.
Collapse
Affiliation(s)
| | - Stuart A Lipton
- Scintillon Institute, San Diego, CA 92121, USA; Department of Neurosciences, University of California, San Diego School of Medicine, La Jolla, CA 92039, USA.
| |
Collapse
|
21
|
Roebber JK, Izenwasser S, Chaudhari N. Cocaine decreases saccharin preference without altering sweet taste sensitivity. Pharmacol Biochem Behav 2015; 133:18-24. [PMID: 25812471 PMCID: PMC4430401 DOI: 10.1016/j.pbb.2015.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 03/10/2015] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
Abstract
In rodents, saccharin consumption is suppressed when the sweet taste stimulus is paired with moderate doses of cocaine. Several hypotheses have been used to explain the seemingly contradictory effect of decreased consumption of a normally preferred substance following a highly rewarding drug. A common theme across these hypotheses is that saccharin is interpreted as less rewarding after cocaine pairing. We considered the alternative possibility that suppression is caused not by a change in reward circuitry, but rather by a change in taste detection, for instance by altering the afferent taste response and decreasing sensitivity to sweet taste stimuli. To evaluate this possibility, we measured saccharin taste sensitivity of mice before and after a standard cocaine-pairing paradigm. We measured taste sensitivity using a brief-access lickometer equipped with multiple concentrations of saccharin solution and established concentration-response curves before and after saccharin-cocaine pairing. Our results indicate that the EC50 for saccharin was unaltered following pairing. Instead, the avidity of licking saccharin, an indicator of motivation, was depressed. Latency to first-lick, a negative indicator of motivation, was also dramatically increased. Thus, our findings are consistent with the interpretation that saccharin-cocaine pairing results in devaluing of the sweet taste reward.
Collapse
Affiliation(s)
- Jennifer K Roebber
- Graduate Program in Neurosciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sari Izenwasser
- Graduate Program in Neurosciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Nirupa Chaudhari
- Graduate Program in Neurosciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
22
|
Enhancement of endocannabinoid signaling protects against cocaine-induced neurotoxicity. Toxicol Appl Pharmacol 2015; 286:178-87. [PMID: 25933444 DOI: 10.1016/j.taap.2015.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/15/2015] [Accepted: 04/21/2015] [Indexed: 10/23/2022]
Abstract
Cocaine is an addictive substance with a potential to cause deleterious effects in the brain. The strategies for treating its neurotoxicity, however, are limited. Evidence suggests that the endocannabinoid system exerts neuroprotective functions against various stimuli. Thus, we hypothesized that inhibition of fatty acid amide hydrolase (FAAH), the main enzyme responsible for terminating the actions of the endocannabinoid anandamide, reduces seizures and cell death in the hippocampus in a model of cocaine intoxication. Male Swiss mice received injections of endocannabinoid-related compounds followed by the lowest dose of cocaine that induces seizures, electroencephalographic activity and cell death in the hippocampus. The molecular mechanisms were studied in primary cell culture of this structure. The FAAH inhibitor, URB597, reduced cocaine-induced seizures and epileptiform electroencephalographic activity. The cannabinoid CB1 receptor selective agonist, ACEA, mimicked these effects, whereas the antagonist, AM251, prevented them. URB597 also inhibited cocaine-induced activation and death of hippocampal neurons, both in animals and in primary cell culture. Finally, we investigated if the PI3K/Akt/ERK intracellular pathway, a cell surviving mechanism coupled to CB1 receptor, mediated these neuroprotective effects. Accordingly, URB597 injection increased ERK and Akt phosphorylation in the hippocampus. Moreover, the neuroprotective effect of this compound was reversed by the PI3K inhibitor, LY294002. In conclusion, the pharmacological facilitation of the anandamide/CB1/PI3K signaling protects the brain against cocaine intoxication in experimental models. This strategy may be further explored in the development of treatments for drug-induced neurotoxicity.
Collapse
|
23
|
Zhang JY, Zhang F, Hong CQ, Giuliano AE, Cui XJ, Zhou GJ, Zhang GJ, Cui YK. Critical protein GAPDH and its regulatory mechanisms in cancer cells. Cancer Biol Med 2015; 12:10-22. [PMID: 25859407 PMCID: PMC4383849 DOI: 10.7497/j.issn.2095-3941.2014.0019] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/26/2014] [Indexed: 02/04/2023] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), initially identified as a glycolytic enzyme and considered as a housekeeping gene, is widely used as an internal control in experiments on proteins, mRNA, and DNA. However, emerging evidence indicates that GAPDH is implicated in diverse functions independent of its role in energy metabolism; the expression status of GAPDH is also deregulated in various cancer cells. One of the most common effects of GAPDH is its inconsistent role in the determination of cancer cell fate. Furthermore, studies have described GAPDH as a regulator of cell death; other studies have suggested that GAPDH participates in tumor progression and serves as a new therapeutic target. However, related regulatory mechanisms of its numerous cellular functions and deregulated expression levels remain unclear. GAPDH is tightly regulated at transcriptional and posttranscriptional levels, which are involved in the regulation of diverse GAPDH functions. Several cancer-related factors, such as insulin, hypoxia inducible factor-1 (HIF-1), p53, nitric oxide (NO), and acetylated histone, not only modulate GAPDH gene expression but also affect protein functions via common pathways. Moreover, posttranslational modifications (PTMs) occurring in GAPDH in cancer cells result in new activities unrelated to the original glycolytic function of GAPDH. In this review, recent findings related to GAPDH transcriptional regulation and PTMs are summarized. Mechanisms and pathways involved in GAPDH regulation and its different roles in cancer cells are also described.
Collapse
Affiliation(s)
- Jin-Ying Zhang
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Fan Zhang
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Chao-Qun Hong
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Armando E Giuliano
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xiao-Jiang Cui
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Guang-Ji Zhou
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Guo-Jun Zhang
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yu-Kun Cui
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
24
|
Patent highlights. Pharm Pat Anal 2014. [DOI: 10.4155/ppa.14.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
25
|
Epigenetic Regulation of Memory by Acetylation and Methylation of Chromatin: Implications in Neurological Disorders, Aging, and Addiction. Neuromolecular Med 2014; 17:97-110. [DOI: 10.1007/s12017-014-8306-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/15/2014] [Indexed: 12/11/2022]
|
26
|
Interactions between N-ethylmaleimide-sensitive factor and GluR2 in the nucleus accumbens contribute to the expression of locomotor sensitization to cocaine. J Neurosci 2014; 34:3493-508. [PMID: 24599450 DOI: 10.1523/jneurosci.2594-13.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many studies have reported a withdrawal-dependent increase in synaptic AMPA receptor (AMPAR) levels in the nucleus accumbens (NAc) of cocaine-sensitized rats; however, the exact relationship between the expression of sensitization and altered AMPAR surface expression in the NAc has not yet been investigated. We demonstrated that the expression of behavioral sensitization was negatively controlled by N-ethylmaleimide-sensitive factor (NSF)-GluR2 interactions in the NAc. The upregulation of NSF-GluR2 interactions, which may be resulted by the increase in NSF S-nitrosylation after withdrawal from cocaine, was associated with the changes in the expression of behavioral sensitization. Disruption of NSF-GluR2 interactions in the NAc with a specific peptide, TAT-pep-R845A, increased the locomotor response of rats to cocaine by decreasing GluR2 surface insertion. In contrast, prevention of GluR2-containing AMPARs removal from synapses with Pep2-EVKI attenuated the expression of behavioral sensitization. Similarly, treatment with the nitric oxide donor, S-Nitroso-N-acetyl-DL-penicillamine (SNAP), attenuated the expression of locomotor sensitization by promoting GluR2 surface expression. This effect was mediated by the binding of S-nitrosylated NSF to GluR2, which promoted the surface expression of AMPARs. Noticeably, exogenous injection of SNAP into NAc also attenuated the expression of cocaine-induced conditioned place preference. Thus, these results indicate that increased NSF-GluR2 interactions in the NAc after withdrawal from cocaine attenuated the expression of behavioral sensitization and serves as a negative regulatory mechanism in drug-exposed individuals.
Collapse
|