1
|
Peng W, Ma Y, Li C, Dai W, Fu X, Liu L, Liu L, Liu J. Fusion of brain imaging genetic data for alzheimer's disease diagnosis and causal factors identification using multi-stream attention mechanisms and graph convolutional networks. Neural Netw 2025; 184:107020. [PMID: 39721106 DOI: 10.1016/j.neunet.2024.107020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/03/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
Correctly diagnosing Alzheimer's disease (AD) and identifying pathogenic brain regions and genes play a vital role in understanding the AD and developing effective prevention and treatment strategies. Recent works combine imaging and genetic data, and leverage the strengths of both modalities to achieve better classification results. In this work, we propose MCA-GCN, a Multi-stream Cross-Attention and Graph Convolutional Network-based classification method for AD patients. It first constructs a brain region-gene association network based on brain region fMRI time series and gene SNP data. Then it integrates the absolute and relative positions of the brain region time series to obtain a new brain region time series containing temporal information. Then long-range and local association features between brain regions and genes are sequentially aggregated by multi-stream cross-attention and graph convolutional networks. Finally, the learned brain region and gene features are input to the fully connected network to predict AD types. Experimental results on the ADNI dataset show that our model outperforms other methods in AD classification tasks. Moreover, MCA-GCN designed a multi-stage feature scoring process to extract high-risk genes and brain regions related to disease classification.
Collapse
Affiliation(s)
- Wei Peng
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology; Kunming 650500, PR China; Computer Technology Application Key Lab of Yunnan Province; Kunming 650500, PR China.
| | - Yanhan Ma
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology; Kunming 650500, PR China; Computer Technology Application Key Lab of Yunnan Province; Kunming 650500, PR China
| | - Chunshan Li
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology; Kunming 650500, PR China; Computer Technology Application Key Lab of Yunnan Province; Kunming 650500, PR China
| | - Wei Dai
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology; Kunming 650500, PR China; Computer Technology Application Key Lab of Yunnan Province; Kunming 650500, PR China
| | - Xiaodong Fu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology; Kunming 650500, PR China; Computer Technology Application Key Lab of Yunnan Province; Kunming 650500, PR China
| | - Li Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology; Kunming 650500, PR China; Computer Technology Application Key Lab of Yunnan Province; Kunming 650500, PR China
| | - Lijun Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology; Kunming 650500, PR China; Computer Technology Application Key Lab of Yunnan Province; Kunming 650500, PR China
| | - Jin Liu
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, PR China
| |
Collapse
|
2
|
Kratsios P, Zampieri N, Carrillo R, Mizumoto K, Sweeney LB, Philippidou P. Molecular and Cellular Mechanisms of Motor Circuit Development. J Neurosci 2024; 44:e1238242024. [PMID: 39358025 PMCID: PMC11450535 DOI: 10.1523/jneurosci.1238-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 10/04/2024] Open
Abstract
Motor circuits represent the main output of the central nervous system and produce dynamic behaviors ranging from relatively simple rhythmic activities like swimming in fish and breathing in mammals to highly sophisticated dexterous movements in humans. Despite decades of research, the development and function of motor circuits remain poorly understood. Breakthroughs in the field recently provided new tools and tractable model systems that set the stage to discover the molecular mechanisms and circuit logic underlying motor control. Here, we describe recent advances from both vertebrate (mouse, frog) and invertebrate (nematode, fruit fly) systems on cellular and molecular mechanisms that enable motor circuits to develop and function and highlight conserved and divergent mechanisms necessary for motor circuit development.
Collapse
Affiliation(s)
- Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
- Neuroscience Institute, University of Chicago, Chicago, Illinois 60637
| | - Niccolò Zampieri
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
| | - Robert Carrillo
- Neuroscience Institute, University of Chicago, Chicago, Illinois 60637
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | - Kota Mizumoto
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Lora B Sweeney
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | - Polyxeni Philippidou
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
3
|
Bastien BL, Haury WR, Smisko WR, Hart MP. nlr-1/CNTNAP regulates dopamine circuit structure and foraging behaviors in C. elegans. Commun Biol 2024; 7:1248. [PMID: 39358459 PMCID: PMC11447218 DOI: 10.1038/s42003-024-06936-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
The neurexin superfamily, consisting of neurexins and Casprs, play important roles in the development, maintenance, function, and plasticity of neuronal circuits. Caspr/CNTNAP genes are linked to alterations in neuronal circuits and associated with neurodevelopmental and neurodegenerative conditions. Casprs are implicated in multiple neuronal signaling pathways, including dopamine; however, the molecular mechanisms by which Casprs differentially alter specific signaling pathways and downstream behaviors are unclear. We find that the C. elegans Caspr nlr-1 functions in neurons to control foraging behaviors, acting in distinct monoamine neurons to modulate locomotor activity in the presence or absence of food. nlr-1 functions in dopamine neurons to reduce activity in the absence of food, similar to the role of dopamine, and regulates dopamine signaling through D2-like receptors. Furthermore, nlr-1 contributes to proper morphology and presynaptic structure of dopamine neurons, dopamine receptor expression and localization, and the behavioral response to dopamine. We find that nlr-1 similarly regulates another dopamine-dependent behavior, the basal slowing response. Therefore, spatial manipulation of a broadly expressed neuronal gene is sufficient to alter neural circuits and behavior and uncovers important functions masked by global manipulation, highlighting the importance of genetic variation and mechanisms that impact spatial expression of genes to behavior.
Collapse
Affiliation(s)
- Brandon L Bastien
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - William R Haury
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - William R Smisko
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael P Hart
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Khan SS, Jaimon E, Lin YE, Nikoloff J, Tonelli F, Alessi DR, Pfeffer SR. Loss of primary cilia and dopaminergic neuroprotection in pathogenic LRRK2-driven and idiopathic Parkinson's disease. Proc Natl Acad Sci U S A 2024; 121:e2402206121. [PMID: 39088390 PMCID: PMC11317616 DOI: 10.1073/pnas.2402206121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/13/2024] [Indexed: 08/03/2024] Open
Abstract
Activating leucine-rich repeat kinase 2 (LRRK2) mutations cause Parkinson's and phosphorylation of Rab10 by pathogenic LRRK2 blocks primary ciliogenesis in cultured cells. In the mouse brain, LRRK2 blockade of primary cilia is highly cell type specific: For example, cholinergic interneurons and astrocytes but not medium spiny neurons of the dorsal striatum lose primary cilia in LRRK2-pathway mutant mice. We show here that the cell type specificity of LRRK2-mediated cilia loss is also seen in human postmortem striatum from patients with LRRK2 pathway mutations and idiopathic Parkinson's. Single nucleus RNA sequencing shows that cilia loss in mouse cholinergic interneurons is accompanied by decreased glial-derived neurotrophic factor transcription, decreasing neuroprotection for dopamine neurons. Nevertheless, LRRK2 expression differences cannot explain the unique vulnerability of cholinergic neurons to LRRK2 kinase as much higher LRRK2 expression is seen in medium spiny neurons that have normal cilia. In parallel with decreased striatal dopaminergic neurite density, LRRK2 G2019S neurons show increased autism-linked CNTN5 adhesion protein expression; glial cells show significant loss of ferritin heavy chain. These data strongly suggest that loss of cilia in specific striatal cell types decreases neuroprotection for dopamine neurons in mice and human Parkinson's.
Collapse
Affiliation(s)
- Shahzad S. Khan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Ebsy Jaimon
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Yu-En Lin
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Jonas Nikoloff
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Francesca Tonelli
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, DundeeDD1 5EH, Scotland, United Kingdom
| | - Dario R. Alessi
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, DundeeDD1 5EH, Scotland, United Kingdom
| | - Suzanne R. Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| |
Collapse
|
5
|
Wang M, Fan J, Shao Z. Cellular and Molecular Mechanisms Underlying Synaptic Subcellular Specificity. Brain Sci 2024; 14:155. [PMID: 38391729 PMCID: PMC10886843 DOI: 10.3390/brainsci14020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 02/24/2024] Open
Abstract
Chemical synapses are essential for neuronal information storage and relay. The synaptic signal received or sent from spatially distinct subcellular compartments often generates different outcomes due to the distance or physical property difference. Therefore, the final output of postsynaptic neurons is determined not only by the type and intensity of synaptic inputs but also by the synaptic subcellular location. How synaptic subcellular specificity is determined has long been the focus of study in the neurodevelopment field. Genetic studies from invertebrates such as Caenorhabditis elegans (C. elegans) have uncovered important molecular and cellular mechanisms required for subcellular specificity. Interestingly, similar molecular mechanisms were found in the mammalian cerebellum, hippocampus, and cerebral cortex. This review summarizes the comprehensive advances in the cellular and molecular mechanisms underlying synaptic subcellular specificity, focusing on studies from C. elegans and rodents.
Collapse
Affiliation(s)
- Mengqing Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, 131 Dong An Rd, Research Building B4017, Shanghai 200032, China
| | - Jiale Fan
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, 131 Dong An Rd, Research Building B4017, Shanghai 200032, China
| | - Zhiyong Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, 131 Dong An Rd, Research Building B4017, Shanghai 200032, China
| |
Collapse
|
6
|
Khan SS, Jaimon E, Lin YE, Nikoloff J, Tonelli F, Alessi DR, Pfeffer SR. Loss of primary cilia and dopaminergic neuroprotection in pathogenic LRRK2-driven and idiopathic Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575737. [PMID: 38293195 PMCID: PMC10827083 DOI: 10.1101/2024.01.15.575737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Activating LRRK2 mutations cause Parkinson's disease. Previously, we showed that cholinergic interneurons and astrocytes but not medium spiny neurons of the dorsal striatum lose primary cilia in LRRK2 mutant mice. Single nucleus RNA sequencing shows that cilia loss in cholinergic interneurons correlates with higher LRRK2 expression and decreased glial derived neurotrophic factor transcription. Nevertheless, much higher LRRK2 expression is seen in medium spiny neurons that have normal cilia in mice and humans. In parallel with decreased striatal dopaminergic neurite density, LRRK2 G2019S neurons show increased autism-linked CNTN5 adhesion protein expression; glial cells show significant loss of ferritin heavy chain. Human striatal tissue from LRRK2 pathway mutation carriers and idiopathic Parkinson's disease show similar cilia loss in cholinergic interneurons and astrocytes and overall loss of such neurons. These data strongly suggest that loss of cilia in specific striatal cell types decreases neuroprotection for dopamine neurons in mice and human Parkinson's disease.
Collapse
Affiliation(s)
- Shahzad S. Khan
- Department of Biochemistry, Stanford University School of Medicine, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, United States
- Current address: Departments of Cell Biology & Physiology and Neurology, University of North Carolina, Chapel Hill, United States
| | - Ebsy Jaimon
- Department of Biochemistry, Stanford University School of Medicine, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, United States
| | - Yu-En Lin
- Department of Biochemistry, Stanford University School of Medicine, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, United States
| | - Jonas Nikoloff
- Department of Biochemistry, Stanford University School of Medicine, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, United States
| | - Francesca Tonelli
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, United States
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, United Kingdom
| | - Dario R. Alessi
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, United States
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, United Kingdom
| | - Suzanne R. Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, United States
| |
Collapse
|
7
|
Dauar MT, Picard C, Labonté A, Breitner J, Rosa-Neto P, Villeneuve S, Poirier J. Contactin 5 and Apolipoproteins Interplay in Alzheimer's Disease. J Alzheimers Dis 2024; 98:1361-1375. [PMID: 38578887 DOI: 10.3233/jad-231003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Background Apolipoproteins and contactin 5 are proteins associated with Alzheimer's disease (AD) pathophysiology. Apolipoproteins act on transport and clearance of cholesterol and phospholipids during synaptic turnover and terminal proliferation. Contactin 5 is a neuronal membrane protein involved in key processes of neurodevelopment. Objective To investigate the interactions between contactin 5 and apolipoproteins in AD, and the role of these proteins in response to neuronal damage. Methods Apolipoproteins (measured by Luminex), contactin 5 (measured by Olink's proximity extension assay), and cholesterol (measured by liquid chromatography mass spectrometry) were assessed in the cerebrospinal fluid (CSF) and plasma of cognitively unimpaired participants (n = 93). Gene expression was measured using polymerase chain reaction in the frontal cortex of autopsied-confirmed AD (n = 57) and control subjects (n = 31) and in the hippocampi of mice following entorhinal cortex lesions. Results Contactin 5 positively correlated with apolipoproteins B (p = 5.4×10-8), D (p = 1.86×10-4), E (p = 2.92×10-9), J (p = 2.65×10-9), and with cholesterol (p = 0.0096) in the CSF, and with cholesterol (p = 0.02), HDL (p = 0.0143), and LDL (p = 0.0121) in the plasma. Negative correlations were seen between CNTN5, APOB (p = 0.034) and APOE (p = 0.015) mRNA levels in the brains of control subjects. In the mouse model, apoe and apoj gene expression increased during the reinnervation phase (p < 0.05), while apob (p = 0.023) and apod (p = 0.006) increased in the deafferentation stage. Conclusions Extensive interactions were observed between contactin 5 and apolipoproteins and cholesterol, possibly due to neuronal damage. The alterations in gene expression of apolipoproteins suggest a role in axonal, terminal, and synaptic remodeling in response to entorhinal cortex damage.
Collapse
Affiliation(s)
- Marina Tedeschi Dauar
- Douglas Mental Health University Institute, Montréal, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Canada
- McGill University, Montreal, Canada
- CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Cynthia Picard
- Douglas Mental Health University Institute, Montréal, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Canada
| | - Anne Labonté
- Douglas Mental Health University Institute, Montréal, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Canada
| | - John Breitner
- Douglas Mental Health University Institute, Montréal, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Canada
- McGill University, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| | - Pedro Rosa-Neto
- McGill University, Montreal, Canada
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Verdun, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Sylvia Villeneuve
- Douglas Mental Health University Institute, Montréal, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Canada
- McGill University, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| | - Judes Poirier
- Douglas Mental Health University Institute, Montréal, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Canada
- McGill University, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| |
Collapse
|
8
|
Veshchitskii A, Merkulyeva N. Calcium-binding protein parvalbumin in the spinal cord and dorsal root ganglia. Neurochem Int 2023; 171:105634. [PMID: 37967669 DOI: 10.1016/j.neuint.2023.105634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/20/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023]
Abstract
Parvalbumin is one of the calcium-binding proteins. In the spinal cord, it is mainly expressed in inhibitory neurons; in the dorsal root ganglia, it is expressed in proprioceptive neurons. In contrast to in the brain, weak systematization of parvalbumin-expressing neurons occurs in the spinal cord. The aim of this paper is to provide a systematic review of parvalbumin-expressing neuronal populations throughout the spinal cord and the dorsal root ganglia of mammals, regarding their mapping, co-expression with some functional markers. The data reviewed are mostly concerning rodentia species because they are predominantly presented in literature.
Collapse
Affiliation(s)
- Aleksandr Veshchitskii
- Neuromorphology Lab, Pavlov Institute of Physiology Russian Academy of Sciences, Saint Petersburg, Russia
| | - Natalia Merkulyeva
- Neuromorphology Lab, Pavlov Institute of Physiology Russian Academy of Sciences, Saint Petersburg, Russia.
| |
Collapse
|
9
|
Krauchunas AR, Marcello MR, Looper A, Mei X, Putiri E, Singaravelu G, Ahmed II, Singson A. The EGF-motif-containing protein SPE-36 is a secreted sperm protein required for fertilization in C. elegans. Curr Biol 2023; 33:3056-3064.e5. [PMID: 37453426 PMCID: PMC10529607 DOI: 10.1016/j.cub.2023.06.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 03/17/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Identified through forward genetics, spe-9 was the first gene to be identified in C. elegans as necessary for fertilization.1 Since then, genetic screens in C. elegans have led to the identification of nine additional sperm genes necessary for fertilization (including spe-51 reported by Mei et al.2 and the spe-36 gene reported here).3,4,5,6,7,8,9 This includes spe-45, which encodes an immunoglobulin-containing protein similar to the mammalian protein IZUMO1, and spe-42 and spe-49, which are homologous to vertebrate DCST2 and DCST1, respectively.4,7,8,10,11,12,13 Mutations in any one of these genes result in healthy adult animals that are sterile. Sperm from these mutants have normal morphology, migrate to and maintain their position at the site of fertilization in the reproductive tract, and make contact with eggs but fail to fertilize the eggs. This same phenotype is observed in mammals lacking Izumo1, Spaca6, Tmem95, Sof1, FIMP, or Dcst1 and Dcst2.10,14,15,16,17,18,19 Here we report the discovery of SPE-36 as a sperm-derived secreted protein that is necessary for fertilization. Mutations in the Caenorhabditis elegans spe-36 gene result in a sperm-specific fertilization defect. Sperm from spe-36 mutants look phenotypically normal, are motile, and can migrate to the site of fertilization. However, sperm that do not produce SPE-36 protein cannot fertilize. Surprisingly, spe-36 encodes a secreted EGF-motif-containing protein that functions cell autonomously. The genetic requirement for secreted sperm-derived proteins for fertilization sheds new light on the complex nature of fertilization and represents a paradigm-shifting discovery in the molecular understanding of fertilization.
Collapse
Affiliation(s)
- Amber R Krauchunas
- Waksman Institute and Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | | | - A'Maya Looper
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Xue Mei
- Waksman Institute and Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | - Emily Putiri
- Waksman Institute and Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | | | - Iqra I Ahmed
- Department of Biology, Pace University, New York, NY 11231, USA
| | - Andrew Singson
- Waksman Institute and Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
10
|
Xu Y, Kusuyama J, Osana S, Matsuhashi S, Li L, Takada H, Inada H, Nagatomi R. Lactate promotes neuronal differentiation of SH-SY5Y cells by lactate-responsive gene sets through NDRG3-dependent and -independent manners. J Biol Chem 2023:104802. [PMID: 37172727 DOI: 10.1016/j.jbc.2023.104802] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/23/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Lactate serves as the major glucose alternative to an energy substrate in the brain. Lactate level is increased in the fetal brain from the middle stage of gestation, indicating the involvement of lactate in brain development and neuronal differentiation. Recent reports show that lactate functions as a signaling molecule to regulate gene expression and protein stability. However, the roles of lactate signaling in neuronal cells remain unknown. Here, we showed that lactate promotes the all stages of neuronal differentiation of SH-SY5Y and Neuro2A, human and mouse neuroblastoma cell lines, characterized by increased neuronal marker expression and the rates of neurites extension. Transcriptomics revealed many lactate-responsive genes sets such as SPARCL1 in SH-SY5Y, Neuro2A, and primary embryonic mouse neuronal cells. The effects of lactate on neuronal function were mainly mediated through monocarboxylate transporters 1 (MCT1). We found that NDRG family member 3 (NDRG3), a lactate-binding protein, was highly expressed and stabilized by lactate treatment during neuronal differentiation. Combinative RNA-seq of SH-SY5Y with lactate treatment and NDRG3 knockdown shows that the promotive effects of lactate on neural differentiation are regulated through NDRG3-dependent and independent manners. Moreover, we identified TEA domain family member 1 (TEAD1) and ETS-related transcription factor 4 (ELF4) are the specific transcription factors that are regulated by both lactate and NDRG3 in neuronal differentiation. TEAD1 and ELF4 differently affect the expression of neuronal marker genes in SH-SY5Y cells. These results highlight the biological roles of extracellular and intracellular lactate as a critical signaling molecule that modifies neuronal differentiation.
Collapse
Affiliation(s)
- Yidan Xu
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Joji Kusuyama
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan; Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan; Department of Biosignals and Inheritance, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Shion Osana
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan; Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan; Graduate School of Informatics and Engineering, University of Electro-Communications
| | - Satayuki Matsuhashi
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Longfei Li
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Takada
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Hitoshi Inada
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan; Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryoichi Nagatomi
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan; Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan.
| |
Collapse
|
11
|
Karuppan SJ, Vogt A, Fischer Z, Ladutska A, Swiastyn J, McGraw HF, Bouyain S. Members of the vertebrate contactin and amyloid precursor protein families interact through a conserved interface. J Biol Chem 2021; 298:101541. [PMID: 34958801 PMCID: PMC8808184 DOI: 10.1016/j.jbc.2021.101541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 01/06/2023] Open
Abstract
Contactins (CNTNs) are neural cell adhesion molecules that encode axon-target specificity during the patterning of the vertebrate visual and olfactory systems. Because CNTNs are tethered to the plasma membrane by a glycosylphosphatidylinositol anchor, they lack an intracellular region to communicate across the membrane. Instead, they form coreceptor complexes with distinct transmembrane proteins to transmit signals inside the cell. In particular, a complex of CNTN4 and amyloid precursor protein (APP) is known to guide the assembly of specific circuits in the visual system. Here, using in situ hybridization in zebrafish embryos, we show that CNTN4, CNTN5, and the APP homologs, amyloid beta precursor like protein 1 and amyloid beta precursor like protein 2, are expressed in olfactory pits, suggesting that these receptors may also function together in the organization of olfactory tissues. Furthermore, we use biochemical and structural approaches to characterize interactions between members of these two receptor families. In particular, APP and amyloid beta precursor like protein 1 interact with CNTN3–5, whereas amyloid beta precursor like protein 2 only binds to CNTN4 and CNTN5. Finally, structural analyses of five CNTN–amyloid pairs indicate that these proteins interact through a conserved interface involving the second fibronectin type III repeat of CNTNs and the copper-binding domain of amyloid proteins. Overall, this work sets the stage for analyzing CNTN–amyloid-mediated connectivity in vertebrate sensory circuits.
Collapse
Affiliation(s)
- Sebastian J Karuppan
- Department of Cell and Molecular Biology, and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO 64110
| | - Alex Vogt
- Department of Cell and Molecular Biology, and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO 64110
| | - Zachary Fischer
- Department of Cell and Molecular Biology, and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO 64110
| | - Aliona Ladutska
- Department of Cell and Molecular Biology, and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO 64110
| | - Jonathan Swiastyn
- Department of Cell and Molecular Biology, and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO 64110
| | - Hillary F McGraw
- Department of Genetics, Developmental and Evolutionary Biology, School of Biological and Chemical Sciences, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO 64110
| | - Samuel Bouyain
- Department of Cell and Molecular Biology, and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO 64110.
| |
Collapse
|
12
|
The cellular and molecular basis of somatosensory neuron development. Neuron 2021; 109:3736-3757. [PMID: 34592169 DOI: 10.1016/j.neuron.2021.09.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 11/23/2022]
Abstract
Primary somatosensory neurons convey salient information about our external environment and internal state to the CNS, allowing us to detect, perceive, and react to a wide range of innocuous and noxious stimuli. Pseudo-unipolar in shape, and among the largest (longest) cells of most mammals, dorsal root ganglia (DRG) somatosensory neurons have peripheral axons that extend into skin, muscle, viscera, or bone and central axons that innervate the spinal cord and brainstem, where they synaptically engage the central somatosensory circuitry. Here, we review the diversity of mammalian DRG neuron subtypes and the intrinsic and extrinsic mechanisms that control their development. We describe classical and contemporary advances that frame our understanding of DRG neurogenesis, transcriptional specification of DRG neurons, and the establishment of morphological, physiological, and synaptic diversification across somatosensory neuron subtypes.
Collapse
|
13
|
Molecular mechanisms of axo-axonic innervation. Curr Opin Neurobiol 2021; 69:105-112. [PMID: 33862423 DOI: 10.1016/j.conb.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022]
Abstract
One of the most intriguing features of inhibitory synapses is the precision by which they innervate their target, not only at the cellular level but also at the subcellular level (i.e. axo-dendritic, axo-somatic, or axo-axonic innervation). In particular, in the cerebellum, cortex, and spinal cord, distinct and highly specialized GABAergic interneurons, such as basket cells, chandelier cells, and GABApre interneurons, form precise axo-axonic synapses, allowing them to directly regulate neuronal output and circuit function. In this article, we summarize our latest knowledge of the cellular and molecular mechanisms that regulate the establishment and maintenance of axo-axonic synapses in these regions of the CNS. We also detail the key roles of the L1CAM family of cell adhesion molecules in such GABAergic subcellular target recognition.
Collapse
|
14
|
Chowdhury D, Watters K, Biederer T. Synaptic recognition molecules in development and disease. Curr Top Dev Biol 2021; 142:319-370. [PMID: 33706921 DOI: 10.1016/bs.ctdb.2020.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Synaptic connectivity patterns underlie brain functions. How recognition molecules control where and when neurons form synapses with each other, therefore, is a fundamental question of cellular neuroscience. This chapter delineates adhesion and signaling complexes as well as secreted factors that contribute to synaptic partner recognition in the vertebrate brain. The sections follow a developmental perspective and discuss how recognition molecules (1) guide initial synaptic wiring, (2) provide for the rejection of incorrect partner choices, (3) contribute to synapse specification, and (4) support the removal of inappropriate synapses once formed. These processes involve a rich repertoire of molecular players and key protein families are described, notably the Cadherin and immunoglobulin superfamilies, Semaphorins/Plexins, Leucine-rich repeat containing proteins, and Neurexins and their binding partners. Molecular themes that diversify these recognition systems are defined and highlighted throughout the text, including the neuron-type specific expression and combinatorial action of recognition factors, alternative splicing, and post-translational modifications. Methodological innovations advancing the field such as proteomic approaches and single cell expression studies are additionally described. Further, the chapter highlights the importance of choosing an appropriate brain region to analyze synaptic recognition factors and the advantages offered by laminated structures like the hippocampus or retina. In a concluding section, the profound disease relevance of aberrant synaptic recognition for neurodevelopmental and psychiatric disorders is discussed. Based on the current progress, an outlook is presented on research goals that can further advance insights into how recognition molecules provide for the astounding precision and diversity of synaptic connections.
Collapse
Affiliation(s)
| | - Katherine Watters
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States; Neuroscience Graduate Program, Tufts University School of Medicine, Boston, MA, United States
| | - Thomas Biederer
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States.
| |
Collapse
|
15
|
Heckman EL, Doe CQ. Establishment and Maintenance of Neural Circuit Architecture. J Neurosci 2021; 41:1119-1129. [PMID: 33568445 PMCID: PMC7888231 DOI: 10.1523/jneurosci.1143-20.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/29/2020] [Accepted: 12/09/2020] [Indexed: 02/03/2023] Open
Abstract
The ability to sense the world, process information, and navigate the environment depends on the assembly and continuous function of neural circuits in the brain. Within the past two decades, new technologies have rapidly advanced our understanding of how neural circuits are wired during development and how they are stably maintained, often for years. Electron microscopy reconstructions of model organism connectomes have provided a map of the stereotyped (and variable) connections in the brain; advanced light microscopy techniques have enabled direct observation of the cellular dynamics that underlie circuit construction and maintenance; transcriptomic and proteomic surveys of both developing and mature neurons have provided insights into the molecular and genetic programs governing circuit establishment and maintenance; and advanced genetic techniques have allowed for high-throughput discovery of wiring regulators. These tools have empowered scientists to rapidly generate and test hypotheses about how circuits establish and maintain connectivity. Thus, the set of principles governing circuit formation and maintenance have been expanded. These principles are discussed in this review.
Collapse
Affiliation(s)
- Emily L Heckman
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, Oregon 97403
| | - Chris Q Doe
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
16
|
Lalonde NR, Bui TV. Do spinal circuits still require gating of sensory information by presynaptic inhibition after spinal cord injury? CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2020.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Duncan BW, Murphy KE, Maness PF. Molecular Mechanisms of L1 and NCAM Adhesion Molecules in Synaptic Pruning, Plasticity, and Stabilization. Front Cell Dev Biol 2021; 9:625340. [PMID: 33585481 PMCID: PMC7876315 DOI: 10.3389/fcell.2021.625340] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Mammalian brain circuits are wired by dynamic formation and remodeling during development to produce a balance of excitatory and inhibitory synapses. Synaptic regulation is mediated by a complex network of proteins including immunoglobulin (Ig)- class cell adhesion molecules (CAMs), structural and signal-transducing components at the pre- and post-synaptic membranes, and the extracellular protein matrix. This review explores the current understanding of developmental synapse regulation mediated by L1 and NCAM family CAMs. Excitatory and inhibitory synapses undergo formation and remodeling through neuronal CAMs and receptor-ligand interactions. These responses result in pruning inactive dendritic spines and perisomatic contacts, or synaptic strengthening during critical periods of plasticity. Ankyrins engage neural adhesion molecules of the L1 family (L1-CAMs) to promote synaptic stability. Chondroitin sulfates, hyaluronic acid, tenascin-R, and linker proteins comprising the perineuronal net interact with L1-CAMs and NCAM, stabilizing synaptic contacts and limiting plasticity as critical periods close. Understanding neuronal adhesion signaling and synaptic targeting provides insight into normal development as well as synaptic connectivity disorders including autism, schizophrenia, and intellectual disability.
Collapse
Affiliation(s)
- Bryce W Duncan
- Department of Biochemistry and Biophysics, Neuroscience Research Center, Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Kelsey E Murphy
- Department of Biochemistry and Biophysics, Neuroscience Research Center, Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Patricia F Maness
- Department of Biochemistry and Biophysics, Neuroscience Research Center, Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
18
|
3D Genome of macaque fetal brain reveals evolutionary innovations during primate corticogenesis. Cell 2021; 184:723-740.e21. [PMID: 33508230 DOI: 10.1016/j.cell.2021.01.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 11/09/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023]
Abstract
Elucidating the regulatory mechanisms of human brain evolution is essential to understanding human cognition and mental disorders. We generated multi-omics profiles and constructed a high-resolution map of 3D genome architecture of rhesus macaque during corticogenesis. By comparing the 3D genomes of human, macaque, and mouse brains, we identified many human-specific chromatin structure changes, including 499 topologically associating domains (TADs) and 1,266 chromatin loops. The human-specific loops are significantly enriched in enhancer-enhancer interactions, and the regulated genes show human-specific expression changes in the subplate, a transient zone of the developing brain critical for neural circuit formation and plasticity. Notably, many human-specific sequence changes are located in the human-specific TAD boundaries and loop anchors, which may generate new transcription factor binding sites and chromatin structures in human. Collectively, the presented data highlight the value of comparative 3D genome analyses in dissecting the regulatory mechanisms of brain development and evolution.
Collapse
|
19
|
Gandawijaya J, Bamford RA, Burbach JPH, Oguro-Ando A. Cell Adhesion Molecules Involved in Neurodevelopmental Pathways Implicated in 3p-Deletion Syndrome and Autism Spectrum Disorder. Front Cell Neurosci 2021; 14:611379. [PMID: 33519384 PMCID: PMC7838543 DOI: 10.3389/fncel.2020.611379] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/15/2020] [Indexed: 01/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is characterized by impaired social interaction, language delay and repetitive or restrictive behaviors. With increasing prevalence, ASD is currently estimated to affect 0.5–2.0% of the global population. However, its etiology remains unclear due to high genetic and phenotypic heterogeneity. Copy number variations (CNVs) are implicated in several forms of syndromic ASD and have been demonstrated to contribute toward ASD development by altering gene dosage and expression. Increasing evidence points toward the p-arm of chromosome 3 (chromosome 3p) as an ASD risk locus. Deletions occurring at chromosome 3p result in 3p-deletion syndrome (Del3p), a rare genetic disorder characterized by developmental delay, intellectual disability, facial dysmorphisms and often, ASD or ASD-associated behaviors. Therefore, we hypothesize that overlapping molecular mechanisms underlie the pathogenesis of Del3p and ASD. To investigate which genes encoded in chromosome 3p could contribute toward Del3p and ASD, we performed a comprehensive literature review and collated reports investigating the phenotypes of individuals with chromosome 3p CNVs. We observe that high frequencies of CNVs occur in the 3p26.3 region, the terminal cytoband of chromosome 3p. This suggests that CNVs disrupting genes encoded within the 3p26.3 region are likely to contribute toward the neurodevelopmental phenotypes observed in individuals affected by Del3p. The 3p26.3 region contains three consecutive genes encoding closely related neuronal immunoglobulin cell adhesion molecules (IgCAMs): Close Homolog of L1 (CHL1), Contactin-6 (CNTN6), and Contactin-4 (CNTN4). CNVs disrupting these neuronal IgCAMs may contribute toward ASD phenotypes as they have been associated with key roles in neurodevelopment. CHL1, CNTN6, and CNTN4 have been observed to promote neurogenesis and neuronal survival, and regulate neuritogenesis and synaptic function. Furthermore, there is evidence that these neuronal IgCAMs possess overlapping interactomes and participate in common signaling pathways regulating axon guidance. Notably, mouse models deficient for these neuronal IgCAMs do not display strong deficits in axonal migration or behavioral phenotypes, which is in contrast to the pronounced defects in neuritogenesis and axon guidance observed in vitro. This suggests that when CHL1, CNTN6, or CNTN4 function is disrupted by CNVs, other neuronal IgCAMs may suppress behavioral phenotypes by compensating for the loss of function.
Collapse
Affiliation(s)
- Josan Gandawijaya
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Rosemary A Bamford
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - J Peter H Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Asami Oguro-Ando
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
20
|
Takeda K, Watanabe T, Oyabu K, Tsukamoto S, Oba Y, Nakano T, Kubota K, Katsurabayashi S, Iwasaki K. Valproic acid-exposed astrocytes impair inhibitory synapse formation and function. Sci Rep 2021; 11:23. [PMID: 33420078 PMCID: PMC7794250 DOI: 10.1038/s41598-020-79520-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Valproic acid (VPA) is widely prescribed to treat epilepsy. Maternal VPA use is, however, clinically restricted because of the severe risk that VPA may cause neurodevelopmental disorders in offspring, such as autism spectrum disorder. Understanding the negative action of VPA may help to prevent VPA-induced neurodevelopmental disorders. Astrocytes play a vital role in neurodevelopment and synapse function; however, the impact of VPA on astrocyte involvement in neurodevelopment and synapse function has not been examined. In this study, we examined whether exposure of cultured astrocytes to VPA alters neuronal morphology and synapse function of co-cultured neurons. We show that synaptic transmission by inhibitory neurons was small because VPA-exposed astrocytes reduced the number of inhibitory synapses. However, synaptic transmission by excitatory neurons and the number of excitatory synapses were normal with VPA-exposed astrocytes. VPA-exposed astrocytes did not affect the morphology of inhibitory neurons. These data indicate that VPA-exposed astrocytes impair synaptogenesis specifically of inhibitory neurons. Our results indicate that maternal use of VPA would affect not only neurons but also astrocytes and would result in perturbed astrocyte-mediated neurodevelopment.
Collapse
Affiliation(s)
- Kotomi Takeda
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Takuya Watanabe
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan. .,A.I.G. Collaborative Research Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka, 814-0180, Japan.
| | - Kohei Oyabu
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Shuntaro Tsukamoto
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Yuki Oba
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Takafumi Nakano
- Department of Pharmaceutical and Health Care Management, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Kaori Kubota
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan.,A.I.G. Collaborative Research Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Shutaro Katsurabayashi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Katsunori Iwasaki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan.,A.I.G. Collaborative Research Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| |
Collapse
|
21
|
Wang M, Witvliet D, Wu M, Kang L, Shao Z. Temperature regulates synaptic subcellular specificity mediated by inhibitory glutamate signaling. PLoS Genet 2021; 17:e1009295. [PMID: 33428618 PMCID: PMC7822552 DOI: 10.1371/journal.pgen.1009295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/22/2021] [Accepted: 12/05/2020] [Indexed: 01/13/2023] Open
Abstract
Environmental factors such as temperature affect neuronal activity and development. However, it remains unknown whether and how they affect synaptic subcellular specificity. Here, using the nematode Caenorhabditis elegans AIY interneurons as a model, we found that high cultivation temperature robustly induces defects in synaptic subcellular specificity through glutamatergic neurotransmission. Furthermore, we determined that the functional glutamate is mainly released by the ASH sensory neurons and sensed by two conserved inhibitory glutamate-gated chloride channels GLC-3 and GLC-4 in AIY. Our work not only presents a novel neurotransmission-dependent mechanism underlying the synaptic subcellular specificity, but also provides a potential mechanistic insight into high-temperature-induced neurological defects.
Collapse
Affiliation(s)
- Mengqing Wang
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Daniel Witvliet
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Mengting Wu
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lijun Kang
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhiyong Shao
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Valdes-Aleman J, Fetter RD, Sales EC, Heckman EL, Venkatasubramanian L, Doe CQ, Landgraf M, Cardona A, Zlatic M. Comparative Connectomics Reveals How Partner Identity, Location, and Activity Specify Synaptic Connectivity in Drosophila. Neuron 2020; 109:105-122.e7. [PMID: 33120017 PMCID: PMC7837116 DOI: 10.1016/j.neuron.2020.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/12/2020] [Accepted: 10/05/2020] [Indexed: 01/30/2023]
Abstract
The mechanisms by which synaptic partners recognize each other and establish appropriate numbers of connections during embryonic development to form functional neural circuits are poorly understood. We combined electron microscopy reconstruction, functional imaging of neural activity, and behavioral experiments to elucidate the roles of (1) partner identity, (2) location, and (3) activity in circuit assembly in the embryonic nerve cord of Drosophila. We found that postsynaptic partners are able to find and connect to their presynaptic partners even when these have been shifted to ectopic locations or silenced. However, orderly positioning of axon terminals by positional cues and synaptic activity is required for appropriate numbers of connections between specific partners, for appropriate balance between excitatory and inhibitory connections, and for appropriate functional connectivity and behavior. Our study reveals with unprecedented resolution the fine connectivity effects of multiple factors that work together to control the assembly of neural circuits.
Collapse
Affiliation(s)
- Javier Valdes-Aleman
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Richard D Fetter
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Emily C Sales
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Emily L Heckman
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | | | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Matthias Landgraf
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Marta Zlatic
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
23
|
Sanes JR, Zipursky SL. Synaptic Specificity, Recognition Molecules, and Assembly of Neural Circuits. Cell 2020; 181:536-556. [DOI: 10.1016/j.cell.2020.04.008] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 01/02/2023]
|
24
|
The Interaction Between Contactin and Amyloid Precursor Protein and Its Role in Alzheimer’s Disease. Neuroscience 2020; 424:184-202. [DOI: 10.1016/j.neuroscience.2019.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 01/06/2023]
|
25
|
Hamnett R, Kaltschmidt JA. Chandelier Cells Swipe Right for L1CAM. Neuron 2019; 102:267-270. [PMID: 30998894 DOI: 10.1016/j.neuron.2019.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Establishing a functional neuronal circuit requires not only synapsing with the right cell type, but also targeting the right subcellular compartment. In this issue of Neuron, Tai et al. (2019) identify the cell adhesion molecule L1CAM as integral to the mechanism by which chandelier cells establish subcellular compartment-specific innervation of pyramidal neurons in the mammalian cerebral cortex.
Collapse
Affiliation(s)
- Ryan Hamnett
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Julia A Kaltschmidt
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
26
|
Tong DL, Chen RG, Lu YL, Li WK, Zhang YF, Lin JK, He LJ, Dang T, Shan SF, Xu XH, Zhang Y, Zhang C, Du YS, Zhou WH, Wang X, Qiu Z. The critical role of ASD-related gene CNTNAP3 in regulating synaptic development and social behavior in mice. Neurobiol Dis 2019; 130:104486. [DOI: 10.1016/j.nbd.2019.104486] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/03/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023] Open
|
27
|
Kim B. Evolutionarily conserved and divergent functions for cell adhesion molecules in neural circuit assembly. J Comp Neurol 2019; 527:2061-2068. [PMID: 30779135 DOI: 10.1002/cne.24666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 12/17/2022]
Abstract
The developing nervous system generates remarkably precise synaptic connections between neurons and their postsynaptic target cells. Numerous neural cell adhesion proteins have been identified to mediate cell recognition between synaptic partners in several model organisms. Here, I review the role of protein interactions of cell adhesion molecules in neural circuit assembly and address how these interactions are utilized to form different neural circuitries in different species. The emerging evidence suggests that the extracellular trans-interactions of cell adhesion proteins for neural wiring are evolutionarily conserved across taxa, but they are often used in different steps of circuit assembly. I also highlight how these conserved protein interactions work together as a group to specify neural connectivity.
Collapse
Affiliation(s)
- Byunghyuk Kim
- Department of Life Science, Dongguk University Seoul, Goyang, Republic of Korea
| |
Collapse
|
28
|
Peng X, Williams J, Smallwood PM, Nathans J. Defining the binding interface of Amyloid Precursor Protein (APP) and Contactin3 (CNTN3) by site-directed mutagenesis. PLoS One 2019; 14:e0219384. [PMID: 31318883 PMCID: PMC6638891 DOI: 10.1371/journal.pone.0219384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/22/2019] [Indexed: 11/19/2022] Open
Abstract
The Amyloid Precursor Protein (APP) and Contactin (CNTN) families of cell-surface proteins have been intensively studied in the context of neural development and neuropsychiatric diseases. Earlier studies demonstrated both genetic and biochemical interactions between the extracellular domains of APP and CNTN3, but their precise binding interfaces were not defined. In the present study, we have used binding assays between APP-alkaline phosphatase (AP) fusion proteins and CNTN-Fc fusion proteins, together with alanine substitution mutagenesis, to show that: (i) the second Fibronectin domain (Fn(2)) in CNTN3 mediates APP binding; (ii) the copper binding domain (CuBD) in APP mediates CNTN3 binding; and (iii) the most important amino acids for APP-CNTN3 binding reside on one face of CNTN3-Fn(2) and on one face of APP-CuBD. These experiments define the regions of direct contact that mediate the binding interaction between APP and CNTN3.
Collapse
Affiliation(s)
- Xi Peng
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - John Williams
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Philip M. Smallwood
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
29
|
Tai Y, Gallo NB, Wang M, Yu JR, Van Aelst L. Axo-axonic Innervation of Neocortical Pyramidal Neurons by GABAergic Chandelier Cells Requires AnkyrinG-Associated L1CAM. Neuron 2019; 102:358-372.e9. [PMID: 30846310 DOI: 10.1016/j.neuron.2019.02.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/20/2018] [Accepted: 02/04/2019] [Indexed: 11/17/2022]
Abstract
Among the diverse interneuron subtypes in the neocortex, chandelier cells (ChCs) are the only population that selectively innervate pyramidal neurons (PyNs) at their axon initial segment (AIS), the site of action potential initiation, allowing them to exert powerful control over PyN output. Yet, mechanisms underlying their subcellular innervation of PyN AISs are unknown. To identify molecular determinants of ChC/PyN AIS innervation, we performed an in vivo RNAi screen of PyN-expressed axonal cell adhesion molecules (CAMs) and select Ephs/ephrins. Strikingly, we found the L1 family member L1CAM to be the only molecule required for ChC/PyN AIS innervation. Further, we show that L1CAM is required during both the establishment and maintenance of innervation, and that selective innervation of PyN AISs by ChCs requires AIS anchoring of L1CAM by the cytoskeletal ankyrin-G/βIV-spectrin complex. Thus, our findings identify PyN-expressed L1CAM as a critical CAM required for innervation of neocortical PyN AISs by ChCs. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Yilin Tai
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Nicholas B Gallo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | - Minghui Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jia-Ray Yu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Linda Van Aelst
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
30
|
Chatterjee M, Schild D, Teunissen CE. Contactins in the central nervous system: role in health and disease. Neural Regen Res 2019; 14:206-216. [PMID: 30530999 PMCID: PMC6301169 DOI: 10.4103/1673-5374.244776] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/17/2018] [Indexed: 01/06/2023] Open
Abstract
Contactins are a group of cell adhesion molecules that are mainly expressed in the brain and play pivotal roles in the organization of axonal domains, axonal guidance, neuritogenesis, neuronal development, synapse formation and plasticity, axo-glia interactions and neural regeneration. Contactins comprise a family of six members. Their absence leads to malformed axons and impaired nerve conduction. Contactin mediated protein complex formation is critical for the organization of the axon in early central nervous system development. Mutations and differential expression of contactins have been identified in neuro-developmental or neurological disorders. Taken together, contactins are extensively studied in the context of nervous system development. This review summarizes the physiological roles of all six members of the Contactin family in neurodevelopment as well as their involvement in neurological/neurodevelopmental disorders.
Collapse
Affiliation(s)
- Madhurima Chatterjee
- Amsterdam UMC, VU University Medical Center, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany
- DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany
- DFG Excellence Cluster 171, University of Göttingen, Göttingen, Germany
| | - Charlotte E. Teunissen
- Amsterdam UMC, VU University Medical Center, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Yokota K, Kubota K, Kobayakawa K, Saito T, Hara M, Kijima K, Maeda T, Katoh H, Ohkawa Y, Nakashima Y, Okada S. Pathological changes of distal motor neurons after complete spinal cord injury. Mol Brain 2019; 12:4. [PMID: 30626449 PMCID: PMC6327522 DOI: 10.1186/s13041-018-0422-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022] Open
Abstract
Traumatic spinal cord injury (SCI) causes serious disruption of neuronal circuits that leads to motor functional deficits. Regeneration of disrupted circuits back to their original target is necessary for the restoration of function after SCI, but the pathophysiological condition of the caudal spinal cord has not been sufficiently studied. Here we investigated the histological and biological changes in the distal part of the injured spinal cord, using a mice model of complete thoracic SCI in the chronic stage (3 months after injury). Atrophic changes were widely observed in the injured spinal cord both rostral and caudal to the lesion, but the decrease in area was mainly in the white matter in the rostral spinal cord while both the white and gray matter decreased in the caudal spinal cord. The number of the motor neurons was maintained in the chronic phase of injury, but the number of presynaptic boutons decreased in the lumbar motor neurons caudal to the lesion. Using laser microdissection, to investigate gene expressions in motor neurons caudal to the lesion, we observed a decrease in the expressions of neuronal activity markers. However, we found that the synaptogenic potential of postsynapse molecules was maintained in the motor neurons after SCI with the expression of acetylcholine-related molecules actually higher after SCI. Collectively, our results show that the potential of synaptogenesis is maintained in the motor neurons caudal to the lesion, even though presynaptic input is decreased. Although researches into SCI concentrate their effort on the lesion epicenter, our findings suggest that the area caudal to the lesion could be an original therapeutic target for the chronically injured spinal cord.
Collapse
Affiliation(s)
- Kazuya Yokota
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Immunology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Orthopaedic Surgery, Spinal Injuries Center, 550-4 Igisu, Iizuka, Fukuoka, 820-8508, Japan
| | - Kensuke Kubota
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Immunology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Orthopaedic Surgery, Spinal Injuries Center, 550-4 Igisu, Iizuka, Fukuoka, 820-8508, Japan
| | - Kazu Kobayakawa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Immunology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takeyuki Saito
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Immunology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masamitsu Hara
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Immunology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ken Kijima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Immunology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takeshi Maeda
- Department of Orthopaedic Surgery, Spinal Injuries Center, 550-4 Igisu, Iizuka, Fukuoka, 820-8508, Japan
| | - Hiroyuki Katoh
- Department of Orthopaedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Yasuyuki Ohkawa
- Department of Transcriptomics, JST-CREST, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan. .,Department of Immunology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
32
|
Plant GW, Weinrich JA, Kaltschmidt JA. Sensory and descending motor circuitry during development and injury. Curr Opin Neurobiol 2018; 53:156-161. [PMID: 30205323 DOI: 10.1016/j.conb.2018.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/13/2018] [Indexed: 01/18/2023]
Abstract
Proprioceptive sensory input and descending supraspinal projections are two major inputs that feed into and influence spinal circuitry and locomotor behaviors. Here we review their influence on each other during development and after spinal cord injury. We highlight developmental mechanisms of circuit formation as they relate to the sensory-motor circuit and its reciprocal interactions with local spinal interneurons, as well as competitive interactions between proprioceptive and descending supraspinal inputs in the setting of spinal cord injury.
Collapse
Affiliation(s)
- Giles W Plant
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jarret Ap Weinrich
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| | - Julia A Kaltschmidt
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
33
|
Gamlin CR, Yu WQ, Wong ROL, Hoon M. Assembly and maintenance of GABAergic and Glycinergic circuits in the mammalian nervous system. Neural Dev 2018; 13:12. [PMID: 29875009 PMCID: PMC5991458 DOI: 10.1186/s13064-018-0109-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/06/2018] [Indexed: 12/19/2022] Open
Abstract
Inhibition in the central nervous systems (CNS) is mediated by two neurotransmitters: gamma-aminobutyric acid (GABA) and glycine. Inhibitory synapses are generally GABAergic or glycinergic, although there are synapses that co-release both neurotransmitter types. Compared to excitatory circuits, much less is known about the cellular and molecular mechanisms that regulate synaptic partner selection and wiring patterns of inhibitory circuits. Recent work, however, has begun to fill this gap in knowledge, providing deeper insight into whether GABAergic and glycinergic circuit assembly and maintenance rely on common or distinct mechanisms. Here we summarize and contrast the developmental mechanisms that regulate the selection of synaptic partners, and that promote the formation, refinement, maturation and maintenance of GABAergic and glycinergic synapses and their respective wiring patterns. We highlight how some parts of the CNS demonstrate developmental changes in the type of inhibitory transmitter or receptor composition at their inhibitory synapses. We also consider how perturbation of the development or maintenance of one type of inhibitory connection affects other inhibitory synapse types in the same circuit. Mechanistic insight into the development and maintenance of GABAergic and glycinergic inputs, and inputs that co-release both these neurotransmitters could help formulate comprehensive therapeutic strategies for treating disorders of synaptic inhibition.
Collapse
Affiliation(s)
- Clare R Gamlin
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Wan-Qing Yu
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Mrinalini Hoon
- Department of Biological Structure, University of Washington, Seattle, WA, USA. .,Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
34
|
Smirnov AV, Kontsevaya GV, Feofanova NA, Anisimova MV, Serova IA, Gerlinskaya LA, Battulin NR, Moshkin MP, Serov OL. Unexpected phenotypic effects of a transgene integration causing a knockout of the endogenous Contactin-5 gene in mice. Transgenic Res 2017; 27:1-13. [PMID: 29264679 DOI: 10.1007/s11248-017-0053-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/01/2017] [Indexed: 01/06/2023]
Abstract
Contactins (Cntn1-6) are a family of neuronal membrane proteins expressed in the brain. They are required for establishing cell-to-cell contacts between neurons and for the growth and maturation of the axons. In humans, structural genomic variations in the Contactin genes are implicated in neurodevelopmental disorders. In addition, population genetic studies associate Contactins loci with obesity and hypertension. Cntn5 knockout mice were first described in 2003, but showed no gross physiological or behavioral abnormalities (just minor auditory defects). We report a novel Cntn5 knockout mouse line generated by a random transgene integration as an outcome of pronuclear microinjection. Investigation of the transgene integration site revealed that the 6Kbp transgene construct coding for the human granulocyte-macrophage colony-stimulating factor (hGMCSF) replaced 170 Kbp of the Cntn5 gene, including four exons. Reverse transcription PCR analysis of the Cntn5 transcripts in the wild-type and transgenic mouse lines showed that splicing of the transgene leads to a set of chimeric hGMCSF-Cntn5 transcript variants, none of which encode functional Cntn5 protein due to introduction of stop codons. Although Cntn5 knockout animals displayed no abnormalities in behavior, we noted that they were leaner, with less body mass and fat percentage than wild-type animals. Their cardiovascular parameters (heart rate, blood pressure and blood flow speed) were elevated compared to controls. These findings link Cntn5 deficiency to obesity and hypertension.
Collapse
Affiliation(s)
- Alexander V Smirnov
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia.
| | - Galina V Kontsevaya
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Natalia A Feofanova
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Margarita V Anisimova
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Irina A Serova
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Lyudmila A Gerlinskaya
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nariman R Battulin
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Mikhail P Moshkin
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Oleg L Serov
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia. .,Novosibirsk State University, Novosibirsk, Russia.
| |
Collapse
|
35
|
Li J, Han W, Pelkey KA, Duan J, Mao X, Wang YX, Craig MT, Dong L, Petralia RS, McBain CJ, Lu W. Molecular Dissection of Neuroligin 2 and Slitrk3 Reveals an Essential Framework for GABAergic Synapse Development. Neuron 2017; 96:808-826.e8. [PMID: 29107521 PMCID: PMC5957482 DOI: 10.1016/j.neuron.2017.10.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/18/2017] [Accepted: 10/02/2017] [Indexed: 10/18/2022]
Abstract
In the brain, many types of interneurons make functionally diverse inhibitory synapses onto principal neurons. Although numerous molecules have been identified to function in inhibitory synapse development, it remains unknown whether there is a unifying mechanism for development of diverse inhibitory synapses. Here we report a general molecular mechanism underlying hippocampal inhibitory synapse development. In developing neurons, the establishment of GABAergic transmission depends on Neuroligin 2 (NL2), a synaptic cell adhesion molecule (CAM). During maturation, inhibitory synapse development requires both NL2 and Slitrk3 (ST3), another CAM. Importantly, NL2 and ST3 interact with nanomolar affinity through their extracellular domains to synergistically promote synapse development. Selective perturbation of the NL2-ST3 interaction impairs inhibitory synapse development with consequent disruptions in hippocampal network activity and increased seizure susceptibility. Our findings reveal how unique postsynaptic CAMs work in concert to control synaptogenesis and establish a general framework for GABAergic synapse development.
Collapse
Affiliation(s)
- Jun Li
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenyan Han
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenneth A Pelkey
- Program in Developmental Neuroscience, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jingjing Duan
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xia Mao
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ya-Xian Wang
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael T Craig
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Prince of Wales Road, Exeter EX4 4PS, UK
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ronald S Petralia
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chris J McBain
- Program in Developmental Neuroscience, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
36
|
Zhang J, Weinrich JAP, Russ JB, Comer JD, Bommareddy PK, DiCasoli RJ, Wright CVE, Li Y, van Roessel PJ, Kaltschmidt JA. A Role for Dystonia-Associated Genes in Spinal GABAergic Interneuron Circuitry. Cell Rep 2017; 21:666-678. [PMID: 29045835 PMCID: PMC5658202 DOI: 10.1016/j.celrep.2017.09.079] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 09/08/2017] [Accepted: 09/24/2017] [Indexed: 12/17/2022] Open
Abstract
Spinal interneurons are critical modulators of motor circuit function. In the dorsal spinal cord, a set of interneurons called GABApre presynaptically inhibits proprioceptive sensory afferent terminals, thus negatively regulating sensory-motor signaling. Although deficits in presynaptic inhibition have been inferred in human motor diseases, including dystonia, it remains unclear whether GABApre circuit components are altered in these conditions. Here, we use developmental timing to show that GABApre neurons are a late Ptf1a-expressing subclass and localize to the intermediate spinal cord. Using a microarray screen to identify genes expressed in this intermediate population, we find the kelch-like family member Klhl14, implicated in dystonia through its direct binding with torsion-dystonia-related protein Tor1a. Furthermore, in Tor1a mutant mice in which Klhl14 and Tor1a binding is disrupted, formation of GABApre sensory afferent synapses is impaired. Our findings suggest a potential contribution of GABApre neurons to the deficits in presynaptic inhibition observed in dystonia.
Collapse
Affiliation(s)
- Juliet Zhang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA; Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jarret A P Weinrich
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jeffrey B Russ
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA; Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - John D Comer
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA; Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Praveen K Bommareddy
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Richard J DiCasoli
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Christopher V E Wright
- Vanderbilt University Program in Developmental Biology, Vanderbilt Center for Stem Cell Biology, Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Yuqing Li
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Peter J van Roessel
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Julia A Kaltschmidt
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA; Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
37
|
Kim B, Emmons SW. Multiple conserved cell adhesion protein interactions mediate neural wiring of a sensory circuit in C. elegans. eLife 2017; 6:29257. [PMID: 28901288 PMCID: PMC5619950 DOI: 10.7554/elife.29257] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 09/08/2017] [Indexed: 01/06/2023] Open
Abstract
Nervous system function relies on precise synaptic connections. A number of widely-conserved cell adhesion proteins are implicated in cell recognition between synaptic partners, but how these proteins act as a group to specify a complex neural network is poorly understood. Taking advantage of known connectivity in C. elegans, we identified and studied cell adhesion genes expressed in three interacting neurons in the mating circuits of the adult male. Two interacting pairs of cell surface proteins independently promote fasciculation between sensory neuron HOA and its postsynaptic target interneuron AVG: BAM-2/neurexin-related in HOA binds to CASY-1/calsyntenin in AVG; SAX-7/L1CAM in sensory neuron PHC binds to RIG-6/contactin in AVG. A third, basal pathway results in considerable HOA-AVG fasciculation and synapse formation in the absence of the other two. The features of this multiplexed mechanism help to explain how complex connectivity is encoded and robustly established during nervous system development.
Collapse
Affiliation(s)
- Byunghyuk Kim
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
| | - Scott W Emmons
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States.,Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, United States
| |
Collapse
|
38
|
Peng YR, Tran NM, Krishnaswamy A, Kostadinov D, Martersteck EM, Sanes JR. Satb1 Regulates Contactin 5 to Pattern Dendrites of a Mammalian Retinal Ganglion Cell. Neuron 2017; 95:869-883.e6. [PMID: 28781169 DOI: 10.1016/j.neuron.2017.07.019] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 06/16/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022]
Abstract
The size and shape of dendritic arbors are prime determinants of neuronal connectivity and function. We asked how ON-OFF direction-selective ganglion cells (ooDSGCs) in mouse retina acquire their bistratified dendrites, in which responses to light onset and light offset are segregated to distinct strata. We found that the transcriptional regulator Satb1 is selectively expressed by ooDSGCs. In Satb1 mutant mice, ooDSGC dendrites lack ON arbors, and the cells selectively lose ON responses. Satb1 regulates expression of a homophilic adhesion molecule, Contactin 5 (Cntn5). Both Cntn5 and its co-receptor Caspr4 are expressed not only by ooDSGCs, but also by interneurons that form a scaffold on which ooDSGC ON dendrites fasciculate. Removing Cntn5 from either ooDSGCs or interneurons partially phenocopies Satb1 mutants, demonstrating that Satb1-dependent Cntn5 expression in ooDSGCs leads to branch-specific homophilic interactions with interneurons. Thus, Satb1 directs formation of a morphologically and functionally specialized compartment within a complex dendritic arbor.
Collapse
Affiliation(s)
- Yi-Rong Peng
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Nicholas M Tran
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Arjun Krishnaswamy
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Dimitar Kostadinov
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Emily M Martersteck
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
39
|
Sakurai T. The role of cell adhesion molecules in brain wiring and neuropsychiatric disorders. Mol Cell Neurosci 2017; 81:4-11. [PMID: 27561442 DOI: 10.1016/j.mcn.2016.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 12/15/2022] Open
Abstract
Cell adhesion molecules (CAMs) in the nervous system have long been a research focus, but many mice lacking CAMs show very subtle phenotypes, giving an impression that CAMs may not be major players in constructing the nervous system. However, recent human genetic studies suggest CAM involvement in many neuropsychiatric disorders, implicating that they must have significant functions in nervous system development, namely in circuitry formation. As CAMs can provide specificity through their molecular interactions, this review summarizes possible mechanisms on how alterations of CAMs can result in neuropsychiatric disorders through circuitry modification.
Collapse
Affiliation(s)
- Takeshi Sakurai
- Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
40
|
Ben-Avraham D, Karasik D, Verghese J, Lunetta KL, Smith JA, Eicher JD, Vered R, Deelen J, Arnold AM, Buchman AS, Tanaka T, Faul JD, Nethander M, Fornage M, Adams HH, Matteini AM, Callisaya ML, Smith AV, Yu L, De Jager PL, Evans DA, Gudnason V, Hofman A, Pattie A, Corley J, Launer LJ, Knopman DS, Parimi N, Turner ST, Bandinelli S, Beekman M, Gutman D, Sharvit L, Mooijaart SP, Liewald DC, Houwing-Duistermaat JJ, Ohlsson C, Moed M, Verlinden VJ, Mellström D, van der Geest JN, Karlsson M, Hernandez D, McWhirter R, Liu Y, Thomson R, Tranah GJ, Uitterlinden AG, Weir DR, Zhao W, Starr JM, Johnson AD, Ikram MA, Bennett DA, Cummings SR, Deary IJ, Harris TB, Kardia SLR, Mosley TH, Srikanth VK, Windham BG, Newman AB, Walston JD, Davies G, Evans DS, Slagboom EP, Ferrucci L, Kiel DP, Murabito JM, Atzmon G. The complex genetics of gait speed: genome-wide meta-analysis approach. Aging (Albany NY) 2017; 9:209-246. [PMID: 28077804 PMCID: PMC5310665 DOI: 10.18632/aging.101151] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/26/2016] [Indexed: 01/08/2023]
Abstract
Emerging evidence suggests that the basis for variation in late-life mobility is attributable, in part, to genetic factors, which may become increasingly important with age. Our objective was to systematically assess the contribution of genetic variation to gait speed in older individuals. We conducted a meta-analysis of gait speed GWASs in 31,478 older adults from 17 cohorts of the CHARGE consortium, and validated our results in 2,588 older adults from 4 independent studies. We followed our initial discoveries with network and eQTL analysis of candidate signals in tissues. The meta-analysis resulted in a list of 536 suggestive genome wide significant SNPs in or near 69 genes. Further interrogation with Pathway Analysis placed gait speed as a polygenic complex trait in five major networks. Subsequent eQTL analysis revealed several SNPs significantly associated with the expression of PRSS16, WDSUB1 and PTPRT, which in addition to the meta-analysis and pathway suggested that genetic effects on gait speed may occur through synaptic function and neuronal development pathways. No genome-wide significant signals for gait speed were identified from this moderately large sample of older adults, suggesting that more refined physical function phenotypes will be needed to identify the genetic basis of gait speed in aging.
Collapse
Affiliation(s)
- Dan Ben-Avraham
- Department of Medicine and Genetics Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David Karasik
- Institute for Aging Research, Hebrew SeniorLife, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02131, USA
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Joe Verghese
- Integrated Divisions of Cognitive & Motor Aging (Neurology) and Geriatrics (Medicine), Montefiore-Einstein Center for the Aging Brain, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kathryn L. Lunetta
- The National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA 01702, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - John D. Eicher
- The National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA 01702, USA
- Population Sciences Branch, National Heart Lung and Blood Institute, Framingham, MA 01702, USA
| | - Rotem Vered
- Psychology Department, University of Haifa, Haifa, Israel
| | - Joris Deelen
- Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
- Max Planck Institute for Biology of Ageing, Köln, Germany
| | - Alice M. Arnold
- Department of Biostatistics, University of Washington, Seattle, WA 98115, USA
| | - Aron S. Buchman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60614, USA
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, Baltimore MD 21224, USA
| | - Jessica D. Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| | - Maria Nethander
- Bioinformatics Core Facility, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Myriam Fornage
- The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hieab H. Adams
- Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Amy M. Matteini
- Division of Geriatric Medicine, Johns Hopkins Medical Institutes, Baltimore, MD 21224, USA
| | - Michele L. Callisaya
- Medicine, Peninsula Health, Peninsula Clinical School, Central Clinical School, Frankston, Melbourne, Victoria, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Albert V. Smith
- Icelandic Heart Association, Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60614, USA
| | - Philip L. De Jager
- Broad Institute of Harvard and MIT, Cambridge, Harvard Medical School, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Denis A. Evans
- Rush Institute for Healthy Aging and Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Alison Pattie
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Janie Corley
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Lenore J. Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Neeta Parimi
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Stephen T. Turner
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Marian Beekman
- Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Danielle Gutman
- Department of Human Biology, Faculty of Natural Science, University of Haifa, Haifa, Israel
| | - Lital Sharvit
- Department of Human Biology, Faculty of Natural Science, University of Haifa, Haifa, Israel
| | - Simon P. Mooijaart
- Gerontology and Geriatrics, Leiden University Medical Center, Leiden, Netherland
| | - David C. Liewald
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Jeanine J. Houwing-Duistermaat
- Genetical Statistics, Leiden University Medical Center, Leiden, Netherland. Department of Statistics, University of Leeds, Leeds, UK
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska, Academy, University of Gothenburg, Gothenburg, Sweden
| | - Matthijs Moed
- Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Dan Mellström
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska, Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Magnus Karlsson
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892, USA
| | - Rebekah McWhirter
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Russell Thomson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- School of Computing, Engineering and Mathematics, University of Western Sydney, Sydney, Australia
| | - Gregory J. Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Andre G. Uitterlinden
- Department of Internal Medicine, Erasmus MC, and Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging (NCHA), Rotterdam, The Netherlands
| | - David R. Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - John M. Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
| | - Andrew D. Johnson
- The National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA 01702, USA
- Population Sciences Branch, National Heart Lung and Blood Institute, Framingham, MA 01702, USA
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - David A. Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60614, USA
| | - Steven R. Cummings
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Ian J. Deary
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Tamara B. Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas H. Mosley
- University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Velandai K. Srikanth
- Medicine, Peninsula Health, Peninsula Clinical School, Central Clinical School, Frankston, Melbourne, Victoria, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Ann B. Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jeremy D. Walston
- Division of Geriatric Medicine, Johns Hopkins Medical Institutes, Baltimore, MD 21224, USA
| | - Gail Davies
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Eline P. Slagboom
- Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore MD 21224, USA
| | - Douglas P. Kiel
- Institute for Aging Research, Hebrew SeniorLife, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02131, USA
- Broad Institute of Harvard and MIT, Boston, MA 02131, USA
| | - Joanne M. Murabito
- The National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA 01702, USA
- Section of General Internal Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Gil Atzmon
- Department of Medicine and Genetics Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Human Biology, Faculty of Natural Science, University of Haifa, Haifa, Israel
| |
Collapse
|
41
|
A current view on contactin-4, -5, and -6: Implications in neurodevelopmental disorders. Mol Cell Neurosci 2017; 81:72-83. [PMID: 28064060 DOI: 10.1016/j.mcn.2016.12.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/23/2016] [Accepted: 12/25/2016] [Indexed: 12/30/2022] Open
Abstract
Contactins (Cntns) are a six-member subgroup of the immunoglobulin cell adhesion molecule superfamily (IgCAMs) with pronounced brain expression and function. Recent genetic studies of neuropsychiatric disorders have pinpointed contactin-4 (CNTN4), contactin-5 (CNTN5) and contactin-6 (CNTN6) as candidate genes in neurodevelopmental disorders, particularly in autism spectrum disorders (ASDs), but also in intellectual disability, schizophrenia (SCZ), attention-deficit hyperactivity disorder (ADHD), bipolar disorder (BD), alcohol use disorder (AUD) and anorexia nervosa (AN). This suggests that they have important functions during neurodevelopment. This suggestion is supported by data showing that neurite outgrowth, cell survival and neural circuit formation can be affected by disruption of these genes. Here, we review the current genetic data about their involvement in neuropsychiatric disorders and explore studies on how null mutations affect mouse behavior. Finally, we highlight to role of protein-protein interactions in the potential mechanism of action of Cntn4, -5 and -6 and emphasize that complexes with other membrane proteins may play a role in neuronal developmental functions.
Collapse
|
42
|
Zuko A, Oguro-Ando A, Post H, Taggenbrock RLRE, van Dijk RE, Altelaar AFM, Heck AJR, Petrenko AG, van der Zwaag B, Shimoda Y, Pasterkamp RJ, Burbach JPH. Association of Cell Adhesion Molecules Contactin-6 and Latrophilin-1 Regulates Neuronal Apoptosis. Front Mol Neurosci 2016; 9:143. [PMID: 28018171 PMCID: PMC5156884 DOI: 10.3389/fnmol.2016.00143] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/28/2016] [Indexed: 01/06/2023] Open
Abstract
In view of important neurobiological functions of the cell adhesion molecule contactin-6 (Cntn6) that have emerged from studies on null-mutant mice and autism spectrum disorders patients, we set out to examine pathways underlying functions of Cntn6 using a proteomics approach. We identified the cell adhesion GPCR latrophilin-1 (Lphn1, a.k.a. CIRL1/CL, ADGRL1) as a binding partner for Cntn6 forming together a heteromeric cis-complex. Lphn1 expression in cultured neurons caused reduction in neurite outgrowth and increase in apoptosis, which was rescued by coexpression of Cntn6. In cultured neurons derived from Cntn6-/- mice, Lphn1 knockdown reduced apoptosis, suggesting that the observed apoptosis was Lphn1-dependent. In line with these data, the number of apoptotic cells was increased in the cortex of Cntn6-/- mice compared to wild-type littermate controls. These results show that Cntn6 can modulate the activity of Lphn1 by direct binding and suggests that Cntn6 may prevent apoptosis thereby impinging on neurodevelopment.
Collapse
Affiliation(s)
- Amila Zuko
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Asami Oguro-Ando
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Harm Post
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht UniversityUtrecht, Netherlands; Netherlands Proteomics CentreUtrecht, Netherlands
| | - Renske L R E Taggenbrock
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Roland E van Dijk
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - A F Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht UniversityUtrecht, Netherlands; Netherlands Proteomics CentreUtrecht, Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht UniversityUtrecht, Netherlands; Netherlands Proteomics CentreUtrecht, Netherlands
| | - Alexander G Petrenko
- Laboratory of Receptor Cell Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow, Russia
| | - Bert van der Zwaag
- Department of Genetics, University Medical Center Utrecht Utrecht, Netherlands
| | - Yasushi Shimoda
- Department of Bioengineering, Nagaoka University of Technology Nagaoka, Japan
| | - R J Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - J P H Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|
43
|
Nikolaienko RM, Hammel M, Dubreuil V, Zalmai R, Hall DR, Mehzabeen N, Karuppan SJ, Harroch S, Stella SL, Bouyain S. Structural Basis for Interactions Between Contactin Family Members and Protein-tyrosine Phosphatase Receptor Type G in Neural Tissues. J Biol Chem 2016; 291:21335-21349. [PMID: 27539848 DOI: 10.1074/jbc.m116.742163] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/10/2016] [Indexed: 01/06/2023] Open
Abstract
Protein-tyrosine phosphatase receptor type G (RPTPγ/PTPRG) interacts in vitro with contactin-3-6 (CNTN3-6), a group of glycophosphatidylinositol-anchored cell adhesion molecules involved in the wiring of the nervous system. In addition to PTPRG, CNTNs associate with multiple transmembrane proteins and signal inside the cell via cis-binding partners to alleviate the absence of an intracellular region. Here, we use comprehensive biochemical and structural analyses to demonstrate that PTPRG·CNTN3-6 complexes share similar binding affinities and a conserved arrangement. Furthermore, as a first step to identifying PTPRG·CNTN complexes in vivo, we found that PTPRG and CNTN3 associate in the outer segments of mouse rod photoreceptor cells. In particular, PTPRG and CNTN3 form cis-complexes at the surface of photoreceptors yet interact in trans when expressed on the surfaces of apposing cells. Further structural analyses suggest that all CNTN ectodomains adopt a bent conformation and might lie parallel to the cell surface to accommodate these cis and trans binding modes. Taken together, these studies identify a PTPRG·CNTN complex in vivo and provide novel insights into PTPRG- and CNTN-mediated signaling.
Collapse
Affiliation(s)
- Roman M Nikolaienko
- From the Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110
| | - Michal Hammel
- the Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Véronique Dubreuil
- the Départment de Neuroscience, Institut Pasteur de Paris, 25-28 Rue du Dr. Roux, 75624 Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216, CNRS, Paris, France, and
| | - Rana Zalmai
- From the Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110
| | - David R Hall
- From the Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110
| | - Nurjahan Mehzabeen
- From the Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110
| | - Sebastian J Karuppan
- From the Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110
| | - Sheila Harroch
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216, CNRS, Paris, France, and
| | - Salvatore L Stella
- the Department of Basic Medical Science, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri 64108
| | - Samuel Bouyain
- From the Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110,
| |
Collapse
|
44
|
Harden N, Wang SJH, Krieger C. Making the connection – shared molecular machinery and evolutionary links underlie the formation and plasticity of occluding junctions and synapses. J Cell Sci 2016; 129:3067-76. [DOI: 10.1242/jcs.186627] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
ABSTRACT
The pleated septate junction (pSJ), an ancient structure for cell–cell contact in invertebrate epithelia, has protein components that are found in three more-recent junctional structures, the neuronal synapse, the paranodal region of the myelinated axon and the vertebrate epithelial tight junction. These more-recent structures appear to have evolved through alterations of the ancestral septate junction. During its formation in the developing animal, the pSJ exhibits plasticity, although the final structure is extremely robust. Similar to the immature pSJ, the synapse and tight junctions both exhibit plasticity, and we consider evidence that this plasticity comes at least in part from the interaction of members of the immunoglobulin cell adhesion molecule superfamily with highly regulated membrane-associated guanylate kinases. This plasticity regulation probably arose in order to modulate the ancestral pSJ and is maintained in the derived structures; we suggest that it would be beneficial when studying plasticity of one of these structures to consider the literature on the others. Finally, looking beyond the junctions, we highlight parallels between epithelial and synaptic membranes, which both show a polarized distribution of many of the same proteins – evidence that determinants of apicobasal polarity in epithelia also participate in patterning of the synapse.
Collapse
Affiliation(s)
- Nicholas Harden
- Simon Fraser University, Department of Molecular Biology and Biochemistry, Burnaby, British Columbia V5A 1S6, Canada
| | - Simon Ji Hau Wang
- Simon Fraser University, Department of Molecular Biology and Biochemistry, Burnaby, British Columbia V5A 1S6, Canada
- Simon Fraser University, Department of Biomedical Physiology and Kinesiology, Burnaby, British Columbia V5A 1S6, Canada
| | - Charles Krieger
- Simon Fraser University, Department of Biomedical Physiology and Kinesiology, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
45
|
Regulation of GABAergic synapse development by postsynaptic membrane proteins. Brain Res Bull 2016; 129:30-42. [PMID: 27453545 DOI: 10.1016/j.brainresbull.2016.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/06/2016] [Indexed: 02/07/2023]
Abstract
In the adult mammalian brain, GABAergic neurotransmission provides the majority of synaptic inhibition that balances glutamatergic excitatory drive and thereby controls neuronal output. It is generally accepted that synaptogenesis is initiated through highly specific protein-protein interactions mediated by membrane proteins expressed in developing presynaptic terminals and postsynaptic membranes. Accumulating studies have uncovered a number of membrane proteins that regulate different aspects of GABAergic synapse development. In this review, we summarize recent advances in understanding of GABAergic synapse development with a focus on postsynaptic membrane molecules, including receptors, synaptogenic cell adhesion molecules and immunoglobulin superfamily proteins.
Collapse
|
46
|
Cijsouw T, Biederer T. How a Piggyback Synapse Listens in to Tune Excitatory Terminals. Neuron 2016; 90:1143-1145. [PMID: 27311077 DOI: 10.1016/j.neuron.2016.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this issue of Neuron, Mende et al. (2016) report how axo-axonic synapses of interneurons balance the strength of glutamatergic terminals in the spinal cord. The results highlight presynaptic roles of mGluR1 receptors and of BDNF as a retrograde signal to regulate GABA synthesis and tune transmission.
Collapse
Affiliation(s)
- Tony Cijsouw
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Thomas Biederer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
47
|
de Wit J, Ghosh A. Specification of synaptic connectivity by cell surface interactions. Nat Rev Neurosci 2015; 17:22-35. [PMID: 26656254 DOI: 10.1038/nrn.2015.3] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The molecular diversification of cell surface molecules has long been postulated to impart specific surface identities on neuronal cell types. The existence of unique cell surface identities would allow neurons to distinguish one another and connect with their appropriate target cells. Although progress has been made in identifying cell type-specific surface molecule repertoires and in characterizing their extracellular interactions, determining how this molecular diversity contributes to the precise wiring of neural circuitry has proven challenging. Here, we review the role of the cadherin, neurexin, immunoglobulin and leucine-rich repeat protein superfamilies in the specification of connectivity. The emerging evidence suggests that the concerted actions of these proteins may critically contribute to the assembly of neural circuits.
Collapse
Affiliation(s)
- Joris de Wit
- VIB Center for the Biology of Disease and Center for Human Genetics, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Anirvan Ghosh
- Neuroscience Discovery, Roche Innovation Center Basel, F. Hoffman-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
48
|
Contactin-5 expression during development and wiring of the thalamocortical system. Neuroscience 2015; 310:106-13. [DOI: 10.1016/j.neuroscience.2015.09.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/13/2015] [Accepted: 09/14/2015] [Indexed: 01/06/2023]
|
49
|
Hirata H, Umemori J, Yoshioka H, Koide T, Watanabe K, Shimoda Y. Cell adhesion molecule contactin-associated protein 3 is expressed in the mouse basal ganglia during early postnatal stages. J Neurosci Res 2015; 94:74-89. [DOI: 10.1002/jnr.23670] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/14/2015] [Accepted: 08/31/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Haruna Hirata
- Department of Bioengineering; Nagaoka University of Technology; Nagaoka Niigata Japan
| | - Juzoh Umemori
- Mouse Genomics Resource Laboratory; National Institute of Genetics; Mishima Shizuoka Japan
| | - Hiroki Yoshioka
- Mouse Genomics Resource Laboratory; National Institute of Genetics; Mishima Shizuoka Japan
| | - Tsuyoshi Koide
- Mouse Genomics Resource Laboratory; National Institute of Genetics; Mishima Shizuoka Japan
| | - Kazutada Watanabe
- Department of Bioengineering; Nagaoka University of Technology; Nagaoka Niigata Japan
- Nagaoka National College of Technology; Nagaoka Niigata Japan
| | - Yasushi Shimoda
- Department of Bioengineering; Nagaoka University of Technology; Nagaoka Niigata Japan
| |
Collapse
|
50
|
Abstract
While microRNAs have emerged as an important component of gene regulatory networks, it remains unclear how microRNAs collaborate with transcription factors in the gene networks that determines neuronal cell fate. Here, we show that in the developing spinal cord, the expression of miR-218 is directly upregulated by the Isl1-Lhx3 complex, which drives motor neuron fate. Inhibition of miR-218 suppresses the generation of motor neurons in both chick neural tube and mouse embryonic stem cells, suggesting that miR-218 plays a crucial role in motor neuron differentiation. Results from unbiased RISC-trap screens, in vivo reporter assays, and overexpression studies indicated that miR-218 directly represses transcripts that promote developmental programs for interneurons. Additionally, we found that miR-218 activity is required for Isl1-Lhx3 to effectively induce motor neurons and suppress interneuron fates. Together, our results reveal an essential role of miR-218 as a downstream effector of the Isl1-Lhx3 complex in establishing motor neuron identity.
Collapse
|